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Abstract

Fine-grained video action recognition can be formulated as a video–text match-
ing problem. Previous approaches primarily rely on global video semantics to
consolidate video embeddings, often leading to misaligned video–text pairs due
to inaccurate atomic-level action understanding. This inaccuracy arises due to i)
videos with distinct global semantics may share similar atomic actions or visual
appearances, and ii) atomic actions can be momentary, gradual, or not directly
aligned with overarching video semantics. Inspired by storyboarding, where a
script is segmented into individual shots, we propose a multi-granularity frame-
work, SFAR. SFAR generates fine-grained descriptions of common atomic actions
for each global semantic using a large language model. Unlike existing works that
refine global semantics with auxiliary video frames, SFAR introduces a filtering
metric to ensure correspondence between the descriptions and the global seman-
tics, eliminating the need for direct video involvement and thereby enabling more
nuanced recognition of subtle actions. By leveraging both global semantics and
fine-grained descriptions, our SFAR effectively identifies prominent frames within
videos, thereby improving the accuracy of embedding aggregation. Extensive ex-
periments on various video action recognition datasets demonstrate the competitive
performance of our SFAR in supervised, few-shot, and zero-shot settings.

1 Introduction

Fine-grained video action recognition has garnered increasing attention due to its broad applicability
in areas such as sports analytics [54], human-computer interaction [13], surveillance [44], and video
understanding [12]. In contrast to standard action recognition, fine-grained video action recognition
necessitates a more detailed understanding of actions with similar appearances, demanding greater
precision in capturing prominent frames with subtle actions.

The advent of large language models has revealed that a robust multimodal encoder like CLIP [30] can
consolidate significantly more potent learned embeddings compared to manually crafted embeddings
for action recognition [39, 21, 29, 2, 23, 28, 51, 15, 11, 47]. These methods involve using CLIP’s
visual encoder to extract video embeddings and its textual encoder to extract text embeddings. The
video and text embeddings are then aligned for video classification. However, the potential of the
textual encoder has not been fully explored.
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Figure 1: Example videos with ambiguous or non-uniform actions. Each
row displays sample frames of a video with its class name. (a) Ambiguous
actions. Both ‘Baking cookies’ and ‘Making pizza’ are actions performed
in the kitchen with similar visual appearances and share atomic actions,
e.g., the ‘rolling dough’. (b) Non-uniform actions. Multiple atomic
actions distribute unevenly within a video to form an action, e.g., the
video ‘Long jump’ is composed of 43% of ‘Crouch, swing arms’ and 22%
of ‘Extend legs’. Moreover, some atomic actions may be irrelevant to the
global class, e.g., 34% of the frames show ‘Stand’, unrelated to ‘Swing
Legs’. The axis indicates the percentage of frames per atomic action.

To effectively integrate textual in-
formation, several works [48, 26,
8, 16, 24] refine global semantics
by leveraging LLMs/MLLMs or
additional lexicons to generate
class-specific atomic action de-
scriptions. These auxiliary de-
scriptions are selected based on
their alignment with each video
frame, which leads to two rigid
assumptions: i) each global
video semantic must correspond
to identical atomic actions, and
ii) all atomic actions within a
video should be closely related
to its global semantics. How-
ever, these assumptions are fre-
quently violated, leading to inac-
curate embeddings. For instance,
in Fig. 1 (a), the videos ‘Bak-
ing cookies’ and ‘Making pizza’
are ambiguous with each other,
featuring overlapping atomic ac-
tions. In Fig. 1 (b), the atomic
action ‘Stand’ can be irrelevant
to the global video semantics
‘Swing legs’. Moreover, the non-
uniform distribution nature of
atomic actions has been overlooked previously, i.e., the duration of each atomic action can vary.
Based on this, using the global video semantics directly for aligning videos and text prompts can lead
to misunderstandings due to their granularity discrepancy. In this paper, we address these issues and
propose a multi-granularity framework, SFAR. The core of our SFAR is decomposing ‘the global
video semantics into fine-grained sub-texts’ and ‘a video action into multiple atomic actions’. This
allows both coarse and fine-grained identifications of prominent frames in videos.

Inspired by the concept of storyboarding, which breaks down a script into individual shots, we
enhance the global semantics (text) by generating detailed descriptions using a pre-trained large
language model (LLM). These fine-grained descriptions, i.e., sub-texts, capture common atomic
actions depicted in videos, requiring only their class names and utilizing our designed question
prompts, eliminating the need for direct video involvement. To fit the flexibility of various pre-trained
LLM and question prompt formats, we design a text prompt perplexity metric to measure the diversity
among sub-texts and the similarity between the sub-text and the global text for filtering sub-texts. It
provides an effective schema for selecting sub-texts to train the video action recognition model.

We then use global texts and sub-texts to coarsely and fine-grainedly compute a video embedding
for videos with ambiguous or non-uniform actions. Specifically, we augment the global text with
sub-texts in the embedding space of CLIP by abounding described video actions with sub-texts,
which also decreases the granularity of the global text. This augmented global text is used to weight
video frames in embedding space and compute a coarse video embedding. We illustrate network
attention of the augmented global text in Fig. 2 (c) and sub-texts in Fig. 2 (d). Compared to the
previous method constrained by granularity differences (Fig. 2 (b)), our augmented global text and
sub-texts direct network attention more comprehensively toward regions with actions.

We then fuse the coarse and fine-grained video embedding to compute a video embedding that
improves the classification performance on ambiguous and non-uniform videos. Heatmaps of
our network are in Fig. 2 (e), and improvements over videos with different ambiguous and non-
uniform scores are in Fig. 2 (f). We rigorously validate our approach across different scenarios,
including supervised, few-shot, and zero-shot video action recognition. Our method delivers top-notch
performance in all these scenarios, showcasing the effectiveness of our framework.

Our main contributions are:
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Figure 2: Examples that illustrate the ineffectiveness of directly aligning video frames and global text, from (a-e)
heatmaps and (f) classification performance improvements. (a) Video frames with their class name annotated at
the left. (b) Heatmaps of the single granularity-based (single) method [48], which are limited by the granularity
difference between the video frame and global text. (c-e) Heatmaps using coarse video embedding, fine-grained
video embedding, and the fusion of the two. (f) We show the performance distributions (Top-1 Accuracy) over
ambiguous scores and non-uniform scores of videos for (b-e) on the whole set. The first row is the absolute
performance for (b), and the last three rows are improvements of (c), (d), and (e) concerning (b). Please refer to
our supplementary materials for details on the computation of the ambiguous score and the non-uniform score,
as well as the accuracy improvements on the Kinetics-400 dataset presented in Tab. 8.

• A multi-granularity framework for transferring CLIP trained on image-text pair to video
action recognition.

