

000 001 BREGMAN GEOMETRY FOR STOCHASTIC ONLINE 002 BILEVEL OPTIMIZATION 003

004
005 **Anonymous authors**
006 Paper under double-blind review

007
008
009 **ABSTRACT**
010

011 We study *online bilevel optimization (OBO)* in the *stochastic* setting and ask
012 whether geometry can eliminate the severe dependence on the condition number of
013 the inner problem, $\kappa_g = \ell_{g,1}/\mu_g$. We introduce a family of *Bregman-based algorithms*
014 and analyze both oracle and practical regimes. In the oracle setting, where
015 exact hypergradients are available, generalized Bregman steps achieve sublinear
016 bilevel local regret (i.e., $o(T)$) while *removing the cubic dependence on κ_g* incurred
017 by Euclidean updates. In the practical stochastic setting, where hypergradients
018 must be estimated, we design single-loop, sample-efficient algorithms that combine
019 Bregman steps with time-smoothed hypergradient estimates. Our analysis shows
020 that Bregman geometry again eliminates the κ_g -dependence and yields guarantees
021 of sublinear bilevel local regret in this setting. It further reveals a broader insight:
022 time smoothing, previously treated as a heuristic in deterministic OBO, naturally
023 functions as a *variance-reduction mechanism* while keeping bias controlled, clarifying
024 its role across both regimes. Finally, experiments on preconditioner learning
025 and reinforcement learning support our theoretical findings across a variety of
026 nonstationary loss sequences and large-scale, ill-conditioned datasets.

027 **1 INTRODUCTION**
028

029 Bilevel optimization in machine learning is widespread, with applications in *hyperparameter optimization*
030 Pedregosa (2016), *learned optimizer training* Andrychowicz et al. (2016), and *reinforcement learning*
031 Chakraborty et al. (2023). It addresses problems with a nested structure: the *outer* variable
032 $\lambda \in \mathcal{X} \subseteq \mathbb{R}^{d_1}$ is chosen by minimizing a composite outer objective $F = f + h$, while the *inner*
033 variable $\beta \in \mathbb{R}^{d_2}$ comes from minimizing an inner objective:

$$034 \quad \lambda^* \in \arg \min_{\lambda \in \mathcal{X}} F(\lambda), \quad F(\lambda) \triangleq f(\lambda, \beta^*(\lambda)) + h(\lambda), \quad \beta^*(\lambda) \in \arg \min_{\beta \in \mathbb{R}^{d_2}} g(\lambda, \beta). \quad (1)$$

035 where F is nonconvex and smooth, h is convex and potentially non-smooth, and g is smooth and
036 μ_g -strongly convex in β . In many machine learning settings, f and g are expectations over data or
037 environment randomness and are not available in closed form. With samples (ξ, ζ) , the stochastic
038 bilevel problem is

$$039 \quad \lambda^* \in \arg \min_{\lambda \in \mathcal{X}} F(\lambda) \triangleq \mathbb{E}_{\xi}[f(\lambda, \beta^*(\lambda); \xi)] + h(\lambda), \quad \beta^*(\lambda) \in \arg \min_{\beta \in \mathbb{R}^{d_2}} \mathbb{E}_{\zeta}[g(\lambda, \beta; \zeta)]. \quad (2)$$

040 Gradient-based methods update λ using hypergradients of the composite outer objective $F(\lambda)$,
041 computed either via implicit differentiation of the inner optimality condition Pedregosa (2016);
042 Lorraine et al. (2020) or via iterative/truncated differentiation through an inner solver Maclaurin et al.
043 (2015); Franceschi et al. (2017). Prior stochastic bilevel algorithms in the offline regime provide
044 convergence and sample-complexity guarantees under noisy gradients Ghadimi & Wang (2018); Ji
045 et al. (2021). Recent works study more-efficient stochastic hypergradient estimators, via momentum
046 or variance reduction Khanduri et al. (2021); Chen et al. (2021); Hong et al. (2023).

047 Despite progress in the *offline* setting, the online bilevel optimization, e.g., $\forall t = 1, \dots, T$:

$$048 \quad \lambda_t^* \in \arg \min_{\lambda \in \mathcal{X}} F_t(\lambda) \triangleq \mathbb{E}_{\xi_t}[f_t(\lambda, \beta_t^*(\lambda); \xi_t)] + h_t(\lambda), \quad \beta_t^*(\lambda) \in \arg \min_{\beta \in \mathbb{R}^{d_2}} \mathbb{E}_{\zeta_t}[g_t(\lambda, \beta; \zeta_t)] \quad (3)$$

049 remains underdeveloped. Existing methods are limited to *deterministic and Euclidean* Tarzanagh
050 et al. (2024); Lin et al. (2024): they assume noiseless gradients and use Euclidean outer updates.

Alg.	Bregman	Loop	Stoch.	Samples	κ_g dep.
OAGD Tarzanagh et al. (2024)	✗	Double	✗	N/A	$p(\kappa_g)$
SOBOW Lin et al. (2024)	✗	Single	✗	N/A	$p(\kappa_g)$
SOBO (ours)	✗	Single	✓	$O(1)$	κ_g^5
SOBBO (ours)	✓	Single	✓	$O(1)$	$O(1)$

Table 1: Current Online Bilevel Optimizers. *Bregman*: supports Bregman geometry. *Loop*: single vs. double loop. *Stoch.*: supports stochastic gradients. *Samples*: per-round gradients for stochastic algorithms. κ_g dep.: leading dependence on the inner condition number in bounds.

These methods achieve sublinear *bilevel local regret (BLR)*—a stationarity-based regret on the outer objective—but do not address two key challenges: (i) incorporating geometry-aware (Bregman) outer updates for ill-conditioned problems, and (ii) handling stochastic, nonstationary data. We next highlight how these gaps are significant in online bilevel optimization problems.

Gap 1: Geometry. Bregman geometry underlies many advances in online optimization, unifying adaptivity and proximal regularization while improving robustness to ill-conditioning (e.g., Adagrad Duchi et al. (2011), implicit online learning Kulis & Bartlett (2010)). In *online nonconvex single-level* settings, geometry-aware proximal (Bregman) updates are standard, and analyses based on stationarity-type criteria (gradient mapping/local regret) yield sublinear guarantees under reasonable smoothness and variation assumptions Hazan et al. (2017); Aydore et al. (2019); Hallak et al. (2021). In *online bilevel* problems, the challenge is related but distinct: ill-conditioning originates in the *inner* problem, where the condition number κ_g controls the sensitivity of $\beta^*(\lambda)$ and, via the hypergradient, the stability of outer updates. When κ_g is large, outer steps become fragile to noise and drift. Yet existing online bilevel formulations Tarzanagh et al. (2024); Lin et al. (2024) rely on Euclidean outer updates; to our knowledge, there are no geometry-aware outer steps even in deterministic settings. As a result, current methods exhibit strong dependence on κ_g —a critical liability in nonstationary regimes where ill-conditioning is ubiquitous.

Gap 2: Stochasticity. Large-scale learning is inherently stochastic: both inner and outer gradients are noisy, and hypergradients must be estimated. Deterministic formulations from Tarzanagh et al. (2024); Lin et al. (2024) cannot capture these dynamics because they require full-batch gradients. A stochastic formulation aligns the theory with practice, where mini-batch sampling is essential for scalability, computational efficiency, and robustness to noise. Moreover, a stochastic analysis provides additional theoretical insight: as we later show in Corollary 6.2, time-smoothing—previously used heuristically in deterministic OBO—emerges naturally as a *variance-reduction mechanism*, thereby clarifying its role across both deterministic and stochastic regimes.

Our contributions. We develop a unified framework for *online stochastic bilevel optimization (OSBO)* with guarantees in both oracle and stochastic settings:

1. **Bregman geometry improves κ_g dependence.** Bregman steps achieve sublinear BLR ($o(T)$) and strictly better κ_g -dependence than Euclidean updates: in the oracle case they *remove the κ_g^3 dependence*; in the stochastic case they *eliminate the κ_g^5 dependence* (Table 1).
2. **Single-loop, sample-efficient stochastic algorithms.:**
 - **SOBO (Euclidean):** sublinear BLR but κ_g^5 dependence (Table 2).
 - **SOBBO (Bregman):** time-smoothed hypergradients + Bregman steps, *removing κ_g^5* while preserving sublinear BLR (Table 1).
3. **Time smoothing as variance reduction.** Stochastic analysis shows time smoothing is a *variance-reduction mechanism* for noisy hypergradients with controlled bias, see Table 2.
4. **Empirical validation.** On preconditioner learning and RL with nonstationary, ill-conditioned data, our stochastic methods outperform current online bilevel baselines.

The paper is structured as follows. Section 2 introduces notation, Bregman-based gradient steps, and bilevel local regret. Section 3 analyzes Bregman-based optimizers in an oracle setting. Section 4 addresses hypergradient estimation and presents the proposed algorithms. Section 5 provides regret analysis. Section 6 includes experimental results on preconditioner learning and reinforcement learning. Proofs and extensions to the deterministic setting are in the Appendix.

Alg.	Upper bound on BLR
OAGD Tarzanagh et al. (2024)	$O\left(\frac{T}{w} + H_{1,T} + H_{2,T}\right)$
SOBOW Lin et al. (2024)	$O\left(\frac{T}{w} + V_{1,T} + H_{2,T}\right)$
SOBO (ours)	$O\left(\frac{T\kappa_g^3}{w}(\kappa_g^2 + \sigma_f^2 + \kappa_g^2\sigma_g^2) + V_{1,T} + \kappa_g^2 H_{2,T}\right)$
SOBBO (ours)	$O\left(\frac{T}{w}(\sigma_f^2 + \sigma_g^2) + V_{1,T} + H_{2,T}\right)$

Table 2: Sublinear bilevel local regret. Bounds are given for comparator sequences $V_{1,T}, H_{1,T}, H_{2,T}$. SOBBO eliminates the κ_g^5 dependence of SOBO and removes κ_g from leading variance terms. Increasing the smoothing window w reduces variance via the $\frac{T}{w}$ factor.

2 PRELIMINARIES

2.1 NOTATION AND ASSUMPTIONS

Let $\|\cdot\|$ denote the ℓ_2 norm for vectors and the spectral norm for matrices, with $\langle \beta_1, \beta_2 \rangle$ denoting the inner product between β_1 and β_2 . For a function $g_t(\lambda, \beta, \zeta)$, we denote the gradient as $\nabla g_t(\lambda, \beta, \zeta)$. Partial derivatives are denoted, for example with respect to λ , as $\nabla_\lambda g_t(\lambda, \beta, \zeta)$. We make the following assumptions that are standard in online Tarzanagh et al. (2024); Lin et al. (2024) and stochastic Ghadimi & Wang (2018); Ji et al. (2021); Huang et al. (2022b) bilevel optimization.

Assumption A (Smoothness of Objective Functions). *For each $t \in \{1, \dots, T\}$, $\lambda \in \mathcal{X}$, and $\beta \in \mathbb{R}^{d_2}$, there exist $\ell_{f,0}, \ell_{f,1}, \ell_{g,1}, \ell_{g,2} > 0$ such that:*

1. $f_t(\lambda, \beta, \epsilon)$ is $\ell_{f,0}$ -Lipschitz and ∇f_t is $\ell_{f,1}$ -Lipschitz.
2. $\nabla g_t(\lambda, \beta, \zeta)$ is $\ell_{g,1}$ -Lipschitz, $\nabla_{\lambda\beta}^2 g_t$ and $\nabla_{\beta\beta}^2 g_t$ are $\ell_{g,2}$ -Lipschitz.

Assumption B (Strong Convexity of Lower-Level Objective). *For all t , $g_t(\lambda, \cdot, \zeta)$ is μ_g -strongly convex in β for every $\lambda \in \mathcal{X}$.*

Assumptions A–B imply the inner condition number $\kappa_g := \ell_{g,1}/\mu_g \geq 1$.

Assumption C (Stochastic Gradients). *For all t and (λ, β) , unbiased stochastic estimators exist for the required first/second-order quantities (e.g. $\mathbb{E}[\hat{\nabla}_\beta g_t] = \nabla_\beta g_t$), and analogously for $\hat{\nabla} f_t$, $\hat{\nabla}_{\beta\beta}^2 g_t$, $\hat{\nabla}_{\beta\lambda}^2 g_t$. Their variances are bounded: $\mathbb{E}\|\hat{\nabla}_\beta g_t - \nabla_\beta g_t\|^2 \leq \sigma_g^2$ and $\mathbb{E}\|\hat{\nabla} f_t - \nabla f_t - B(\lambda, \beta)\|^2 \leq \sigma_f^2$.*

Assumption D (Bounded Decision Space). *$\mathcal{X} \subseteq \mathbb{R}^{d_1}$ is closed, convex, and bounded with diameter at most S , i.e., $\|\lambda_1 - \lambda_2\| \leq S$ for all $\lambda_1, \lambda_2 \in \mathcal{X}$.*

Assumption E (Bounded Objective). *For all t , $\sup_{\lambda \in \mathcal{X}} |F_t(\lambda)| \leq Q$.*

Assumption F (Distance Generating Function). *For all t , $\phi_t : \mathcal{X} \rightarrow \mathbb{R}$ is continuously differentiable and ρ -strongly convex, so that D_{ϕ_t} is well-defined.*

Smoothness and strong convexity ensure the inner problem is well-conditioned; the stochastic oracle assumptions allow unbiased, bounded-variance access to gradients Khanduri et al. (2021); boundedness of \mathcal{X} and F_t prevent divergence Hazan et al. (2017); and the distance generating function specifies the geometry in which our regret is measured Huang et al. (2022a,b).

2.2 BREGMAN PROXIMAL GRADIENT

Introduced in Bregman (1967), Bregman divergences generalize the squared Euclidean distance. Given a continuously differentiable and ρ -strongly convex function $\phi(\lambda)$, the Bregman divergence is defined as $\mathcal{D}_\phi(\lambda_2, \lambda_1) := \phi(\lambda_2) - \phi(\lambda_1) - \langle \nabla \phi(\lambda_1), \lambda_2 - \lambda_1 \rangle$. Given a Bregman divergence $\mathcal{D}_\phi(\cdot, \cdot)$, our proximal gradient step is

$$\lambda^+ = \arg \min_{\lambda \in \mathcal{X}} \left\{ \langle q, \lambda \rangle + h(\lambda) + \frac{1}{\alpha} \mathcal{D}_\phi(\lambda, u) \right\}, \quad (4)$$

where $\phi(\lambda)$ is a continuously differentiable and ρ -strongly convex function, $h(\lambda)$ is a convex and potentially nonsmooth regularization term, $\alpha > 0$ is a step size, and $q, u \in \mathbb{R}^{d_1}$ are the estimate

of the gradient, and current reference point, respectively. Proximal gradient methods in offline bilevel optimization have been shown to improve convergence rates in the deterministic setting (e.g., Bio-BreD algorithm of Huang et al. (2022b)) and stochastic setting (e.g., SBio-BreD algorithm of Huang et al. (2022b)). Special cases of the gradient update in equation 4 include projected (stochastic) gradient descent ($\phi(\boldsymbol{\lambda}) = \frac{1}{2} \|\boldsymbol{\lambda}\|^2$, $\mathcal{X} \subseteq \mathbb{R}^{d_1}$, and $h(\boldsymbol{\lambda}) = 0$), as well as proximal (stochastic) gradient descent ($\phi(\boldsymbol{\lambda}) = \frac{1}{2} \|\boldsymbol{\lambda}\|^2$ and $\mathcal{X} = \mathbb{R}^{d_1}$). The aforementioned gradient step in equation 4 can be further extended to a time-varying distance generating function, e.g., $\phi_t(\boldsymbol{\lambda}) = \frac{1}{2} \boldsymbol{\lambda}^T \mathbf{H}_t \boldsymbol{\lambda}$ with an adaptive matrix \mathbf{H}_t , resulting in an adaptive proximal gradient method with similarities to Adagrad from Duchi et al. (2011) and Super-Adam of Huang et al. (2021b). The proximal gradient step of equation 4 has led to the introduction of a generalized projection from Ghadimi et al. (2016) defined for a step size $\alpha > 0$, $\mathbf{q} \in \mathbb{R}^{d_1}$, and $\mathbf{u} \in \mathcal{X}$ as $\mathcal{G}_{\mathcal{X}}(\mathbf{u}, \mathbf{q}, \alpha) := \frac{1}{\alpha} (\mathbf{u} - \boldsymbol{\lambda}^+)$. Here $\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}, \nabla f_t(\boldsymbol{\lambda}), \alpha)$ acts as a generalized gradient that simplifies to $\nabla f_t(\boldsymbol{\lambda})$ if $\mathcal{X} = \mathbb{R}^{d_1}$ and $h(\boldsymbol{\lambda}) = 0$.

