Storyboard-guided Alignment for Fine-grained Video Action Recognition

Enqi Liu¹, Liyuan Pan^{1,2}, Yan Yang³, Yiran Zhong⁴, Zhijing Wu¹, Xinxiao Wu¹, Liu Liu⁵

¹Beijing Institute of Technology, Beijing, China

²Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, China

³BDSI, Australian National University, Canberra, Australia

⁴OpenNLPLab, Shanghai, China

⁵Huawei, Beijing, China

{enqi.liu, liyuan.pan, zhijingwu, wuxinxiao}@bit.edu,

Abstract

yan.yang@anu.edu.au, zhongyiran@gmail.com, liuliu33@huawei.com

Fine-grained video action recognition can be formulated as a video-text matching problem. Previous approaches primarily rely on global video semantics to consolidate video embeddings, often leading to misaligned video-text pairs due to inaccurate atomic-level action understanding. This inaccuracy arises due to i) videos with distinct global semantics may share similar atomic actions or visual appearances, and ii) atomic actions can be momentary, gradual, or not directly aligned with overarching video semantics. Inspired by storyboarding, where a script is segmented into individual shots, we propose a multi-granularity framework, SFAR. SFAR generates fine-grained descriptions of common atomic actions for each global semantic using a large language model. Unlike existing works that refine global semantics with auxiliary video frames, SFAR introduces a filtering metric to ensure correspondence between the descriptions and the global semantics, eliminating the need for direct video involvement and thereby enabling more nuanced recognition of subtle actions. By leveraging both global semantics and fine-grained descriptions, our SFAR effectively identifies prominent frames within videos, thereby improving the accuracy of embedding aggregation. Extensive experiments on various video action recognition datasets demonstrate the competitive performance of our SFAR in supervised, few-shot, and zero-shot settings.

1 Introduction

Fine-grained video action recognition has garnered increasing attention due to its broad applicability in areas such as sports analytics [54], human-computer interaction [13], surveillance [44], and video understanding [12]. In contrast to standard action recognition, fine-grained video action recognition necessitates a more detailed understanding of actions with similar appearances, demanding greater precision in capturing prominent frames with subtle actions.

The advent of large language models has revealed that a robust multimodal encoder like CLIP [30] can consolidate significantly more potent learned embeddings compared to manually crafted embeddings for action recognition [39, 21, 29, 2, 23, 28, 51, 15, 11, 47]. These methods involve using CLIP's visual encoder to extract video embeddings and its textual encoder to extract text embeddings. The video and text embeddings are then aligned for video classification. However, the potential of the textual encoder has not been fully explored.

^{*}Corresponding author.

To effectively integrate textual information, several works [48, 26, 8, 16, 24] refine global semantics by leveraging LLMs/MLLMs or additional lexicons to generate class-specific atomic action descriptions. These auxiliary descriptions are selected based on their alignment with each video frame, which leads to two rigid assumptions: i) each global video semantic must correspond to identical atomic actions, and ii) all atomic actions within a video should be closely related to its global semantics. However, these assumptions are frequently violated, leading to inaccurate embeddings. For instance, in Fig. 1 (a), the videos 'Baking cookies' and 'Making pizza' are ambiguous with each other, featuring overlapping atomic actions. In Fig. 1 (b), the atomic action 'Stand' can be irrelevant to the global video semantics 'Swing legs'. Moreover, the nonuniform distribution nature of

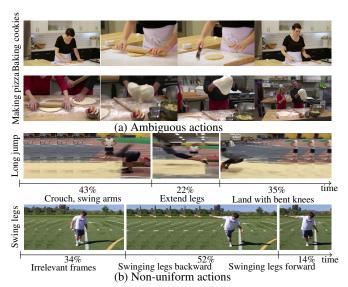


Figure 1: Example videos with ambiguous or non-uniform actions. Each row displays sample frames of a video with its class name. (a) Ambiguous actions. Both 'Baking cookies' and 'Making pizza' are actions performed in the kitchen with similar visual appearances and share atomic actions, e.g., the 'rolling dough'. (b) Non-uniform actions. Multiple atomic actions distribute unevenly within a video to form an action, e.g., the video 'Long jump' is composed of 43% of 'Crouch, swing arms' and 22% of 'Extend legs'. Moreover, some atomic actions may be irrelevant to the global class, e.g., 34% of the frames show 'Stand', unrelated to 'Swing Legs'. The axis indicates the percentage of frames per atomic action.

atomic actions has been overlooked previously, *i.e.*, the duration of each atomic action can vary. Based on this, using the global video semantics directly for aligning videos and text prompts can lead to misunderstandings due to their granularity discrepancy. In this paper, we address these issues and propose a multi-granularity framework, SFAR. The core of our SFAR is decomposing 'the global video semantics into fine-grained sub-texts' and 'a video action into multiple atomic actions'. This allows both coarse and fine-grained identifications of prominent frames in videos.

Inspired by the concept of storyboarding, which breaks down a script into individual shots, we enhance the global semantics (text) by generating detailed descriptions using a pre-trained large language model (LLM). These fine-grained descriptions, *i.e.*, sub-texts, capture common atomic actions depicted in videos, requiring only their class names and utilizing our designed question prompts, eliminating the need for direct video involvement. To fit the flexibility of various pre-trained LLM and question prompt formats, we design a text prompt perplexity metric to measure the diversity among sub-texts and the similarity between the sub-text and the global text for filtering sub-texts. It provides an effective schema for selecting sub-texts to train the video action recognition model.

We then use global texts and sub-texts to coarsely and fine-grainedly compute a video embedding for videos with ambiguous or non-uniform actions. Specifically, we augment the global text with sub-texts in the embedding space of CLIP by abounding described video actions with sub-texts, which also decreases the granularity of the global text. This augmented global text is used to weight video frames in embedding space and compute a coarse video embedding. We illustrate network attention of the augmented global text in Fig. 2 (c) and sub-texts in Fig. 2 (d). Compared to the previous method constrained by granularity differences (Fig. 2 (b)), our augmented global text and sub-texts direct network attention more comprehensively toward regions with actions.

We then fuse the coarse and fine-grained video embedding to compute a video embedding that improves the classification performance on ambiguous and non-uniform videos. Heatmaps of our network are in Fig. 2 (e), and improvements over videos with different ambiguous and non-uniform scores are in Fig. 2 (f). We rigorously validate our approach across different scenarios, including supervised, few-shot, and zero-shot video action recognition. Our method delivers top-notch performance in all these scenarios, showcasing the effectiveness of our framework.

Our main contributions are:

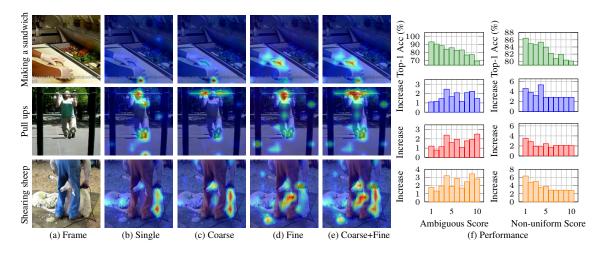


Figure 2: Examples that illustrate the ineffectiveness of directly aligning video frames and global text, from (a-e) heatmaps and (f) classification performance improvements. (a) Video frames with their class name annotated at the left. (b) Heatmaps of the single granularity-based (single) method [48], which are limited by the granularity difference between the video frame and global text. (c-e) Heatmaps using coarse video embedding, fine-grained video embedding, and the fusion of the two. (f) We show the performance distributions (Top-1 Accuracy) over ambiguous scores and non-uniform scores of videos for (b-e) on the whole set. The first row is the absolute performance for (b), and the last three rows are improvements of (c), (d), and (e) concerning (b). Please refer to our supplementary materials for details on the computation of the ambiguous score and the non-uniform score, as well as the accuracy improvements on the Kinetics-400 dataset presented in Tab. 8.

- A multi-granularity framework for transferring CLIP trained on image-text pair to video action recognition.
- A schema for automatically decomposing a video action into common atomic actions to provide fine-grained knowledge of the video action to CLIP.
- A coarse and fine-grained video embedding module for videos with ambiguous and nonuniform actions.

2 Related Works

We review video action recognition methods focusing visual and visual-text representation learning.

Visual Representation Learning. Action recognition requires accurately capturing temporal semantic variations. Numerous studies [59, 52, 42, 35, 39, 55] have thus focused on visual representation learning. Early works studied the joint learning of spatial and temporal features of a video using various architectures [26, 23, 2, 32]. Benefiting from large-scale visual and visual-text pre-training, recent methods leverage the strong spatial features learned in pre-training and focus on fine-tuning the trained model to capture the temporal semantics of a video. However, these methods do not explicitly address the fundamental challenge of recognizing video actions from ambiguous and non-uniform videos. This paper proposes decomposing video actions into atomic actions to improve the recognition of challenging videos.

Visual-text Representation Learning. Several methods [8, 40, 43, 47, 48, 41] have been developed to overcome these limitations by identifying video frames that strongly align with the text prompts of video actions for video action recognition in vision-language models, *e.g.*, CLIP. One remarkable work is BIKE [48], which weights the video frames based on their alignment with the text prompts to compute a video embedding for action recognition. However, these methods are limited by the granularity difference between the video frames and the text prompts, where the text prompt is a global context for the video. Unlike previous methods focused on generative modeling [49, 25, 57], where LLMs generate captions or texts conditioned on video or frame embeddings, our approach adopts a discriminative modeling approach. We generate sub-texts from the global text to describe atomic actions in video frames. The sub-texts are then used to construct coarse and fine-grained video embeddings, which improves the recognition of fine-grained actions.

