
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

MOE-INFINITY: Efficient MoE Inference on Personal Machines
with Sparsity-Aware Expert Cache

Anonymous Authors1

Abstract

This paper presents MOE-INFINITY, an efficient
MoE inference system designed for personal ma-
chines with limited GPU memory capacity. The
key idea for MOE-INFINITY is that on personal
machines, which are often single-user environ-
ments, MoE-based LLMs typically operate with
a batch size of one. In this setting, MoE mod-
els exhibit a high degree of activation sparsity,
meaning a small number of experts are frequently
reused in generating tokens during the decode
phase. Leveraging this idea, we design a sparsity-
aware expert cache, which can trace the sparse
activation of experts during inference and care-
fully select the trace that represents the sparsity
pattern. By analyzing these selected traces, MOE-
INFINITY guides the replacement and prefetch-
ing of the expert cache, providing 2.7–13.7×
per-token latency improvements over numerous
state-of-the-art systems, including vLLM, Ollama,
DeepSpeed and BrainStorm across various MoE
models (DeepSeek and Mixtral) when handling
different LLM tasks.

Code: https://anonymous.4open.sc
ience/r/MoE-Infinity-220D/

1. Introduction
Mixture-of-Expert (MoE) architectures can significantly im-
prove the efficiency of Large Language Models (LLMs).
In an MoE model, the majority of parameters belong to
the MoE layers, where numerous experts are connected to
a router that dynamically routes input tokens to different
experts for processing. During inference, each input token
typically activates only a small subset of experts, signifi-
cantly reducing compute and memory bandwidth demands
compared to fully activated counterparts, where all experts
must be utilized.

Given its efficiency, LLMs with MoE architectures are in-
creasingly favoured for local deployment on personal ma-
chines. Unlike cloud servers, personal machines often have
only a single consumer-grade GPU with limited memory
(typically 24–48GB). To serve large MoE models—some

Systems GPU idle time TPOT Avg. TPOT Tail
DeepSpeed 513ms 737ms 803ms

Mixtral-Offloading 754ms 1250ms 1530ms
Llama.cpp 2073ms 2590ms 2599ms

vLLM 254ms 485ms 493ms
MOE-INFINITY 51ms 173ms 189ms

Table 1: MoE generation latency for DeepSeek-V2-Lite as
time-per-output-token (TPOT) on single NVIDIA-A5000-
24GB through PCIe4.0 (24GB/s). MOE-INFINITY achieves
2.7–13.7× latency reduction. Other systems incurs high
latency due to high volume but inaccurate prefetch blocking
GPU in addition to low GPU cache hit rate.

exceeding 100GB (Jiang et al., 2024; The Mosaic Research
Team; XAI, 2024), such as DeepSeek-MoE (DeepSeek-AI,
2024) with 236 billion parameters—the LLM inference sys-
tem often relies on offloading (Aminabadi et al., 2022). This
means the full MoE model resides in host memory, and only
the activated experts (i.e., those receiving tokens for pro-
cessing) are fetched into the GPU when needed.

Many state-of-the-art inference systems now support of-
floading, but they often suffer from slow performance. Our
trace analysis reveals that the primary cause is poor cache
design when fetching experts into GPUs. Most inference
engines (e.g., DeepSpeed (Aminabadi et al., 2022), Mixtral-
Offloading (Eliseev & Mazur, 2023)) use prediction-based
methods to manage their expert cache within GPUs. These
methods primarily analyze the execution order of experts in
the computational graph (e.g., prioritizing experts in the next
immediate layer). While prediction-based methods work
well for fully activated dense models, they fail to account
for the sparse activation of experts and assume all required
experts must be fetched into GPUs, leading to substantial
I/O bottlenecks on the PCIe bus. As a result, they suffer
from high GPU idle time and thus poor Time Per Output
Token (TPOT)—a critical metric for LLM serving, shown
in Table 1. In fact, inaccurate predictions can degrade per-
formance even further than on-demand fetching approaches
like vLLM (Kwon et al., 2023), which experience less I/O
contention but still underutilize GPUs.

Recently, BrainStorm (Cui et al., 2023) was designed for
caching parameters of dynamic neural networks. However,

1

https://anonymous.4open.science/r/MoE-Infinity-220D/
https://anonymous.4open.science/r/MoE-Infinity-220D/

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

it can only handle dynamic patterns caused by control op-
erators (e.g., if-else) in neural networks in classification
tasks, rather than routers in MoE architectures during the
auto-regressive LLM decoding process. As a result, it still
produces highly inaccurate predictions, performing worse
than on-demand vLLM – 934ms TPOT (avg.) in BrainStorm
versus 485ms TPOT in vLLM.

We aim to design an effective caching strategy for MoE
inference on personal machines. Our key idea is that MoE
inference on personal devices typically operates with a batch
size of one. Unlike cloud-based environments that batch
multiple user requests using techniques like continuous
batching (Yu et al., 2022), personal machines are single-
user environments and often process a single prompt at a
time when running locally deployed LLM services (e.g.,
ChatBot). During decoding, an MoE model activates only a
small subset of experts per token, meaning a small cache is
effective (i.e., cache size is comparable to the memory size
of a GPU). To optimize caching, we could further develop
prediction methods that account for sparse expert activation
patterns and identify which experts are most likely to be
reused during decoding. This reuse pattern stems from how
experts are trained—experts with similar expertise are often
reactivated within the same context and prompt, with further
analysis and evidence provided in Section 4.4.

Building on this key idea, we introduce MOE-INFINITY, a
new MoE inference system for personal machines. The core
innovation of MOE-INFINITY is a Sparsity-Aware Expert
Cache which leads to the following contributions:

Contribution 1. We conduct extensive trace analysis on
MoE models and provide novel evidence supporting the
feasibility of an effective cache design for personal deploy-
ment scenarios. With a batch size of one, we find that the
memory available on a consumer-grade GPU is often suf-
ficient to store the most frequently used experts during the
decoding phase of an LLM, even with long-context inputs,
meaning that maintaining a cache for frequently used ex-
perts could be effective in such a case. Additionally, we
observe that experts exhibit skewed reuse patterns when
continuously decoding tokens within a single request (i.e., a
prompt). However, this reuse pattern is only present at the
request level; after processing multiple requests, the skew
disappears, and all experts tend to be activated uniformly.