• A schema for automatically decomposing a video action into common atomic actions to
provide fine-grained knowledge of the video action to CLIP.

• A coarse and fine-grained video embedding module for videos with ambiguous and non-
uniform actions.

2 Related Works

We review video action recognition methods focusing visual and visual-text representation learning.

Visual Representation Learning. Action recognition requires accurately capturing temporal seman-
tic variations. Numerous studies [59, 52, 42, 35, 39, 55] have thus focused on visual representation
learning. Early works studied the joint learning of spatial and temporal features of a video using
various architectures [26, 23, 2, 32]. Benefiting from large-scale visual and visual-text pre-training,
recent methods leverage the strong spatial features learned in pre-training and focus on fine-tuning
the trained model to capture the temporal semantics of a video. However, these methods do not
explicitly address the fundamental challenge of recognizing video actions from ambiguous and
non-uniform videos. This paper proposes decomposing video actions into atomic actions to improve
the recognition of challenging videos.

Visual-text Representation Learning. Several methods [8, 40, 43, 47, 48, 41] have been developed
to overcome these limitations by identifying video frames that strongly align with the text prompts of
video actions for video action recognition in vision-language models, e.g., CLIP. One remarkable
work is BIKE [48], which weights the video frames based on their alignment with the text prompts
to compute a video embedding for action recognition. However, these methods are limited by the
granularity difference between the video frames and the text prompts, where the text prompt is a
global context for the video. Unlike previous methods focused on generative modeling [49, 25, 57],
where LLMs generate captions or texts conditioned on video or frame embeddings, our approach
adopts a discriminative modeling approach. We generate sub-texts from the global text to describe
atomic actions in video frames. The sub-texts are then used to construct coarse and fine-grained video
embeddings, which improves the recognition of fine-grained actions.
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Figure 3: An overview of our framework for video action recognition. We extend CLIP for classifying the
video {Il}Ll=1 with L frames by computing a video embedding from frame embedding {vcls

l }Ll=1 in three steps.
(i) We decompose the global text prompt Tc that describes the class semantic of action c into descriptions of
atomic action (i.e., sub-text prompts) by using a pre-trained large language model. The global text prompt
Tc and sub-text prompts are then embedded by the textual encoder of CLIP for extracting embeddings of Tc
and {Sc,n}Ll=1. (ii) A coarse video embedding is extracted by augmenting the global text embedding Tc with
the sub-text embedding {Sc,n}Ll=1, calculating coarse importance of the frame embedding {vcls

l }Ll=1 with the
augmented global text embedding T̂c, and using the importance {al}Ll=1 to aggregate a coarse video embedding
ocoarse from frame embedding {vcls

l }Ll=1. (iii) Similar to the coarse video embedding, we get a fine-grained
video embedding ofine by calculating fine-grained importance {afine

l }Ll=1 of the frame embedding {vcls
l }Ll=1

with sub-text embedding {Sc,n}Ll=1 for aggregating frame embedding {vcls
l }Ll=1. The coarse and fine-grained

embeddings ocoarse and ofine are fused to form the final video embedding o for action recognition.

3 Methodology

Preliminary. CLIP [30], a visual-language pre-training method, consists of a visual and a textual
encoder. It learns a joint embedding space by maximizing similarities between aligned image-
text pairs and minimizing them for misaligned ones. Given an image I and global text prompts
{Tc}Cc=1 of C classes formatted as [a photo of a class] that globally describe class semantics,
where class is the class name, CLIP performs zero-shot classification by extracting the visual class
embedding vcls from I and text class embeddings {tcls

c }Cc=1 from {Tc}Cc=1. The image I is then
classified into the class c′ with the maximum cosine similarity, i.e., c′ = argmaxc sim(vcls, tcls

c ).
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1. Preparing

3. Rotation

1. Prepare diving
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2. Takeoff
4. Entry the water

2. Jump off the board

4. Dive into the water

Figure 4: Example sub-texts {Sc,n}Nn=1 generated from GPT-4o
and LLaVa1.6, with N = 4 in the example.

Overview. To extend CLIP for classi-
fying the video {Il}Ll=1 with L frames,
we adaptively compute a coarse and
a fine-grained video embedding. Two
multi-granularity embeddings capture
global semantic and atomic seman-
tics of ambiguous and non-uniform ac-
tions in the video, for computing the
cosine similarity with the text class
embedding. There are three key steps:
(i) Sub-text generation, decomposing each global text prompt Tc into a sequence of N atomic action
text descriptions {Sc,n}Nn=1 (i.e., sub-text prompts), by using a pre-trained large language model;
(ii) Coarse video embedding, embedding each frame Il into a visual class embedding vcls

l that is
a frame embedding. Then, by using the global text prompt augmented with sub-text prompts to
identify salient video frames in CLIP embedding space, we aggregate the frame embedding {vcls

l }Ll=1
into coarse video embeddings ocoarse; (iii) Fine-grained video embedding, finding video frames with
atomic actions by using sub-text prompts and CLIP for computing a fine-grained video embedding
ofine. We fuse the coarse and fine-grained video embedding into a video embedding o to compute
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Figure 5: An example illustrating the benefits of using our coarse video embedding for ambiguous actions.
We show a video in the first row, with the ground truth action labeled as (a) on the left. Its ambiguous actions
are annotated with (b), (c), (d) and (e) at the bottom of the video. The action probability from the single
granularity-based method [48] and our coarse video embedding are in the next row. Compared with the single
granularity-based method that identifies the video as (b) ‘Tasting food’, we obtain a higher probability of the
correct class (a) ‘Eating cake’.

cosine similarities with text class embeddings tcls
c for classifying the video. The overview of our

method is in Fig. 3.

3.1 Sub-text Generation

A global text prompt Tc is a description of a video action. It overlooks that an action is usually
formed by performing a sequence of atomic actions, like a video performing the action. Directly
aligning video frame embedding to the global text prompt Tc introduces the granularity differences
and decreases the video classification performance. To minimize human burden and bias, we propose
a pipeline that automatically generates and selects sub-texts based on the global text (class name).

We leverage a pre-trained large language model LLM(·) to decompose global text prompt Tc into N
potentially atomic actions {Sc,n}Nn=1 = LLM(Pc), where Pc is the prompt for describing the action
class c and directing the pre-trained large language model to find potential atomic action descriptions,
sub-texts {Sc,n}Nn=1. Refer to Fig. 4 for an example.

However, the existence of various pre-trained large language models and the flexibility in designing
Pc make selecting a meaningful sub-text set challenging. We assume that an optimal sub-text set
{Sc,n}Nn=1 for video classification should be sufficiently related with the global text prompt Tc while
each sub-text should be diverse from the others. To measure the similarities and diversity, we propose
a text prompt perplexity metric to select the sub-text set with the highest text prompt perplexity score.