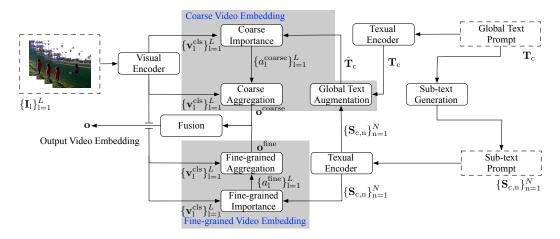


Figure 3: An overview of our framework for video action recognition. We extend CLIP for classifying the video $\{\mathbf{I}_l\}_{l=1}^L$ with L frames by computing a video embedding from frame embedding $\{\mathbf{v}_l^{\text{cls}}\}_{l=1}^L$ in three steps. (i) We decompose the global text prompt \mathbf{T}_c that describes the class semantic of action c into descriptions of atomic action (i.e., sub-text prompts) by using a pre-trained large language model. The global text prompt \mathbf{T}_c and sub-text prompts are then embedded by the textual encoder of CLIP for extracting embeddings of \mathbf{T}_c and $\{\mathbf{S}_{c,n}\}_{l=1}^L$. (ii) A coarse video embedding is extracted by augmenting the global text embedding \mathbf{T}_c with the sub-text embedding $\{\mathbf{S}_{c,n}\}_{l=1}^L$, calculating coarse importance of the frame embedding $\{\mathbf{v}_l^{\text{cls}}\}_{l=1}^L$ with the augmented global text embedding $\hat{\mathbf{T}}_c$, and using the importance $\{a_l\}_{l=1}^L$ to aggregate a coarse video embedding $\mathbf{v}_l^{\text{cls}}\}_{l=1}^L$. (iii) Similar to the coarse video embedding, we get a fine-grained video embedding $\mathbf{v}_l^{\text{cls}}\}_{l=1}^L$. (iii) Similar to the coarse video embedding, we get a fine-grained video embedding $\mathbf{v}_l^{\text{cls}}\}_{l=1}^L$ for aggregating frame embedding $\{\mathbf{v}_l^{\text{cls}}\}_{l=1}^L$. The coarse and fine-grained embeddings $\mathbf{o}_l^{\text{coarse}}$ and $\mathbf{o}_l^{\text{fine}}$ are fused to form the final video embedding $\mathbf{o}_l^{\text{coarse}}$ of or action recognition.

3 Methodology

Preliminary. CLIP [30], a visual-language pre-training method, consists of a visual and a textual encoder. It learns a joint embedding space by maximizing similarities between aligned image-text pairs and minimizing them for misaligned ones. Given an image **I** and global text prompts $\{\mathbf{T}_c\}_{c=1}^C$ of C classes formatted as [a photo of a class] that globally describe class semantics, where class is the class name, CLIP performs zero-shot classification by extracting the visual class embedding \mathbf{v}^{cls} from **I** and text class embeddings $\{\mathbf{t}_c^{\text{cls}}\}_{c=1}^C$ from $\{\mathbf{T}_c\}_{c=1}^C$. The image **I** is then classified into the class \mathbf{c}' with the maximum cosine similarity, i.e., $\mathbf{c}' = \arg\max_c \sin(\mathbf{v}^{\text{cls}}, \mathbf{t}_c^{\text{cls}})$.

Overview. To extend CLIP for classifying the video $\{\mathbf{I}_l\}_{l=1}^L$ with L frames, we adaptively compute a coarse and a fine-grained video embedding. Two multi-granularity embeddings capture global semantic and atomic semantics of ambiguous and non-uniform actions in the video, for computing the cosine similarity with the text class embedding. There are three key steps:

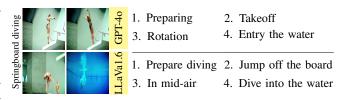


Figure 4: Example sub-texts $\{S_{c,n}\}_{n=1}^{N}$ generated from GPT-40 and LLaVa1.6, with N=4 in the example.

(i) Sub-text generation, decomposing each global text prompt \mathbf{T}_c into a sequence of N atomic action text descriptions $\{\mathbf{S}_{c,n}\}_{n=1}^N$ (i.e., sub-text prompts), by using a pre-trained large language model; (ii) Coarse video embedding, embedding each frame \mathbf{I}_l into a visual class embedding \mathbf{v}_l^{cls} that is a frame embedding. Then, by using the global text prompt augmented with sub-text prompts to identify salient video frames in CLIP embedding space, we aggregate the frame embedding $\{\mathbf{v}_l^{cls}\}_{l=1}^L$ into coarse video embeddings \mathbf{o}^{coarse} ; (iii) Fine-grained video embedding, finding video frames with atomic actions by using sub-text prompts and CLIP for computing a fine-grained video embedding \mathbf{o}^{fine} . We fuse the coarse and fine-grained video embedding into a video embedding \mathbf{o} to compute

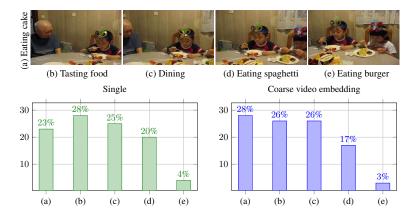


Figure 5: An example illustrating the benefits of using our coarse video embedding for ambiguous actions. We show a video in the first row, with the ground truth action labeled as (a) on the left. Its ambiguous actions are annotated with (b), (c), (d) and (e) at the bottom of the video. The action probability from the single granularity-based method [48] and our coarse video embedding are in the next row. Compared with the single granularity-based method that identifies the video as (b) 'Tasting food', we obtain a higher probability of the correct class (a) 'Eating cake'.

cosine similarities with text class embeddings \mathbf{t}_c^{cls} for classifying the video. The overview of our method is in Fig. 3.

3.1 Sub-text Generation

A global text prompt \mathbf{T}_c is a description of a video action. It overlooks that an action is usually formed by performing a sequence of atomic actions, like a video performing the action. Directly aligning video frame embedding to the global text prompt \mathbf{T}_c introduces the granularity differences and decreases the video classification performance. To minimize human burden and bias, we propose a pipeline that automatically generates and selects sub-texts based on the global text (class name).

We leverage a pre-trained large language model $LLM(\cdot)$ to decompose global text prompt \mathbf{T}_c into N potentially atomic actions $\{\mathbf{S}_{c,n}\}_{n=1}^N = LLM(\mathbf{P}_c)$, where \mathbf{P}_c is the prompt for describing the action class c and directing the pre-trained large language model to find potential atomic action descriptions, sub-texts $\{\mathbf{S}_{c,n}\}_{n=1}^N$. Refer to Fig. 4 for an example.

However, the existence of various pre-trained large language models and the flexibility in designing \mathbf{P}_c make selecting a meaningful sub-text set challenging. We assume that an optimal sub-text set $\{\mathbf{S}_{c,n}\}_{n=1}^N$ for video classification should be sufficiently related with the global text prompt \mathbf{T}_c while each sub-text should be diverse from the others. To measure the similarities and diversity, we propose a text prompt perplexity metric to select the sub-text set with the highest text prompt perplexity score.

In Fig. 5, we show ambiguous action probability computed from a single granularity-based method [48] and our coarse video embedding. Our method uses sub-text to augment the global text help the model to identify different atomic actions in ambiguous actions, and improve the accuracy of recognizing ambiguous actions.

With the class embedding of the global text \mathbf{T}_c and sub-texts $\{\mathbf{S}_{c,n}\}_{n=1}^N$ from the CLIP textual encoder, \mathbf{t}_c^{cls} and $\mathbf{s}_{c,n}^{cls}$, we define the text prompt perplexity score TPP_c for \mathbf{t}_c^{cls} and $\mathbf{s}_{c,n}^{cls}$ as below

$$TPP_{c} = \exp\left(-\frac{1}{N}\sum_{n=1}^{N}\log\left(\alpha(\sigma_{c,n})\beta(\delta_{c,n})\right)\right), \tag{1}$$

$$\sigma_{c,n} = \frac{\sin(\mathbf{t}_c^{cls}, \mathbf{s}_{c,n}^{cls}) + 1}{2} , \qquad (2)$$

$$\delta_{c,n} = 1 - \frac{1}{N-1} \sum_{\substack{n'=1 \ n' \neq n}}^{N} \frac{\sin(\mathbf{s}_{c,n}^{cls}, \mathbf{s}_{c,n'}^{cls}) + 1}{2} , \qquad (3)$$

Figure 6: Examples of coarse and fine-grained importance probability for videos with non-uniform actions. The fine-grained importance probability a_1^{fine} allocate larger scores than the coarse importance probability a_1^{coarse} to prominent frames. For example, the illustrated fourth frame in the second row, 'lowering barbell back down to the ground', represents an atomic action of 'Clean and jerk', and $a_1^{\text{fine}} = 23\%$ has a higher probability than $a_1^{\text{coarse}} = 9\%$.

where the $sim(\cdot,\cdot)$ calculates the cosine similarities of inputs. We employ $\sigma_{c,n}$ to quantify the similarity between a global text and its corresponding sub-texts, a higher value of $\sigma_{c,n}$ indicates greater similarity. Meanwhile, $\delta_{c,n}$ is used to evaluate the similarity among sub-texts themselves, where a higher value of $\delta_{c,n}$ indicates greater diversity across the sub-texts. Here, $\alpha(\cdot)$ and $\beta(\cdot)$ are linear scaling functions for the scores. Please refer to Fig. 7b for the correlations between the video classification performance and the text prompt perplexity score TPP_c.