Contribution 2. We formulate the problem of online predic-
tion for the skewed reuse patterns of experts. By statistically
modeling these patterns, we conduct extensive analyses to
identify prediction methods that offer robust, real-time per-
formance. Based on this analysis, we develop an expert
activation prediction method that traces the sparse activation
of experts and carefully selects traces that can guide future
predictions. This method is then integrated into a high-
performance expert cache. Additionally, we analyze the

MoE Layer 0

Model Dense Cache

E[0,0]

E[0,1]

E[1,0]

E[1,1]

E[2,0]

E[2,1]

R2 R3
"How" "are"

Token

2 2 1 1

2

Tokens Expert

Router 1
CPU Memory

GPU Memory

Attn R1

KV-Cache

Expert Cache

E[2,1]

E[0,1]E[0,0]

R1

Figure 1: MoE inference on GPU with full model offloaded
onto CPU memory. E[0,1] refers to an expert module at
layer 0 with index 1.

cache’s memory requirements and worst-case performance.

Contribution 3. We compare MOE-INFINITY against
several advanced inference systems, including vLLM,
Llama.cpp, Mixtral-Offloading, DeepSpeed, and Brain-
Storm, across various MoE models such as DeepSeek-MoE,
Arctic-MoE, Mixtral-MoE, Meta NLLB-MoE, and Google
Switch-MoE. Evaluation results show that MOE-INFINITY
effectively utilizes its PEC to achieve high cache perfor-
mance, resulting in 2.7–13.7× improvement in performance
on a commodity GPU.

MOE-INFINITY is open-sourced on GitHub. It unlocks
local deployment of large MoE models for a vast number
of personal machines and is rapidly gaining attention from
both industry and academia.

2. Background: MoE Inference and Offloading
We provide the necessary background to understand an MoE
inference running with offloading on a personal machine.
As shown in Figure 1, a copy of expert parameters stays in
Host memory, while densely activated parameters (i.e., at-
tention and KV-cache) are cached in GPU memory without
eviction. Each MoE layer consists of a router and a group
of experts, which are Feed Forward Networks (FFNs). The
router assigns each token to specific experts. MoE mod-
els can vary in configuration. For example, Mixtral-8x7B
has 8 experts per layer, with each expert managing 0.15B
parameters (340MB), and the router selects 2 experts per
token. Switch-128x0.2B, while similar in total model size,
features 128 experts per layer, each expert managing 33MB
parameters, with the router selecting 1 expert per token.

The MoE model example processes one prompt (referred to
as request). To process these prompts, the model first enters
a prefilling phase. Then, it moves into a decoding phase,
which iteratively generates outputs. This interaction with
GPU is illustrated in Figure 1, after attention and router de-
cides the experts to be activated, the offloading systems look
into expert buffer to find available parameters. If parameters

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

are not availble, the system needs to fetch them into the
buffer on-demand. To improve latency performance, the
offloading system often has an expert activation predictor,
which facilitates the router decision and prompts to decide
the expert to prefetch, overlapping with the computaion of
attention and experts in GPU.

3. Related Work
We describe all related work regarding offloading and LLM
inference. Offloading has been extensively studied in the
context of dense neural networks, and systems like Flex-
Gen (Sheng et al., 2023), DeepPlan (Jeong et al., 2023), and
SwapAdvisor (Huang et al., 2020) do not natively support
MoE deployment. More generic offloading systems such as
DeepSpeed-Inference and HuggingFace-Accelerate support
MoE models but simply treat MoE layers as dense layers,
failing to account for the conditional, sparse activation of
experts during inference.

Some recent memory swapping systems, such as Sen-
tinel (Ren et al., 2021) and DeepUM (Jung et al., 2023),
can trace memory access in deep learning models, but they
do not trace at the expert level. This limitation results in a
high fault rate and negatively impacts performance.

Several inference systems have recently added support for
MoE models. Mixtral-Offload (Eliseev & Mazur, 2023),
Ollama (Llama.cpp) (Ollama, 2024), vLLM(Kwon et al.,
2023), and BrainStorm (Cui et al., 2023) can support MoE
but still suffer from poor cache performance (in Table 1).

InfiniGen (Lee et al., 2024) and TensorRT-LLM (NVIDIA,
2024) are designed for multi-GPU environments, making
them more suitable for cloud servers rather than personal
machines. As a result, they lack the required optimized
cache designs, leading to worse performance compared to
vLLM, Ollama, and Mixtral-Offload.

4. Sparsity-Aware Expert Cache
In this section, we first explain why a small expert cache
suffices for accelerating offloading in LLM decoding. We
then identify the sparse activation pattern needed to optimize
cache performance and make online predictions for better
cache replacement. Next, we formulate the online predic-
tion problem and highlight the limitations of conventional
tracing methods. Finally, we introduce our request-level
sparse activation tracing method, leveraging the sparsity
trace to enhance expert cache efficiency.

4.1. Why expert cache could be effective

A key requirement for an expert cache to be effective in
LLM decoding is that only a small subset of experts is
used during each iteration of the decoding phase. This

0 1 2 3 4 5 6 7
Expert Index

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
Re

us
e

Co
un

t Sequence 1

0 1 2 3 4 5 6 7
Expert Index

0.00

0.25

0.50

0.75

1.00
Sequence 2

0 1 2 3 4 5 6 7
Expert Index

0.00

0.25

0.50

0.75

1.00

Re
us

e
Co

un
t

1000 Sequences Merged

0 20 40 60
Expert Index

0.00

0.25

0.50

0.75

1.00

No
rm

al
ize

d
Re

us
e

Co
un

t Sequence 1

0 20 40 60
Expert Index

0.00

0.25

0.50

0.75

1.00
Sequence 2

0 20 40 60
Expert Index

0.00

0.25

0.50

0.75

1.00

Re
us

e
Co

un
t

1000 Sequences Merged

Figure 2: Expert reuse count over decoding iterations for
two sample sequences and merged over 1000 sequences.
Darker colour means higher reuse normalized. Sampled
from last layer of Mixtral-8x7B (top, 20 decoding iterations)
and DeepSeek-V2-Lite (bottom, 256 decoding iterations).

indicates a small working set (i.e., maximum capacity) that
can fit within the limited memory of a GPU. Otherwise,
an excessively large expert cache exceeding GPU capacity
would trigger excessive I/O bandwidth usage, slowing down
inference due to frequent offloading.

To estimate the size of this working set, we conduct an
extensive trace study across widely used MoE models for
various LLM inference tasks, with key findings highlighted
below. For MoE models with around 100 experts (e.g.,
DeepSeek, QWen-MoE, NLLB, and Switch-MoE), fewer
than 5% of experts are repeatedly activated when decoding
tokens for a single request. Even for MoE models with fewer
experts (e.g., Mixtral), we observe only 25% activation per
request. These results indicate that experts are sufficiently
trained to specialize in handling different types of requests.