2.3 GENERALIZED BILEVEL LOCAL REGRET

Bilevel local regret is a stationary metric for online bilevel optimization Tarzanagh et al. (2024); Lin et al. (2024) that extends the single-level local regret measure from Hazan et al. (2017). The work of Lin et al. (2024) in particular defines the bilevel local regret for a window length $w \geq 1$ and a sequence $\{\boldsymbol{\lambda}_t\}_{t=1}^T$ as $BLR_w(T) := \sum_{t=1}^T \|\nabla F_{t,w}(\boldsymbol{\lambda}_t)\|^2$ where for simplicity we have defined $F_{t,w}(\boldsymbol{\lambda}_t) := \frac{1}{w} \sum_{i=0}^{w-1} F_{t-i}(\boldsymbol{\lambda}_{t-i})$ as a time-smoothed outer level objective with $F_t = 0 \forall t \leq 0$. Note for the online stochastic bilevel formulation of equation 3, the bilevel local regret can be equivalently written as $BLR_w(T) := \sum_{t=1}^T \|\nabla F_{t,w}(\boldsymbol{\lambda}_t)\|^2 = \sum_{t=1}^T \left\| \left(\frac{1}{w} \sum_{i=0}^{w-1} \mathbb{E}_{\epsilon} [\nabla_{\boldsymbol{\lambda}} f_{t-i}(\boldsymbol{\lambda}, \boldsymbol{\beta}_{t-i}^*(\boldsymbol{\lambda}_{t-i}), \epsilon)] \right) \right\|^2$. To analyze convergence benefits from the Bregman-based gradient step of equation 4 in online bilevel optimization algorithms, we introduce a new generalized projection based bilevel local regret as

$$BLR_w(T) := \sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 \quad (5)$$

where $w \geq 1$ is the window length, and $\{\boldsymbol{\lambda}_t\}_{t=1}^T$ is the sequence of iterative updates generated. Note that in the setting where $\mathcal{X} = \mathbb{R}^{d_1}$, $h(\boldsymbol{\lambda}) = 0$, and $\phi_t(\boldsymbol{\lambda}) = \phi(\boldsymbol{\lambda}) = \frac{1}{2} \|\boldsymbol{\lambda}\|^2$, our variation of local regret in equation 5 reduces to the regret measure of Lin et al. (2024). However, our definition offers an important generalization of bilevel local regret when an adaptive distance generating function $\phi_t(\boldsymbol{\lambda})$ or a non-zero regularization term $h(\boldsymbol{\lambda})$ is present.

Besbes et al. (2015) shows that in order to derive useful regret bounds of online algorithms in time-varying environments further regularity constraints must be imposed on the sequence, such as sublinear comparator sequences. Example comparator sequences include path variation Yang et al. (2016), function variation Besbes et al. (2015), or gradient variation Chiang et al. (2012). In online bilevel optimization one proposed sequence is the p -th order inner level path variation of optimal decisions from Tarzanagh et al. (2024), and is $H_{p,T} := \sum_{t=2}^T \sup_{\boldsymbol{\lambda} \in \mathcal{X}} \|\boldsymbol{\beta}_{t-1}^*(\boldsymbol{\lambda}) - \boldsymbol{\beta}_t^*(\boldsymbol{\lambda})\|^p$. A regularity metric on the p -th order variation of the evaluations of the outer level function across time is suggested by Lin et al. (2024) and is $V_{p,T} := \sum_{t=1}^T \sup_{\boldsymbol{\lambda} \in \mathcal{X}} |F_{t+1}(\boldsymbol{\lambda}) - F_t(\boldsymbol{\lambda})|^p$. Note the latter regularity metric, $V_{p,T}$, tracks how the optimal outer level variable, which is fixed for a given $t \in [1, T]$, can vary over time. For the online stochastic bilevel formulation of equation 3, the aforementioned comparator sequences can be equivalently written as $H_{p,T} := \sum_{t=2}^T \sup_{\boldsymbol{\lambda} \in \mathcal{X}} \|\boldsymbol{\beta}_{t-1}^*(\boldsymbol{\lambda}) - \boldsymbol{\beta}_t^*(\boldsymbol{\lambda})\|^p$ and $V_{p,T} := \sum_{t=1}^T \sup_{\boldsymbol{\lambda} \in \mathcal{X}} |\mathbb{E}_{\epsilon} [f_{t+1}(\boldsymbol{\lambda}, \boldsymbol{\beta}_{t+1}^*(\boldsymbol{\lambda}), \epsilon)] - \mathbb{E}_{\epsilon} [f_t(\boldsymbol{\lambda}, \boldsymbol{\beta}_t^*(\boldsymbol{\lambda}), \epsilon)]|^p$. We will be utilizing the regularity metrics of second-order inner-level path variation, $H_{2,T}$, and first-order variation of the evaluations of the outer level objective, $V_{1,T}$, and impose a sublinear constraint, that is $H_{2,T} = o(T)$ and $V_{1,T} = o(T)$.

3 BREGMAN BILEVEL OPTIMIZATION UNDER HYPERGRADIENT ORACLE

The hypergradient in the online setting has been formally derived using the chain rule followed by an implicit function theorem by Lin et al. (2024); Tarzanagh et al. (2024). Namely,

216 **Lemma 1.** (Tarzanagh et al. (2024)) Under Assumptions A and B, we have $\forall \lambda \in \mathcal{X}$

$$\begin{aligned} 217 \quad \nabla F_t(\lambda) &= \nabla_{\lambda} f_t(\lambda, \beta_t^*(\lambda)) + \nabla \beta_t^*(\lambda) \nabla_{\beta} f_t(\lambda, \beta_t^*(\lambda)) \\ 218 \quad &= \nabla_{\lambda} f_t(\lambda, \beta_t^*(\lambda)) - \nabla_{\lambda, \beta}^2 g_t(\lambda, \beta_t^*(\lambda)) (\nabla_{\beta, \beta}^2 g_t(\lambda, \beta_t^*(\lambda)))^{-1} \nabla_{\beta} f_t(\lambda, \beta_t^*(\lambda)). \end{aligned} \quad (6)$$

219 The above gradient decomposition is a common expansion in bilevel optimization that utilizes the
220 smoothness and strong convexity assumptions A and B. The next Lemma provides an upper bound
221 on the difference in the evaluated hypergradient $\|\nabla F_t(\lambda_1) - \nabla F_t(\lambda_2)\|$ in terms of the Lipschitz
222 constant $\ell_{F,1}$.

223 **Lemma 2.** (Lemma 3 in Tarzanagh et al. (2024)) Under assumptions A and B, it holds that, for
224 all $\lambda_1, \lambda_2 \in \mathcal{X}$, $\|\nabla F_t(\lambda_1) - \nabla F_t(\lambda_2)\| \leq \ell_{F,1} \|\lambda_1 - \lambda_2\|$, where the constant $\ell_{F,1} = O(\kappa_g^3)$ is
225 dependent on the condition number κ_g , strong convexity parameter μ_g , and Lipschitz constants
226 $\ell_{f,1}, \ell_{f,0}, \ell_{g,2}$, see Lemma equation 11 for full analytical form of $\ell_{F,1}$.

227 In order to analyze the effect of generalized Bregman-based gradient steps in online bilevel optimization,
228 we introduce the hypergradient oracle. This obviates the need for a choice of the hypergradient
229 estimation and allows us to show the independent improvement of the rate of bilevel local regret.

230 **Definition 1.** The hypergradient oracle is a function $\mathcal{O}(\lambda)$ that returns the true hypergradient
231 $\mathcal{O}(\lambda) : \lambda \mapsto \nabla F_t(\lambda)$, where $\nabla F_t(\lambda) = \nabla_{\lambda} F_t(\lambda, \beta_t^*(\lambda)) + \nabla_{\lambda} \beta_t^*(\lambda) \nabla_{\beta} F_t(\lambda, \beta_t^*(\lambda))$.

232 The oracle has access to the true hypergradient at optimal inner level variables $\beta_t^*(\lambda) \forall \lambda \in \mathcal{X}$. Algorithm 1 employs the hypergradient oracle, and, together with the Bregman-based step implemented as
233 a subroutine in Algorithm 2, constitutes a special case of our general algorithm, to be introduced later.
234 Sections 4 and 5 present this general algorithm and complementary regret analysis for the generalized
235 Bregman-based gradient step in the practical setting which requires hypergradient estimation. With
236

237 **Algorithm 1** Bregman Optimizer

238 **Require:** Initial variable $\lambda_1 \in \mathcal{X}$, step size
239 $\alpha > 0$, Bregman reference function ϕ
240 1: **for** $t = 1, \dots, T$ **do**
241 2: $\nabla F_t(\lambda_t) \leftarrow \mathcal{O}(\lambda_t)$ \triangleright Query oracle
242 3: $\mathbf{u} \leftarrow \lambda_t$
243 4: $\mathbf{q} \leftarrow \nabla F_t(\lambda_t)$
244 5: $\lambda_{t+1} \leftarrow$ Algorithm 2 for $\mathbf{u}, \mathbf{q}, \alpha, \phi$
245 6: **end for**
246 7: **return** λ_{T+1}

247 **Algorithm 2** Generalized Gradient Step

248 **Require:** \mathbf{u}, \mathbf{q} , step size α , reference function ϕ
249 1: $\lambda^+ \leftarrow \arg \min_{\lambda \in \mathcal{X}} \{ \langle \mathbf{q}, \lambda \rangle + h(\lambda) + \frac{1}{\alpha} \mathcal{D}_{\phi}(\lambda, \mathbf{u}) \}$
250 2: **return** λ^+

251 the oracle, Theorem 3 shows that Algorithm 1 with generalized Bregman steps achieves regret $o(T)$,
252 compared to $o(\kappa_g^3 T)$ for classical gradient descent ($\mathcal{X} = \mathbb{R}^{d_1}, h(\lambda) = 0, \phi(\lambda) = \frac{1}{2} \|\lambda\|^2$). The
253 improvement comes from eliminating the multiplicative $\kappa_g^3 > 1$ factor. For background on the role of
254 condition numbers in bilevel optimization, see Huang et al. (2022b).

255 **Theorem 3** (Bregman Steps under Hypergradient Oracle). Suppose $h(\lambda) = 0$ and $\mathcal{X} = \mathbb{R}^{d_1}$. Assume
256 Assumptions A–F hold and that the cumulative variation is sublinear:

$$\sum_{t=1}^T (F_t(\lambda_t) - F_{t+1}(\lambda_{t+1})) \leq o(T).$$

257 If Algorithm 1 uses a ρ -strongly convex reference function $\phi(\lambda)$ defining the Bregman divergence
258 $\mathcal{D}_{\phi}(\lambda, \mathbf{u})$ with $\rho = O(\ell_{F,1})$, then the bilevel local regret (with $w = 1$) satisfies

$$\sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\lambda_t, \nabla F_t(\lambda_t), \alpha)\|^2 \leq o(T),$$

259 i.e., a sublinear rate independent of the condition number $\kappa_g > 1$.

260 **Remark.** The result indicates that generalized Bregman steps eliminate the condition-number depen-
261 dence present in Euclidean updates.

270 **Corollary 3.1** (Classical Gradient Descent as Euclidean Bregman Step). *Let $\phi(\lambda) = \frac{1}{2}\|\lambda\|^2$, so that*
 271 *$\mathcal{D}_\phi(\lambda, u) = \frac{1}{2}\|\lambda - u\|^2$ and $\rho = 1$. Then Algorithm 1 reduces to classical gradient descent and the*
 272 *bilevel local regret satisfies*

$$274 \quad \sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\lambda_t, \nabla F_t(\lambda_t), \alpha)\|^2 = \sum_{t=1}^T \|\nabla F_t(\lambda_t)\|^2 \leq o(\ell_{F,1} T) = o(\kappa_g^3 T).$$

277 Theorem 3 shows the improvement a Bregman-based gradient step can have on the sublinear rate of
 278 bilevel local regret of Algorithm 1 in terms of the condition number $\kappa_g > 1$. Next, we extend our
 279 Bregman algorithm and analysis to the setting where hypergradient estimation is required.

281 4 BREGMAN BILEVEL OPTIMIZATION UNDER HYPERGRADIENT ESTIMATION

283 4.1 STOCHASTIC HYPERGRADIENT ESTIMATION

285 Following previous work on bilevel optimization Ghadimi & Wang (2018); Tarzanagh et al. (2024);
 286 Lin et al. (2024), the computational difficulty in obtaining $\beta_t^*(\lambda)$ motivates the use of a sur-
 287 rogate β in the hypergradient expansion of equation 6 for a fixed $\lambda \in \mathcal{X}$ and $\beta \in \mathbb{R}^{d_2}$ as
 288 $\tilde{\nabla} f_t(\lambda, \beta) := \nabla_{\lambda} f_t(\lambda, \beta) - \nabla_{\lambda, \beta}^2 g_t(\lambda, \beta) \left(\nabla_{\beta, \beta}^2 g_t(\lambda, \beta) \right)^{-1} \nabla_{\beta} f_t(\lambda, \beta)$. Note by further con-
 289 sidering the stochastic setting, the hypergradient is composed of first and second-order stochastic
 290 gradients, for which we have unbiased oracles with finite variances under Assumption C. However
 291 a stochastic estimator is still required for the inverse Hessian $\left(\nabla_{\beta, \beta}^2 g_t(\lambda, \beta, \zeta) \right)^{-1}$. A common
 292 stochastic estimator for the inverse Hessian has been proposed by Ghadimi & Wang (2018), and
 293 used in Khanduri et al. (2021) and Huang et al. (2022b). We use the aforementioned stochastic
 294 hypergradient estimate in this work and denote the estimate as $\tilde{\nabla} f_t(\lambda_t, \beta_{t+1}, \mathcal{E}_t)$. Construction of
 295 the stochastic hypergradient estimate is included in Lemma 4.

296 **Lemma 4.** (Algorithm 3 in Ghadimi & Wang (2018)) *Suppose Assumptions A, B, and C. Then for an*
 297 *upper bound of m , learning rate $\tilde{\eta}$, and independent samples $\mathcal{E} = \{\epsilon, \zeta^0, \dots, \zeta^{m-1}\}$, the stochastic*
 298 *gradient of $\tilde{\nabla} f_t(\lambda, \beta, \mathcal{E})$ provides an estimate of $\tilde{\nabla} f_t(\lambda, \beta)$ and is constructed via Algorithm 5*

$$301 \quad \tilde{\nabla} f_t(\lambda, \beta, \mathcal{E}) := \nabla_{\lambda} f_t(\lambda, \beta, \epsilon) - \nabla_{\lambda, \beta}^2 g_t(\lambda, \beta, \zeta^0) \\ 302 \quad \times \left[\frac{m}{\tilde{\eta}} \prod_{j=1}^{\tilde{m}} \left(I_{d_2} - \frac{1}{\tilde{\eta}} \nabla_{\beta}^2 g_t(\lambda, \beta, \zeta^j) \right) \right] \nabla_{\beta} f_t(\lambda, \beta, \epsilon), \quad (7)$$

305 where $\tilde{m} \sim \mathcal{U}(0, 1, \dots, m-1)$ and, for $m=0$, $\prod_{j=1}^m (\cdot) = I_{d_2}$.