3.2 Coarse Video Embedding

For identifying different atomic actions in ambiguous videos, we augment the global text \mathbf{T}_c with the sub-texts $\{\mathbf{S}_{c,n}\}_{n=1}^N$ to adaptively aggregate the video frames $\{\mathbf{I}_l\}_{l=1}^L$ in CLIP embedding space. As the class name in global text is usually a phrase, and sub-text $\mathbf{S}_{c,n}$ describes the atomic action with multiple words, we keep the word embeddings to benefit from the rich semantics of each word embedding for video frame aggregations. We denote the matrix form of the word embeddings for global text and sub-text as \mathbf{T}_c and $\mathbf{S}_{c,n}$, and augment \mathbf{T}_c by the cross-attention mechanism,

$$\mathbf{Q}_{c} = \mathbf{T}_{c} \mathbf{W}^{q}, \quad \mathbf{K}_{c,n} = \mathbf{S}_{c,n} \mathbf{W}^{k}, \quad \mathbf{V}_{c,n} = \mathbf{S}_{c,n} \mathbf{W}^{v}, \tag{4}$$

$$\mathbf{K}_{c} = [\{\mathbf{K}_{c,n}\}_{n=1}^{N}], \quad \mathbf{V}_{c} = [\{\mathbf{V}_{c,n}\}_{n=1}^{N}],$$
 (5)

$$\hat{\mathbf{T}}_{c} = Attention(\mathbf{Q}_{c}, \mathbf{K}_{c}, \mathbf{V}_{c}) + \mathbf{T}_{c}$$
, (6)

where \mathbf{W}^q , \mathbf{W}^k , and \mathbf{W}^v are matrices for projecting the query \mathbf{Q}_c , key $\mathbf{K}_{c,n}$, and value $\mathbf{V}_{c,n}$. Here, $[\{\mathbf{K}_{c,n}\}_{n=1}^N]$ and $[\{\mathbf{V}_{c,n}\}_{n=1}^N]$ concatenates all keys and values for \mathbf{Q}_c .

Using the augmented global text embeddings $\hat{\mathbf{T}}_c$, we find the salient video frame embedding \mathbf{v}_l^{cls} for aggregating a coarse video embedding. To find the coarse-grained importance score a_l^{coarse} of each frame embedding, we calculate the overall normalized similarity between each word embedding and the video frame embedding by

$$a_{l}^{\text{coarse}} = \sum_{\hat{\mathbf{t}}_{c} \in \hat{\mathbf{T}}_{c}} \frac{\exp\left(\sin(\hat{\mathbf{t}}_{c}, \mathbf{v}_{l}^{\text{cls}})\right)}{\sum_{l'=1}^{L} \exp\left(\sin(\hat{\mathbf{t}}_{c}, \mathbf{v}_{l'}^{\text{cls}})\right)}.$$
 (7)

We then compute the coarse video embedding $\mathbf{o}^{\text{coarse}}$ with summing over the video frame embedding $\mathbf{v}_{l}^{\text{cls}}$ weighted by a_{l}^{coarse} ,

$$\mathbf{o}^{\text{coarse}} = \sum_{l=1}^{L} \mathbf{v}_{l}^{\text{cls}} a_{l}^{\text{coarse}} . \tag{8}$$

3.3 Fine-grained Video Embedding

While the video coarse embedding $\mathbf{o}^{\text{coarse}}$ captures salient semantics for ambiguous actions, it may overlook atomic actions in the video that align with the expected action class c due to the non-uniform property of video actions. To address the limitation, we use the word embedding of the sub-texts to find atomic actions among the video frame embeddings $\{\mathbf{v}_l^{\text{cls}}\}_{l=1}^L$ to compute the fine-grained video embedding.

Table 1: Comparison result on the Kinetics-400 dataset. We report the GFLOPs in the inference phase. "Views" indicates the number of temporal clips and spatial crops used in inference (# temporal clip \times # spatial crop). The magnitude is Million (10^6) for number of model parameters (Param). We achieve the highest top-1 and top-5 accuracy by employing only an 8-frame input evaluated with a single view, outperforming past methods with more model parameters, input frames, and views. We highlight the best top-1 and top-5 accuracy in **bold**.

Method	Venue	Input	Pre-training	Top-1(%)	Top-5(%)	Views	GFLOPs	Param
Methods with large-scale visi	al pre-training				•			
$MVFNet_{En}$ [45]	AAAI'21	24×224^{2}	ImageNet-1K	79.1	93.8	10×3	188×30	-
ViViT-B/16×2 [2]	ICCV'21	32×224^2	JFT-300M	80.0	-	4×1	455.2	151.9
ST-Adapter ViT-B/16 [28]	NeurIPS'22	8×224^{2}	WIT-400M	82.0	95.7	3×1	455	128.8
EVL ViT-B/16 [21]	ECCV'22	8×224^{2}	WIT-400M	82.9	-	3×1	444	177.7
MTV-B [50]	CVPR'22	32×224^2	JFT-300M	81.8	95.0	4×3	384×12	310
VideoSwin-B [23]	CVPR'22	32×224^2	ImageNet-21K	82.7	95.5	4×3	282×12	88.1
ActionCLIP ViT-B/16 [39]	TNNLS'23	16×224^2	WIT-400M	82.6	96.2	10×3	282×30	141.7
ATM ViT-B/16 [46]	ICCV'23	8×224^{2}	WIT-400M	82.8	95.6	1×1	378×1	-
DIST ViT-B/16 [29]	ICCV'23	8×224^{2}	WIT-400M	83.6	-	3×1	163×3	105
AIM ViT-B/16 [53]	ICLR'23	8×224^{2}	WIT-400M	83.9	96.3	3×1	202×3	97
ILA-ViT-B/16 [37]	ICCV'23	8×224^{2}	WIT-400M	84.0	96.6	4×3	149×12	-
Methods with large-scale visi	ıal-text pre-train	ing						
X-CLIP ViT-B/16 [26]	ECCV'22	8×224^{2}	WIT-400M	82.3	-	1×1	145×1	-
VideoPrompt ViT-B/16 [15]	ECCV'22	16×224^2	WIT-400M	76.9	93.5	1×5	-	154
SIF ViT-B/16 [40]	ACMMM'23	8×224^{2}	WIT-400M	77.4	93.6	4×3	1136×12	143.9
Vita-CLIP ViT-B/16 [43]	CVPR'23	8×224^{2}	WIT-400M	80.5	96.0	1×1	97×1	187.9
Vita-CLIP ViT-B/16 [43]	CVPR'23	8×224^{2}	WIT-400M	81.8	96.0	4×3	97×12	187.9
BIKE ViT-B/16 [48]	CVPR'23	8×224^{2}	WIT-400M	83.2	-	1×1	-	124.1
BIKE ViT-B/16 [48]	CVPR'23	8×224^{2}	WIT-400M	83.9	-	4×3	-	124.1
M ² -CLIP ViT-B/16 [38]	AAAI'24	8×224^{2}	WIT-400M	83.4	96.3	4×3	214×3	165
ALT ViT-B/16 [7]	CVPR'24	8×224^{2}	WIT-400M	83.6	95.9	3×1	328	134.4
OST ViT-B/16 [6]	CVPR'24	8×224^{2}	WIT-400M	82.0	-	1×1	-	-
Ours ViT-B/16	NeurIPS'25	8×224 ²	WIT-400M	84.5	96.7	1×1	90.2×1	126.1

We compute a fine-grained importance score $a_1^{\rm fine}$ for each video frame embedding ${\bf v}_1^{\rm cls}$ as the maximum average similarity between ${\bf v}_1^{\rm cls}$ and ${\bf S}_{{\rm c},n}$, and normalize it by a SoftMax function,

$$a_{l}^{\text{fine}} = \frac{\exp\left(\max_{n} \frac{1}{|\mathbf{S}_{c,n}|} \sum \mathbf{s}_{c,n} \in \mathbf{S}_{c,n} \sin(\mathbf{s}_{c,n}, \mathbf{v}_{l}^{\text{cls}})\right)}{\sum_{l'=1}^{L} \exp\left(\max_{n} \frac{1}{|\mathbf{S}_{c,n}|} \sum \mathbf{s}_{c,n} \in \mathbf{S}_{c,n} \sin(\mathbf{s}_{c,n}, \mathbf{v}_{l'}^{\text{cls}})\right)},$$
(9)

where $|\mathbf{S}_{c,n}|$ is the number of words in the sub-text, and $\mathbf{s}_{c,n} \in \mathbf{S}_{c,n}$ is a word embedding for the sub-text. Similar to Eq. (8), we weight the video frame embedding \mathbf{v}_l^{cls} with a_l^{fine} , and get the fine-grained video embedding \mathbf{o}^{fine} by

$$\mathbf{o}^{\text{fine}} = \sum_{l=1}^{L} \mathbf{v}_{l}^{\text{cls}} a_{l}^{\text{fine}} . \tag{10}$$

We compare the coarse scores $a_1^{\rm coarse}$ and fine-grained scores $a_1^{\rm fine}$ in Fig. 6, and find that $a_1^{\rm fine}$ can fine-grainedly allocate larger scores than $a_1^{\rm coarse}$ to prominent frames that humans perform the action peak in the non-uniform videos.