4.2. Why expert cache must be sparsity-aware

A key challenge in expert caching is determining which
expert to replace when the cache is full. The optimal strat-
egy depends on predicting which expert is least likely to be
activated in the near future, thereby improving the cache
hit ratio. A straightforward approach is to track expert
activation frequency over time, as implemented in Brain-
Storm (Cui et al., 2023) and advanced trace-based memory
swapping systems like DeepUM (Jung et al., 2023).

However, we find this approach insufficient for expert
caching, as it fails to account for the sparse activation pat-
terns of individual requests. Figure 2 illustrates this with two
sampled LLM requests. In Mixtral’s last layer, Sequence 1
shows Expert 2 being reused over 15 times—7 times more
than any other expert—while in Sequence 2, Expert 0 and
Expert 5 exhibit the highest reuse counts. Similarly, in
DeepSeek, despite having 256 decoding iterations, expert
activation remains sparse. In Sequence 2, Experts 48, 44,
23, and 3 exhibit higher reuse than others.

While expert reuse patterns are skewed within single re-

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

quests, they become more uniform across multiple requests.
Analyzing over 1000 sequences, we observe that reuse
counts even out over time. With this uniform distribution
of expert usage, the expert cache will fail to find which
experts are more likely to be reused in a decoding phase,
compromising cache performance.

4.3. Formulation of predicting activation during decode

We formulate the problem of making online prediction for
expert activation during an LLM decoding process. We de-
fine the input to the problem as the Expert Activation Matrix
(EAM). For a model with L MoE layers and E experts per
layer, an EAM M is an L×E matrix where M [i][j] ∈ Z is
the number of tokens routed to expert E[i, j], i.e., the expert
with index j at layer i. Each element in the matrix accounts
for the number of tokens processed by the expert. Given
n tokens has been proceeded by the MoE model, we have
M [i][j] ∈ {0, . . . , n} ∀i, j and

∑
j M [i][j] = n ∀i, as each

MoE layer needs to process tokens received by the model.

The online prediction problem uses EAM to find out the
activation likelihood for future experts and reuse likelihood
for all experts. The online prediction is triggered after know-
ing the routing decisions in each MoE layer i. The predictor
provides a predicted EAM (pEAM) with each entry for ei-
ther reuse or activation. The pEAM is also a L× E matrix
with likelihood as element. A zero in the matrix means that
an expert is predicted to be inactive or will not be reused
during decoding phase.

The EAM is built at request-level (rEAM) with updates
from each iteration (iEAM) as follows: (1) Iteration-level
EAM (iEAM), A iteration-level EAM keeps a trace for each
sequence in each forward pass of the model. Formally,
the first iteration is the prefilling phase of the model, with
number of tokens n equals to the sequence length. While,
the rest iterations belongs to decoding phase with n =
1. Each iteration-level EAM is updated as per layer of
inference. Given the current MoE layer is l,

∑
j M [i][j] =

0 ∀j > l and
∑

j M [i][j] = n ∀j ≤ l. (2) Request-level
EAM (rEAM), A request-level EAM accumulates the counts
of per iteration EAM. Formally, given the total number of
tokens across all iterations as r, we have

∑
j M [i][j] =

r ∀i. The request-level EAM are traced for prefilling and
decoding separately. In prefilling, r is the number of tokens
in a prompt, while in decoding, r is the number of output
tokens. At the end of each iteration, the iteration-level
EAM is added to an accumulated request-level EAM, which
tracks the frequency of expert usage since the beginning of
the current request.

4.4. Intuitions for an effective prediction method

Accurate prediction of expert activation during each iter-
ation is needed for prefetching, and throughout decoding

Model Switch NLLB Arctic Mixtral
BigBench Flan MMLU BigBench Flan MMLU MMLU BigBench

Groups 10 15 19 15 30 18 20 28
Nor. Max. Group 0.478 0.390 0.252 0.125 0.062 0.145 0.100 0.121

Table 2: Number of group by elbow-point in K-means. The
group size is normalized by the total sequence number.

Group G

Group G

Group G

C
lo

se
 i

n

E
u
cl

id
ea

n
 D

is
ta

n
ce

A

B

C

Integer

Activation Matrix

P(C|B)P(B|A)

P(A|C)

Clustering by

K-means

Figure 3: Cluster the activation matrix with K-means, the
matrix within the same group has similar value. The activa-
tion state is modelled by a Markov Chain.

0 5 10 15 20 25
State

0

5

10

15

20

25

St
at

e

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Transition Probability

100

101

102

Co
un

t

Sparse Transition between Group
P(*|*)<0.12 in most cases

Figure 4: Markov Chain transition matrix for all groups
(left) and probability of one group (right) of Arctic with
MMLU.

for caching. Our key observation is that expert activation
prediction is only made possible through matching ob-
served activation patterns among groups of expert. We
validate this in two folds: (i) Existence of expert activation
groups, (ii) Transition between different groups is hard to
predict. By prediction we consider few existing methods in
the literature (Appendix A), none of the existing work fully
meets the SGR model for MoE.

First, the existence of strong similarity between rEAM
makes the activation predictable based on known patterns.
We utilize the selective activations captured in the element
of rEAMs, such that each EAM represents a group activation
pattern. We apply K-means clustering on a set of rEAMs,
where each EAM is obtained per sequence. K-means is used
to ensure matrices within the same group exhibit significant
Euclidean similarity, closely aligning with the activations.
We record the elbow point of the group number and the
relative size of the maximum group in Table 2. The abil-
ity to form significant cluster means that we can use one
EAM to infer others within each clustered activation group.
The number of of group activation is relatively small in Ta-
ble 2, where there are only 10 to 30 groups of activation
patterns given 1000 samples for each dataset. The theo-
retical upper bound of the number of groups is illustrated
in Appendix B.1.

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

0 1
1 0
0 0
0 0

0 1
1 0
0 0
0 0

EAM CollectionIteration-level
EAM

0 1
1 0
0.3 0.45

Predicted EAM

Aggregate❶ Search

0 1
1 0
0 0
0 0

0 1
1 0
1 0
1 0

0 2
2 0
2 0
0 2

0 3
3 0
0 3
1 2 0.1 0.4

❷ Layer Proximity

0 1
1 0
0.4 0.6
0.2 0.8

❶ ❷

❸

❸

Matched EAMs Aggregated EAM

Figure 5: Example of computing activation likelihood.