307 The next Lemma from Khanduri et al. (2021) characterizes the bias of this stochastic estimate.

309 **Lemma 5.** (Lemma B.1 in Khanduri et al. (2021)) *Suppose Assumptions A, B, and C. For*
 310 *any $m \geq 1$ the gradient estimator of equation 7 satisfies the bias of $B(\lambda, \beta) :=$*
 311 $\left\| \tilde{\nabla} f_t(\lambda, \beta) - \mathbb{E}_{\mathcal{E}} \left[\tilde{\nabla} f_t(\lambda, \beta, \mathcal{E}) \right] \right\| \leq \ell_{f,1} \kappa_g \left(1 - \frac{\mu_g}{\ell_{g,1}} \right)^m$

313 4.2 SINGLE-LOOP EFFICIENCY WITH TIME-SMOOTHING

315 Due to the computational cost double-loop algorithms can incur, single-loop algorithms for bilevel
 316 optimization are often desired. However in the stochastic case, variability of stochastic gradients
 317 impose a difficulty for the construction of single-loop algorithms. One proposed solution commonly
 318 employed, see Khanduri et al. (2021) and Huang et al. (2021a), is the use of momentum techniques to
 319 achieve variance reduction. A similar methodology appears in the online deterministic setting of Lin
 320 et al. (2024) where the technique of time-smoothing is applied to average evaluated hypergradients
 321 and improve the rate of bilevel local regret.

322 Motivated by the success of momentum techniques in stochastic bilevel optimization and their
 323 technical similarity to time-smoothing, we employ time-smoothing from Lin et al. (2024) to effi-
 324 ciently average the evaluated stochastic hypergradients. In particular, we introduce time-smoothing

324 with the estimator $\tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w})$ defined for all $t \in [1, T]$, window size $w \geq 1$, and inde-
 325 pendent samples $\mathcal{Z}_{t,w} = \{\mathcal{E}_{t-i}\}_{i=0}^{w-1}$ where $\mathcal{E}_t = \{\epsilon_t, \zeta_t^0, \dots, \zeta_t^{m-1}\}$ as $\tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}) :=$
 326 $\frac{1}{w} \sum_{i=0}^{w-1} \tilde{\nabla} f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t+1-i}, \mathcal{E}_{t-i}), \quad f_t = 0 \forall t \leq 0$.
 327

328 Our general algorithm is included in Algorithm 3 and states our novel Bregman bilevel optimizer that
 329 efficiently utilizes stochastic hypergradient estimation with time-smoothing techniques to solve the
 330 online stochastic bilevel optimization problem of equation 3. The special case of it, for $K = 1$, is
 331 an efficient single-loop algorithm. In the next section (Section 5), we further show how the above
 332 time-smoothing technique has the effect of variance reduction on the rate of regret.

Algorithm 3 Stochastic Online Bregman Bilevel Optimizer

333 **Require:** Horizon T ; inner steps $K \geq 1$; step sizes $\alpha, \eta > 0$; batch sizes s, m ; Bregman reference ϕ ;
 334 window $w \geq 1$
 335 1: Initialize $\boldsymbol{\beta}_1 \in \mathbb{R}^{d_2}, \boldsymbol{\lambda}_1 \in \mathcal{X}$
 336 2: **for** $t = 1 \dots T$ **do**
 337 3: $\omega_t^0 \leftarrow \boldsymbol{\beta}_t$
 338 4: **for** $k = 1 \dots K$ **do**
 339 5: Sample s i.i.d. draws of ζ ; set $\bar{\zeta}_{t,k} \leftarrow \{\zeta_{t,i}^{k-1}\}_{i=1}^s$
 340 6: $\omega_t^k \leftarrow \omega_t^{k-1} - \eta \nabla_{\omega} g_t(\boldsymbol{\lambda}_t, \omega_t^{k-1}, \bar{\zeta}_{t,k})$
 341 7: **end for**
 342 8: $\boldsymbol{\beta}_{t+1} \leftarrow \omega_t^K$
 343 9: $\tilde{\nabla} f_t(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{E}_t) \leftarrow \text{STOCHHYPERGRAD}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \eta, m)$ ▷ Alg. 5
 344 10: Store $\tilde{\nabla} f_t(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{E}_t)$ in memory
 345 11: $\boldsymbol{q} \leftarrow \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w})$ via time-smoothing
 346 12: $\boldsymbol{u} \leftarrow \boldsymbol{\lambda}_t$
 347 13: $\boldsymbol{\lambda}_{t+1} \leftarrow \text{GENERALGRADSTEP}(\boldsymbol{u}, \boldsymbol{q}, \alpha, \phi)$ ▷ Alg. 2
 348 14: **end for**
 349 15: **return** $\boldsymbol{\lambda}_{T+1}, \boldsymbol{\beta}_{T+1}$

5 CONVERGENCE ANALYSIS

353 To analyze the bilevel local regret of Algorithm 3, we require a bound on the error introduced by
 354 stochastic hypergradient estimation. In the oracle setting (Theorem 3), this error is absent, but in the
 355 stochastic case it contributes an additional term to the regret. Lemma 16 (Appendix) provides such a
 356 bound: it decomposes the cumulative hypergradient error into contributions from (i) past bilevel local
 357 regret, (ii) time-smoothed hypergradient error, (iii) variations in the optimal inner solutions, and (iv)
 358 the variance σ_g^2 of stochastic inner gradients. Building on this decomposition, we now establish the
 359 main regret bound for Algorithm 3.

360 **Theorem 6.** (Proof in Appendix: Theorem 17) Suppose Assumptions A-F. Let the inner step be
 361 $\eta = \Omega(1/\mu_g)$ such that $\eta \leq \min\{\frac{2}{\ell_{g,1} + \mu_g}, \frac{1}{w}\}$, outer step be $\alpha \leq \min\{\frac{3\rho}{4\ell_{F,1}}, \frac{\rho\sqrt{(1-\nu)}}{\kappa_g^2\sqrt{72C\mu_g}}\}$, and batch
 362 size for stochastic inverse Hessian approximation $m = \log(w)/\log\left(1 - \frac{\mu_g}{\ell_{g,1}}\right) + 1$. Then the bilevel
 363 local regret of the **single-loop** ($K = 1$) and **sample-efficient** ($s = O(1)$) Algorithm 3 satisfies

$$364 \quad BLR_w(T) \leq O\left(\frac{T\kappa_g^3}{w\rho} \left(1 + \frac{\kappa_g^2 + \sigma_f^2 + \kappa_g^2\sigma_g^2}{\rho}\right) + \frac{V_{1,T}}{\rho} + \frac{\kappa_g^2 H_{2,T}}{\rho^2}\right) \quad (8)$$

365 with comparator sequences $V_{1,T}$ and $H_{2,T}$, σ_g^2, σ_f^2 are finite variances from Assumption C, and
 366 $\kappa_g > 1$ is the condition number of the inner level objective.

367 The next corollary highlights the improvement with a Bregman-based gradient step to equation 4.

368 **Corollary 6.1** (Effect of Bregman Steps). As in Theorem 12, selecting $\rho = O(\ell_{F,1}) = O(\kappa_g^3)$ implies
 369 the bilevel local regret of

$$370 \quad BLR_w(T) \leq O\left(\frac{T}{w} (1 + \sigma_f^2 + \sigma_g^2) + V_{1,T} + H_{2,T}\right) \quad (9)$$

378 where with gradient descent ($\rho = 1$), the rate is increased by a constant factor of κ_g^5 .
 379

380 The next corollary highlights how time-smoothing with window length $w \geq 1$ is variance reduction.
 381

382 **Corollary 6.2** (Variance Reduction via Windowing). *Increasing w reduces the variance terms in the
 383 regret bound, as evidenced by*

$$384 \quad BLR_w(T) \leq O\left(\frac{T\kappa_g^3}{w\rho}\left(1 + \frac{\kappa_g^2 + \sigma_f^2 + \kappa_g^2\sigma_g^2}{\rho}\right) + \frac{V_{1,T}}{\rho} + \frac{\kappa_g^2 H_{2,T}}{\rho^2}\right) \quad (10)$$

386 where larger w leads to a lower contribution of variance terms σ_f^2 and σ_g^2 to the regret.
 387

388 The next corollary as in deterministic online bilevel optimization problems (Lin et al. (2024))
 389 considers sublinear comparator sequences, e.g., $V_{1,T} = o(T)$ and $H_{2,T} = o(T)$. For a properly
 390 chosen window of $w = o(T)$ note the rate of regret is sublinear, i.e. $BLR_w(T) = o(T)$.
 391

392 **Corollary 6.3** (Sublinear Regret with Sublinear Comparators). *If $w = o(T)$, and the comparator
 393 sequences satisfy $V_{1,T} = o(T)$ and $H_{2,T} = o(T)$, then the regret bound*

$$394 \quad BLR_w(T) \leq O\left(\frac{T\kappa_g^3}{w\rho}\left(1 + \frac{\kappa_g^2 + \sigma_f^2 + \kappa_g^2\sigma_g^2}{\rho}\right) + \frac{V_{1,T}}{\rho} + \frac{\kappa_g^2 H_{2,T}}{\rho^2}\right) \quad (11)$$

397 ensures that $BLR_w(T) = o(T)$, implying a sublinear regret rate.
 398

399 **Corollary 6.4** (Window-Free Sublinear Regret). *Run with $w = 1$ and select Bregman Divergence
 400 such that $\rho = T^\alpha$ for any $\alpha \in (0, 1)$. Then*

$$401 \quad BLR_w(T) \leq O\left(T^{1-\alpha}(1 + \sigma_f^2 + \sigma_g^2) + \frac{V_{1,T}}{T^\alpha} + \frac{H_{2,T}}{T^{2\alpha}}\right), \quad (12)$$

402 so $BLR(T) = o(T)$ or equivalently achieves sublinear bilevel local regret without time-smoothing.
 403

405 6 EXPERIMENTS

407 6.1 PRECONDITIONER LEARNING

409 **Task.** Adaptive methods (e.g., AdaGrad Duchi et al. (2011)) use data-dependent preconditioners
 410 but require hand-crafted choices. We instead learn a diagonal preconditioner online via bilevel
 411 optimization. At round t , we set $P(\lambda) = \text{diag}(\lambda) \succ 0$ and couple: (i) an inner preconditioned
 412 proximal update $\beta_t^*(\lambda) = \arg \min_{\beta} \mathbb{E}_{\zeta_t}[L_{\text{tr},t}(\beta; \zeta_t) + \frac{\gamma}{2} \|\beta - \beta_{t-1}\|_{P(\lambda)^{-1}}^2]$; and (ii) an outer up-
 413 date $\lambda_t^* = \arg \min_{\lambda \in \mathcal{X}} \mathbb{E}_{\epsilon_t}[L_{\text{val},t}(\beta_t^*(\lambda); \epsilon_t)]$. This shapes the inner geometry so training transfer
 414 improves validation, with β and λ both adapting online. **Models.** We use the same bilevel structure
 415 (inner: preconditioned proximal objective; outer: validation loss) across: (i) *quadratic regression*
 416 with diagonal $P(\lambda)$; and (ii) *linear classification* with smoothed hinge/logistic loss and the same
 417 proximal term. **Datasets.** We evaluate on the GDSC drug-response dataset in a high-dimensional
 418 regime ($p \gg n$) for both regression and classification; to stress nonstationarity and conditioning, we
 419 also use an imbalanced variant with three feature-based cohorts (marked vertical lines) and standard
 420 train/validation streams. **Baselines.** We compare **SOBBO** to deterministic online bilevel methods
 421 **OBBO**, **SOBOW** Lin et al. (2024), **OAGD** Tarzanagh et al. (2024), and our stochastic online bilevel
 422 method **SOBBO**. Deterministic baselines (**SOBOW** and **OAGD**) compute hypergradients from full
 423 batches; **SOBBO** uses stochastic mini-batched hypergradients and Euclidean steps. **SOBBO** performs
 424 outer steps with the quadratic divergence, $\mathcal{D}_{\phi_t}(\lambda_2, \lambda_1) = \frac{1}{2} \|\lambda_2 - \lambda_1\|_{H_t}^2$, such that $\phi_t(\lambda) = \frac{1}{2} \lambda^T H_t \lambda$
 with diagonal matrix H_t updated adaptively, as in Adagrad, similar to Huang et al. (2022a).

425 **Results.** Figure 1 shows that **SOBBO** attains lower local regret relative to deterministic Euclidean
 426 baselines as well as our stochastic baseline with Euclidean gradient descent. The middle panel of
 427 Figure 1 shows that larger window parameters reduce both the regret incurred and the variance of
 428 stochastic hypergradient estimates as we theoretically show in Corollary 6.2, a large improvement
 429 from the setting of **SOBBO** when $w = 1$. For the task of preconditioner learning, Figure 2 illustrates
 430 the difference in the learned optimizers across algorithms and window sizes, and the resulting
 431 validation improvements. **SOBBO** achieves the best validation loss (0.7214), outperforming **OBBO**
 (0.7880), **OAGD** (1.0110), and **SOBOW** (1.5291).

Figure 1: Left: Regret for deterministic and stochastic online bilevel optimizers; **SOBBO** attains smaller regret. **Middle:** Increasing window size reduces regret by stabilizing updates. **Right:** Larger window size reduces the variance of stochastic hypergradient estimates, as shown theoretically in Corollary 6.2.

Figure 2: Left: KDE of diagonal preconditioner entries ($d = 500$) across algorithms. **Middle:** KDE for different window sizes, showing the effect of time-smoothing. **Right:** Final validation loss across methods.

6.2 ACTOR–CRITIC REINFORCEMENT LEARNING

Task. Following the formulation of Prakash et al. (2025) we cast actor–critic as *online bilevel optimization* with actor (outer) θ and critic (inner) ω : the actor solves $\min_{\theta} \mathbb{E}_{\epsilon_t} [f_t(\theta, \omega_t^*(\theta), \epsilon_t)] + r(\theta)$ while the critic solves $\omega_t^*(\theta) \in \arg \min_{\omega} \mathbb{E}_{\zeta_t} [g_t(\theta, \omega, \zeta_t)]$. **Models.** The actor π_{θ} is a 2-layer MLP (128–128), the critic Q_{ω} is a matching MLP with TD updates. **Datasets.** We consider a nonstationary Pendulum environment within Gymnasium with scheduled nonstationarity jumps occurring in the gravity and max torque, see left panel of Figure 3. **Baselines.** We compare our algorithm **SOBBO**, using the quadratic divergence $\mathcal{D}_{\phi_t}(\lambda_2, \lambda_1) = \frac{1}{2} \|\lambda_2 - \lambda_1\|_{H_t}^2$, against **SOBOW** and **OAGD** adapted to this RL setting, measuring bilevel local regret and the effect of window size.

Results: Figure 3 shows lower bilevel local regret of **SOBBO** relative to deterministic and stochastic baselines with increasing window parameter ($w = 50, 500, 5000$) further reducing regret.

Figure 3: Bilevel RL experiments. (a) Relative changes in the Pendulum environment. **(b)** Bilevel local regret across algorithms; **SOBBO** achieves lowest. **(c)** Bilevel local regret over window sizes shows improved regret.

7 CONCLUSION

This work shows that Bregman geometry removes the dependence on the inner condition number in stochastic online bilevel optimization while attaining sublinear bilevel local regret. We develop single-loop, sample-efficient algorithms that couple generalized Bregman steps with time-smoothed hypergradient estimates, and our analysis identifies smoothing as an intrinsic variance-reduction mechanism that controls bias and unifies prior heuristics with theory. Empirical results corroborate these claims across ill-conditioned, large-scale datasets and nonstationary losses.