3.4 Loss

We fuse the coarse video embedding and fine-grained video embedding as a video embedding o with two feedforward layers $FFN^{coarse}(\cdot)$ and $FFN^{fine}(\cdot)$, projecting the coarse video embedding and fine-grained video embedding to the semantic of class c,

$$\mathbf{o} = FFN^{\text{coarse}}(\mathbf{o}^{\text{coarse}}) + FFN^{\text{fine}}(\mathbf{o}^{\text{fine}}), \tag{11}$$

and compute the cosine similarity with the text class embedding \mathbf{t}_c^{cls} by $sim(\mathbf{t}_c, \mathbf{o})$.

We optimize our network by maximizing the similarity $y_{b,c^{gt}}$ between the b-th video embedding in a batch and text embedding of its ground truth class c^{gt} , and minimizing the similarity between other video and text class embeddings $\{y_{b,c}\}_{c=1,c\neq c^{gt}}^{C}$. Following [27], we use the InfoNCE loss,

$$\mathcal{L}_{T2V} = \frac{1}{B} \sum_{b=1}^{B} \frac{1}{|\mathbf{k}_b|} \sum_{b' \in \mathbf{k}_b} \log \frac{\exp(y_{b',c^{gt}})}{\sum_{b''=1}^{B} \exp(y_{b'',c^{gt}})},$$
(12)

Table 2: Comparative experiments are conducted on Charades [33], HMDB-51 [19], and UCF-101 [34], while ablation studies are performed on the Kinetics-400 dataset [17]. We report accuracy (%) for a single 8-frame clip with a spatial resolution of 224×224, unless otherwise specified. The "VZ" column denotes if the method is specifically designed for zero-shot action recognition or adapted from CLIP.

Method	Frames	mAP
MultiScale TRN [58	3] -	25.2
STM [14]	16	35.3
SlowFast+NL [10]	16+64	42.5
X3D-XL(312) [9]	16	43.4
ActionCLIP [39]	32	44.3
BIKE [48]	16	50.4
Ours	16	51.1

(a) Comparisons for multi-label ac-
tion recognition on the Charades
dataset [33].

VZ	UCF-101	HMDB-51
/	44.1	29.8
/	51.8	35.3
/	58.7	41.1
] X	75.0	48.6
X	78.4	55.6
X	78.7	47.1
Х	79.0	56.6
	/ / / / X X	✓ 51.8 ✓ 58.7] X 75.0 X 78.4 X 78.7

tion recognition on the HMDB-51 video embedding (FVE) on

Backbone	FVE	Top-1(%)	Top-5(%
VideoPrompt [15]	Х	76.9	93.5
videorionipi [13]	/	79.3	95.1
ATM [46]	Х	82.8	95.6
A1W [40]	/	82.9	96.4
BIKE [48]	Х	83.2	96.0
DIKE [46]	/	83.8	96.5

(b) Comparisons of zero-shot ac-[19] and UCF-101 [34] datasets. state-of-the-art methods using the Kinetics-400 dataset [17].

Generator	TPP	Top-1 (%)	Top-5(%)
LLaVA-1.6-34b	54.4	84.35	96.5
GPT-Davinci	54.7	84.35	96.6
GPT-3.5	60.4	84.47	96.7
GPT-4o	60.8	84.52	96.7

(d) Comparison of sub-texts generated from different LLMs on Kinetics-400. A higher Text Prompt Perplexity (TPP) score indicates better sub-texts.

Coarse VE	Fine-grained VE	Top-1(%)	Top-5 (%)
Base	line (CLIP)	79.9	94.7
Baselin	e (Temporal)	80.3	95.0
×	✓	82.7	96.2
✓	X	83.5	96.3
✓	✓	84.5	96.7

(e) Ablations of coarse and fine-grained video embedding (VE) on Kinetics-400. Using fine-tuned CLIP and CLIP model with temporal layers as baselines.

$$\mathcal{L}_{V2T} = \frac{1}{B} \sum_{b=1}^{B} \frac{1}{|\mathbf{k}_{b}|} \sum_{b' \in \mathbf{k}_{b}} \log \frac{\exp(y_{b',c^{gt}})}{\sum_{c=1}^{C} \exp(y_{b',c})},$$
(13)

$$\mathcal{L} = \mathcal{L}_{T2V} + \lambda \mathcal{L}_{V2T} , \qquad (14)$$

where B is the number of batches, k_b find the index of the video that has the same class with the b-th video, $|\mathbf{k}_b|$ is its size, and λ is a hyperparameter.

Experiment

4.1 Experimental Setup

Our proposed sub-text set and code are given in our project page.

Datasets. We experiment across four extensively recognized video benchmarks: Kinetics-400 [17], Charades [33], UCF-101 [34], and HMDB-51 [19] datasets.

Supervised Learning. Our model is implemented using the PyTorch framework. We train our network with batch size 256 for 30 epochs using the AdamW optimizer. The learning rate is set to 5×10^{-5} , and we use the cosine annealing strategy with 5 warm-up epochs. We follow [48] for data augmentation in training.

Zero-shot Learning. We evaluate our model, pre-trained on Kinetics-400 [17], using the UCF-101 [34] and HMDB-51 [19].

Few-shot Learning. We follow [39, 26] to experiment with different shot settings, selecting 2, 4, 8, and 16 examples per human action category for training. Training for 2 epochs on the Kinetics-400 dataset, and then use the same settings to train on other datasets for 10 epochs. Importantly, we do not use a model pre-trained on Kinetics-400 for few-shot learning on other datasets.

Evaluation Metrics. We evaluate our model with top-1 and top-5 accuracy on the single-label datasets. On multi-label Charades, we follow [14] to report mean average precision (mAP).

Table 3: Comparisons on few-shot action recognition across the HMDB-51 [19], UCF-101 [34] and Kinetics-400 datasets [17] with state-of-the-art action recognition methods. We utilize ViT-B/16 as the backbone and use 8 frames for training/validation. All performances are reported as top-1 accuracy (%) in the few-shot setting using single-view inference with a spatial size of 224 × 224, where all models are directly fine-tuned from CLIP. "Avg." refers to the average performance across all datasets.

	HMDB-51				UCF-101			Kinetics-400				All	
Method	K=2	K=4	K=8	K=16	K=2	K=4	K=8	K=16	K=2	K=4	K=8	K=16	Avg.
Vanilla CLIP [30]	41.9	41.9	41.9	41.9	63.6	63.6	63.6	63.6	57.2	57.2	57.2	57.2	54.2
ActionCLIP [39]	47.5	57.9	57.3	59.1	70.6	71.5	73.0	91.4	61.0	63.0	64.8	68.5	65.5
VideoPrompt [15]	39.7	50.7	56.0	62.4	71.4	79.9	85.7	89.9	-	-	-	-	67.0
X-CLIP [26]	53.0	57.3	62.8	64.0	76.4	83.4	88.3	91.4	56.8	60.7	62.3	64.6	68.4
ViFi-CLIP [31]	57.2	62.7	64.5	66.8	80.7	85.1	90.0	92.7	37.1	42.8	49.1	55.5	65.4
TC-CLIP [18]	57.3	62.3	67.3	68.6	85.9	89.9	92.5	94.6	58.5	61.9	65.5	69.9	72.9
OST [6]	59.1	62.9	64.9	68.2	82.5	87.5	91.7	93.9	44.0	48.2	52.5	56.5	67.6
Ours	64.0	66.1	68.7	70.7	92.1	93.0	94.3	94.7	73.9	74.8	75.5	76.2	78.7

4.2 Main Results

Action Recognition. We compare our network against state-of-the-art methods that utilize large-scale visual pre-training and visual-text pre-training on the Kinetics-400 dataset in Tab. 1. All methods use the ViT-B/16 backbone. Using fewer input frames and views during testing, our method that employs only an 8-frame input evaluated with a single view achieves the highest top-1 and top-5 accuracy. For example, the second-best method of large-scale visual-text pre-training uses 4 temporal clips on 3 spatial crops of a video but achieves top-1 accuracy 0.5% lower than ours.

To further demonstrate the effectiveness of our framework, we conduct experiments on challenging scenarios from Kinetics-400 based on the ambiguous and non-uniform score. We select the top 10% of actions with the highest scores, representing the most difficult categories to classify. The results are shown in Tab. 9, where we achieve an average performance 2.6% higher than the second-best.

Multi-Label Action Recognition. We evaluate our method for multi-label action recognition on the Charades dataset in Tab. 2a. The mAPs of state-of-the-art methods are reported, and we follow [9] to use 16 frames. Our method finds 51.1 mAP, achieving 0.7 mAP more than the second-best.

Zero-shot Action Recognition. Our method is trained with supervision from texts and can be used for zero-shot action recognition. We compare our network with methods that adapt from CLIP, which is pre-trained on images, and with zero-shot methods developed for videos on the UCF-101 and HMDB-51 datasets in Tab. 2b. All methods use a single view during testing. Our method demonstrates superior generalization capabilities in zero-shot action recognition. Specifically, versus the latest zero-shot methods developed for video [38], our zero-shot performance on the HMDB51 dataset is 9.5% higher than 47.1%. Further highlighting the versatility of our pipeline.