Second, the prediction of group transition is hard since all
group have sparse activation pattern at request-level, i.e.,
a small activation probability. Except ‘Switch’, the other
models do not show significant major group, meaning that
all groups have low activation frequency. The low activation
frequency indicates that expert reuse is limited to request-
level EAMs, while a single reuse pattern does not apply to
the majority of inputs.

We further show that the transition probability between
groups is low in Figure 4, meaning using existing group
information to extrapolate other groups is infeasible. The
highest probability is around 0.3, with most of the lower than
0.12. We also consider longer input sequence for prediction
but the conditional probability is still small in most case.
Therefore statistically we do not find significant activation
pattern for predicting the transition between different groups.
This excludes post-hoc learning-based predictions, as data-
shift from training set, it is essentially predict the transit
between groups.

Takeaway. On request-level, the activated experts can be
grouped into a limited number of EAMs. However, the
transition between EAMs under different requests is un-
predictable. Therefore, a reasonable prediction of expert
activation is leveraging group matching for new requests.

4.5. Request-level sparse activation tracing

We thus must trace the sparse activation of experts at the
request level and our tracing must reflect the entire group
of experts. For this purpose, we have designed a novel
data structure termed the Expert Activation Matrix Collec-
tion (EAMC), which acts as a trace for keeping historical
request-level EAMs online. As the system has processed an
incoming request, it compares the request-level EAM with
those recently stored in the EAMC. A matching prior EAM
can then facilitate more effective prefetching and caching
decisions by the serving system. To determine if two EAMs
match, we use the following method: each EAM is flattened
into a vector, and the cosine distance between these vectors
is calculated. Within the EAMC, the most closely matching
prior EAM to a current EAM is the one with the smallest
cosine distance. The distance measure considers the follow-
ing: (i) need for the relative frequency of expert activation
as sequences has varying length and number of iterations
are indeterministic, and (ii) need to handle sparse vectors
as expert activations are sparse and skewed, also matching

experts with high activation frequency is beneficial than
ones with low frequency.

Given the EAM collection, we define the activation likeli-
hood computation as PredictEAM, by giving an EAMC and
iEAM. We illustrate its computation process in Figure 5.
We revisit the MoE model from Figure 1. After R2 finishes
dispatching the token to E[2,1], we need to initiate an on-
line prediction. For this, MOE-INFINITY utilizes iEAM
that traces the numbers of tokens passing through different
experts in the current iteration. This iEAM is matched with
prior EAMs in the EAMC (shown in 1). Several matched
EAMs might be returned. In such a case, we aggregate them
and compute activation probability for each expert possibly
to activate (shown in 2). In this aggregation step, formally,
the cell of each matched EAM is summed up and normal-
ized on each row. To ensure future experts in proximity
to the current layers can be prioritized, the layer proximity
step (shown in 3) adjusts the value in each cell through the
formula (1− (i− l)/L), where l is the current layer ID and
i is the future layer ID.

4.6. Cache optimizations

We implement several key optimizations for the expert
cache:

Enhancing the cache with prefetching. To further improve
performance, we integrate prefetching into the expert cache
mechanism. Given the sequential nature of MoE model
execution, where layers are processed in order, we can lever-
age the pEAM to predict the experts that are likely to be
activated for the next layer. By prefetching experts into the
cache, we reduce the likelihood of GPU stalls caused by
on-demand expert fetching.

Enhancing the cache with expert location information.
When deciding which expert to replace, we also consider the
observation that: the initial layers of MoE models, which
typically benefit less from prefetching due to less confident
prediction of the group activation pattern at the start. By
assigning higher caching priorities to experts in these initial
layers, we not only counteract potential prefetching failures
but also exploit the layer-by-layer execution property of
MoE models: the subsequent layers are executed later and
they are more likely to benefit from prefetching and thus
less need caching.

4.7. Sparsity-aware expert cache algorithm

Finally, we can formally define the algorithm that realizes
the sparsity-aware expert cache. Algorithm 1 presents the
expert cache retrieval procedure. We collaborate expert
cache with on-demand fetching for a conventional cache put
procedure (steps 1-7). When the cache reaches its maximum
capacity, an eviction mechanism is triggered to replace the

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Algorithm 1 Expert Cache Retrieval

Require: cur EAM – Current iteration-level EAM, id

– Requested expert ID, eamc – List of historical
rEAMs, cache – Dictionary storing cached experts,
cache size – Maximum allowed cache size, m –
Model instance with L layers.
Output: expert – Retrieved expert instance.

1: if id ∈ cache then
2: return cache[id]
3: end if
4: if |cache| < cache size then
5: cache[id]← FetchOnDemand(id)
6: return cache[id] {Cache not full}
7: end if
8: p eam← PredictEAM(eam, cur EAM)
9: evict expert← None, p min←∞

10: for id, e in cache do
11: n token←

∑
p eam[e.layer idx]

12: p← (p eam[e.layer idx]+ϵ)·(1− e.layer idx
L)

n token

13: if p < p min then
14: p min← p, evict expert← e

15: end if
16: end for
17: delete cache[evict expert.id]
18: cache[id]← FetchOnDemand(id)
19: return cache[id]

least relevant expert using prediction. The intuition is to
find the expert that has the least likelihood to be reused in
future iterations. As shown in Section 4.5, we compute the
likelihood for each expert by identifying the most similar
historical EAM (steps 8). The expert matched guarantees
similar overall activation pattern. We then computes a prior-
ity score, with layer decay taken into account (steps 9-16).
As expert from all layers needs to be considered, the decay
starts from the first layer. Finally, The expert with the lowest
priority is removed from the cache, making space for the
new expert that is fetched on demand, added to cache and
returned. (steps 17-19). The prefetching mechanism can be
integrated into the FetchOnDemand function. We omit
the detailed implementation here for brevity.