In Fig. 5, we show ambiguous action probability computed from a single granularity-based method
[48] and our coarse video embedding. Our method uses sub-text to augment the global text help
the model to identify different atomic actions in ambiguous actions, and improve the accuracy of
recognizing ambiguous actions.

With the class embedding of the global text Tc and sub-texts {Sc,n}Nn=1 from the CLIP textual encoder,
tcls

c and scls
c,n, we define the text prompt perplexity score TPPc for tcls

c and scls
c,n as below

TPPc = exp

(
− 1

N

N∑
n=1

log
(
α(σc,n)β(δc,n)

))
, (1)

σc,n =
sim(tcls

c , scls
c,n) + 1

2
, (2)

δc,n = 1− 1

N − 1

N∑
n′=1,n′ ̸=n

sim(scls
c,n, s

cls
c,n′) + 1

2
, (3)
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Figure 6: Examples of coarse and fine-grained importance probability for videos with non-uniform actions. The
fine-grained importance probability afine

l allocate larger scores than the coarse importance probability acoarse
l to

prominent frames. For example, the illustrated fourth frame in the second row, ‘lowering barbell back down to
the ground’, represents an atomic action of ‘Clean and jerk’, and afine

l = 23% has a higher probability than
acoarse

l = 9%.

where the sim(·, ·) calculates the cosine similarities of inputs. We employ σc,n to quantify the
similarity between a global text and its corresponding sub-texts, a higher value of σc,n indicates
greater similarity. Meanwhile, δc,n is used to evaluate the similarity among sub-texts themselves,
where a higher value of δc,n indicates greater diversity across the sub-texts. Here, α(·) and β(·) are
linear scaling functions for the scores. Please refer to Fig. 7b for the correlations between the video
classification performance and the text prompt perplexity score TPPc.

3.2 Coarse Video Embedding

For identifying different atomic actions in ambiguous videos, we augment the global text Tc with
the sub-texts {Sc,n}Nn=1 to adaptively aggregate the video frames {Il}Ll=1 in CLIP embedding space.
As the class name in global text is usually a phrase, and sub-text Sc,n describes the atomic action
with multiple words, we keep the word embeddings to benefit from the rich semantics of each word
embedding for video frame aggregations. We denote the matrix form of the word embeddings for
global text and sub-text as Tc and Sc,n, and augment Tc by the cross-attention mechanism,

Qc = TcW
q, Kc,n = Sc,nW

k, Vc,n = Sc,nW
v, (4)

Kc = [{Kc,n}Nn=1], Vc = [{Vc,n}Nn=1], (5)

T̂c = Attention(Qc,Kc,Vc) +Tc , (6)

where Wq, Wk, and Wv are matrices for projecting the query Qc, key Kc,n, and value Vc,n. Here,
[{Kc,n}Nn=1] and [{Vc,n}Nn=1] concatenates all keys and values for Qc.

Using the augmented global text embeddings T̂c, we find the salient video frame embedding vcls
l for

aggregating a coarse video embedding. To find the coarse-grained importance score acoarse
l of each

frame embedding, we calculate the overall normalized similarity between each word embedding and
the video frame embedding by

acoarse
l =

∑
t̂c∈T̂c

exp
(
sim(t̂c,v

cls
l )

)∑L
l′=1 exp

(
sim(t̂c,v

cls
l′ )

) . (7)

We then compute the coarse video embedding ocoarse with summing over the video frame embedding
vcls

l weighted by acoarse
l ,

ocoarse =

L∑
l=1

vcls
l acoarse

l . (8)

3.3 Fine-grained Video Embedding

While the video coarse embedding ocoarse captures salient semantics for ambiguous actions, it may
overlook atomic actions in the video that align with the expected action class c due to the non-uniform
property of video actions. To address the limitation, we use the word embedding of the sub-texts to
find atomic actions among the video frame embeddings {vcls

l }Ll=1 to compute the fine-grained video
embedding.
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Table 1: Comparison result on the Kinetics-400 dataset. We report the GFLOPs in the inference phase.“Views”
indicates the number of temporal clips and spatial crops used in inference (# temporal clip × # spatial crop).
The magnitude is Million (106) for number of model parameters (Param). We achieve the highest top-1 and
top-5 accuracy by employing only an 8-frame input evaluated with a single view, outperforming past methods
with more model parameters, input frames, and views. We highlight the best top-1 and top-5 accuracy in bold.

Method Venue Input Pre-training Top-1(%) Top-5(%) Views GFLOPs Param
Methods with large-scale visual pre-training
MVFNetEn [45] AAAI’21 24×2242 ImageNet-1K 79.1 93.8 10×3 188×30 -
ViViT-B/16×2 [2] ICCV’21 32×2242 JFT-300M 80.0 - 4×1 455.2 151.9
ST-Adapter ViT-B/16 [28] NeurIPS’22 8×2242 WIT-400M 82.0 95.7 3×1 455 128.8
EVL ViT-B/16 [21] ECCV’22 8×2242 WIT-400M 82.9 - 3×1 444 177.7
MTV-B [50] CVPR’22 32×2242 JFT-300M 81.8 95.0 4×3 384×12 310
VideoSwin-B [23] CVPR’22 32×2242 ImageNet-21K 82.7 95.5 4×3 282×12 88.1
ActionCLIP ViT-B/16 [39] TNNLS’23 16×2242 WIT-400M 82.6 96.2 10×3 282×30 141.7
ATM ViT-B/16 [46] ICCV’23 8×2242 WIT-400M 82.8 95.6 1×1 378×1 -
DIST ViT-B/16 [29] ICCV’23 8×2242 WIT-400M 83.6 - 3×1 163×3 105
AIM ViT-B/16 [53] ICLR’23 8×2242 WIT-400M 83.9 96.3 3×1 202×3 97
ILA-ViT-B/16 [37] ICCV’23 8×2242 WIT-400M 84.0 96.6 4×3 149×12 -
Methods with large-scale visual-text pre-training
X-CLIP ViT-B/16 [26] ECCV’22 8×2242 WIT-400M 82.3 - 1×1 145×1 -
VideoPrompt ViT-B/16 [15] ECCV’22 16×2242 WIT-400M 76.9 93.5 1×5 - 154
SIF ViT-B/16 [40] ACMMM’23 8×2242 WIT-400M 77.4 93.6 4×3 1136×12 143.9
Vita-CLIP ViT-B/16 [43] CVPR’23 8×2242 WIT-400M 80.5 96.0 1×1 97×1 187.9
Vita-CLIP ViT-B/16 [43] CVPR’23 8×2242 WIT-400M 81.8 96.0 4×3 97×12 187.9
BIKE ViT-B/16 [48] CVPR’23 8×2242 WIT-400M 83.2 - 1×1 - 124.1
BIKE ViT-B/16 [48] CVPR’23 8×2242 WIT-400M 83.9 - 4×3 - 124.1
M2-CLIP ViT-B/16 [38] AAAI’24 8×2242 WIT-400M 83.4 96.3 4×3 214×3 165
ALT ViT-B/16 [7] CVPR’24 8×2242 WIT-400M 83.6 95.9 3×1 328 134.4
OST ViT-B/16 [6] CVPR’24 8×2242 WIT-400M 82.0 - 1×1 - -