Few-shot Action Recognition. We explore 2, 4, 8, and 16-shot action recognition on the HMDB-51 [19], UCF-101 [34], and Kinetics-400 datasets [17] in Tab. 3. With a limited amount of videos, our approach that decomposes a video action into atomic actions exhibits the highest performance. Specifically, the average performance of our approach across all shots is 78.7%, which is 5.8% higher than the second best method (TC-CLIP, with 72.9%).

4.3 Ablation Studies and Analysis

We perform ablation studies with the Kinetics-400 dataset to examine our approach.

Number of Sub-texts. Fig. 7a illustrates the number N of sub-texts used in our model. As the N increases from 2 to 5, the recognition accuracy of our method improves. However, we observe that the performance gain is minimal when increasing the number of sub-texts from 4 to 5. Considering both computational complexity and recognition accuracy, we opted for 4 sub-texts in our experiments.

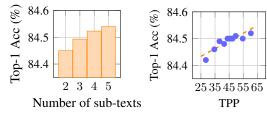
Correlation of TPP and Performance. In Fig. 7b, 11 sub-text groups are generated, and we show the relationship between TPP and the action recognition performance, where TPP is

Table 4: Comparison of Top-1 accuracies for some representative actions with N=2 and N=5 sub-actions. The
Difference column shows the change in Top-1 accuracy from $N=2$ to $N=5$.

Action	N=2	N=5	Difference	Action	N=2	N=5	Difference
Dribbling basketball	89.2	94.6	+5.4	Arm wrestling	100.0	100.0	0.0
Kicking soccer ball	71.0	76.3	+5.3	Christmas tree	100.0	100.0	0.0
Lunge	75.6	82.2	+6.6	Brushing teeth	89.5	89.5	0.0
High kick	35.1	40.5	+5.4	Slicing onion	98.6	97.4	-1.2
Clay pottery making	92.1	94.7	+2.6	Clapping	47.2	50.0	-2.8

computed as the average of TPP_c across all action categories. We observe a positive correlation, as shown by the fitted dashed line, with an r^2 value of 0.79, demonstrating the effectiveness of our TPP method in selecting sub-texts without the need for computationally intensive experiments.

Comparison of Sub-text Generators. Tab. 2d compares sub-texts generated by GPT-Davinci [4], GPT-3.5, GPT-4o, and LLava-v1.6-34b [22]. GPT-4o achieveshe highest TPP (60.8), along



(a) The impact of numbers (b) Study the relationship of sub-texts (N). between TPP and Top-1.

Figure 7: Analysis of sub-texts.

with the best Top-1 (84.52%) and Top-5 (96.7%) accuracies. Both LLaVA-1.6-34B and GPT-Davinci show similar performance, with minor differences in accuracy and TPP. These results indicate that GPT-40 provides the most effective sub-texts for action recognition.

Effectiveness of Components. We study the effective usage of our coarse video embedding and fine-grained video embedding in Tab. 2e. A CLIP model is fine-tuned on the Kinetics-400 dataset to establish a performance baseline. Following the common practice of existing works [48], we build a baseline (Temporal) using a 6-layer Transformer encoder with position embedding for sequence features. Individually, both the coarse and fine-grained video embeddings enhance performance relative to the baseline; together, they achieve consistently superior results. For example, using all embeddings, we achieve a top-1 accuracy of 84.5%, which is 4.6% higher than the baseline.

Different sub-actions. We previously observed that the accuracy of different action categories changes with respect to the number of sub-actions (N). Taking N = 2 and N = 5 as examples, the accuracy differences across representative actions are shown in Tab. 4. The results indicate that complex, multi-stage action categories (e.g., 'Dribbling basketball' and 'Clay pottery making') benefit from large N, whereas repetitive or simple motions such as 'Clapping' and 'Slicing onion' get better accuracies with small N. We had investigated overall performance gains by using class-aware N, and only found marginal improvement over fixed N=5, 0.5% and 0.2% for Top-1 and Top-5, respectively. Given the computational cost of involving a class-aware value of N for each action, we choose to use fixed N for efficiency.

Generalization. To validate the generalization of our components of fine-grained video embedding structure, we apply them to state-of-the-art action recognition methods, as shown in Tab. 2c. Specifically, we study VideoPrompt [15], ATM [46] and BIKE [48]. The results indicate that we enhance the accuracy of these state-of-the-art methods, such as VideoPrompt, which shows a 2.4% increase in accuracy on the Kinetics-400 dataset.

More. We provide additional implementation details, comparisons, and ablation studies in the supplement, *e.g.*, analyses of few-shot, zero-shot, and supervised learning on other backbones.

5 Conclusion

In this paper, we propose a framework to transfer CLIP trained on image-text pairs to video action recognition. Similar to how a video forms a video action by performing a sequence of atomic actions, our key insight is to decompose a video action into atomic action descriptions using a pre-trained LLM. We then select these atomic action descriptions with a proposed metric. The global and atomic action descriptions are used to identify salient video frames from ambiguous and non-uniform videos for action recognition. Experiments on standard benchmark datasets demonstrate that our method significantly outperforms previous works in supervised, few-shot, and zero-shot settings.

Acknowledgments and Disclosure of Funding

This work was supported by the National Natural Science Foundation of China under grant No. 62302045, and the Beijing Institute of Technology Special-Zone.

References

- [1] Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly capable language model locally on your phone. *arXiv* preprint arXiv:2404.14219, 2024.
- [2] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen Sun, Mario Lučić, and Cordelia Schmid. Vivit: A video vision transformer. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 6836–6846, 2021.
- [3] Biagio Brattoli, Joseph Tighe, Fedor Zhdanov, Pietro Perona, and Krzysztof Chalupka. Rethinking zeroshot video classification: End-to-end training for realistic applications. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 4613–4623, 2020.
- [4] Tom B Brown. Language models are few-shot learners. arXiv preprint ArXiv:2005.14165, 2020.
- [5] Shizhe Chen and Dong Huang. Elaborative rehearsal for zero-shot action recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 13638–13647, 2021.
- [6] Tongjia Chen, Hongshan Yu, Zhengeng Yang, Zechuan Li, Wei Sun, and Chen Chen. Ost: Refining text knowledge with optimal spatio-temporal descriptor for general video recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 18888–18898, 2024.
- [7] Yifei Chen, Dapeng Chen, Ruijin Liu, Sai Zhou, Wenyuan Xue, and Wei Peng. Align before adapt: Leveraging entity-to-region alignments for generalizable video action recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 18688–18698, 2024.
- [8] Yuxiao Chen, Jianbo Yuan, Yu Tian, Shijie Geng, Xinyu Li, Ding Zhou, Dimitris N Metaxas, and Hongxia Yang. Revisiting multimodal representation in contrastive learning: from patch and token embeddings to finite discrete tokens. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 15095–15104, 2023.
- [9] Christoph Feichtenhofer. X3d: Expanding architectures for efficient video recognition. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 203–213, 2020.
- [10] Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He. Slowfast networks for video recognition. In Proceedings of the IEEE/CVF international conference on computer vision, pages 6202– 6211, 2019.
- [11] Zhili Feng, Anna Bair, and J Zico Kolter. Text descriptions are compressive and invariant representations for visual learning. *Transactions on Machine Learning Research*, 2023.
- [12] Yudong Han, Qingpei Guo, Liyuan Pan, Liu Liu, Yu Guan, and Ming Yang. Dynfocus: Dynamic cooperative network empowers llms with video understanding. In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pages 8512–8522, 2025.
- [13] Mohamed Hassan, Partha Ghosh, Joachim Tesch, Dimitrios Tzionas, and Michael J Black. Populating 3d scenes by learning human-scene interaction. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 14708–14718, 2021.
- [14] Boyuan Jiang, MengMeng Wang, Weihao Gan, Wei Wu, and Junjie Yan. Stm: Spatiotemporal and motion encoding for action recognition. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 2000–2009, 2019.
- [15] Chen Ju, Tengda Han, Kunhao Zheng, Ya Zhang, and Weidi Xie. Prompting visual-language models for efficient video understanding. In *European Conference on Computer Vision*, pages 105–124. Springer, 2022.
- [16] Chen Ju, Zeqian Li, Peisen Zhao, Ya Zhang, Xiaopeng Zhang, Qi Tian, Yanfeng Wang, and Weidi Xie. Multi-modal prompting for low-shot temporal action localization. arXiv preprint arXiv:2303.11732, 2023.
- [17] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action video dataset. *arXiv* preprint arXiv:1705.06950, 2017.
- [18] Minji Kim, Dongyoon Han, Taekyung Kim, and Bohyung Han. Leveraging temporal contextualization for video action recognition. In *European Conference on Computer Vision*, pages 74–91. Springer, 2024.
- [19] Hildegard Kuehne, Hueihan Jhuang, Estíbaliz Garrote, Tomaso Poggio, and Thomas Serre. Hmdb: a large video database for human motion recognition. In 2011 International conference on computer vision, pages 2556–2563. IEEE, 2011.
- [20] Chung-Ching Lin, Kevin Lin, Lijuan Wang, Zicheng Liu, and Linjie Li. Cross-modal representation learning for zero-shot action recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision* and Pattern Recognition, pages 19978–19988, 2022.