We also provide an example to understand how sparsity-
awareness helps make better cache performance than con-
ventional LRU (implemented in most inference systems,
such as vLLM and Ollama) and statistical counting ap-
proaches such as BrainStorm, as depicted in Figure 6. In
the second decoding iteration, an MoE model completes
the first layer and proceeds to the second. Once a token
is dispatched to E[2, 1], Augmenting dependency-based
prefetching with an LRU cache, as in DeepSpeed-Inference,
prefetching E[2, 1] evicts E[3, 1], leading to a buffer miss
when tokens route to E[2, 2] (see (a) left). For statistical
counting approaches, as in BrainStorm, uniform activation

E[1,1] E[1,2]

E[2,1] E[2,2]

E[3,1] E[3,2]

(c) Our Cache

R1

R2

R3
(b) Statistical Count

State
After E[1,1]

(a) LRU

E[1,1]
E[3,1]

Buffer Replacement After R2

Current Iteration

E[2,1]
E[1,1]

E[1,1]
E[3,1]

E[2,1]
E[1,1]

E[1,1]
E[2,2]

E[1,1]
E[2,2]

Buffer Replacement After R3

E[2,1]
E[2,2]

E[3,1]
E[2,2]

E[2,2]
E[2,1]

E[3,2]
E[2,2]

E[1,1]
E[2,2]

E[2,2]
E[3,2]

Miss
E[2,2]

Miss
E[3,2]

Hit
E[2,2]

Miss
E[2,2]

Hit
E[3,2]

Previous Iteration
State

After R2
State

After E[2,2]
State

After R3

Hit
E[3,2]

Experts in Buffer

Figure 6: Example of integrating caching with prefetching.
LRU is the most commonly implemented technique in SOTA
systems such as vLLM, Ollama, DeepSpeed and Statistical
Count is implemented in BrainStorm.

means E[1, 1] could route to E[2, 1] or E[2, 2], resulting in a
buffer miss (see (b) left). Our method, using a request-level
EAM [[1, 2], [0, 3], [0, 3]], keeps E[2, 2] from eviction, en-
suring a cache hit and better latency (see (c) left). When the
token enters layer 3, LRU method misses E[3, 2], causing a
buffer miss (see (a) right). Statistical counting method iden-
tifies and prefetches the layer 3 expert but risks future misses
by evicting E[2, 2] (see (b) right). Our strategy accurately
predicts and retains E[2, 2] and prefetches preventing its
eviction and optimizing cache prioritization (see (c) right).

5. Evaluation
In the evaluation, we try to answer the following ques-
tions:
• Whether MOE-INFINITY achieves low latency under typ-

ical local deployment scenario?
• How MOE-INFINITY perform under long-context?
• Whether our prediction method is robust and efficient?

Models. We include popular open-sourced MoE models
in our evaluations including Google Switch Transform-
ers (Fedus et al., 2021) in the size of 30-100 GB depend-
ing on the configuration, DeepSeek-V2-Lite (DeepSeek-AI,
2024) (31GB), Meta NLLB-MoE (Costa-jussà et al., 2022)
(220GB), Mixtral-8x7B (Jiang et al., 2024) (120GB), and
Snowflake-Arctic (Snowflake AI Research) (900GB). For
these models, we report their results with the following con-
figurations if no further mentioned: DeepSeek-64x2.4B (de-
noted as DeepSeek), Switch-128x0.2B (denoted as Switch),
NLLB-128x0.4B (denoted as NLLB), Arctic-128x4B (de-
noted as Arctic), and Mixtral-8x7B (denoted as Mixtral).

Datasets. We used a large variety of LLM tasks (290 tasks
in total) contributed by three datasets to evaluate the perfor-
mance and robustness of MOE-INFINITY. These datasets in-
clude BIGBench (166 tasks), FLAN (66 tasks), and MMLU
(58 tasks). More specifically, these LLM tasks include
reasoning, contextual question answering, free response,

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.40.06

0.04

0.02

0.00

0.02

0.04

0.06

Llama.cpp
DeepSpeed-Inference

vLLM
Mixtral-Offloading

BrainStorm
MoE-Infinity

DeepSeek Switch NLLB Arctic Mixtral
2−3

2−2

2−1

20

21

22

23

Ti
m

e-
Pe

r-O
ut

pu
t-T

ok
en

 (s
)

Figure 7: Decoding latency. vLLM and Llama.cpp does not
support Switch, NLLB and Arctic, thus results are omitted.

translation and many more.

Baselines. We evaluate MOE-INFINITY against many
SOTA baseline systems: (i) DeepSpeed-Inference, con-
figured for optimized LLM inference (FastGen (Holmes
et al., 2024)). DeepSpeed-Inference is the only mainstream
LLM serving library that not only offers leading perfor-
mance (comparable to vLLM and TensorRT-LLM) but also
supports efficient offloading when GPU resources are lim-
ited. (ii) Llama.cpp, a high-performance inference engine
optimized for environments with restricted GPU availabil-
ity. By default, Llama.cpp stores all model parameters
in CPUs and offloads computations to GPUs using highly
optimized memory copy and caching kernels. (iii) Mixtral-
Offloading, specialized in offloading-efficient MoE model
inference, implements optimized parameter prefetching and
caching strategies tailored for these models. (iv) Brain-
Storm*, a leading dynamic neural network inference en-
gine that implements model-level tracing to optimize op-
erator scheduling, caching and prefetching. BrainStorm is
not open-sourced and its design does not natively support
MoE-based LLM tasks. We thus extended and implemented
BrainStorm’s model-level analysis in MOE-INFINITY.

Hardware. We show our experimental results with a sin-
gle NVIDIA RTX A5000 GPU, connected to host memory
via a dedicated PCIe 4.0 interface (32GB/s). We use 64GB
memory for Switch, 256GB for NLLB, 32GB for DeepSeek,
128GB for Mixtral and 1TB for Arctic, as the model param-
eters need to be fully fitted into the Host memory.

5.1. End-to-end experiments

We now assess the performance and benefits when putting
MOE-INFINITY in action for serving MoE models.

End-to-end performance. We report the end-to-end per-
formance of MOE-INFINITY and baseline systems. Here,
latency is reported as the time-per-output-token (decoding
latency). We report the performance with a prompt length
of 512 and a decoding length of 32. The latency is reported
as the average of all datasets.

Figure 7 reports the end-to-end performance. For Mix-
tral—our worst-case scenario due to its small number of
large-sized experts per layer and relatively high activation
ratio—MOE-INFINITY achieves a latency as low as 836ms.
Across all offloading-supported baselines, MOE-INFINITY
demonstrates latency performance comparable to Brain-
Storm and Mixtral-Offloading, with a 1.4× improvement. In
contrast, vLLM and DeepSpeed-Inference exhibit higher la-
tency, primarily due to their low cache hit rate. For offloaded
parameters, Llama.cpp computes on the CPU, further con-
tributing to performance degradation.