Ours ViT-B/16 NeurIPS’25 8×2242 WIT-400M 84.5 96.7 1×1 90.2×1 126.1

We compute a fine-grained importance score afine
l for each video frame embedding vcls

l as the
maximum average similarity between vcls

l and Sc,n, and normalize it by a SoftMax function,

afine
l =

exp
(
maxn

1
|Sc,n|

∑
sc,n ∈ Sc,nsim(sc,n,v

cls
l )

)∑L
l′=1 exp

(
maxn

1
|Sc,n|

∑
sc,n ∈ Sc,nsim(sc,n,v

cls
l′ )

) , (9)

where |Sc,n| is the number of words in the sub-text, and sc,n ∈ Sc,n is a word embedding for the
sub-text. Similar to Eq. (8), we weight the video frame embedding vcls

l with afine
l , and get the

fine-grained video embedding ofine by

ofine =

L∑
l=1

vcls
l afine

l . (10)

We compare the coarse scores acoarse
l and fine-grained scores afine

l in Fig. 6, and find that afine
l can

fine-grainedly allocate larger scores than acoarse
l to prominent frames that humans perform the action

peak in the non-uniform videos.

3.4 Loss

We fuse the coarse video embedding and fine-grained video embedding as a video embedding o
with two feedforward layers FFNcoarse(·) and FFNfine(·), projecting the coarse video embedding and
fine-grained video embedding to the semantic of class c,

o = FFNcoarse(ocoarse) + FFNfine(ofine) , (11)

and compute the cosine similarity with the text class embedding tcls
c by sim(tc,o).

We optimize our network by maximizing the similarity yb,cgt between the b-th video embedding in a
batch and text embedding of its ground truth class cgt, and minimizing the similarity between other
video and text class embeddings {yb,c}Cc=1,c̸=cgt . Following [27], we use the InfoNCE loss,

LT2V =
1

B

B∑
b=1

1

|kb|
∑

b′∈kb

log
exp(yb′,cgt)∑B

b′′=1 exp(yb′′,cgt)
, (12)
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Table 2: Comparative experiments are conducted on Charades [33], HMDB-51 [19], and UCF-101 [34], while
ablation studies are performed on the Kinetics-400 dataset [17]. We report accuracy (%) for a single 8-frame
clip with a spatial resolution of 224×224, unless otherwise specified. The “VZ” column denotes if the method is
specifically designed for zero-shot action recognition or adapted from CLIP.

Method Frames mAP

MultiScale TRN [58] - 25.2
STM [14] 16 35.3
SlowFast+NL [10] 16+64 42.5
X3D-XL(312) [9] 16 43.4
ActionCLIP [39] 32 44.3
BIKE [48] 16 50.4

Ours 16 51.1

(a) Comparisons for multi-label ac-
tion recognition on the Charades
dataset [33].

Method VZ UCF-101 HMDB-51

E2E [3] ✓ 44.1 29.8
ER [5] ✓ 51.8 35.3
ResT [20] ✓ 58.7 41.1
Vita-CLIP [43] ✗ 75.0 48.6
BIKE [48] ✗ 78.4 55.6
M2-CLIP [38] ✗ 78.7 47.1

Ours ✗ 79.0 56.6

(b) Comparisons of zero-shot ac-
tion recognition on the HMDB-51
[19] and UCF-101 [34] datasets.

Backbone FVE Top-1(%) Top-5(%)

VideoPrompt [15] ✗ 76.9 93.5
✓ 79.3 95.1

ATM [46] ✗ 82.8 95.6
✓ 82.9 96.4

BIKE [48] ✗ 83.2 96.0
✓ 83.8 96.5

(c) Generalization of fine-grained
video embedding (FVE) on
state-of-the-art methods using the
Kinetics-400 dataset [17].

Generator TPP Top-1(%) Top-5(%)

LLaVA-1.6-34b 54.4 84.35 96.5
GPT-Davinci 54.7 84.35 96.6

GPT-3.5 60.4 84.47 96.7
GPT-4o 60.8 84.52 96.7

(d) Comparison of sub-texts generated from different
LLMs on Kinetics-400. A higher Text Prompt Per-
plexity (TPP) score indicates better sub-texts.

Coarse VE Fine-grained VE Top-1(%) Top-5(%)
Baseline (CLIP) 79.9 94.7

Baseline (Temporal) 80.3 95.0
✗ ✓ 82.7 96.2
✓ ✗ 83.5 96.3
✓ ✓ 84.5 96.7

(e) Ablations of coarse and fine-grained video embed-
ding (VE) on Kinetics-400. Using fine-tuned CLIP
and CLIP model with temporal layers as baselines.

LV2T =
1

B

B∑
b=1

1

|kb|
∑

b′∈kb

log
exp(yb′,cgt)∑C
c=1 exp(yb′,c)

, (13)

L = LT2V + λLV2T , (14)

where B is the number of batches, kb find the index of the video that has the same class with the b-th
video, |kb| is its size, and λ is a hyperparameter.

4 Experiment

4.1 Experimental Setup

Our proposed sub-text set and code are given in our project page.

Datasets. We experiment across four extensively recognized video benchmarks: Kinetics-400 [17],
Charades [33], UCF-101 [34], and HMDB-51 [19] datasets.

Supervised Learning. Our model is implemented using the PyTorch framework. We train our
network with batch size 256 for 30 epochs using the AdamW optimizer. The learning rate is set to
5× 10−5, and we use the cosine annealing strategy with 5 warm-up epochs. We follow [48] for data
augmentation in training.

Zero-shot Learning. We evaluate our model, pre-trained on Kinetics-400 [17], using the UCF-
101 [34] and HMDB-51 [19].

Few-shot Learning. We follow [39, 26] to experiment with different shot settings, selecting 2, 4, 8,
and 16 examples per human action category for training. Training for 2 epochs on the Kinetics-400
dataset, and then use the same settings to train on other datasets for 10 epochs. Importantly, we do
not use a model pre-trained on Kinetics-400 for few-shot learning on other datasets.