- [21] Ziyi Lin, Shijie Geng, Renrui Zhang, Peng Gao, Gerard de Melo, Xiaogang Wang, Jifeng Dai, Yu Qiao, and Hongsheng Li. Frozen clip models are efficient video learners. In European Conference on Computer Vision, pages 388–404. Springer, 2022.
- [22] Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction tuning, 2023.
- [23] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin transformer. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 3202–3211, 2022.
- [24] Chaofan Ma, Yang Yuhuan, Chen Ju, Fei Zhang, Ya Zhang, and Yanfeng Wang. Attrseg: open-vocabulary semantic segmentation via attribute decomposition-aggregation. Advances in neural information processing systems, 36:10258–10270, 2023.
- [25] Himangi Mittal, Nakul Agarwal, Shao-Yuan Lo, and Kwonjoon Lee. Can't make an omelette without breaking some eggs: Plausible action anticipation using large video-language models. In *Proceedings of* the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 18580–18590, 2024.
- [26] Bolin Ni, Houwen Peng, Minghao Chen, Songyang Zhang, Gaofeng Meng, Jianlong Fu, Shiming Xiang, and Haibin Ling. Expanding language-image pretrained models for general video recognition. In *European Conference on Computer Vision*, pages 1–18. Springer, 2022.
- [27] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive coding. *arXiv preprint arXiv:1807.03748*, 2018.
- [28] Junting Pan, Ziyi Lin, Xiatian Zhu, Jing Shao, and Hongsheng Li. St-adapter: Parameter-efficient image-to-video transfer learning. Advances in Neural Information Processing Systems, 35:26462–26477, 2022.
- [29] Zhiwu Qing, Shiwei Zhang, Ziyuan Huang, Yingya Zhang, Changxin Gao, Deli Zhao, and Nong Sang. Disentangling spatial and temporal learning for efficient image-to-video transfer learning. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 13934–13944, 2023.
- [30] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pages 8748–8763. PMLR, 2021.
- [31] Hanoona Rasheed, Muhammad Uzair Khattak, Muhammad Maaz, Salman Khan, and Fahad Shahbaz Khan. Fine-tuned clip models are efficient video learners. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 6545–6554, 2023.
- [32] Michael Ryoo, AJ Piergiovanni, Anurag Arnab, Mostafa Dehghani, and Anelia Angelova. Tokenlearner: Adaptive space-time tokenization for videos. Advances in Neural Information Processing Systems, 34:12786–12797, 2021.
- [33] Gunnar A Sigurdsson, Gül Varol, Xiaolong Wang, Ali Farhadi, Ivan Laptev, and Abhinav Gupta. Hollywood in homes: Crowdsourcing data collection for activity understanding. In *Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14*, pages 510–526. Springer, 2016.
- [34] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. A dataset of 101 human action classes from videos in the wild. *Center for Research in Computer Vision*, 2(11):1–7, 2012.
- [35] Anirudh Thatipelli, Sanath Narayan, Salman Khan, Rao Muhammad Anwer, Fahad Shahbaz Khan, and Bernard Ghanem. Spatio-temporal relation modeling for few-shot action recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 19958–19967, 2022.
- [36] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.
- [37] Shuyuan Tu, Qi Dai, Zuxuan Wu, Zhi-Qi Cheng, Han Hu, and Yu-Gang Jiang. Implicit temporal modeling with learnable alignment for video recognition. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 19936–19947, 2023.
- [38] Mengmeng Wang, Jiazheng Xing, Boyuan Jiang, Jun Chen, Jianbiao Mei, Xingxing Zuo, Guang Dai, Jingdong Wang, and Yong Liu. A multimodal, multi-task adapting framework for video action recognition. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 5517–5525, 2024.
- [39] Mengmeng Wang, Jiazheng Xing, Jianbiao Mei, Yong Liu, and Yunliang Jiang. Actionclip: Adapting language-image pretrained models for video action recognition. *IEEE Transactions on Neural Networks and Learning Systems*, 2023.
- [40] Qiang Wang, Junlong Du, Ke Yan, and Shouhong Ding. Seeing in flowing: Adapting clip for action recognition with motion prompts learning. In *Proceedings of the 31st ACM International Conference on Multimedia*, pages 5339–5347, 2023.
- [41] Xiang Wang, Shiwei Zhang, Jun Cen, Changxin Gao, Yingya Zhang, Deli Zhao, and Nong Sang. Clip-guided prototype modulating for few-shot action recognition. *International Journal of Computer Vision*, 132(6):1899–1912, 2024.

- [42] Zhengwei Wang, Qi She, and Aljosa Smolic. Action-net: Multipath excitation for action recognition. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 13214–13223, 2021.
- [43] Syed Talal Wasim, Muzammal Naseer, Salman Khan, Fahad Shahbaz Khan, and Mubarak Shah. Vita-clip: Video and text adaptive clip via multimodal prompting. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 23034–23044, 2023.
- [44] Shaokai Wu and Fengyu Yang. Boosting detection in crowd analysis via underutilized output features. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 15609– 15618, 2023.
- [45] Wenhao Wu, Dongliang He, Tianwei Lin, Fu Li, Chuang Gan, and Errui Ding. Mvfnet: Multi-view fusion network for efficient video recognition. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pages 2943–2951, 2021.
- [46] Wenhao Wu, Yuxin Song, Zhun Sun, Jingdong Wang, Chang Xu, and Wanli Ouyang. What can simple arithmetic operations do for temporal modeling? In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, 2023.
- [47] Wenhao Wu, Zhun Sun, and Wanli Ouyang. Revisiting classifier: Transferring vision-language models for video recognition. In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pages 2847–2855, 2023.
- [48] Wenhao Wu, Xiaohan Wang, Haipeng Luo, Jingdong Wang, Yi Yang, and Wanli Ouyang. Bidirectional cross-modal knowledge exploration for video recognition with pre-trained vision-language models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 6620–6630, 2023.
- [49] Wangmeng Xiang, Chao Li, Yuxuan Zhou, Biao Wang, and Lei Zhang. Generative action description prompts for skeleton-based action recognition. In *Proceedings of the IEEE/CVF International Conference* on Computer Vision, pages 10276–10285, 2023.
- [50] Shen Yan, Xuehan Xiong, Anurag Arnab, Zhichao Lu, Mi Zhang, Chen Sun, and Cordelia Schmid. Multiview transformers for video recognition. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 3333–3343, 2022.
- [51] Hao Yang, Liyuan Pan, Yan Yang, Richard Hartley, and Miaomiao Liu. Ldp: Language-driven dual-pixel image defocus deblurring network. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 24078–24087, 2024.
- [52] Jiewen Yang, Xingbo Dong, Liujun Liu, Chao Zhang, Jiajun Shen, and Dahai Yu. Recurring the transformer for video action recognition. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 14063–14073, 2022.
- [53] Taojiannan Yang, Yi Zhu, Yusheng Xie, Aston Zhang, Chen Chen, and Mu Li. AIM: Adapting image models for efficient video action recognition. In *The Eleventh International Conference on Learning Representations*, 2023.
- [54] Zonglin Yang, Yan Yang, Yuheng Shi, Hao Yang, Ruikun Zhang, Liu Liu, Xinxiao Wu, and Liyuan Pan. Event-based few-shot fine-grained human action recognition. In 2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 519–526. IEEE, 2024.
- [55] Ruikun Zhang, Zhiyuan Yang, and Liyuan Pan. Dehazemamba: large multi-modal model guided single image dehazing via mamba. Visual Intelligence, 3(1):11, 2025.
- [56] Wei Zhang, Chaoqun Wan, Tongliang Liu, Xinmei Tian, Xu Shen, and Jieping Ye. Enhanced motion-text alignment for image-to-video transfer learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 18504–18515, 2024.
- [57] Yue Zhao, Ishan Misra, Philipp Krähenbühl, and Rohit Girdhar. Learning video representations from large language models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 6586–6597, 2023.
- [58] Bolei Zhou, Alex Andonian, Aude Oliva, and Antonio Torralba. Temporal relational reasoning in videos. In *Proceedings of the European conference on computer vision (ECCV)*, pages 803–818, 2018.
- [59] Xiaoyu Zhu, Po-Yao Huang, Junwei Liang, Celso M de Melo, and Alexander G Hauptmann. Stmt: A spatial-temporal mesh transformer for mocap-based action recognition. In *Proceedings of the IEEE/CVF* Conference on Computer Vision and Pattern Recognition, pages 1526–1536, 2023.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The paper has a clear abstract and an introduction section.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper discusses the limitations in the future work section included in the supplementary material.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: This work does not include theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We state all experimental details in Experiment section in the main paper and Supplementary Material A. We state which datasets we used and provide references.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: If the paper is accepted, the code and data will be released.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We state all experimental details in Experiment section in the main paper and Supplementary Material A.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental
 material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.

- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes] Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]
Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.

- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [Yes]
Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes] Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA] Guidelines:

• The answer NA means that the paper does not release new assets.

- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA] Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA] Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent)
 may be required for any human subjects research. If you obtained IRB approval, you
 should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes] Guidelines:

- araemies.
- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

Supplementary Material

We provide content omitted from the main paper due to space limitations. Specifically, the supplementary material is organized into three sections: (i) additional details for experiments and implementations, (ii) comparisons with other state-of-the-art methods in various settings, and (iii) additional ablation studies to analyze our model designs.

A Additional Experimental Setup

A.1 Datasets

We describe the dataset statistics of the Kinetics-400 [17], HMDB-51 [19], UCF-101 [34], and Charades [33] datasets. The Kinetics-400 dataset is curated from YouTube, spans 400 action classes, and contains 240,000 training videos and 20,000 validation videos. The duration of each video is 10 seconds. The HMDB-51 dataset consists of 6,766 videos categorized into 51 action classes, with 3,570 videos used for training, and 1,530 videos used for testing. Each video is sourced and truncated from movies, online videos, and public databases. The UCF-101 dataset collected 9,537 training videos and 3,783 testing videos from YouTube, across 101 action categories. The Charades dataset comprises 9,848 video clips that span 157 action categories. Each video is recorded in a home environment, performed by an actor, and includes multiple human actions with temporal action annotations.