486 7.1 REPRODUCIBILITY STATEMENT
487

488 To ensure reproducibility, Sections 3 to 5 present the key algorithmic details of our Bregman-based
489 bilevel optimizers. Section 6 documents the experimental setup, baselines, hyperparameters, and
490 the open-source datasets used. Upon acceptance, we will release an open-source repository with
491 implementations, configurations, and scripts to reproduce all experiments. All assumptions and
492 complete proofs, including regret bounds in the stochastic setting (Appendix B) and the reduction to
493 the deterministic setting (Appendix C), are provided in the appendices.

494
495 REFERENCES
496

497 Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
498 Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
499 descent. *Advances in neural information processing systems*, 29, 2016.

500 Sergul Aydore, Tianhao Zhu, and Dean P Foster. Dynamic local regret for non-convex online
501 forecasting. *Advances in Neural Information Processing Systems*, 2019.

503 Omar Besbes, Yonatan Gur, and Assaf Zeevi. Non-stationary stochastic optimization. *Operations
504 Research*, 2015.

505 L.M. Bregman. The relaxation method of finding the common point of convex sets and its application
506 to the solution of problems in convex programming. *USSR Computational Mathematics and
507 Mathematical Physics*, 1967.

509 Souradip Chakraborty, Amrit Singh Bedi, Alec Koppel, Dinesh Manocha, Huazheng Wang, Furong
510 Huang, and Mengdi Wang. Aligning agent policy with externalities: Reward design via bilevel rl.
511 *arXiv preprint arXiv:2308.02585*, 2023.

512 Tianyi Chen, Yuejiao Sun, and Wotao Yin. Tighter analysis of alternating stochastic gradient method
513 for stochastic nested problems. *arXiv preprint arXiv:2106.13781*, 2021.

515 Chao-Kai Chiang, Tianbao Yang, Chia-Jung Lee, Mehrdad Mahdavi, Chi-Jen Lu, Rong Jin, and
516 Shenghuo Zhu. Online optimization with gradual variations. *Proceedings of the 25th Annual
517 Conference on Learning Theory*, 2012.

518 John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
519 stochastic optimization. *Journal of Machine Learning Research*, 2011.

521 Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse
522 gradient-based hyperparameter optimization. *International Conference on Machine Learning*,
523 2017.

524 Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. *arXiv preprint
525 arXiv:1802.02246*, 2018.

527 Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic approximation methods
528 for nonconvex stochastic composite optimization. *Mathematical Programming*, 2016.

529 Nadav Hallak, Panayotis Mertikopoulos, and Volkan Cevher. Regret minimization in stochastic
530 non-convex learning via a proximal-gradient approach. *International Conference on Machine
531 Learning*, 2021.

533 Elad Hazan, Karan Singh, and Cyril Zhang. Efficient regret minimization in non-convex games.
534 *International Conference on Machine Learning*, 2017.

535 Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale stochastic algorithm
536 framework for bilevel optimization: Complexity analysis and application to actor-critic. *SIAM
537 Journal on Optimization*, 2023.

538 Feihu Huang, Junyi Li, and Shangqian Gao. Biadam: Fast adaptive bilevel optimization methods.
539 *arXiv preprint arXiv:2106.11396*, 2021a.

540 Feihu Huang, Junyi Li, and Heng Huang. Super-Adam: Faster and universal framework of adaptive
 541 gradients. *Advances in Neural Information Processing Systems*, 34, 2021b.
 542

543 Feihu Huang, Shangqian Gao, and Heng Huang. Bregman gradient policy optimization. *arXiv
 544 preprint arXiv: 2106.12112*, 2022a.
 545

546 Feihu Huang, Junyi Li, Shangqian Gao, and Heng Huang. Enhanced bilevel optimization via Bregman
 547 distance. *Advances in Neural Information Processing Systems*, 35, 2022b.
 548

549 Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and enhanced
 550 design. *International Conference on Machine Learning*, 2021.
 551

552 Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cecista, Laker Newhouse, and
 553 Jeremy Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. *URL
 554 https://kellerjordan.github.io/posts/muon*, 6.
 555

556 Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A
 557 near-optimal algorithm for stochastic bilevel optimization via double-momentum. *Advances in
 558 Neural Information Processing Systems*, 2021.
 559

560 Brian Kulis and Peter L. Bartlett. Implicit online learning. *International Conference on Machine
 561 Learning*, 2010.
 562

563 Sen Lin, Daouda Sow, Kaiyi Ji, Yingbin Liang, and Ness Shroff. Non-convex bilevel optimization
 564 with time-varying objective functions. *Advances in Neural Information Processing Systems*, 2024.
 565

566 Jonathan Lorraine, Paul Vicol, and David Duvenaud. Optimizing millions of hyperparameters by
 567 implicit differentiation. *International Conference on Artificial Intelligence and Statistics*, 2020.
 568

569 Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimization
 570 through reversible learning. *International Conference on Machine Learning*, 2015.
 571

572 Fabian Pedregosa. Hyperparameter optimization with approximate gradient. *International Conference
 573 on Machine Learning*, 2016.
 574

575 Arjun Prakash, Naicheng He, Denizalp Goktas, and Amy Greenwald. Bi-level policy optimization
 576 with nyström hypergradients, 2025. *URL https://arxiv.org/abs/2505.11714*.
 577

578 Davoud Ataee Tarzanagh, Parvin Nazari, Bojian Hou, Li Shen, and Laura Balzano. Online bilevel
 579 optimization: Regret analysis of online alternating gradient methods. *International Conference on
 580 Artificial Intelligence and Statistics*, 2024.
 581

582 Olga Wichrowska, Niru Maheswaranathan, Matthew W Hoffman, Sergio Gomez Colmenarejo, Misha
 583 Denil, Nando Freitas, and Jascha Sohl-Dickstein. Learned optimizers that scale and generalize. In
 584 *International conference on machine learning*, pp. 3751–3760. PMLR, 2017.
 585

586 Tianbao Yang, Lijun Zhang, Rong Jin, and Jinfeng Yi. Tracking slowly moving clairvoyant: Optimal
 587 dynamic regret of online learning with true and noisy gradient. *International Conference on
 588 Machine Learning*, 2016.
 589

590

591

592

593

594 A PRELIMINARIES
595596 **Lemma 7.** (Lemma 12 in Tarzanagh et al. (2024)) For any set of vectors $\{\beta_i\}_{i=1}^m$, it holds that
597

598
$$\left\| \sum_{i=1}^m \beta_i \right\|^2 \leq m \sum_{i=1}^m \|\beta_i\|^2 \quad (13)$$

599
600

601 The following lemma provides progress bounds for gradient descent applied to a μ_g -strongly convex
602 and twice differentiable function $g(\beta)$.
603604 **Lemma 8.** Let $g(\omega)$ be a twice differentiable and μ_g -strongly convex function with $\nabla g(\omega)$ satisfying
605 $\ell_{g,1}$ -Lipschitz continuity. Further assume $g(\omega)$ has a global minimizer $\hat{\omega}$ over the domain \mathbb{R}^{d_2} . Then
606 under the gradient descent method of
607

608
$$\omega^k = \omega^{k-1} - \eta \nabla g(\omega^{k-1}),$$

609

610 the following satisfies for $\eta \leq \frac{1}{\ell_{g,1}}$

611
$$\|\omega^k - \hat{\omega}\|^2 \leq (1 - \eta \mu_g) \|\omega^{k-1} - \hat{\omega}\|^2,$$

612

613 The following two lemmas characterize useful properties known for the generalized projection
614 $\mathcal{G}_{\mathcal{X}}(\mathbf{u}, \mathbf{q}, \alpha)$.
615616 **Lemma 9.** (Lemma 1 in Ghadimi et al. (2016)) Let λ^+ be from equation 4. Then $\forall \mathbf{u} \in \mathcal{X}, \mathbf{q} \in \mathbb{R}^{d_1}$,
617 and $\alpha > 0$ we have
618

619
$$\langle \mathbf{q}, \mathcal{G}_{\mathcal{X}}(\mathbf{u}, \mathbf{q}, \alpha) \rangle \geq \rho \|\mathcal{G}_{\mathcal{X}}(\mathbf{u}, \mathbf{q}, \alpha)\|^2 + \frac{1}{\alpha} (h(\lambda^+) - h(\mathbf{u})) \quad (14)$$

620

621 such that $\rho > 0$ is the strong convexity parameter of the distance generating function $\phi(\lambda)$.
622623 **Lemma 10.** (Proposition 1 in Ghadimi et al. (2016)) Let $\mathcal{G}_{\mathcal{X}}(\mathbf{u}, \mathbf{q}, \alpha)$ be the generalized projection.
624 Then $\forall \mathbf{q}_1, \mathbf{q}_2 \in \mathbb{R}^{d_1}, \forall \mathbf{u} \in \mathcal{X}, \forall \alpha > 0$, we have
625

626
$$\|\mathcal{G}_{\mathcal{X}}(\mathbf{u}, \mathbf{q}_1, \alpha) - \mathcal{G}_{\mathcal{X}}(\mathbf{u}, \mathbf{q}_2, \alpha)\| \leq \frac{1}{\rho} \|\mathbf{q}_1 - \mathbf{q}_2\|. \quad (15)$$

627

628 The next Lemma provides useful bounds on the hypergradient $\nabla F_t(\lambda)$, gradient estimate $\nabla f_t(\lambda, \beta)$,
629 and optimal inner level variables $\beta_t^*(\lambda)$ in the deterministic online bilevel optimization problem.
630631 **Lemma 11.** (Lemma 3 in Tarzanagh et al. (2024)) Under assumptions A and B, it holds for all
632 $t \in [1, T], \lambda_1, \lambda_2 \in \mathcal{X}$, and $\beta \in \mathbb{R}^{d_2}$ that
633

634
$$\|\beta_t^*(\lambda_1) - \beta_t^*(\lambda_2)\| \leq \kappa_g \|\lambda_1 - \lambda_2\|, \quad (16)$$

635

636 where $\kappa_g := \frac{\ell_{g,1}}{\mu_g} = O(\kappa_g)$, the gradient estimator $\tilde{\nabla} f_t(\lambda, \beta)$ satisfies
637

638
$$\|\tilde{\nabla} f_t(\lambda, \beta) - \nabla F_t(\lambda)\| \leq M_f \|\beta - \beta_t^*(\lambda)\|, \quad (17)$$

639

640 where $M_f := \ell_{f,1} + \ell_{f,1} \kappa_g + \frac{\ell_{f,0} \ell_{g,2}}{\mu_g} (1 + \kappa_g) = O(\kappa_g^2)$, and
641

642
$$\|\nabla F_t(\lambda_1) - \nabla F_t(\lambda_2)\| \leq \ell_{F,1} \|\lambda_1 - \lambda_2\|, \quad (18)$$

643

644 where $\ell_{F,1} := \ell_{f,1} (1 + \kappa_g) + \frac{\ell_{f,0} \ell_{g,2}}{\mu_g} (1 + \kappa_g) + M_f \kappa_g = O(\kappa_g^3)$.
645646 B PROOF IN STOCHASTIC SETTING
647648 The first theorem states the convergence result in the hypergradient oracle setting.
649650 **Theorem 12.** Suppose that $h(\lambda) = 0$ and $\mathcal{X} = \mathbb{R}^{d_1}$. Additionally, let Assumptions A-F hold. If the
651 cumulative difference of subsequent function evaluations satisfies the sublinearity condition:
652

653
$$\sum_{t=1}^T (F_t(\lambda_t) - F_{t+1}(\lambda_{t+1})) \leq o(T), \quad (19)$$

654

655 then, by selecting a ρ -strongly convex reference function $\phi(\lambda)$ that uniquely defines the Bregman
656 Divergence $D_\phi(\lambda, \mathbf{u})$ such that $\rho = O(\ell_{F,1})$ in the generalized step of equation 4, the bilevel local
657 regret (for $w = 1$) of Algorithm 1, using the generalized Bregman-based step from Algorithm 2,
658 achieves a sublinear rate of $o(T)$, independent of the condition number $\kappa_g > 1$.
659

648 *Proof.* We analyze the convergence of the Bregman optimizer in Algorithm 1, under the generalized
 649 Bregman-based gradient step of Algorithm 2. Note with Assumptions A and B, we apply Lemma 2
 650 that says F_t is $\ell_{F,1}$ -smooth and implies that

$$652 \quad F_t(\boldsymbol{\lambda}_{t+1}) - F_t(\boldsymbol{\lambda}_t) \leq \langle \nabla F_t(\boldsymbol{\lambda}_t), \boldsymbol{\lambda}_{t+1} - \boldsymbol{\lambda}_t \rangle + \frac{\ell_{F,1}}{2} \|\boldsymbol{\lambda}_{t+1} - \boldsymbol{\lambda}_t\|^2. \\ 653$$

654 Substituting the generalized projection of $\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_t(\boldsymbol{\lambda}_t), \alpha) := \frac{1}{\alpha}(\boldsymbol{\lambda}_t - \boldsymbol{\lambda}_{t+1})$ from the generalized
 655 Bregman-based gradient step of equation 4 gives us

$$657 \quad F_t(\boldsymbol{\lambda}_{t+1}) - F_t(\boldsymbol{\lambda}_t) \leq \langle \nabla F_t(\boldsymbol{\lambda}_t), -\alpha \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_t(\boldsymbol{\lambda}_t), \alpha) \rangle + \frac{\ell_{F,1}}{2} \|\alpha \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_t(\boldsymbol{\lambda}_t), \alpha)\|^2. \quad (20) \\ 658$$

659 Now applying Lemma 9, we obtain

$$660 \quad \langle \nabla F_t(\boldsymbol{\lambda}_t), -\alpha \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_t(\boldsymbol{\lambda}_t), \alpha) \rangle \leq -\rho \alpha \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_t(\boldsymbol{\lambda}_t), \alpha)\|^2. \quad (21) \\ 661$$

662 Substituting equation 21 into equation 20 and rearranging this inequality and telescoping we get

$$664 \quad -\left(\rho \alpha - \frac{\ell_{F,1} \alpha^2}{2}\right) \sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_t(\boldsymbol{\lambda}_t), \alpha)\|^2 \leq \sum_{t=1}^T F_t(\boldsymbol{\lambda}_t) - F_{t+1}(\boldsymbol{\lambda}_{t+1}). \\ 665 \\ 666$$

667 Choosing $\alpha = \frac{1}{\ell_{F,1}}$ with our assumption on sublinear subsequent function evaluations, that is it holds
 668 that $\sum_{t=1}^T F_t(\boldsymbol{\lambda}_t) - F_{t+1}(\boldsymbol{\lambda}_{t+1}) \leq o(T)$, then we have the sublinear rate

$$670 \quad \sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_t(\boldsymbol{\lambda}_t), \alpha)\|^2 \leq \frac{\ell_{F,1} \sum_{t=1}^T (F_t(\boldsymbol{\lambda}_t) - F_{t+1}(\boldsymbol{\lambda}_{t+1}))}{(\rho - 1/2)} \leq o\left(\frac{\ell_{F,1}}{\rho} T\right). \\ 671 \\ 672$$

673 Selecting the ρ -strongly convex function $\phi(\boldsymbol{\lambda})$ that specifies the Bregman Divergence $D_{\phi}(\boldsymbol{\lambda}, \mathbf{u})$ in
 674 equation 4 such that $\rho = O(\ell_{F,1}) = O(\kappa_g^3)$ implies that the bilevel local regret is sublinear with the
 675 rate of

$$676 \quad \sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_t(\boldsymbol{\lambda}_t), \alpha)\|^2 \leq o(T). \\ 677 \\ 678$$

679 \square

680 Our first Lemma upper bounds the expected cumulative difference between the time-smoothed outer
 681 level objective $F_{t,w}(\boldsymbol{\lambda})$ evaluated at $\boldsymbol{\lambda}_t$ and $\boldsymbol{\lambda}_{t+1}$ in terms of the outer level objective upper bound Q
 682 from Assumption E, window size w , and a comparator sequence on subsequent function evaluations
 683 $V_{1,T}$.