For MoE models with more experts per layer and lower
selective activation ratios, the performance gains of MOE-
INFINITY become more significant. For Switch, NLLB
and DeepSeek, MOE-INFINITY achieves the 155ms, 531ms
and 173ms latency, both numbers comparable to those with
the model running fully in GPU. This means significant
GPU saving by MOE-INFINITY: achieving similar latency
performance, MOE-INFINITY requires a single GPU while
the non-offloading alternatives requires 8 GPUs for NLLB
and 4 GPUs for Switch. Other offloading-supported systems,
however, cannot provide such a promise. BrainStorm and
DeepSpeed-Inference suffers from inaccurate prefetching,
creating extra traffic on PCIe link that blocks the on-demand
fetching when needed.

For Arctic, the largest MoE model with 900GB of parame-
ters, the model is composed of small-sized experts. MOE-
INFINITY becomes the only available serving system that
can offer competitive inference performance with a single
GPU, vastly surpassing other baseline systems.

Long context performance. We evaluate the decoding
performance of MOE-INFINITY and baseline systems un-
der longer generation lengths, ranging from 212 (4096) to
217 (131072) tokens. This scenario frequently occurs in
chain-of-thought (CoT) test-time scaling process (Wei et al.,
2022). The LongBench dataset is used to provide mean-
ingful prompts, ensuring continuous generation until the
maximum length is reached. DeepSeek supports a maxi-
mum context length of 32K; beyond this limit, we enforce
generation even after encountering EOS tokens. We stop at
217 token since all systems OOMs.

Figure 8 reports the end-to-end performance. As the context
length increases from 212 to 217, total computation time
rises from 50ms to 160ms. Additional latency stems from
offloading mechanisms. Increasing the context length leads
to a larger KV-cache size in GPU memory, which in turn
reduces the available buffer size for caching experts.

For MOE-INFINITY, the activated parameter size for
DeepSeek-V2-Lite is 3GB per decoding iteration. Before
a context length of 215, the buffer size remains above 3GB,
leaving sufficient space for caching. However, as the context

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

0.06 0.04 0.02 0.00 0.02 0.04 0.060.06

0.04

0.02

0.00

0.02

0.04

0.06

Mixtral-Offloading
DeepSpeed-Inference

vLLM MoE-Infinity

212 213 214 215 216 217

Context Length
0.0
0.5
1.0
1.5
2.0
2.5
3.0

Ti
m

e-
Pe

r-O
ut

pu
t-T

ok
en

 (s
)

Figure 8: Decoding latency over long context. Using
DeepSeek-V2-Lite with max context length 128K. We show
top-4 systems in long context generation.

length increases, fewer experts can be cached—for example,
at 216, the buffer size shrinks to 2GB, and at 217, it fur-
ther decreases to 1GB—leading to performance degradation.
Eventually, MOE-INFINITY resorts to on-demand fetch-
ing due to insufficient caching capacity. The on-demand
fetching in MOE-INFINITY increases the latency by 137ms,
being less than vLLM and Mixtral-Offloading. The reason
is that MOE-INFINITY keeps all KV-cache in GPU memory,
resulting in less fetching under long context.

As for vLLM, we observe that decoding latency increases
more significantly as context length grows. vLLM also
offloads KV-cache together with expert parameters, while
the longer the context, the larger the KV-cache needs to
be fetched to GPU at each layer. The KV-cache traffic
causes contention with expert fetching, which delays and
even blocks expert prefetching, leading to further perfor-
mance degradation. DeepSpeed-Inference is more stable in
latency as it experience constant blocking time due to expert
prefetching by index.

5.2. Micro-benchmark

Finally, we aim to evaluate the optimal parameter and ro-
bustness of the MOE-INFINITY activation tracer.

EAMC Capacity. Users of MOE-INFINITY may wonder
how to determine the best EAMC capacity. To explore this,
we adjusted the EAMC capacity while serving various MoE
models. Figure 9 presents the results. We observed that
increasing the capacity from 1 to 120 allows all MoE mod-
els to achieve their lowest average latency. Our findings
highlight two key points: (i) A suitably small EAMC ca-
pacity (3% of the total number of requests), even amidst
a challenging mixed LLM inference workload involving
290 tasks from three datasets, is adequate for capturing
most MoE activation patterns, thus efficiently supporting
MOE-INFINITY’s prefetching and caching mechanisms, and
(ii) The effectiveness of the EAMC capacity consistently
manifests across different MoE models, indicating that the
EAMC design can be generalized.

20 40 60 80 100 120
EAMC Capacity

0.2
0.4
0.6
0.8
1.0

La
te

nc
y

(s
) NLLB

Switch
Mixtral

Figure 9: EAMC capacity.

Workload Setup NLLB Mixtral Arctic
MMLU tasks 0-14-43 0-9-49 28-43-45

BIGBench tasks 1-15-49 0-11-49 0-29-42
MMLU 7→ BIGBench 0-6-17 0-27-42 2-28-41
BIGBench 7→MMLU 3-11-24 0-35-46 5-27-45

Table 3: Handling workload changes. Numbers in each cell
mean the minimum, mean and maximal numbers of requests
required to recover low latency after a workload change.

Robustness with workload changes. Addressing con-
cerns about handling workload changes, we tested MOE-
INFINITY’s tracer with task shifts, and measured the mini-
mum, average, and maximum number of requests needed
to restore low latency. The responsiveness to workload
changes is shown in Table 3. In the first experimental group,
we randomly shifted between LLM tasks within the same
dataset. Experiments showed that within the same dataset,
models returned to optimal latency after around 50 requests.
Each task has 1000 input sequence on average, recovery
from task shift needs 5% requests in the worst case. When
switching between datasets (e.g., MMLU to BigBench),
models adapted faster, averaging 30 requests for latency
recovery. Each dataset samples 50K inputs, recovery from
dataset shift needs less than 0.1% requests on average. This
quicker adaptation is due to the reuse of activation patterns
across similar tasks shared by these datasets, as highlighted
in our trace study.

6. Conclusions
MOE-INFINITY is the first system to enable personal ma-
chines to achieve competitive performance when running
large MoE models, such as the popular DeepSeek. Its
key design, a sparsity-aware expert cache, has been ex-
tensively evaluated across various MoE models and LLM
tasks, demonstrating 2.7–13.7× performance improvements
over strong baselines. We anticipate that MOE-INFINITY
will make it easier and more efficient for AI developers to
deploy local MoE-based inference services. Additionally,
its open-source nature is expected to drive rapid adoption
and further innovation.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Aminabadi, R. Y., Rajbhandari, S., Awan, A. A., Li, C., Li,

D., Zheng, E., Ruwase, O., Smith, S., Zhang, M., Rasley,
J., and He, Y. DeepSpeed-Inference: Enabling efficient
inference of transformer models at unprecedented scale.
In SC, pp. 46:1–46:15. IEEE, 2022.