Table 5: The hyperparameters of our model for supervised and few-shot learning.

	Fully-sup	Few-shot			
Optimisation					
Optimizer	Ada	mW			
Optimizer betas	(0.9, 0)).999)			
Batch size	256	256			
Learning rate schedule	cos	ine			
Linear warmup epochs	4	5			
Base learning rate	5e-6	5e-6			
Epochs	30	2,10			
Data augmentation					
RandomFlip	0.	.5			
Resize	RandomS	SizedCrop			
Crop size	224(D	efault)			
GrayScale	0.2				
Other regularisation					
Weight decay	0.0	02			

A.2 Ambiguous Score vs. Non-uniform Score

We describe computations of the ambiguous score and non-uniform score for Fig. 2 in the main paper. Our method does not require ground truth action labels of videos, and only uses the CLIP, for the calculation.

Ambiguous Score. We measure the ambiguous scores of videos by their class similarity measured with the textual encoder of CLIP. Benefiting from training on large-scale image and text pairs, the embedding space of CLIP is a compression of the world that captures the similarity between action classes. Following the global text prompt from the main paper, all action classes are extracted into $\{\mathbf{t}_c^{\text{cls}}\}_{c=1}^{C}$ with the textual encoder of CLIP. The similarity $\sigma_{c,c'}$ between action class c and prediction c' is calculated and normalized,

$$\sigma_{c,c'} = \frac{\sin(\mathbf{t}_c^{cls}, \mathbf{t}_{c'}^{cls}) + 1}{2} . \tag{15}$$

Table 6: The question prompts for GPT-Davinci [4], GPT-3.5, GPT-40, LLaMA2 [36], Phi-3 [1], and LLava-v1.6-34b [22]. Each row is a question prompt. All LLMs use the four prompts to generate sub-texts for selection.

[This action is a sequence of four steps. For each step, describe it in detail with 'This action is' followed by a specific description of that step. Ensure each step is distinct and crucial to the action.]

[This action is defined by four unique movements. Start each movement with 'This action is' and emphasize the diversity and significance of each movement. Conclude with a brief summary that ties all movements together.]

[This action is composed of four critical phases. Each phase should start with 'This action is' and focus on different aspects of the action. Highlight the importance of each phase and avoid repetition.]

[This action is best understood by breaking it down into four concise descriptions. Begin each description with 'This action is' and make sure each one covers a different perspective of the action. End with a summarizing statement.]

Table 7: The system prompt. We use the same system prompt for GPT-Davinci [4], GPT-3.5, GPT-40, LLaMA2 [36], Phi-3 [1], and LLava-v1.6-34b [22].

[You are an expert assistant in action recognition. Respond to the user's input by providing accurate, concise, and informative descriptions of the actions in a structured manner.]

For each action class c, we select the top-10 most similar other actions, and get the ambiguous scores AS_c by averaging the similarity scores,

$$AS_{c} = \sum_{c' \in top-10_{c}} \sigma_{c,c'} , \qquad (16)$$

where $top-10_c$ find index of the top-10 similarity action class for the action class c. In Fig. 2 of the main paper, we normalize the similarity score AS_c from 1 (least ambiguous) to 10 (most ambiguous) for visualization.

Ambiguous action classes usually share different atomic actions described by the sub-texts. Thus, using the global text to identify prominent frames corresponding to the video class semantic causes ambiguity. While avoiding granularity discrepancy between the global text and video frame (Sec. Intro), we aim to decrease the granularity of the global text by augmenting it with sub-texts for ambiguous video recognition. On the ViT-B/16 backbone, we found that augmented global text achieved an accuracy of 84.5% on the 1×1 view, which is a 0.5% improvement over the 84.0% of global text, when the fine-grained branch is included.

Non-uniform Score. We measure the non-uniform score of a video by calculating the agreements between predictions of each frame. Leveraging a CLIP, we obtain predictions of each frame and use the global text format and textual encoder of CLIP to extract embedding $\{t_{c^{pred},l}\}_{l=1}^{L}$ for all frames. The agreements between frame l and frame l' are measured by similarity between the embedding, and are normalized,

$$\sigma_{l,l'} = \frac{\sin(\mathbf{t}_{c^{pred},l}^{cls}, \mathbf{t}_{c^{pred},l'}^{cls}) + 1}{2} . \tag{17}$$

The non-uniform score NUS of the video is an average of the agreements between frames,

$$NUS = \sum_{l=1}^{L} \sum_{l'=1, l' \neq l}^{L} \sigma_{l, l'}.$$
 (18)

In Fig. 2 of the main paper, we normalize the non-uniform score from 1 (uniform) to 10 (non-uniform) for visualization.

Table 8: Performance comparison of our coarse, fine-grained, and fused video embeddings over a single-granularity method, across different levels of ambiguous and non-uniform scores, on the Kinetics-400 dataset. "Ambi" and "Non" represent ambiguous score and non-uniform score, respectively. All numbers are Top-1 accuracy (%).

Method	Туре	Degree									
1110111011	-7 P	1	2	3	4	5	6	7	8	9	10
Single	Ambi	93.0	90.3	88.3	84.0	85.7	82.7	83.0	76.8	77.2	69.3
	Non	86.5	84.9	84.6	85.4	83.9	82.2	80.8	81.9	80.3	80.1
Coarse	Ambi	94.1	91.5	89.8	86.5	87.4	84.8	84.2	78.9	79.4	70.8
	Non	91.1	88.7	87.8	90.7	86.7	85.0	83.6	84.7	83.1	82.9
Fine	Ambi	94.2	91.1	89.5	86.4	87.3	84.7	84.1	78.6	79.1	71.8
	Non	90.0	87.8	86.6	87.2	86.3	83.9	82.9	84.0	82.4	82.2
Fusion	Ambi	94.8	91.6	90.3	87.2	87.6	85.6	84.7	79.3	80.6	72.1
rusion	Non	92.9	89.7	89.7	88.9	87.7	85.1	83.7	84.8	83.2	83.0

We construct two challenging subsets of the Kinetics-400 dataset based on the ambiguous score and non-uniform score. For each criterion, we select the top 10% of actions with the highest scores, representing the most difficult categories to classify. We compare the performance of our proposed method against two representative single-granularity methods ATM [46] and BIKE [48]. The results on the two challenging subsets are presented in Tab. 9.

We construct two challenging subsets of the Kinetics-400 dataset based on the ambiguous score and non-uniform score. For each criterion, "Ambi Set" and "Non Set", containing the top 10% most we select the top 10% of actions with the high-

Method	Ambi Set	Non Set
ATM ViT-B/16 [46] BIKE ViT-B/16 [48]	70.2 69.3	79.8 80.1
Ours ViT-B/16	72.2	83.0

Fig. 2 (f) presents a bar chart illustrating the accuracy improvements of our method's coarse video embedding, fine-grained video embedding, and their fusion, compared to the single-granularity method. The results presented in Tab. 8 are reported across different levels of ambiguous score and non-uniform score, showcasing the effectiveness of our method on the Kinetics-400 dataset.

A.3 Implementation Details

We use CLIP trained from [30] in our paper. During training, the textual encoder of CLIP is frozen. We summarize the optimization and data augmentation details of our method for supervised learning

Table 10: Comparisons of zero-shot action recognition on the UCF-101 [34] and HMDB-51 [19] datasets. The "VZ" column denotes if the method is developed for zero-shot action recognition or adapted from CLIP. Our model is based on ViT-L/14.

Method	VZ	UCF-101	HMDB-51
E2E[3]	1	44.1	29.8
ER[5]	1	51.8	35.3
ResT[20]	1	58.7	41.1
X-CLIP [26]	X	72.0	44.6
DIST [29]	X	72.3	55.4
Vita-CLIP [43]	X	75.0	48.6
M2-CLIP [38]	X	78.7	47.1
BIKE ViT-L [48]	X	86.6	61.4
Text4Vis [47]	X	85.8	58.1
Ours ViT-L/14	Х	87.3	61.9

Table 11: Comparisons results on the Kinetics-400 dataset. We report the FLOPs in inference phase. "Views" indicates # temporal clip \times # spatial crop. The magnitude is Million (10⁶) for parameters (Param). All methods are based on ViT-L.

Method	Venue	Input	Pre-training	Top-1(%)	Top-5(%)	Views	GFLOPs	Param
ViViT-L/16×2 [2]	ICCV'21	32×320^2	ImageNet-21K	81.3	94.7	4×3	3992×12	310.8
ViViT-L/16×2 [2]	ICCV'21	32×320^2	JFT-300M	83.5	95.5	4×3	3992×12	310.8
VideoSwin-L [23]	CVPR'22	32×384^2	ImageNet-21K	84.9	96.7	10×5	2107×50	200.0
ST-Adapter ViT-L/14 [28]	NeurIPS'22	32×224^{2}	WIT-400M	87.2	97.6	3×1	8248	-
EVL ViT-L/14 [21]	ECCV'22	32×224^2	WIT-400M	87.3	-	3×1	8088	-
BIKE ViT-L/14 [48]	CVPR'23	8×224^{2}	WIT-400M	86.5	-	1×1	415	307
AIM ViT-L/14 [53]	ICLR'23	8×224^{2}	WIT-400M	86.8	97.2	3×1	2802×1	341
ATM ViT-L/14 [46]	ICCV'23	8×224^{2}	WIT-400M	87.3	97.4	4×3	421×12	-
MoTED ViT-L/14 [56]	CVPR'24	8×224^{2}	WIT-400M	87.4	97.8	3×1	8670	349
Ours ViT-L/14	NeurIPS'25	8×224 ²	WIT-400M	87.6	97.8	1×1	416	312

Table 12: Comparisons on few-shot action recognition across the HMDB-51 [19], UCF-101 [34] and Kinetics-400 datasets [17].