685 **Lemma 13.** *Suppose Assumption E. If Algorithm 3 is applied with window size $w \geq 1$ to generate
 686 the sequence $\{\boldsymbol{\lambda}_t\}_{t=1}^T$, then we have the upper bound in expectation of*

$$688 \quad \sum_{t=1}^T (F_{t,w}(\boldsymbol{\lambda}_t) - F_{t,w}(\boldsymbol{\lambda}_{t+1})) \leq \frac{2TQ}{w} + V_{1,T}. \\ 689 \\ 690$$

691 *Proof.* By definition in the stochastic setting, we have $F_t(\boldsymbol{\lambda}) \triangleq \mathbb{E}_{\epsilon} [f_t(\boldsymbol{\lambda}, \boldsymbol{\beta}_t^*(\boldsymbol{\lambda}), \epsilon)]$. Then it holds,
 692 with the linearity of expectation that

$$694 \quad \sum_{t=1}^T (F_{t,w}(\boldsymbol{\lambda}_t) - F_{t,w}(\boldsymbol{\lambda}_{t+1})) = \sum_{t=1}^T \frac{1}{w} \sum_{i=0}^{w-1} (F_{t-i}(\boldsymbol{\lambda}_{t-i}) - F_{t-i}(\boldsymbol{\lambda}_{t+1-i})) \\ 695 \\ 696 \\ 697 = \sum_{t=1}^T \frac{1}{w} \sum_{i=0}^{w-1} (\mathbb{E}_{\epsilon} [f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t-i}^*(\boldsymbol{\lambda}_{t-i}), \epsilon)] - \mathbb{E}_{\epsilon} [f_{t-i}(\boldsymbol{\lambda}_{t+1-i}, \boldsymbol{\beta}_{t-i}^*(\boldsymbol{\lambda}_{t+1-i}), \epsilon)]) \\ 698 \\ 699 \\ 700 = \sum_{t=1}^T \frac{1}{w} \sum_{i=0}^{w-1} \mathbb{E}_{\epsilon} [f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t-i}^*(\boldsymbol{\lambda}_{t-i}), \epsilon) - f_{t-i}(\boldsymbol{\lambda}_{t+1-i}, \boldsymbol{\beta}_{t-i}^*(\boldsymbol{\lambda}_{t+1-i}), \epsilon)] \\ 701$$

702 Which with the linearity of expectation is equivalent to
 703

$$\begin{aligned} 704 & \sum_{t=1}^T \frac{1}{w} \sum_{i=0}^{w-1} \mathbb{E}_\epsilon [f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t-i}^*(\boldsymbol{\lambda}_{t-i}), \epsilon) - f_{t-i}(\boldsymbol{\lambda}_{t+1-i}, \boldsymbol{\beta}_{t-i}^*(\boldsymbol{\lambda}_{t+1-i}), \epsilon)] \\ 705 & = \sum_{t=1}^T \frac{1}{w} \sum_{i=0}^{w-1} \mathbb{E}_\epsilon [f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t-i}^*(\boldsymbol{\lambda}_{t-i}), \epsilon) - f_{t+1-i}(\boldsymbol{\lambda}_{t+1-i}, \boldsymbol{\beta}_{t+1-i}^*(\boldsymbol{\lambda}_{t+1-i}), \epsilon)] \quad (22) \\ 706 & \end{aligned}$$

$$707 + \sum_{t=1}^T \frac{1}{w} \sum_{i=0}^{w-1} \mathbb{E}_\epsilon [f_{t+1-i}(\boldsymbol{\lambda}_{t+1-i}, \boldsymbol{\beta}_{t+1-i}^*(\boldsymbol{\lambda}_{t+1-i}), \epsilon) - f_{t-i}(\boldsymbol{\lambda}_{t+1-i}, \boldsymbol{\beta}_{t-i}^*(\boldsymbol{\lambda}_{t+1-i}), \epsilon)] \quad (23)$$

712 For equation 22, with linearity of expectation, we have
 713

$$\begin{aligned} 714 & \frac{1}{w} \sum_{i=0}^{w-1} \mathbb{E}_\epsilon [f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t-i}^*(\boldsymbol{\lambda}_{t-i}), \epsilon) - f_{t+1-i}(\boldsymbol{\lambda}_{t+1-i}, \boldsymbol{\beta}_{t+1-i}^*(\boldsymbol{\lambda}_{t+1-i}), \epsilon)] \\ 715 & = \frac{1}{w} \mathbb{E}_\epsilon [f_t(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_t^*(\boldsymbol{\lambda}_t), \epsilon) + \dots + f_{t+1-w}(\boldsymbol{\lambda}_{t+1-w}, \boldsymbol{\beta}_{t+1-w}^*(\boldsymbol{\lambda}_{t+1-w}), \epsilon)] \\ 716 & - \frac{1}{w} \mathbb{E}_\epsilon [f_{t+1}(\boldsymbol{\lambda}_{t+1}, \boldsymbol{\beta}_{t+1}^*(\boldsymbol{\lambda}_{t+1})) + \dots + f_{t+2-w}(\boldsymbol{\lambda}_{t+2-w}, \boldsymbol{\beta}_{t+2-w}^*(\boldsymbol{\lambda}_{t+2-w}), \epsilon)] \\ 717 & = \frac{1}{w} \mathbb{E}_\epsilon [f_{t+1-w}(\boldsymbol{\lambda}_{t+1-w}, \boldsymbol{\beta}_{t+1-w}^*(\boldsymbol{\lambda}_{t+1-w}), \epsilon) - f_{t+1}(\boldsymbol{\lambda}_{t+1}, \boldsymbol{\beta}_{t+1}^*(\boldsymbol{\lambda}_{t+1}), \epsilon)] \\ 718 & = \frac{1}{w} (F_{t+1-w}(\boldsymbol{\lambda}_{t+1-w}) - F_{t+1}(\boldsymbol{\lambda}_{t+1})) \leq \frac{2Q}{w}, \quad (24) \\ 719 & \end{aligned}$$

720 where the last inequality comes from Assumption E. Note equation 23 can be bounded through
 721

$$\begin{aligned} 722 & \sum_{t=1}^T \frac{1}{w} \sum_{i=0}^{w-1} \mathbb{E}_\epsilon [f_{t+1-i}(\boldsymbol{\lambda}_{t+1-i}, \boldsymbol{\beta}_{t+1-i}^*(\boldsymbol{\lambda}_{t+1-i}), \epsilon) - f_{t-i}(\boldsymbol{\lambda}_{t+1-i}, \boldsymbol{\beta}_{t-i}^*(\boldsymbol{\lambda}_{t+1-i}), \epsilon)] \\ 723 & \leq \sum_{t=1}^T \frac{1}{w} \sum_{i=0}^{w-1} \sup_{\boldsymbol{\lambda}} \mathbb{E}_\epsilon [f_{t+1-i}(\boldsymbol{\lambda}, \boldsymbol{\beta}_{t+1-i}^*(\boldsymbol{\lambda}), \epsilon) - f_{t-i}(\boldsymbol{\lambda}, \boldsymbol{\beta}_{t-i}^*(\boldsymbol{\lambda}), \epsilon)] \\ 724 & = \sum_{t=1}^T \sup_{\boldsymbol{\lambda} \in \mathcal{X}} [F_{t+1}(\boldsymbol{\lambda}) - F_t(\boldsymbol{\lambda})] := V_{1,T} \quad (25) \\ 725 & \end{aligned}$$

726 Combining equation 23 and equation 25 results in the upper bound of
 727

$$728 \sum_{t=1}^T (F_{t,w}(\boldsymbol{\lambda}_t) - F_{t,w}(\boldsymbol{\lambda}_{t+1})) \leq \frac{2TQ}{w} + V_{1,T}.$$

729 \square

730 The next Lemma provides an upper bound on the expected error of $\mathbb{E}_{\bar{\zeta}_{t,K+1}} [\|\boldsymbol{\beta}_t - \boldsymbol{\beta}_t^*(\boldsymbol{\lambda}_t)\|^2]$ for
 731 all $t \in [1, T]$ in terms of an expected initial error, the expected cumulative differences of the outer
 732 level variable, the expected cumulative differences of the optimal inner level variables, and a variance
 733 term arising from the stochasticity of $g_t(\boldsymbol{\lambda}, \boldsymbol{\beta}, \zeta)$.
 734

735 **Lemma 14.** Suppose Assumptions A, B, and C. Choose the inner step size of $\eta = \Omega(1/\mu_g)$ with the
 736 inner iteration count K as

$$737 0 < \eta \leq \frac{2}{\ell_{g,1} + \mu_g}, \text{ and } K \geq 1,$$

738 and define the decay parameter ν , the inner level variable error constant C_{μ_g} , the initial error $\Delta_{\boldsymbol{\beta}}$,
 739 and the inner level variable error variance C_K respectively as

$$\begin{aligned} 740 \nu &:= \left(1 - \frac{\eta \ell_{g,1} \mu_g}{\ell_{g,1} + \mu_g}\right) \left(1 - \frac{2\eta \ell_{g,1} \mu_g}{\ell_{g,1} + \mu_g}\right)^{K-1}, \quad C_{\mu_g} := \left(1 + \frac{\ell_{g,1} + \mu_g}{\eta \ell_{g,1} \mu_g}\right), \\ 741 \Delta_{\boldsymbol{\beta}} &:= \|\boldsymbol{\beta}_2 - \boldsymbol{\beta}_1^*(\boldsymbol{\lambda}_1)\|^2 = O(1), \quad \text{and} \quad C_K := \sum_{k=1}^K \left(1 - \frac{2\eta \ell_{g,1} \mu_g}{\ell_{g,1} + \mu_g}\right)^k. \quad (26) \\ 742 & \end{aligned}$$

756 Then we have $C_{\mu_g} = O(1)$, and $\forall t \in [1, T]$, t

$$\begin{aligned} 758 \quad & \mathbb{E}_{\bar{\zeta}_{t,K+1}} \left[\|\beta_{t+1} - \beta_t^*(\lambda_t)\|^2 \right] \leq \nu^{t-1} \Delta_\beta + 2C_{\mu_g} \kappa_g^2 \sum_{j=0}^{t-2} \nu^{j+1} \left[\|\lambda_{t-1-j} - \lambda_{t-j}\|^2 \right] \\ 759 \quad & + 2C_{\mu_g} \sum_{j=0}^{t-2} \nu^{j+1} \left[\|\beta_{t-j}^*(\lambda_{t-1-j}) - \beta_{t-1-j}^*(\lambda_{t-1-j})\|^2 \right] + \frac{C_K \eta^2 \sigma_g^2}{s} \sum_{j=0}^{t-2} \nu^j. \\ 760 \quad & \\ 761 \quad & \\ 762 \quad & \\ 763 \quad & \end{aligned}$$

764 *Proof.* Note $\forall k \in [1, K]$ the following expansion holds

$$\begin{aligned} 765 \quad & \|\omega_t^k - \beta_t^*(\lambda_t)\|^2 \\ 766 \quad & = \|\omega_t^k - \omega_t^{k-1}\|^2 + 2 \langle \omega_t^k - \omega_t^{k-1}, \omega_t^{k-1} - \beta_t^*(\lambda_t) \rangle + \|\omega_t^{k-1} - \beta_t^*(\lambda_t)\|^2 \\ 767 \quad & = \eta^2 \|\nabla_\omega g_t(\lambda_t, \omega_t^{k-1}, \bar{\zeta}_{t,k})\|^2 - 2\eta \langle \nabla_\omega g_t(\lambda_t, \omega_t^{k-1}, \bar{\zeta}_{t,k}), \omega_t^{k-1} - \beta_t^*(\lambda_t) \rangle \\ 768 \quad & + \|\omega_t^{k-1} - \beta_t^*(\lambda_t)\|^2. \\ 769 \quad & \\ 770 \quad & \\ 771 \quad & \\ 772 \quad & \end{aligned}$$

773 Using the definition of variance of

$$\begin{aligned} 774 \quad & VAR_{\bar{\zeta}_{t,k}} [\|\nabla_\omega g_t(\lambda_t, \omega_t^{k-1}, \bar{\zeta}_{t,k})\|] \\ 775 \quad & = \mathbb{E}_{\bar{\zeta}_{t,k}} [\|\nabla_\omega g_t(\lambda_t, \omega_t^{k-1}, \bar{\zeta}_{t,k})\|^2] - \mathbb{E}_{\bar{\zeta}_{t,k}} [\|\nabla_\omega g_t(\lambda_t, \omega_t^{k-1}, \bar{\zeta}_{t,k})\|]^2, \\ 776 \quad & \\ 777 \quad & \end{aligned}$$

778 and conditioning on ω_t^{k-1} , we take expectation (Assumption C) to provide the upper bound of

$$\begin{aligned} 779 \quad & \mathbb{E}_{\bar{\zeta}_{t,k}} [\|\omega_t^k - \beta_t^*(\lambda_t)\|^2] \leq \eta^2 \left(\frac{\sigma_g^2}{s} + \|\nabla_\omega g_t(\lambda_t, \omega_t^{k-1})\|^2 \right) \\ 780 \quad & - 2\eta \langle \nabla_\omega g_t(\lambda_t, \omega_t^{k-1}), \omega_t^{k-1} - \beta_t^*(\lambda_t) \rangle + \|\omega_t^{k-1} - \beta_t^*(\lambda_t)\|^2. \\ 781 \quad & \\ 782 \quad & \\ 783 \quad & \end{aligned} \quad (27)$$

784 The above upper bound is deterministic, and as such we can utilize the μ_g -strong convexity of g_t to
785 bound

$$\begin{aligned} 786 \quad & -2\eta \langle \nabla_\omega g_t(\lambda_t, \omega_t^{k-1}), \omega_t^{k-1} - \beta_t^*(\lambda_t) \rangle \\ 787 \quad & \leq -2\eta \left(\frac{\ell_{g,1} \mu_g}{\ell_{g,1} + \mu_g} \|\omega_t^{k-1} - \beta_t^*(\lambda_t)\|^2 + \frac{1}{\ell_{g,1} + \mu_g} \|\nabla_\omega g_t(\lambda_t, \omega_t^{k-1})\|^2 \right), \\ 788 \quad & \\ 789 \quad & \end{aligned}$$

790 which we can substitute in equation 27 to get

$$\begin{aligned} 791 \quad & \mathbb{E}_{\bar{\zeta}_{t,k}} [\|\omega_t^k - \beta_t^*(\lambda_t)\|^2] \leq \frac{\eta^2 \sigma_g^2}{s} - \eta \left(\frac{2}{\ell_{g,1} + \mu_g} - \eta \right) \|\nabla_\omega g_t(\lambda_t, \omega_t^{k-1})\|^2 \\ 792 \quad & + \left(1 - \frac{2\eta \ell_{g,1} \mu_g}{\ell_{g,1} + \mu_g} \right) \|\omega_t^{k-1} - \beta_t^*(\lambda_t)\|^2. \\ 793 \quad & \\ 794 \quad & \\ 795 \quad & \\ 796 \quad & \end{aligned}$$

797 As $\eta \leq \frac{2}{\ell_{g,1} + \mu_g}$ this provides the upper bound to equation 27 of

$$\mathbb{E}_{\bar{\zeta}_{t,k}} [\|\omega_t^k - \beta_t^*(\lambda_t)\|^2] \leq \left(1 - \frac{2\eta \ell_{g,1} \mu_g}{\ell_{g,1} + \mu_g} \right) \|\omega_t^{k-1} - \beta_t^*(\lambda_t)\|^2 + \frac{\eta^2 \sigma_g^2}{s}.$$