Evaluation Metrics. We evaluate our model with top-1 and top-5 accuracy on the single-label
datasets. On multi-label Charades, we follow [14] to report mean average precision (mAP).
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Table 3: Comparisons on few-shot action recognition across the HMDB-51 [19], UCF-101 [34] and Kinetics-
400 datasets [17] with state-of-the-art action recognition methods. We utilize ViT-B/16 as the backbone and use
8 frames for training/validation. All performances are reported as top-1 accuracy (%) in the few-shot setting
using single-view inference with a spatial size of 224 × 224, where all models are directly fine-tuned from CLIP.

“Avg.” refers to the average performance across all datasets.

HMDB-51 UCF-101 Kinetics-400 All

Method K=2 K=4 K=8 K=16 K=2 K=4 K=8 K=16 K=2 K=4 K=8 K=16 Avg.

Vanilla CLIP [30] 41.9 41.9 41.9 41.9 63.6 63.6 63.6 63.6 57.2 57.2 57.2 57.2 54.2
ActionCLIP [39] 47.5 57.9 57.3 59.1 70.6 71.5 73.0 91.4 61.0 63.0 64.8 68.5 65.5
VideoPrompt [15] 39.7 50.7 56.0 62.4 71.4 79.9 85.7 89.9 - - - - 67.0
X-CLIP [26] 53.0 57.3 62.8 64.0 76.4 83.4 88.3 91.4 56.8 60.7 62.3 64.6 68.4
ViFi-CLIP [31] 57.2 62.7 64.5 66.8 80.7 85.1 90.0 92.7 37.1 42.8 49.1 55.5 65.4
TC-CLIP [18] 57.3 62.3 67.3 68.6 85.9 89.9 92.5 94.6 58.5 61.9 65.5 69.9 72.9
OST [6] 59.1 62.9 64.9 68.2 82.5 87.5 91.7 93.9 44.0 48.2 52.5 56.5 67.6

Ours 64.0 66.1 68.7 70.7 92.1 93.0 94.3 94.7 73.9 74.8 75.5 76.2 78.7

4.2 Main Results

Action Recognition. We compare our network against state-of-the-art methods that utilize large-scale
visual pre-training and visual-text pre-training on the Kinetics-400 dataset in Tab. 1. All methods use
the ViT-B/16 backbone. Using fewer input frames and views during testing, our method that employs
only an 8-frame input evaluated with a single view achieves the highest top-1 and top-5 accuracy. For
example, the second-best method of large-scale visual-text pre-training uses 4 temporal clips on 3
spatial crops of a video but achieves top-1 accuracy 0.5% lower than ours.

To further demonstrate the effectiveness of our framework, we conduct experiments on challenging
scenarios from Kinetics-400 based on the ambiguous and non-uniform score. We select the top 10%
of actions with the highest scores, representing the most difficult categories to classify. The results
are shown in Tab. 9, where we achieve an average performance 2.6% higher than the second-best.

Multi-Label Action Recognition. We evaluate our method for multi-label action recognition on the
Charades dataset in Tab. 2a. The mAPs of state-of-the-art methods are reported, and we follow [9] to
use 16 frames. Our method finds 51.1 mAP, achieving 0.7 mAP more than the second-best.

Zero-shot Action Recognition. Our method is trained with supervision from texts and can be used
for zero-shot action recognition. We compare our network with methods that adapt from CLIP,
which is pre-trained on images, and with zero-shot methods developed for videos on the UCF-101
and HMDB-51 datasets in Tab. 2b. All methods use a single view during testing. Our method
demonstrates superior generalization capabilities in zero-shot action recognition. Specifically, versus
the latest zero-shot methods developed for video [38], our zero-shot performance on the HMDB51
dataset is 9.5% higher than 47.1%. Further highlighting the versatility of our pipeline.

Few-shot Action Recognition. We explore 2, 4, 8, and 16-shot action recognition on the HMDB-51
[19], UCF-101 [34], and Kinetics-400 datasets [17] in Tab. 3. With a limited amount of videos,
our approach that decomposes a video action into atomic actions exhibits the highest performance.
Specifically, the average performance of our approach across all shots is 78.7%, which is 5.8% higher
than the second best method (TC-CLIP, with 72.9%).

4.3 Ablation Studies and Analysis

We perform ablation studies with the Kinetics-400 dataset to examine our approach.

Number of Sub-texts. Fig. 7a illustrates the number N of sub-texts used in our model. As the N
increases from 2 to 5, the recognition accuracy of our method improves. However, we observe that
the performance gain is minimal when increasing the number of sub-texts from 4 to 5. Considering
both computational complexity and recognition accuracy, we opted for 4 sub-texts in our experiments.

Correlation of TPP and Performance. In Fig. 7b, 11 sub-text groups are generated, and
we show the relationship between TPP and the action recognition performance, where TPP is
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Table 4: Comparison of Top-1 accuracies for some representative actions with N=2 and N=5 sub-actions. The
Difference column shows the change in Top-1 accuracy from N=2 to N=5.

Action N=2 N=5 Difference Action N=2 N=5 Difference
Dribbling basketball 89.2 94.6 +5.4 Arm wrestling 100.0 100.0 0.0
Kicking soccer ball 71.0 76.3 +5.3 Christmas tree 100.0 100.0 0.0
Lunge 75.6 82.2 +6.6 Brushing teeth 89.5 89.5 0.0
High kick 35.1 40.5 +5.4 Slicing onion 98.6 97.4 -1.2
Clay pottery making 92.1 94.7 +2.6 Clapping 47.2 50.0 -2.8
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Figure 7: Analysis of sub-texts.

computed as the average of TPPc across all ac-
tion categories. We observe a positive correla-
tion, as shown by the fitted dashed line, with
an r2 value of 0.79, demonstrating the effective-
ness of our TPP method in selecting sub-texts
without the need for computationally intensive
experiments.

Comparison of Sub-text Generators. Tab. 2d
compares sub-texts generated by GPT-Davinci
[4], GPT-3.5, GPT-4o, and LLava-v1.6-34b [22].
GPT-4o achieveshe highest TPP (60.8), along
with the best Top-1 (84.52%) and Top-5 (96.7%) accuracies. Both LLaVA-1.6-34B and GPT-Davinci
show similar performance, with minor differences in accuracy and TPP. These results indicate that
GPT-4o provides the most effective sub-texts for action recognition.

Effectiveness of Components. We study the effective usage of our coarse video embedding and
fine-grained video embedding in Tab. 2e. A CLIP model is fine-tuned on the Kinetics-400 dataset to
establish a performance baseline. Following the common practice of existing works [48], we build
a baseline (Temporal) using a 6-layer Transformer encoder with position embedding for sequence
features. Individually, both the coarse and fine-grained video embeddings enhance performance
relative to the baseline; together, they achieve consistently superior results. For example, using all
embeddings, we achieve a top-1 accuracy of 84.5%, which is 4.6% higher than the baseline.