Method	Shot	HMDB-51	UCF-101	Kinetics-400
VideoSwin [23]	2	20.9	53.3	-
VideoPrompt ViT-B/16 [15]	5	56.6	79.5	58.5
BIKE ViT-L/14 [48]	2	73.5	96.1	75.7
BIKE ViT-L/14 [48]	5	77.7	96.5	78.2
OST ViT-B/16 [6]	2	64.8	90.3	-
Ours ViT-L/14	2	74.4	96.5	76.5
Ours ViT-L/14	5	78.1	96.9	79.1

and few-short learning in Tab. 5. For calculating TPP, the scaling functions are $\alpha(x) = -x^2 + 1$ and $\beta(x) = x$, where x is the input variable. In sub-text generation, we carefully design a list of question prompts for LLMs and select sub-texts with our TPP. We consider six LLMs: GPT-Davinci [4], GPT-3.5, GPT-40, LLava-v1.6-34b [22], LLaMA2 [36], and Phi-3 [1]. The question prompts and the system prompt for each LLM are presented in Tab. 6 and Tab. 7, respectively.

B Additional Experimental Results

We compare with state-of-the-art methods with a ViT-L/14 backbone. Following the setting of the main paper, the results of zero-shot action recognition on the UCF-101 [34] and HMDB-51 [19] datasets, supervised learning on the Kinetics-400 [17] dataset are in Tab. 10, Tab. 11. In all settings, our method consistently exhibits the highest performance.

As shown in Tab. 13, we compared the impact of the generative capabilities of other large language models (LLMs) on recognition accuracy, with corresponding GLops, processing time, and accuracy. The results show that even the slowest generation speed is within 10 seconds of each action. Furthermore, LLMs with strong generative capabilities have minimal impact on our method.

Table 13

GPT-3.5,

Accuracy.

Modelli 13

CHANGE TO TABLE 13

CHANG

As shown in Tab. 13, we compared the impact of the generative capabilities of other large language modified mod

Model	GLOPs	Time(s)	Accuracy
Phi-3-14b	636	7.5	84.50
LLaVA-1.6-34b	8.25e4	5.8	84.35
LLaMA2-7b	814	2.0	84.47
GPT-3.5	-	1.1	84.47
GPT-40	-	4.6	84.52

The common practice [40] is followed

to only add FFN layers to the video encoder, which projects the video embedding to the CLIP feature space. It is unnecessary to employ an additional FFN layer for the text embedding, as the accuracy remains 84.5% with or without it.

We explored the use of visual context in generating sub-texts and identified two major limitations of this approach. i) Generating sub-texts for each video sample is computationally expensive, while

Table 14: Sub-text descriptions for the action "Situp" across multiple video samples.

Action: Situp	Description 1	Description 2	Description 3	Description 4
Video1	lying on a mat in a gym, beginning a sit-up with	fluid motion, raising their torso towards their legs	The exercise is conducted in a controlled manner, focusing on core strength and stability.	suggests a well- equipped gym, ap- propriate for vari-
Video2	seen lying on the grass performing a sit-up exercise in	involves raising the upper body towards the knees,	The person is wearing casual workout attire, suitable for outdoor physical activities.	space offers a nat- ural and refreshing environment for a
Video3	are in a gym; one is performing an exercise on the floor while the	indicates a focus on personal train- ing, as evidenced	The person on the floor appears to be doing sit-ups or a similar core exercise, suggesting a targeted workout session.	suggests a casual yet focused atmo- sphere, typical of a fitness or personal

class-level generation requires choosing a representative video, risking inconsistency and limited coverage. ii) For complex or ambiguous actions, visual context often introduces noise and spurious details, weakening frame alignment and degrading performance. To illustrate, take 'Situp' as an example, we randomly selected three sample videos and uniformly sampled eight frames from each. These were provided as input to GPT-40 to generate visually informed sub-texts as shown in Tab. 14. These sub-texts introduce scene-specific elements (e.g., attire, environment, presence of others) that do not directly contribute to the representation of atomic actions and can confound alignment.

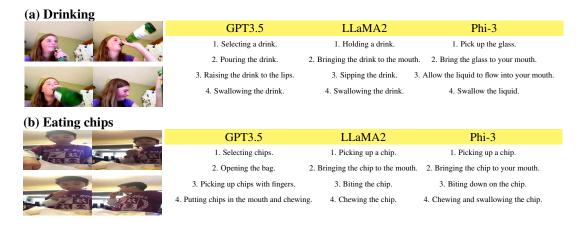


Figure 8: Example sub-texts generated from GPT-3.5, LLaMA2 [36], and Phi-3 [1].

C Additional Ablation Studies

LLMs Selection. We ablate the LLM used for sub-text generation in Tab. 7. We experiment with GPT-Davinci [4], GPT-3.5, GPT-4o, and LLava-v1.6-34b [22]. Sub-text groups generated from GPT-4o have the highest TPP and action recognition performance.

Visualization. Additional example sub-texts generated by GPT-3.5, LLaMA2 [36], and Phi-3 [1] are presented in Fig. 8. Furthermore, We provide more visualizations than Fig. 2 of the main paper in Fig. 9 and Fig. 10 on Kinetics-400 [17], UCF-101 [34], and HMDB-51 [19] datasets.

Limitation and Future Work Fine-grained action recognition is challenging, especially in complex scenarios, with no satisfactory solution even from large vision-language models like GPT-4v. Our method mitigates this by generating sub-texts once for each global action, but future work could explore more robust approaches.

Broader Impacts Our work advances the study of fine-grained action recognition methods and holds promise for a wide range of applications, including sports analytics, human-computer interaction, surveillance, video understanding, and related areas.

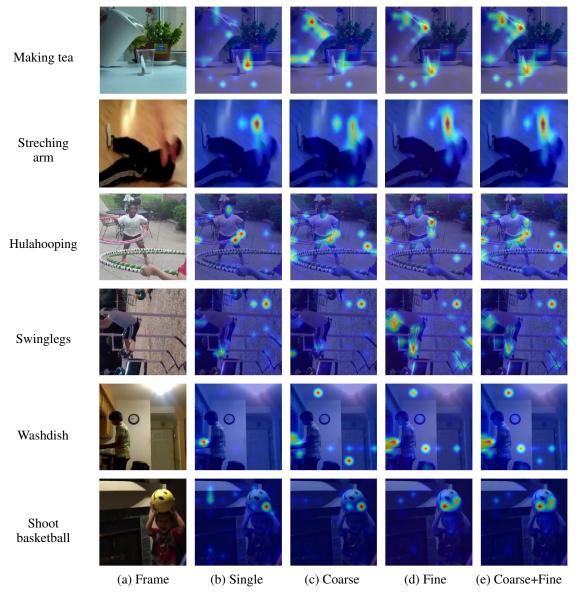


Figure 9: Examples that illustrate the ineffectiveness of directly aligning video frames and global text, from (a-e) heatmaps. (a) Video frames from the Kinetics-400 dataset [17] with their class name annotated at the left. (b) Heatmaps of the single granularity-based (single) method [48], which are limited by the granularity difference between the video frame and global text. (c-e) Heatmaps using coarse video embedding, fine-grained video embedding, and the fusion of the two.

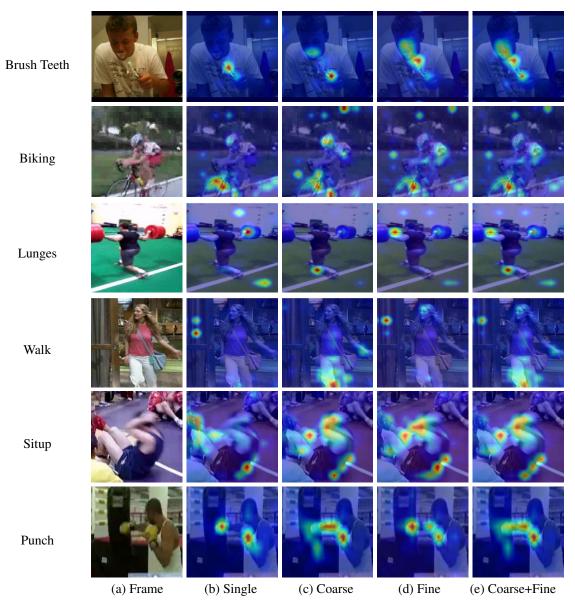


Figure 10: Examples that illustrate the ineffectiveness of directly aligning video frames and global text, from (a-e) heatmaps. (a) Video frames from the UCF-101 dataset [34] and HMDB-51 dataset [19] with their class name annotated at the left. (b) Heatmaps of the single granularity-based (single) method [48], which are limited by the granularity difference between the video frame and global text. (c-e) Heatmaps using coarse video embedding, fine-grained video embedding, and the fusion of the two.