801 This can be unrolled, through iterative conditioning, from $k = K, \dots, 1$

$$\mathbb{E}_{\bar{\zeta}_{t,K+1}} [\|\omega_t^K - \beta_t^*(\lambda_t)\|^2] \leq \left(1 - \frac{2\eta \ell_{g,1} \mu_g}{\ell_{g,1} + \mu_g} \right)^K \mathbb{E}_{\bar{\zeta}_{t,1}} [\|\omega_t^0 - \beta_t^*(\lambda_t)\|^2] + \frac{C_K \eta^2 \sigma_g^2}{s},$$

802 for $C_K := \sum_{k=1}^K \left(1 - \frac{2\eta \ell_{g,1} \mu_g}{\ell_{g,1} + \mu_g} \right)^k$. By definition of $\beta_{t+1} = \omega_t^K$ and $\omega_t^0 = \beta_t$ gives us

$$\mathbb{E}_{\bar{\zeta}_{t,K+1}} [\|\beta_{t+1} - \beta_t^*(\lambda_t)\|^2] \leq \left(1 - \frac{2\eta \ell_{g,1} \mu_g}{\ell_{g,1} + \mu_g} \right)^K \mathbb{E}_{\bar{\zeta}_{t-1,K+1}} [\|\beta_t - \beta_t^*(\lambda_t)\|^2] + \frac{C_K \eta^2 \sigma_g^2}{s}.$$

810 Note we can decompose
811

812 $\mathbb{E}_{\bar{\zeta}_{t-1, K+1}} \|\beta_t - \beta_t^*(\lambda_t)\|^2 = \mathbb{E}_{\bar{\zeta}_{t-1, K+1}} \|\beta_t - \beta_{t-1}^*(\lambda_{t-1}) + \beta_{t-1}^*(\lambda_{t-1}) - \beta_t^*(\lambda_t)\|^2$,
813 which can be expanded based on Young's Inequality and the linearity of expectation for any $\delta > 0$ as

$$\begin{aligned} 814 \mathbb{E}_{\bar{\zeta}_{t-1, K+1}} \|\beta_t - \beta_{t-1}^*(\lambda_{t-1}) + \beta_{t-1}^*(\lambda_{t-1}) - \beta_t^*(\lambda_t)\|^2 \\ 815 \leq (1 + \delta) \mathbb{E}_{\bar{\zeta}_{t-1, K+1}} \|\beta_t - \beta_{t-1}^*(\lambda_{t-1})\|^2 \\ 816 + \left(1 + \frac{1}{\delta}\right) \mathbb{E}_{\bar{\zeta}_{t-1, K+1}} \|\beta_{t-1}^*(\lambda_{t-1}) - \beta_t^*(\lambda_t)\|^2. \end{aligned} \quad (28)$$

817 Now it holds through linearity of expectation that
818

$$\begin{aligned} 819 \mathbb{E}_{\bar{\zeta}_{t-1, K+1}} \|\beta_{t-1}^*(\lambda_{t-1}) - \beta_t^*(\lambda_t)\|^2 \leq 2 \mathbb{E}_{\bar{\zeta}_{t-1, K+1}} \|\beta_t^*(\lambda_{t-1}) - \beta_t^*(\lambda_t)\|^2 \\ 820 + 2 \mathbb{E}_{\bar{\zeta}_{t-1, K+1}} \|\beta_t^*(\lambda_{t-1}) - \beta_{t-1}^*(\lambda_{t-1})\|^2 \end{aligned} \quad (29)$$

821 which through Lemma 11 can be further upper bounded with the Lipschitz constant of κ_g as
822

$$\begin{aligned} 823 \mathbb{E}_{\bar{\zeta}_{t-1, K+1}} \|\beta_{t-1}^*(\lambda_{t-1}) - \beta_t^*(\lambda_t)\|^2 \\ 824 \leq 2\kappa_g^2 \mathbb{E}_{\bar{\zeta}_{t-1, K+1}} \|\lambda_{t-1} - \lambda_t\|^2 + 2 \mathbb{E}_{\bar{\zeta}_{t-1, K+1}} \|\beta_t^*(\lambda_{t-1}) - \beta_{t-1}^*(\lambda_{t-1})\|^2 \\ 825 = 2\kappa_g^2 \|\lambda_{t-1} - \lambda_t\|^2 + 2 \|\beta_t^*(\lambda_{t-1}) - \beta_{t-1}^*(\lambda_{t-1})\|^2 \end{aligned} \quad (30)$$

826 where the last line comes from the non-randomness of $\|\lambda_{t-1} - \lambda_t\|^2$ and
827 $\|\beta_t^*(\lambda_{t-1}) - \beta_{t-1}^*(\lambda_{t-1})\|^2$ with respect to $\bar{\zeta}_{t, k}$. Combining equation 29 and equation 28,
828 we have $\forall \delta > 0$

$$\begin{aligned} 829 \mathbb{E}_{\bar{\zeta}_{t, K+1}} [\|\beta_{t+1} - \beta_t^*(\lambda_t)\|^2] \leq \left(1 - \frac{2\eta\ell_{g,1}\mu_g}{\ell_{g,1} + \mu_g}\right)^K (1 + \delta) \mathbb{E}_{\bar{\zeta}_{t-1, K+1}} [\|\beta_t - \beta_{t-1}^*(\lambda_{t-1})\|^2] \\ 830 + 2 \left(1 - \frac{2\eta\ell_{g,1}\mu_g}{\ell_{g,1} + \mu_g}\right)^K \left(1 + \frac{1}{\delta}\right) \kappa_g^2 \|\lambda_{t-1} - \lambda_t\|^2 \\ 831 + 2 \left(1 - \frac{2\eta\ell_{g,1}\mu_g}{\ell_{g,1} + \mu_g}\right)^K \left(1 + \frac{1}{\delta}\right) \|\beta_t^*(\lambda_{t-1}) - \beta_{t-1}^*(\lambda_{t-1})\|^2 + \frac{C_K \eta^2 \sigma_g^2}{s}. \end{aligned}$$

832 Now setting $\delta = \frac{\eta\ell_{g,1}\mu_g}{\ell_{g,1} + \mu_g} > 0$ implies the upper bound of
833

$$(1 + \delta) \left(1 - \frac{2\eta\ell_{g,1}\mu_g}{\ell_{g,1} + \mu_g}\right)^K < \left(1 - \frac{\eta\ell_{g,1}\mu_g}{\ell_{g,1} + \mu_g}\right) \left(1 - \frac{2\eta\ell_{g,1}\mu_g}{\ell_{g,1} + \mu_g}\right)^{K-1} < 1,$$

834 which defining $\nu := \left(1 - \frac{\eta\mu_g\ell_{g,1}}{\ell_{g,1} + \mu_g}\right) \left(1 - \frac{2\eta\ell_{g,1}\mu_g}{\ell_{g,1} + \mu_g}\right)^{K-1}$ and $\delta > 0$ implies
835

$$\left(1 - \frac{2\eta\ell_{g,1}\mu_g}{\ell_{g,1} + \mu_g}\right)^K < \nu,$$

836 Using the definition of ν , we get
837

$$\begin{aligned} 838 \nu \mathbb{E}_{\bar{\zeta}_{t, K+1}} [\|\beta_{t+1} - \beta_t^*(\lambda_t)\|^2] \leq \nu^2 \mathbb{E}_{\bar{\zeta}_{t-1, K+1}} [\|\beta_t - \beta_{t-1}^*(\lambda_{t-1})\|^2] \\ 839 + 2C_{\mu_g} \nu^2 \kappa_g^2 \|\lambda_{t-1} - \lambda_t\|^2 + 2C_{\mu_g} \nu^2 \|\beta_t^*(\lambda_{t-1}) - \beta_{t-1}^*(\lambda_{t-1})\|^2 + \frac{\nu C_K \eta^2 \sigma_g^2}{s}, \end{aligned}$$

840 where $C_{\mu_g} = \left(1 + \frac{\ell_{g,1} + \mu_g}{\eta\ell_{g,1}\mu_g}\right)$. Starting at $t = T$, and unrolling to $t = 1$, we can write
841

$$\begin{aligned} 842 \mathbb{E}_{\bar{\zeta}_{t, K+1}} [\|\beta_{t+1} - \beta_t^*(\lambda_t)\|^2] \leq \nu^{t-1} \Delta_{\beta} + 2C_{\mu_g} \kappa_g^2 \sum_{j=0}^{t-2} \nu^{j+1} [\|\lambda_{t-1-j} - \lambda_{t-j}\|^2] \\ 843 + 2C_{\mu_g} \sum_{j=0}^{t-2} \nu^{j+1} [\|\beta_{t-j}^*(\lambda_{t-1-j}) - \beta_{t-1-j}^*(\lambda_{t-1-j})\|^2] + \frac{C_K \eta^2 \sigma_g^2}{s} \sum_{j=0}^{t-2} \nu^j. \end{aligned}$$

844 \square

The next Lemma utilizes Lemma 11 and Lemma 14 to derive an upper bound on the expected hypergradient error $\forall t \in [1, T]$ with respect to $\bar{\zeta}_{t,k}$ in terms of discounted variations of the (i) cumulative time-smoothed hypergradient error; (ii) bilevel local regret; and (iii) cumulative difference between optimal inner-level variables. There is a term composed of a discounted initial error and smoothness term of the inner objective, as well as an additional term arising from the variance of the stochastic gradients of $g_t(\boldsymbol{\lambda}, \boldsymbol{\beta}, \zeta)$.

Lemma 15. *Suppose Assumptions A, B, C, D, and F. Choose the inner step size of $\eta = \Omega(1/\mu_g)$ and inner iteration count K as*

$$0 < \eta \leq \frac{2}{\ell_{g,1} + \mu_g}, \text{ and } K \geq 1.$$

With the definitions of ν , C_{μ_g} , $\Delta_{\boldsymbol{\beta}}$, and C_K from Lemma 14, the expected hypergradient error can be bounded as

$$\begin{aligned} \mathbb{E}_{\bar{\zeta}_{t,K+1}} \left[\left\| \tilde{\nabla} f_t(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}) - \nabla F_t(\boldsymbol{\lambda}_t) \right\|^2 \right] &\leq \delta_t + A \sum_{j=0}^{t-2} \nu^{j+1} \left\| \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_{t-1-j}, \nabla F_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}), \alpha) \right\|^2 \\ &\quad + B \sum_{j=0}^{t-2} \nu^{j+1} \left\| \tilde{\nabla} f_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}, \boldsymbol{\beta}_{t-j}, \mathcal{Z}_{t-1-j,w}) - \nabla F_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}) \right\|^2 \\ &\quad + C \sum_{j=0}^{t-2} \nu^{j+1} \left[\left\| \boldsymbol{\beta}_{t-j}^*(\boldsymbol{\lambda}_{t-1-j}) - \boldsymbol{\beta}_{t-1-j}^*(\boldsymbol{\lambda}_{t-1-j}) \right\|^2 \right] + \frac{D\sigma_g^2}{s}. \end{aligned}$$

where $\delta_t = \kappa_g^2 \nu^{t-1} \Delta_{\boldsymbol{\beta}}$ and $A = 4C_{\mu_g} \kappa_g^4 \alpha^2$, $B = \frac{4C_{\mu_g} \kappa_g^4 \alpha^2}{\rho^2}$, $C = 2C_{\mu_g} \kappa_g^2$, and $D = C_K \kappa_g^2 \eta^2 \sum_{j=0}^{t-2} \nu^j$.

Proof. First, from Lemma 11 (Assumption A,B) we have that $\forall \boldsymbol{\lambda} \in \mathcal{X}$ and $\boldsymbol{\beta} \in \mathbb{R}^{d_2}$

$$\left\| \tilde{\nabla} f_t(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}) - \nabla F_t(\boldsymbol{\lambda}_t) \right\|^2 \leq \kappa_g^2 \left\| \boldsymbol{\beta}_{t+1} - \boldsymbol{\beta}_t^*(\boldsymbol{\lambda}_t) \right\|^2. \quad (31)$$

Taking expectation of equation 31 with respect to $\bar{\zeta}_{t,K+1}$ (Assumption C) and substituting the upper bound of Lemma 14, note

$$\begin{aligned} \mathbb{E}_{\bar{\zeta}_{t,K+1}} \left[\left\| \tilde{\nabla} f_t(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}) - \nabla F_t(\boldsymbol{\lambda}_t) \right\|^2 \right] \\ \leq \kappa_g^2 \left(\nu^{t-1} \Delta_{\boldsymbol{\beta}} + 2C_{\mu_g} \kappa_g^2 \sum_{j=0}^{t-2} \nu^{j+1} \left\| \boldsymbol{\lambda}_{t-1-j} - \boldsymbol{\lambda}_{t-j} \right\|^2 \right) \end{aligned} \quad (32)$$

$$+ \kappa_g^2 \left(2C_{\mu_g} \sum_{j=0}^{t-2} \nu^{j+1} \left\| \boldsymbol{\beta}_{t-j}^*(\boldsymbol{\lambda}_{t-1-j}) - \boldsymbol{\beta}_{t-1-j}^*(\boldsymbol{\lambda}_{t-1-j}) \right\|^2 + \frac{C_K \eta^2 \sigma_g^2}{s} \sum_{j=0}^{t-2} \nu^j \right). \quad (33)$$

Focusing on the second term of equation 32 we see by definition

$$\begin{aligned} &\sum_{j=0}^{t-2} \nu^{j+1} \left\| \boldsymbol{\lambda}_{t-1-j} - \boldsymbol{\lambda}_{t-j} \right\|^2 \\ &= \sum_{j=0}^{t-2} \nu^{j+1} \alpha^2 \left\| \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_{t-1-j}, \tilde{\nabla} f_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}, \boldsymbol{\beta}_{t-j}, \mathcal{Z}_{t-1-j,w}), \alpha) \right\|^2. \end{aligned} \quad (34)$$

Using Lemma 10 (Assumption D,F) we have $\forall j \in [0, t-2]$

$$\begin{aligned} \left\| \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_{t-1-j}, \tilde{\nabla} f_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}, \boldsymbol{\beta}_{t-j}, \mathcal{Z}_{t-1-j,w}), \alpha) \right\|^2 &\leq 2 \left\| \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_{t-1-j}, \nabla F_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}), \alpha) \right\|^2 \\ &\quad + 2 \left\| \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_{t-1-j}, \nabla F_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}), \alpha) - \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_{t-1-j}, \tilde{\nabla} f_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}, \boldsymbol{\beta}_{t-j}, \mathcal{Z}_{t-1-j,w}), \alpha) \right\|^2 \\ &\quad \leq 2 \left\| \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_{t-1-j}, \nabla F_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}), \alpha) \right\|^2 \\ &\quad + \frac{2}{\rho^2} \left\| \tilde{\nabla} f_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}, \boldsymbol{\beta}_{t-j}, \mathcal{Z}_{t-1-j,w}) - \nabla F_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}) \right\|^2. \end{aligned}$$

918 We can write an upper bound to equation 34 as
919

$$\begin{aligned}
920 \quad & \sum_{j=0}^{t-2} \nu^{j+1} \|\boldsymbol{\lambda}_{t-1-j} - \boldsymbol{\lambda}_{t-j}\|^2 \leq 2\alpha^2 \sum_{j=0}^{t-2} \nu^{j+1} \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_{t-1-j}, \nabla F_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}), \alpha)\|^2 \\
921 \quad & + \frac{2\alpha^2}{\rho^2} \sum_{j=0}^{t-2} \nu^{j+1} \left(\left\| \tilde{\nabla} f_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}, \boldsymbol{\beta}_{t-j}, \mathcal{Z}_{t-1-j,w}) - \nabla F_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}) \right\|^2 \right). \quad (35)
\end{aligned}$$