Different sub-actions. We previously observed that the accuracy of different action categories
changes with respect to the number of sub-actions (N). Taking N = 2 and N = 5 as examples, the
accuracy differences across representative actions are shown in Tab. 4. The results indicate that
complex, multi-stage action categories (e.g., ’Dribbling basketball’ and ’Clay pottery making’) benefit
from large N, whereas repetitive or simple motions such as ’Clapping’ and ’Slicing onion’ get better
accuracies with small N. We had investigated overall performance gains by using class-aware N, and
only found marginal improvement over fixed N=5, 0.5% and 0.2% for Top-1 and Top-5, respectively.
Given the computational cost of involving a class-aware value of N for each action, we choose to use
fixed N for efficiency.

Generalization. To validate the generalization of our components of fine-grained video embedding
structure, we apply them to state-of-the-art action recognition methods, as shown in Tab. 2c. Specifi-
cally, we study VideoPrompt [15], ATM [46] and BIKE [48]. The results indicate that we enhance
the accuracy of these state-of-the-art methods, such as VideoPrompt, which shows a 2.4% increase in
accuracy on the Kinetics-400 dataset.

More. We provide additional implementation details, comparisons, and ablation studies in the
supplement, e.g., analyses of few-shot, zero-shot, and supervised learning on other backbones.

5 Conclusion
In this paper, we propose a framework to transfer CLIP trained on image-text pairs to video action
recognition. Similar to how a video forms a video action by performing a sequence of atomic actions,
our key insight is to decompose a video action into atomic action descriptions using a pre-trained
LLM. We then select these atomic action descriptions with a proposed metric. The global and atomic
action descriptions are used to identify salient video frames from ambiguous and non-uniform videos
for action recognition. Experiments on standard benchmark datasets demonstrate that our method
significantly outperforms previous works in supervised, few-shot, and zero-shot settings.
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authors are welcome to describe the particular way they provide for reproducibility.
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to have some path to reproducing or verifying the results.
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material?
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7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Supplementary Material
We provide content omitted from the main paper due to space limitations. Specifically, the sup-
plementary material is organized into three sections: (i) additional details for experiments and
implementations, (ii) comparisons with other state-of-the-art methods in various settings, and (iii)
additional ablation studies to analyze our model designs.

A Additional Experimental Setup

A.1 Datasets

We describe the dataset statistics of the Kinetics-400 [17], HMDB-51 [19], UCF-101 [34], and
Charades [33] datasets. The Kinetics-400 dataset is curated from YouTube, spans 400 action classes,
and contains 240,000 training videos and 20,000 validation videos. The duration of each video
is 10 seconds. The HMDB-51 dataset consists of 6,766 videos categorized into 51 action classes,
with 3,570 videos used for training, and 1,530 videos used for testing. Each video is sourced and
truncated from movies, online videos, and public databases. The UCF-101 dataset collected 9,537
training videos and 3,783 testing videos from YouTube, across 101 action categories. The Charades
dataset comprises 9,848 video clips that span 157 action categories. Each video is recorded in a
home environment, performed by an actor, and includes multiple human actions with temporal action
annotations.

Table 5: The hyperparameters of our model for supervised and few-shot learning.

Fully-sup Few-shot

Optimisation
Optimizer AdamW
Optimizer betas (0.9, 0.999)
Batch size 256 256
Learning rate schedule cosine
Linear warmup epochs 5
Base learning rate 5e-6 5e-6
Epochs 30 2,10

Data augmentation
RandomFlip 0.5
Resize RandomSizedCrop
Crop size 224(Default)
GrayScale 0.2

Other regularisation
Weight decay 0.02

A.2 Ambiguous Score vs. Non-uniform Score

We describe computations of the ambiguous score and non-uniform score for Fig. 2 in the main paper.
Our method does not require ground truth action labels of videos, and only uses the CLIP, for the
calculation.

Ambiguous Score. We measure the ambiguous scores of videos by their class similarity measured
with the textual encoder of CLIP. Benefiting from training on large-scale image and text pairs, the
embedding space of CLIP is a compression of the world that captures the similarity between action
classes. Following the global text prompt from the main paper, all action classes are extracted into
{tcls

c }Cc=1 with the textual encoder of CLIP. The similarity σc,c′ between action class c and prediction
c′ is calculated and normalized,

σc,c′ =
sim(tcls

c , tcls
c′ ) + 1

2
. (15)
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Table 6: The question prompts for GPT-Davinci [4], GPT-3.5, GPT-4o, LLaMA2 [36], Phi-3 [1], and LLava-
v1.6-34b [22]. Each row is a question prompt. All LLMs use the four prompts to generate sub-texts for
selection.

[This action is a sequence of four steps. For each step, describe it in
detail with ’This action is’ followed by a specific description of that
step. Ensure each step is distinct and crucial to the action.]

[This action is defined by four unique movements. Start each movement
with ’This action is’ and emphasize the diversity and significance of
each movement. Conclude with a brief summary that ties all movements
together.]

[This action is composed of four critical phases. Each phase should
start with ’This action is’ and focus on different aspects of the action.
Highlight the importance of each phase and avoid repetition.]

[This action is best understood by breaking it down into four concise
descriptions. Begin each description with ’This action is’ and make
sure each one covers a different perspective of the action. End with a
summarizing statement.]

Table 7: The system prompt. We use the same system prompt for GPT-Davinci [4], GPT-3.5, GPT-4o, LLaMA2
[36], Phi-3 [1], and LLava-v1.6-34b [22].

[You are an expert assistant in action recognition. Respond to the
user’s input by providing accurate, concise, and informative
descriptions of the actions in a structured manner.]

For each action class c, we select the top-10 most similar other actions, and get the ambiguous scores
ASc by averaging the similarity scores,

ASc =
∑

c’∈top-10c

σc,c′ , (16)

where top-10c find index of the top-10 similarity action class for the action class c. In Fig. 2 of the
main paper, we normalize the similarity score ASc from 1 (least ambiguous) to 10 (most ambiguous)
for visualization.

Ambiguous action classes usually share different atomic actions described by the sub-texts. Thus,
using the global text to identify prominent frames corresponding to the video class semantic causes
ambiguity. While avoiding granularity discrepancy between the global text and video frame (Sec.
Intro), we aim to decrease the granularity of the global text by augmenting it with sub-texts for
ambiguous video recognition. On the ViT-B/16 backbone, we found that augmented global text
achieved an accuracy of 84.5% on the 1×1 view, which is a 0.5% improvement over the 84.0% of
global text, when the fine-grained branch is included.