Costa-jussà, M. R., Cross, J., Çelebi, O., Elbayad, M.,
Heafield, K., Heffernan, K., Kalbassi, E., Lam, J., Licht,
D., Maillard, J., Sun, A., Wang, S., Wenzek, G., Young-
blood, A., Akula, B., Barrault, L., Gonzalez, G. M.,
Hansanti, P., Hoffman, J., Jarrett, S., Sadagopan, K. R.,
Rowe, D., Spruit, S., Tran, C., Andrews, P., Ayan, N. F.,
Bhosale, S., Edunov, S., Fan, A., Gao, C., Goswami,
V., Guzmán, F., Koehn, P., Mourachko, A., Ropers, C.,
Saleem, S., Schwenk, H., and Wang, J. No language
left behind: Scaling human-centered machine translation,
2022.

Cui, W., Han, Z., Ouyang, L., Wang, Y., Zheng, N., Ma, L.,
Yang, Y., Yang, F., Xue, J., Qiu, L., Zhou, L., Chen, Q.,
Tan, H., and Guo, M. Optimizing dynamic neural net-
works with brainstorm. In OSDI, pp. 797–815. USENIX
Association, 2023.

DeepSeek-AI. DeepSeek-V2: A strong, economical, and
efficient mixture-of-experts language model, 2024.

Douze, M., Guzhva, A., Deng, C., Johnson, J., Szilvasy, G.,
Mazaré, P.-E., Lomeli, M., Hosseini, L., and Jégou, H.
The faiss library. 2024.

Dumer, I. Covering spheres with spheres. Discret. Comput.
Geom., 38(4):665–679, 2007.

Eliseev, A. and Mazur, D. Fast inference of mixture-of-
experts language models with offloading, 2023.

Fedus, W., Zoph, B., and Shazeer, N. Switch Transform-
ers: Scaling to trillion parameter models with simple and
efficient sparsity, 2021.

Holmes, C., Tanaka, M., Wyatt, M., Awan, A. A., Rasley,
J., Rajbhandari, S., Aminabadi, R. Y., Qin, H., Bakhtiari,
A., Kurilenko, L., and He, Y. DeepSpeed-FastGen:
High-throughput text generation for LLMs via MII and
DeepSpeed-Inference, 2024.

Huang, C., Jin, G., and Li, J. SwapAdvisor: Pushing deep
learning beyond the GPU memory limit via smart swap-
ping. In ASPLOS, pp. 1341–1355. ACM, 2020.

HuggingFace. Text generation inference. https://gith
ub.com/huggingface/text-generation-i
nference, 2024.

Jeong, J., Baek, S., and Ahn, J. Fast and efficient model serv-
ing using multi-gpus with direct-host-access. In EuroSys,
pp. 249–265. ACM, 2023.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de Las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.,
Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix, T.,
and Sayed, W. E. Mixtral of experts, 2024.

Jung, J., Kim, J., and Lee, J. DeepUM: Tensor migration
and prefetching in unified memory. In ASPLOS (2), pp.
207–221. ACM, 2023.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In SOSP, pp. 611–626. ACM, 2023.

Lee, W., Lee, J., Seo, J., and Sim, J. Infinigen: Efficient gen-
erative inference of large language models with dynamic
KV cache management. In OSDI, pp. 155–172. USENIX
Association, 2024.

NVIDIA. TensorRT-LLM. https://github.com/N
VIDIA/TensorRT-LLM, 2024.

Ollama. Ollama. https://github.com/ollama/
ollama, 2024.

Rankin, R. A. On the closest packing of spheres in n dimen-
sions. Annals of Mathematics, pp. 1062–1081, 1947.

Ren, J., Luo, J., Wu, K., Zhang, M., Jeon, H., and Li, D.
Sentinel: Efficient tensor migration and allocation on
heterogeneous memory systems for deep learning. In
HPCA, pp. 598–611. IEEE, 2021.

Sheng, Y., Zheng, L., Yuan, B., Li, Z., Ryabinin, M., Chen,
B., Liang, P., Ré, C., Stoica, I., and Zhang, C. Flexgen:
High-throughput generative inference of large language
models with a single GPU. In ICML, volume 202 of
Proceedings of Machine Learning Research, pp. 31094–
31116. PMLR, 2023.

Snowflake AI Research. Snowflake Arctic: The best LLM
for enterprise AI — efficiently intelligent, truly open.
https://www.snowflake.com/blog/arcti
c-open-efficient-foundation-languag
e-models-snowflake/.

Team, Q. Qwen1.5-moe: Matching 7b model performance
with 1/3 activated parameters”, February 2024. URL
https://qwenlm.github.io/blog/qwen-m
oe/.

9

https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://github.com/huggingface/text-generation-inference
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/NVIDIA/TensorRT-LLM
https://github.com/ollama/ollama
https://github.com/ollama/ollama
https://www.snowflake.com/blog/arctic-open-efficient-foundation-language-models-snowflake/
https://www.snowflake.com/blog/arctic-open-efficient-foundation-language-models-snowflake/
https://www.snowflake.com/blog/arctic-open-efficient-foundation-language-models-snowflake/
https://qwenlm.github.io/blog/qwen-moe/
https://qwenlm.github.io/blog/qwen-moe/

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

The Mosaic Research Team. Introducing DBRX: A new
state-of-the-art open LLM. https://www.databr
icks.com/blog/introducing-dbrx-new-s
tate-art-open-llm.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B.,
Xia, F., Chi, E. H., Le, Q. V., and Zhou, D. Chain-of-
thought prompting elicits reasoning in large language
models. In NeurIPS, 2022.

XAI. Open release of Grok-1. https://x.ai/blog/
grok-os, 2024. Accessed: 2024-06-04.

Yu, G., Jeong, J. S., Kim, G., Kim, S., and Chun, B. Orca: A
distributed serving system for transformer-based genera-
tive models. In OSDI, pp. 521–538. USENIX Association,
2022.

A. Existing Post-Hoc Predictors
Current post-hoc predictor (without changing model archi-
tectures and finetuning) does not fully capture the sparse
activation properties of the MoE models.

(1) Prediction based on dependency. Predictors estimate
expert activation based on memory dependency (Huang
et al., 2020; HuggingFace, 2024; Aminabadi et al., 2022).
As experts in one MoE layer all have memory dependency
on the same router, such approaches fail to capture selective
(S) and grouped (G) properties of sparse activation. Reuse
(R) is not considered under the same scope.