925 Using equation 35, we get
926

$$\begin{aligned}
927 \quad & \mathbb{E}_{\tilde{\zeta}_{t,K+1}} \left[\left\| \tilde{\nabla} f_t(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}) - \nabla F_t(\boldsymbol{\lambda}_t) \right\|^2 \right] \leq \delta_t + A \sum_{j=0}^{t-2} \nu^{j+1} \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_{t-1-j}, \nabla F_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}), \alpha)\|^2 \\
928 \quad & + B \sum_{j=0}^{t-2} \nu^{j+1} \left\| \tilde{\nabla} f_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}, \boldsymbol{\beta}_{t-j}, \mathcal{Z}_{t-1-j,w}) - \nabla F_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}) \right\|^2 \\
929 \quad & + C \sum_{j=0}^{t-2} \nu^{j+1} \left[\left\| \boldsymbol{\beta}_{t-j}^*(\boldsymbol{\lambda}_{t-1-j}) - \boldsymbol{\beta}_{t-1-j}^*(\boldsymbol{\lambda}_{t-1-j}) \right\|^2 \right] + \frac{D\sigma_g^2}{s}.
\end{aligned}$$

930 where $\delta_t = \kappa_g^2 \nu^{t-1} \Delta_{\boldsymbol{\beta}}$ and $A = 4C_{\mu_g} \kappa_g^4 \alpha^2$, $B = \frac{4C_{\mu_g} \kappa_g^4 \alpha^2}{\rho^2}$, $C = 2C_{\mu_g} \kappa_g^2$, and $D = 931$
932 $C_K \kappa_g^2 \eta^2 \sum_{j=0}^{t-2} \nu^j$.
933

934 \square

935 Lemma 16 provides an upper bound on the expected cumulative time-smoothed hypergradient error
936 in terms of an initial error, expected bilevel local regret, expected cumulative differences of optimal
937 inner level variables, as well as variance terms from the stochastic approximated gradients.
938

939 **Lemma 16.** Suppose Assumptions A, B, C, D, and F. Choose the inner step size of $\eta = \Omega(1/\mu_g)$, the
940 inner iteration count K , and the outer step size α respectively as
941

$$0 < \eta \leq \frac{2}{\ell_{g,1} + \mu_g}, \quad K \geq 1, \text{ and } \alpha < \frac{\rho\sqrt{(1-\nu)}}{\kappa_g^2 \sqrt{72C_{\mu_g}}}.$$

942 Then $\forall t \in [1, T]$ the expected cumulative time-smoothed hypergradient error with respect to indepen-
943 dent samples $Z_{t,w}$ satisfies
944

$$\begin{aligned}
945 \quad & \mathbb{E}_{Z_{t,w}} \left[\sum_{t=1}^T \left\| \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}) - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2 \right] \leq \frac{AT}{w} + BT \left(1 - \frac{\mu_g}{\ell_{g,1}} \right)^{2m} \\
946 \quad & + C \sum_{t=1}^T \mathbb{E} \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 + D \sum_{t=2}^T \mathbb{E} \left[\left\| \boldsymbol{\beta}_t^*(\boldsymbol{\lambda}_{t-1}) - \boldsymbol{\beta}_{t-1}^*(\boldsymbol{\lambda}_{t-1}) \right\|^2 \right] + \frac{TE\eta^2\sigma_g^2}{s}.
\end{aligned}$$

947 where the initial term $\delta_t := \frac{9\kappa_g^2 \Delta_{\boldsymbol{\beta}}}{4(1-\nu)}$ and constants are defined as $A := \frac{9\sigma_f^2}{2}$, $B := \frac{9\ell_{f,1}^2 \kappa_g^2}{2}$, $C := \frac{\rho^2}{8}$,
948 $D := \frac{9C_{\mu_g} \kappa_g^2}{2(1-\nu)}$, and $E := \frac{9C_K \kappa_g^2}{4(1-\nu)}$. Note $\Delta_{\boldsymbol{\beta}}, \nu, C_{\mu_g}, C_K$ are defined in Lemma 14, σ_f^2, σ_g^2 are from
949 Assumption C, κ_g denotes the condition number and ρ specifies Bregman Divergence in equation 4.
950

951 *Proof.* With the linearity of expectation we have
952

$$\begin{aligned}
953 \quad & \mathbb{E}_{Z_{t,w}} \left[\sum_{t=1}^T \left\| \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}) - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2 \right] \\
954 \quad & = \sum_{t=1}^T \mathbb{E}_{Z_{t,w}} \left[\left\| \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}) - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2 \right] \\
955 \quad & = \frac{1}{w^2} \sum_{t=1}^T \mathbb{E}_{Z_{t,w}} \left[\left\| \sum_{i=0}^{w-1} \left[\tilde{\nabla} f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t+1-i}, \mathcal{E}_{t-i}) - \nabla F_{t-i}(\boldsymbol{\lambda}_{t-i}) \right] \right\|^2 \right]. \quad (36)
\end{aligned}$$

Note that we can upper bound equation 36 as

$$\begin{aligned} & \frac{1}{w^2} \sum_{t=1}^T \mathbb{E}_{\mathcal{Z}_{t,w}} \left[\left\| \sum_{i=0}^{w-1} \left[\tilde{\nabla} f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t+1-i}, \mathcal{E}_{t-i}) - \nabla F_{t-i}(\boldsymbol{\lambda}_{t-i}) \right] \right\|^2 \right] \\ & \leq \frac{2}{w^2} \sum_{t=1}^T \mathbb{E}_{\mathcal{Z}_{t,w}} \left[\left\| \sum_{i=0}^{w-1} \left[\tilde{\nabla} f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t+1-i}, \mathcal{E}_{t-i}) - \mathbb{E}_{\mathcal{E}_{t-i}} \left[\tilde{\nabla} f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t+1-i}, \mathcal{E}_{t-i}) \right] \right] \right\|^2 \right] \end{aligned} \quad (37)$$

$$+ \frac{2}{w^2} \sum_{t=1}^T \mathbb{E}_{\mathcal{Z}_{t,w}} \left[\left\| \sum_{i=0}^{w-1} \left[\mathbb{E}_{\mathcal{E}_{t-i}} \left[\tilde{\nabla} f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t+1-i}, \mathcal{E}_{t-i}) \right] - \nabla F_{t-i}(\boldsymbol{\lambda}_{t-i}) \right] \right\|^2 \right]. \quad (38)$$

The linearity of expectation, definition of variance, and independence of $Z_{t,w} := \{\mathcal{E}_{t-i}\}_{i=0}^{w-1}$ $\forall t \in [1, T]$ implies for $y_i = \tilde{\nabla} f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t+1-i}, \mathcal{E}_{t-i})$ with finite variance σ_f^2 , we have

$$\begin{aligned} & \mathbb{E}_{\mathcal{Z}_{t,w}} \left[\left\| \sum_{i=0}^{w-1} \tilde{\nabla} f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t+1-i}, \mathcal{E}_{t-i}) - \mathbb{E}_{\mathcal{E}_{t-i}} \left[\sum_{i=0}^{w-1} \tilde{\nabla} f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t+1-i}, \mathcal{E}_{t-i}) \right] \right\|^2 \right] \\ & \leq \sum_{i=0}^{w-1} \sigma_f^2 = w\sigma_f^2. \quad (39) \end{aligned}$$

Expanding equation 38 we have

$$\begin{aligned} & \frac{2}{w^2} \sum_{t=1}^T \mathbb{E}_{\mathcal{Z}_{t,w}} \left[\left\| \sum_{i=0}^{w-1} \left[\mathbb{E}_{\mathcal{E}_{t-i}} \left[\tilde{\nabla} f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t+1-i}, \mathcal{E}_{t-i}) \right] - \nabla F_{t-i}(\boldsymbol{\lambda}_{t-i}) \right] \right\|^2 \right] \\ & \leq \frac{4}{w^2} \sum_{t=1}^T \mathbb{E}_{\mathcal{Z}_{t,w}} \left[\left\| \sum_{i=0}^{w-1} \left[\mathbb{E}_{\mathcal{E}_{t-i}} \left[\tilde{\nabla} f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t+1-i}, \mathcal{E}_{t-i}) \right] - \tilde{\nabla} f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t+1-i}) \right] \right\|^2 \right] \quad (40) \end{aligned}$$

$$+ \frac{4}{w^2} \sum_{t=1}^T \left[\left\| \sum_{i=0}^{w-1} \left[\tilde{\nabla} f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t+1-i}) - \nabla F_{t-i}(\boldsymbol{\lambda}_{t-i}) \right] \right\|^2 \right] \quad (41)$$

Utilizing Lemmas 5 and 7 for equation 40 gives us the expected stochastic gradient bias

$$\begin{aligned}
& \frac{4}{w^2} \sum_{t=1}^T \mathbb{E}_{\mathcal{Z}_{t,w}} \left[\left\| \sum_{i=0}^{w-1} \left[\mathbb{E}_{\mathcal{E}_{t-i}} \left[\tilde{\nabla} f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t+1-i}, \mathcal{E}_{t-i}) \right] - \tilde{\nabla} f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t+1-i}) \right] \right\|^2 \right] \\
& \leq \frac{4}{w^2} \sum_{t=1}^T \mathbb{E}_{\mathcal{Z}_{t,w}} \left[w \sum_{i=0}^{w-1} \left\| \mathbb{E}_{\mathcal{E}_{t-i}} \left[\tilde{\nabla} f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t+1-i}, \mathcal{E}_{t-i}) \right] - \tilde{\nabla} f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t+1-i}) \right\|^2 \right] \\
& \leq \frac{4}{w^2} \sum_{t=1}^T \left(w^2 \ell_{f,1}^2 \kappa_g^2 \left(1 - \frac{\mu_g}{\ell_{g,1}} \right)^{2m} \right) = 4T \ell_{f,1}^2 \kappa_g^2 \left(1 - \frac{\mu_g}{\ell_{g,1}} \right)^{2m} \quad (42)
\end{aligned}$$

Applying Lemma 7 with linearity of expectation to equation 41 results in

$$\begin{aligned}
& \frac{4}{w^2} \sum_{t=1}^T \left[\left\| \sum_{i=0}^{w-1} \left[\tilde{\nabla} f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t+1-i}) - \nabla F_{t-i}(\boldsymbol{\lambda}_{t-i}) \right] \right\|^2 \right] \\
& \leq \frac{4}{w^2} \sum_{t=1}^T w \sum_{i=0}^{w-1} \left[\left\| \tilde{\nabla} f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t+1-i}) - \nabla F_{t-i}(\boldsymbol{\lambda}_{t-i}) \right\|^2 \right] \\
& = \frac{4}{w} \sum_{t=1}^T \sum_{i=0}^{w-1} \left[\left\| \tilde{\nabla} f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t+1-i}) - \nabla F_{t-i}(\boldsymbol{\lambda}_{t-i}) \right\|^2 \right]
\end{aligned} \tag{43}$$

1026 Combining equation 37, equation 38, equation 39, and equation 43, we have the upper bound of
1027

$$\begin{aligned}
1029 \quad & \mathbb{E}_{\mathcal{Z}_{t,w}} \left[\sum_{t=1}^T \left\| \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}) - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2 \right] \leq \frac{4T\sigma_f^2}{w} \\
1030 \quad & + 4T\ell_{f,1}^2 \kappa_g^2 \left(1 - \frac{\mu_g}{\ell_{g,1}} \right)^{2m} + \frac{4}{w} \sum_{t=1}^T \sum_{i=0}^{w-1} \left[\left\| \tilde{\nabla} f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t+1-i}, \mathcal{Z}_{t-i,w}) - \nabla F_{t-i}(\boldsymbol{\lambda}_{t-i}) \right\|^2 \right], \quad (44)
\end{aligned}$$

1035
1036 Taking expectation with respect to $\bar{\zeta}_{t,K+1}$, we utilize the upper bound from Lemma 15. By iterative
1037 conditioning and re-indexing the expected cumulative hypergradient error as well as dropping
1038 expectation for non-random quantities, we derive an upper bound on equation 44 as
1039

$$\begin{aligned}
1040 \quad & \mathbb{E}_{\bar{\zeta}_{t,K+1}} \left[\mathbb{E}_{\mathcal{Z}_{t,w}} \left[\sum_{t=1}^T \left\| \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}) - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2 \right] \right] \\
1041 \quad & \leq \frac{4T\sigma_f^2}{w} + 4T\ell_{f,1}^2 \kappa_g^2 \left(1 - \frac{\mu_g}{\ell_{g,1}} \right)^{2m} + \frac{2}{w} \sum_{t=1}^T \sum_{i=0}^{w-1} (\kappa_g^2 \nu^{t-i-1} \Delta_{\boldsymbol{\beta}}) \\
1042 \quad & + \frac{2}{w} \sum_{t=1}^T \sum_{i=0}^{w-1} \left(4C_{\mu_g} \kappa_g^4 \alpha^2 \sum_{j=0}^{t-i-2} \nu^{j+1} \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_{t-i-j}, \nabla F_{t-i-j,w}(\boldsymbol{\lambda}_{t-i-j}), \alpha)\|^2 \right) \\
1043 \quad & + \frac{2}{w} \sum_{t=1}^T \sum_{i=0}^{w-1} \left(\frac{4C_{\mu_g} \kappa_g^4 \alpha^2}{\rho^2} \sum_{j=0}^{t-i-2} \nu^{j+1} A_{t-i,j} \right) \\
1044 \quad & + \frac{2}{w} \sum_{t=2}^T \sum_{i=0}^{w-1} \left(2C_{\mu_g} \kappa_g^2 \sum_{j=0}^{t-i-2} \nu^{j+1} B_{t-i,j} \right) + \frac{2}{w} \sum_{t=1}^T \sum_{i=0}^{w-1} \left(\frac{C_K \kappa_g^2 \eta^2 \sigma_g^2}{s} \sum_{j=0}^{t-i-2} \nu^j \right), \quad (45)
\end{aligned}$$

1057 where
1058

$$\begin{aligned}
1059 \quad & A_{t,j} := \mathbb{E}_{\bar{\zeta}_{t-j,K+1}} \left[\mathbb{E}_{\mathcal{Z}_{t-j,w}} \left[\left\| \tilde{\nabla} f_{t-j,w}(\boldsymbol{\lambda}_{t-j}, \boldsymbol{\beta}_{t+1-j}, \mathcal{Z}_{t-j,w}) - \nabla F_{t-j,w}(\boldsymbol{\lambda}_{t-j}) \right\|^2 \right] \right] \\
1060 \quad & B_{t,j} := \|\boldsymbol{\beta}_{t-j}^*(\boldsymbol{\lambda}_{t-1-j}) - \boldsymbol{\beta}_{t-1-j}^*(\boldsymbol{\lambda}_{t-1-j})\|^2.
\end{aligned}$$

1064
1065 Given $\nu < 1$, it holds that $\sum_{j=0}^{t-2} \nu^j < \sum_{j=0}^{\infty} \nu^j = \frac{1}{1-\nu}$, which lets us upper bound equation 45 as
1066

$$\begin{aligned}
1067 \quad & \mathbb{E}_{\bar{\zeta}_{t,K+1}} \left[\mathbb{E}_{\mathcal{Z}_{t,w}} \left[\sum_{t=1}^T \left\| \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}) - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2 \right] \right] \leq \frac{4T\sigma_f^2}{w} + 4T\ell_{f,1}^2 \kappa_g^2 \left(1 - \frac{\mu_g}{\ell_{g,1}} \right)^{2m} \\
1068 \quad & + \frac{2}{w} \sum_{t=1}^T \sum_{i=0}^{w-1} \left(\kappa_g^2 \nu^{t-i-1} \Delta_{\boldsymbol{\beta}} + \frac{4C_{\mu_g} \kappa_g^4 \alpha^2}{1-\nu} \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_{t-i}, \nabla F_{t-i,w}(\boldsymbol{\lambda}_{t-i}), \alpha)\|^2 \right) \\
1069 \quad & + \frac{2}{w} \sum_{t=1}^T \sum_{i=0}^{w-1} \left(\frac{4C_{\mu_g} \kappa_g^4 \alpha^2}{(1-\nu)\rho^2} \mathbb{E}_{\bar{\zeta}_{t-i,K+1}} \left[\mathbb{E}_{\mathcal{Z}_{t-i,w}} \left[\left\| \tilde{\nabla} f_{t-i,w}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t+1-i}, \mathcal{Z}_{t-i,w}) - \nabla F_{t-i,w}(\boldsymbol{\lambda}_{t-i}) \right\|^2 \right] \right] \right) \\
1070 \quad & + \frac{2}{w} \sum_{t=2}^T \sum_{i=0}^{w-1} \left(\frac{2C_{\mu_g} \kappa_g^2}{1-\nu} \|\boldsymbol{\beta}_{t-i}^*(\boldsymbol{\lambda}_{t-1-i}) - \boldsymbol{\beta}_{t-1-i}^*(\boldsymbol{\lambda}_{t-1-i})\|^2 \right) + \frac{2}{w} \sum_{t=1}^T \sum_{i=0}^{w-1} \left(\frac{C_K \kappa_g^2 \eta^2 \sigma_g^2}{(1-\nu)s} \right). \quad (46)
\end{aligned}$$