Non-uniform Score. We measure the non-uniform score of a video by calculating the agreements
between predictions of each frame. Leveraging a CLIP, we obtain predictions of each frame and use
the global text format and textual encoder of CLIP to extract embedding {tcpred,l}Ll=1 for all frames.
The agreements between frame l and frame l′ are measured by similarity between the embedding,
and are normalized,

σl,l′ =
sim(tcls

cpred,l, t
cls
cpred,l′) + 1

2
. (17)

The non-uniform score NUS of the video is an average of the agreements between frames,

NUS =

L∑
l=1

L∑
l′=1,l′ ̸=l

σl,l′ . (18)

In Fig. 2 of the main paper, we normalize the non-uniform score from 1 (uniform) to 10 (non-uniform)
for visualization.
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Table 8: Performance comparison of our coarse, fine-grained, and fused video embeddings over a single-
granularity method, across different levels of ambiguous and non-uniform scores, on the Kinetics-400 dataset.

“Ambi” and “Non” represent ambiguous score and non-uniform score, respectively. All numbers are Top-1
accuracy (%).

Method Type Degree
1 2 3 4 5 6 7 8 9 10

Single Ambi 93.0 90.3 88.3 84.0 85.7 82.7 83.0 76.8 77.2 69.3

Non 86.5 84.9 84.6 85.4 83.9 82.2 80.8 81.9 80.3 80.1

Coarse Ambi 94.1 91.5 89.8 86.5 87.4 84.8 84.2 78.9 79.4 70.8

Non 91.1 88.7 87.8 90.7 86.7 85.0 83.6 84.7 83.1 82.9

Fine Ambi 94.2 91.1 89.5 86.4 87.3 84.7 84.1 78.6 79.1 71.8

Non 90.0 87.8 86.6 87.2 86.3 83.9 82.9 84.0 82.4 82.2

Fusion Ambi 94.8 91.6 90.3 87.2 87.6 85.6 84.7 79.3 80.6 72.1
Non 92.9 89.7 89.7 88.9 87.7 85.1 83.7 84.8 83.2 83.0

Table 9: Comparison of our method, BIKE [48] and
ATM [46] on two challenging subsets of Kinetics-400:

“Ambi Set” and “Non Set”, containing the top 10% most
ambiguous and non-uniform actions, respectively.

Method Ambi Set Non Set
ATM ViT-B/16 [46] 70.2 79.8
BIKE ViT-B/16 [48] 69.3 80.1

Ours ViT-B/16 72.2 83.0

We construct two challenging subsets of the
Kinetics-400 dataset based on the ambiguous
score and non-uniform score. For each criterion,
we select the top 10% of actions with the high-
est scores, representing the most difficult cate-
gories to classify. We compare the performance
of our proposed method against two representa-
tive single-granularity methods ATM [46] and
BIKE [48]. The results on the two challenging
subsets are presented in Tab. 9.

Fig. 2 (f) presents a bar chart illustrating the accuracy improvements of our method’s coarse video
embedding, fine-grained video embedding, and their fusion, compared to the single-granularity
method. The results presented in Tab. 8 are reported across different levels of ambiguous score and
non-uniform score, showcasing the effectiveness of our method on the Kinetics-400 dataset.

A.3 Implementation Details

We use CLIP trained from [30] in our paper. During training, the textual encoder of CLIP is frozen.
We summarize the optimization and data augmentation details of our method for supervised learning

Table 10: Comparisons of zero-shot action recognition on the UCF-101 [34] and HMDB-51 [19] datasets.
The “VZ” column denotes if the method is developed for zero-shot action recognition or adapted from CLIP. Our
model is based on ViT-L/14.

Method VZ UCF-101 HMDB-51
E2E[3] ✓ 44.1 29.8
ER[5] ✓ 51.8 35.3
ResT[20] ✓ 58.7 41.1
X-CLIP [26] ✗ 72.0 44.6
DIST [29] ✗ 72.3 55.4
Vita-CLIP [43] ✗ 75.0 48.6
M2-CLIP [38] ✗ 78.7 47.1
BIKE ViT-L [48] ✗ 86.6 61.4
Text4Vis [47] ✗ 85.8 58.1

Ours ViT-L/14 ✗ 87.3 61.9
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Table 11: Comparisons results on the Kinetics-400 dataset. We report the FLOPs in inference phase.“Views”
indicates # temporal clip × # spatial crop. The magnitude is Million (106) for parameters (Param). All methods
are based on ViT-L.

Method Venue Input Pre-training Top-1(%) Top-5(%) Views GFLOPs Param
ViViT-L/16×2 [2] ICCV’21 32×3202 ImageNet-21K 81.3 94.7 4×3 3992×12 310.8
ViViT-L/16×2 [2] ICCV’21 32×3202 JFT-300M 83.5 95.5 4×3 3992×12 310.8
VideoSwin-L [23] CVPR’22 32×3842 ImageNet-21K 84.9 96.7 10×5 2107×50 200.0
ST-Adapter ViT-L/14 [28] NeurIPS’22 32×2242 WIT-400M 87.2 97.6 3×1 8248 -
EVL ViT-L/14 [21] ECCV’22 32×2242 WIT-400M 87.3 - 3×1 8088 -
BIKE ViT-L/14 [48] CVPR’23 8×2242 WIT-400M 86.5 - 1×1 415 307
AIM ViT-L/14 [53] ICLR’23 8×2242 WIT-400M 86.8 97.2 3×1 2802×1 341
ATM ViT-L/14 [46] ICCV’23 8×2242 WIT-400M 87.3 97.4 4×3 421×12 -
MoTED ViT-L/14 [56] CVPR’24 8×2242 WIT-400M 87.4 97.8 3×1 8670 349

Ours ViT-L/14 NeurIPS’25 8×2242 WIT-400M 87.6 97.8 1×1 416 312

Table 12: Comparisons on few-shot action recognition across the HMDB-51 [19], UCF-101 [34] and Kinetics-
400 datasets [17].

Method Shot HMDB-51 UCF-101 Kinetics-400
VideoSwin [23] 2 20.9 53.3 -
VideoPrompt ViT-B/16 [15] 5 56.6 79.5 58.5
BIKE ViT-L/14 [48] 2 73.5 96.1 75.7
BIKE ViT-L/14 [48] 5 77.7 96.5 78.2
OST ViT-B/16 [6] 2 64.8 90.3 -

Ours ViT-L/14 2 74.4 96.5 76.5
Ours ViT-L/14 5 78.1 96.9 79.1

and few-short learning in Tab. 5. For calculating TPP, the scaling functions are α(x) = −x2 + 1
and β(x) = x, where x is the input variable. In sub-text generation, we carefully design a list of
question prompts for LLMs and select sub-texts with our TPP. We consider six LLMs: GPT-Davinci
[4], GPT-3.5, GPT-4o, LLava-v1.6-34b [22], LLaMA2 [36], and Phi-3 [1]. The question prompts and
the system prompt for each LLM are presented in Tab. 6 and Tab. 7, respectively.