(2) Prediction based on counts. Predictors use aggre-
gated frequency counters on each expert to estimate ac-
tivation (Cui et al., 2023; Jung et al., 2023). As experts
tend to show uniform activation in the long run, this fails
to capture the sparsity (S). In addition, individual counters
cannot instruct the grouped activation (G) within and across
layers.

(3) Prediction based on locality. Predictors estimate expert
reuse based on heuristics such as LFU and LRU (Eliseev &
Mazur, 2023; Jung et al., 2023; Cui et al., 2023; Aminabadi
et al., 2022). Although only activated experts are considered
(S,R), the reuse prediction is not applied across iterations,
failing in the decoding phase.

B. Practical Concerns
B.1. Predictor Runtime Efficiency

We design EAMC to have fixed capacity, thereby limiting
both memory costs and the time required to find a matching
EAM. When the EAMC reaches its capacity, it necessitates
the replacement of an entry within the collection. Our re-
placement strategy is guided by two main objectives: first,
to record the most recent EAM, thereby quickly adapting to
changes in workload; second, to maintain diversity within
the recorded EAMs. Consequently, we opt to replace an
EAM that is most similar to the incoming one. To imple-
ment this, we compare the new EAM against all existing
ones in the EAMC, replacing the one that shows the shortest
cosine distance. We illustrate the EAMC replacement pro-
cess in Figure 10. Here, consider that the EAMC capacity is
3. Upon a new prompt P4 finished its trace, we compute the
cosine distance between the EAM4 with all EAMs in the
EAMC. The distances show that EAM4 is similar to EAM3,
and we thus evict EAM3 and accommodate the EAM4.

Runtime overhead. The capacity of an EAMC must be
appropriately small, as a large capacity can impede its prac-
ticality. MoE models benefit from a modest EAMC capacity
for two main reasons: (i) After pre-training, MoE routers
are optimized to create specialized expert groups for token
processing, limiting the number of groups to ensure efficient

10

https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://x.ai/blog/grok-os
https://x.ai/blog/grok-os

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

0 1
1 0
0 1

2 0
2 0
2 0

#Layer

#Expert

P1 P2 1 1
0 2
0 2

P4

Expert Activation Matrix

Expert Activation Matrix Collection

Cosine Distance = 0.8

Replace
1 1
0 2
1 1

P3

Cosine Distance = 0.5 Cosine Distance = 0.1

Figure 10: EAMC replacement example.

token dispatching and high accuracy, a characteristic under-
scored by leading research (Jiang et al., 2024; Team, 2024).
(ii) Our evaluations in Section 5.2 indicate that a modest
EAMC capacity, from hundreds to thousands, suffices for
various LLM tasks and adapts well to task shifts, with the
added advantage of negligible matching costs compared to
model decoding latency. Searching for the most similar
EAM is essentially a matrix multiplication on CPU (Douze
et al., 2024). We measured the cost to be 21us per query un-
der 1K EAMs and 226us for 10K EAMs. The frequency of
the query is at most once per MoE layer for each (batched)
input. Both memory and computation overhead are less than
1% of the model inference latency (typically >120ms per
token).

Capacity bound. To analyse the upper bound of the number
of cluster needed for a given cut-off distance under diverse
inference requests, we formulate the EAMC construction
as a sphere covering problem on the cosine distance, with
each EAM as a vector in the space. In such a sphere space,
arbitrary EAM can be projected to a point on the sphere, as
under cosine distance, the EAM is normalized to unit vector.
If we can find the minimal amount of the cluster that covers
all area of the sphere, then the centroids of the clusters can
be the representative EAMs for any given sequence. Theo-
rems (Rankin, 1947; Dumer, 2007) shows that total number
of cluster needed to cover the expert activation patterns is
finite and polynomial complexity regarding the number of
experts. In detail, this guarantees a lower bound of 75%
cosine similarity by using 2LE EAMs and lower bound of
98% cosine similarity by using 1

2LE ln(LE) EAMs. We
observe that E of SOTA MoE models ranges from 8 to 128
and L ranges from 24 to 64 (Fedus et al., 2021; Jiang et al.,
2024), leading to 40K EAMs with 160MB memory.

Runtime optimizations. The high computational complex-
ity of the clustering algorithm makes this enhancement
difficult to deploy. Consider the case of serving Arctic-
128x4B for the FLAN dataset (which includes 66 LLM
tasks). The clustering algorithm needs to handle over 1 mil-
lion EAMs, each forming a 4480-dimensional vector (the
flattened EAM). To our knowledge, no existing clustering
libraries (e.g., FAISS (Douze et al., 2024)) can efficiently
handle this workload. Hence, we adhered to the above sim-
ple but effective design for EAMC and left its enhancement
with clustering algorithms for future work.

B.2. System Implementation

Support multiple GPUs. We implement expert parallelism
to support the use of multiple GPUs on a server. Concretely,
we use a hashing function to assign the experts to different
GPUs based on their IDs. All experts are kept in the host
DRAM. While executing the MoE layers by layers, we
use this hashing function to know which GPU is going to
accommodate an expert needed for prefetching or execution.
When the GPU is spread across multiple NUMA nodes,
we will pre-partition the experts based on NUMA nodes,
ensuring that these experts are only assigned to the GPUs in
the designated NUMA node.

For each GPU, we create an independent I/O thread to man-
age the prefetching and caching. This thread uses pinned
memory and DMA operations to optimize data transfers
between the GPU and host DRAM, and a single thread is
sufficient to saturate the bandwidth provided by PCIe 4.0
(32GB/s). For higher PCIe versions, we support creating
multiple such threads per GPU.

For now, most open-source MoE models can be fitted into
the host memory (up to 1TB) of a commodity multi-GPU
server. We leave the multi-server support for future work.

Memory management. Given a MoE checkpoint, we keep
its dense parts within the GPUs and turn on the offloading
for its experts. This design is sufficient since the proportion
of the experts’ parameters comprising of 90-99% of the total
parameters. For initializing the kv-cache, we will reserve the
amount of GPU memory in corresponding to the maximal
output length we observed in the open LLM datasets.

Inference runtime integration. We have integrated the
above prefetching and caching mechanisms into PyTorch
and support numerous kernel optimization, such as FlashAt-
tention. Our current inference runtime supports checkpoints
in PyTorch formats and HuggingFace formats.

Failure recovery. MOE-INFINITY can checkpoint its
EAMC together with the MoE checkpoints. Once recovered
from the failure, it reloads the EAMC to efficiently resume
its prefetching and caching performance.

11