B Additional Experimental Results

We compare with state-of-the-art methods with a ViT-L/14 backbone. Following the setting of the
main paper, the results of zero-shot action recognition on the UCF-101 [34] and HMDB-51 [19]
datasets, supervised learning on the Kinetics-400 [17] dataset are in Tab. 10, Tab. 11. In all settings,
our method consistently exhibits the highest performance.

Table 13: Performance comparison of Phi-3, LLaVA, LLaMA2,
GPT-3.5, and GPT-4o in terms of GLOPs, processing time, and
accuracy.

Model GLOPs Time(s) Accuracy
Phi-3-14b 636 7.5 84.50

LLaVA-1.6-34b 8.25e4 5.8 84.35
LLaMA2-7b 814 2.0 84.47

GPT-3.5 - 1.1 84.47
GPT-4o - 4.6 84.52

As shown in Tab. 13, we compared
the impact of the generative capa-
bilities of other large language mod-
els (LLMs) on recognition accuracy,
with corresponding GLops, process-
ing time, and accuracy. The results
show that even the slowest generation
speed is within 10 seconds of each ac-
tion. Furthermore, LLMs with strong
generative capabilities have minimal
impact on our method.

The common practice [40] is followed
to only add FFN layers to the video encoder, which projects the video embedding to the CLIP feature
space. It is unnecessary to employ an additional FFN layer for the text embedding, as the accuracy
remains 84.5% with or without it.

We explored the use of visual context in generating sub-texts and identified two major limitations of
this approach. i) Generating sub-texts for each video sample is computationally expensive, while
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Table 14: Sub-text descriptions for the action “Situp” across multiple video samples.

Action: Situp Description 1 Description 2 Description 3 Description 4
Video1 The individual is

lying on a mat in
a gym, beginning
a sit-up with
arms extended
overhead.

They perform a
fluid motion, rais-
ing their torso to-
wards their legs
while keeping their
feet flat.

The exercise is
conducted in a
controlled manner,
focusing on core
strength and stabil-
ity.

The environment
suggests a well-
equipped gym, ap-
propriate for vari-
ous fitness activi-
ties.

Video2 An individual is
seen lying on the
grass performing a
sit-up exercise in
an outdoor setting.

The exercise
involves raising
the upper body
towards the knees,
engaging the core
muscles.

The person is
wearing casual
workout attire,
suitable for out-
door physical
activities.

The green, open
space offers a nat-
ural and refreshing
environment for a
fitness routine.

Video3 Two individuals
are in a gym; one
is performing an
exercise on the
floor while the
other is walking
around, possibly
coaching.

The environment
indicates a focus
on personal train-
ing, as evidenced
by the sign in the
background.

The person on the
floor appears to be
doing sit-ups or a
similar core exer-
cise, suggesting a
targeted workout
session.

The overall scene
suggests a casual
yet focused atmo-
sphere, typical of a
fitness or personal
training session.

class-level generation requires choosing a representative video, risking inconsistency and limited
coverage. ii) For complex or ambiguous actions, visual context often introduces noise and spurious
details, weakening frame alignment and degrading performance. To illustrate, take ‘Situp’ as an
example, we randomly selected three sample videos and uniformly sampled eight frames from each.
These were provided as input to GPT-4o to generate visually informed sub-texts as shown in Tab. 14.
These sub-texts introduce scene-specific elements (e.g., attire, environment, presence of others) that
do not directly contribute to the representation of atomic actions and can confound alignment.

(a) Drinking
GPT3.5

1. Selecting a drink.

2. Pouring the drink.

3. Raising the drink to the lips.

4. Swallowing the drink.

LLaMA2
1. Holding a drink.

2. Bringing the drink to the mouth.

3. Sipping the drink.

4. Swallowing the drink.

Phi-3
1. Pick up the glass.

2. Bring the glass to your mouth.

3. Allow the liquid to flow into your mouth.

4. Swallow the liquid.

(b) Eating chips
GPT3.5

1. Selecting chips.

2. Opening the bag.

3. Picking up chips with fingers.

4. Putting chips in the mouth and chewing.

LLaMA2
1. Picking up a chip.

2. Bringing the chip to the mouth.

3. Biting the chip.

4. Chewing the chip.

Phi-3
1. Picking up a chip.

2. Bringing the chip to your mouth.

3. Biting down on the chip.

4. Chewing and swallowing the chip.

Figure 8: Example sub-texts generated from GPT-3.5, LLaMA2 [36], and Phi-3 [1].

C Additional Ablation Studies

LLMs Selection. We ablate the LLM used for sub-text generation in Tab. 7. We experiment with
GPT-Davinci [4], GPT-3.5, GPT-4o, and LLava-v1.6-34b [22]. Sub-text groups generated from
GPT-4o have the highest TPP and action recognition performance.
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Visualization. Additional example sub-texts generated by GPT-3.5, LLaMA2 [36], and Phi-3 [1] are
presented in Fig. 8. Furthermore, We provide more visualizations than Fig. 2 of the main paper in
Fig. 9 and Fig. 10 on Kinetics-400 [17], UCF-101 [34], and HMDB-51 [19] datasets.

Limitation and Future Work Fine-grained action recognition is challenging, especially in complex
scenarios, with no satisfactory solution even from large vision-language models like GPT-4v. Our
method mitigates this by generating sub-texts once for each global action, but future work could
explore more robust approaches.

Broader Impacts Our work advances the study of fine-grained action recognition methods and holds
promise for a wide range of applications, including sports analytics, human-computer interaction,
surveillance, video understanding, and related areas.
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Making tea

Streching
arm

Hulahooping

Swinglegs

Washdish

Shoot
basketball

(a) Frame (b) Single (c) Coarse (d) Fine (e) Coarse+Fine

Figure 9: Examples that illustrate the ineffectiveness of directly aligning video frames and global text, from
(a-e) heatmaps. (a) Video frames from the Kinetics-400 dataset [17] with their class name annotated at the
left. (b) Heatmaps of the single granularity-based (single) method [48], which are limited by the granularity
difference between the video frame and global text. (c-e) Heatmaps using coarse video embedding, fine-grained
video embedding, and the fusion of the two.
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Brush Teeth

Biking

Lunges

Walk

Situp

Punch

(a) Frame (b) Single (c) Coarse (d) Fine (e) Coarse+Fine

Figure 10: Examples that illustrate the ineffectiveness of directly aligning video frames and global text, from
(a-e) heatmaps. (a) Video frames from the UCF-101 dataset [34] and HMDB-51 dataset [19] with their class
name annotated at the left. (b) Heatmaps of the single granularity-based (single) method [48], which are limited
by the granularity difference between the video frame and global text. (c-e) Heatmaps using coarse video
embedding, fine-grained video embedding, and the fusion of the two.
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