1080 Next we derive the upper bound of equation 46 as
1081

$$\begin{aligned}
1082 \mathbb{E}_{\bar{\zeta}_{t,K+1}} \left[\mathbb{E}_{\mathcal{Z}_{t,w}} \left[\sum_{t=1}^T \left\| \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}) - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2 \right] \right] &\leq \frac{4T\sigma_f^2}{w} + 4T\ell_{f,1}^2\kappa_g^2 \left(1 - \frac{\mu_g}{\ell_{g,1}} \right)^{2m} \\
1083 &+ \frac{2\kappa_g^2\Delta_{\boldsymbol{\beta}}}{(1-\nu)} + \frac{8C_{\mu_g}\kappa_g^4\alpha^2}{(1-\nu)} \sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 \\
1084 &+ \frac{8C_{\mu_g}\kappa_g^4\alpha^2}{\rho^2(1-\nu)} \mathbb{E}_{\bar{\zeta}_{t,K+1}} \left[\mathbb{E}_{\mathcal{Z}_{t,w}} \left[\sum_{t=1}^T \left\| \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}) - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2 \right] \right] \\
1085 &+ \frac{4C_{\mu_g}\kappa_g^2}{(1-\nu)} \sum_{t=2}^T \|\boldsymbol{\beta}_t^*(\boldsymbol{\lambda}_{t-1}) - \boldsymbol{\beta}_{t-1}^*(\boldsymbol{\lambda}_{t-1})\|^2 + \frac{2TC_K\kappa_g^2\eta^2\sigma_g^2}{s(1-\nu)}.
\end{aligned}$$

1086 which implies through linearity of expectation that
1087

$$\begin{aligned}
1088 \left(1 - \frac{8C_{\mu_g}\kappa_g^4\alpha^2}{\rho^2(1-\nu)} \right) \mathbb{E}_{\bar{\zeta}_{t,K+1}} \left[\mathbb{E}_{\mathcal{Z}_{t,w}} \left[\sum_{t=1}^T \left\| \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}) - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2 \right] \right] \\
1089 &\leq \frac{4T\sigma_f^2}{w} + 4T\ell_{f,1}^2\kappa_g^2 \left(1 - \frac{\mu_g}{\ell_{g,1}} \right)^{2m} + \frac{2\kappa_g^2\Delta_{\boldsymbol{\beta}}}{(1-\nu)} + \frac{8C_{\mu_g}\kappa_g^4\alpha^2}{(1-\nu)} \sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 \\
1090 &+ \frac{4C_{\mu_g}\kappa_g^2}{(1-\nu)} \sum_{t=2}^T \|\boldsymbol{\beta}_t^*(\boldsymbol{\lambda}_{t-1}) - \boldsymbol{\beta}_{t-1}^*(\boldsymbol{\lambda}_{t-1})\|^2 + \frac{2TC_K\kappa_g^2\eta^2\sigma_g^2}{s(1-\nu)}.
\end{aligned}$$

1091 As $0 < \alpha \leq \frac{\rho\sqrt{(1-\nu)}}{\kappa_g^2\sqrt{72C_{\mu_g}}}$

$$\left(1 - \frac{8C_{\mu_g}\kappa_g^4}{\rho^2(1-\nu)} \right) \geq \frac{8}{9},$$

1092 we have the upper bound of
1093

$$\begin{aligned}
1094 \mathbb{E}_{\bar{\zeta}_{t,K+1}} \left[\mathbb{E}_{\mathcal{Z}_{t,w}} \left[\sum_{t=1}^T \left\| \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}) - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2 \right] \right] \\
1095 &\leq \frac{9T\sigma_f^2}{2w} + \frac{9T\ell_{f,1}^2\kappa_g^2}{2} \left(1 - \frac{\mu_g}{\ell_{g,1}} \right)^{2m} + \frac{9\kappa_g^2\Delta_{\boldsymbol{\beta}}}{4(1-\nu)} + \frac{\rho^2}{8} \sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 \\
1096 &+ \frac{9C_{\mu_g}\kappa_g^2}{2(1-\nu)} \sum_{t=2}^T \left[\|\boldsymbol{\beta}_t^*(\boldsymbol{\lambda}_{t-1}) - \boldsymbol{\beta}_{t-1}^*(\boldsymbol{\lambda}_{t-1})\|^2 \right] + \frac{9TC_K\kappa_g^2\eta^2\sigma_g^2}{4s(1-\nu)}.
\end{aligned}$$

1097 \square

1098 The following theorem presents the bilevel local regret of Algorithm 3.
1099

Theorem 17. Suppose Assumptions A-F. Let the inner step be $\eta = \Omega(1/\mu_g)$ such that $\eta \leq \min\{\frac{2}{\ell_{g,1} + \mu_g}, \frac{1}{w}\}$, outer step be $\alpha \leq \min\{\frac{3\rho}{4\ell_{f,1}}, \frac{\rho\sqrt{(1-\nu)}}{\kappa_g^2\sqrt{72C_{\mu_g}}}\}$, and batch size for stochastic inverse Hessian approximation $m = \log(w)/\log\left(1 - \frac{\mu_g}{\ell_{g,1}}\right) + 1$. Then the bilevel local regret of the single-loop ($K = 1$) and sample-efficient ($s = O(1)$) instance of Algorithm 3 satisfies

$$1100 \text{BLR}_w(T) \leq O \left(\frac{T\kappa_g^3}{w\rho} \left(1 + \frac{\kappa_g^2 + \sigma_f^2 + \kappa_g^2\sigma_g^2}{\rho} \right) + \frac{V_{1,T}}{\rho} + \frac{\kappa_g^2 H_{2,T}}{\rho^2} \right) \quad (47)$$

1101 where comparator sequences $V_{1,T}$ and $H_{2,T}$, σ_g^2, σ_f^2 are finite variances from Assumption C, and
1102 $\kappa_g > 1$ is the condition number of the inner level objective.
1103

1134 *Proof.* Note, Lemma H.2 of Lin et al. (2024) shows how with Assumption A, we have
 1135

$$1136 \quad F_{t,w}(\boldsymbol{\lambda}_{t+1}) - F_{t,w}(\boldsymbol{\lambda}_t) \leq \langle \nabla F_{t,w}(\boldsymbol{\lambda}_t), \boldsymbol{\lambda}_{t+1} - \boldsymbol{\lambda}_t \rangle + \frac{\ell_{F,1}}{2} \|\boldsymbol{\lambda}_{t+1} - \boldsymbol{\lambda}_t\|^2.$$

1137 then by substituting the step of $\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}), \alpha) := \frac{1}{\alpha}(\boldsymbol{\lambda}_t - \boldsymbol{\lambda}_{t+1})$, we have
 1139

$$\begin{aligned} 1140 \quad F_{t,w}(\boldsymbol{\lambda}_{t+1}) - F_{t,w}(\boldsymbol{\lambda}_t) &\leq \langle \nabla F_{t,w}(\boldsymbol{\lambda}_t), \boldsymbol{\lambda}_{t+1} - \boldsymbol{\lambda}_t \rangle + \frac{\ell_{F,1}}{2} \|\boldsymbol{\lambda}_{t+1} - \boldsymbol{\lambda}_t\|^2 \\ 1141 \\ 1142 \quad &= -\alpha \left\langle \nabla F_{t,w}(\boldsymbol{\lambda}_t), \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}), \alpha) \right\rangle \\ 1143 \\ 1144 \quad &\quad + \frac{\alpha^2 \ell_{F,1}}{2} \left\| \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}), \alpha) \right\|^2, \\ 1145 \\ 1146 \quad &= -\alpha \left\langle \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}), \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}), \alpha) \right\rangle \\ 1147 \\ 1148 \quad &\quad + \alpha \left\langle \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}) - \nabla F_{t,w}(\boldsymbol{\lambda}_t), \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}), \alpha) \right\rangle \\ 1149 \\ 1150 \quad &\quad + \frac{\alpha^2 \ell_{F,1}}{2} \left\| \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}), \alpha) \right\|^2. \end{aligned} \quad (48)$$

1151 With Lemma 9, note for $\mathbf{q} = \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w})$
 1152

$$\begin{aligned} 1153 \quad &\alpha \left\langle \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}), \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}), \alpha) \right\rangle \\ 1154 \\ 1155 \quad &\geq \alpha \rho \left\| \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}), \alpha) \right\|^2 + h(\boldsymbol{\lambda}_{t+1}) - h(\boldsymbol{\lambda}_t) \end{aligned} \quad (49)$$

1156 and further we get the following based on a variation of Young's Inequality
 1157

$$\begin{aligned} 1158 \quad &\left\langle \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}) - \nabla F_{t,w}(\boldsymbol{\lambda}_t), \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}), \alpha) \right\rangle \\ 1159 \\ 1160 \quad &\leq \frac{1}{\rho} \left\| \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}) - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2 \\ 1161 \\ 1162 \quad &\quad + \frac{\rho}{4} \left\| \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}), \alpha) \right\|^2. \end{aligned} \quad (50)$$

1163 Combining equation 49 and equation 50 in equation 48 we get
 1164

$$\begin{aligned} 1165 \quad F_{t,w}(\boldsymbol{\lambda}_{t+1}) - F_{t,w}(\boldsymbol{\lambda}_t) &\leq \left(\frac{\alpha^2 \ell_{F,1}}{2} - \frac{3\alpha\rho}{4} \right) \left\| \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}), \alpha) \right\|^2 \\ 1166 \\ 1167 \quad &\quad + \frac{\alpha}{\rho} \left\| \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}) - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2 + h(\boldsymbol{\lambda}_t) - h(\boldsymbol{\lambda}_{t+1}), \end{aligned}$$

1168 which as $0 < \alpha \leq \frac{3\rho}{4\ell_{F,1}}$ results in the further upper bound of
 1169

$$\begin{aligned} 1170 \quad F_{t,w}(\boldsymbol{\lambda}_{t+1}) - F_{t,w}(\boldsymbol{\lambda}_t) &\leq \frac{3\alpha\rho}{8} \left\| \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}), \alpha) \right\|^2 \\ 1171 \\ 1172 \quad &\quad + \frac{\alpha}{\rho} \left\| \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}) - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2 + h(\boldsymbol{\lambda}_t) - h(\boldsymbol{\lambda}_{t+1}). \end{aligned} \quad (51)$$

1173 Further, we have
 1174

$$\begin{aligned} 1175 \quad &\left\| \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha) \right\|^2 \leq 2 \left\| \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}), \alpha) \right\|^2 \\ 1176 \\ 1177 \quad &\quad + 2 \left\| \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}), \alpha) - \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha) \right\|^2 \\ 1178 \\ 1179 \quad &\leq 2 \left\| \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}), \alpha) \right\|^2 + \frac{2}{\rho^2} \left\| \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}) - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2, \end{aligned}$$

1180 where the last inequality comes from through Lemma 10. Then we have
 1181

$$\begin{aligned} 1182 \quad &-\left\| \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}), \alpha) \right\|^2 \leq -\frac{1}{2} \left\| \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha) \right\|^2 \\ 1183 \\ 1184 \quad &\quad + \frac{1}{\rho^2} \left\| \tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}) - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2. \end{aligned} \quad (52)$$

1188 Substituting equation 52 in equation 51
1189

$$1190 \quad F_{t,w}(\boldsymbol{\lambda}_{t+1}) - F_{t,w}(\boldsymbol{\lambda}_t) \leq -\frac{3\alpha\rho}{16} \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 \\ 1191 \\ 1192 \quad + \left(\frac{\alpha}{\rho} + \frac{3\alpha}{8\rho}\right) \left\|\tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}) - \nabla F_{t,w}(\boldsymbol{\lambda}_t)\right\|^2 + h(\boldsymbol{\lambda}_t) - h(\boldsymbol{\lambda}_{t+1}) \\ 1193 \\ 1194$$

1195 Telescoping $t = 1, \dots, T$ and taking expectation with respect to $\bar{\zeta}_{t,k}$ and $\mathcal{Z}_{t,w}$ gives us
1196

$$1197 \quad \frac{3\alpha\rho}{16} \sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 \leq \sum_{t=1}^T (F_{t,w}(\boldsymbol{\lambda}_t) - F_{t,w}(\boldsymbol{\lambda}_{t+1})) \\ 1198 \\ 1199 \quad + \frac{11\alpha}{8\rho} \mathbb{E}_{\bar{\zeta}_{t,K+1}} \left[\mathbb{E}_{\mathcal{Z}_{t,w}} \left[\sum_{t=1}^T \left\|\tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}, \mathcal{Z}_{t,w}) - \nabla F_{t,w}(\boldsymbol{\lambda}_t)\right\|^2 \right] \right] + \Delta_h, \quad (53) \\ 1200 \\ 1201 \\ 1202$$

1203 where $\Delta_h := h(\boldsymbol{\lambda}_1) - h(\boldsymbol{\lambda}_{T+1})$. Substituting the result of Lemma 16 in equation 53
1204

$$1205 \quad \frac{3\alpha\rho}{16} \sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 \leq \sum_{t=1}^T (F_{t,w}(\boldsymbol{\lambda}_t) - F_{t,w}(\boldsymbol{\lambda}_{t+1})) + \Delta_h \\ 1206 \\ 1207 \quad + \frac{11\alpha}{8\rho} \left(\frac{9T\sigma_f^2}{2w} + \frac{9T\ell_{f,1}^2\kappa_g^2}{2} \left(1 - \frac{\mu_g}{\ell_{g,1}}\right)^{2m} + \frac{9\kappa_g^2\Delta_{\boldsymbol{\beta}}}{4(1-\nu)} + \frac{9TC_K\kappa_g^2\eta^2\sigma_g^2}{4S(1-\nu)} \right) \\ 1208 \\ 1209 \quad + \frac{11\alpha}{8\rho} \left(\frac{\rho^2}{8} \sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 + \frac{9C_{\mu_g}\kappa_g^2}{2(1-\nu)} \sum_{t=2}^T \left[\|\boldsymbol{\beta}_t^*(\boldsymbol{\lambda}_{t-1}) - \boldsymbol{\beta}_{t-1}^*(\boldsymbol{\lambda}_{t-1})\|^2 \right] \right) \\ 1210 \\ 1211 \\ 1212 \\ 1213 \quad (54)$$

1214 we have to rearrange
1215

$$1216 \quad \frac{\alpha\rho}{64} \sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 \leq \sum_{t=1}^T (F_{t,w}(\boldsymbol{\lambda}_t) - F_{t,w}(\boldsymbol{\lambda}_{t+1})) + \Delta_h \\ 1217 \\ 1218 \quad + \frac{99\alpha}{32\rho} \left(\frac{2T\sigma_f^2}{w} + 2T\ell_{f,1}^2\kappa_g^2 \left(1 - \frac{\mu_g}{\ell_{g,1}}\right)^{2m} + \frac{\kappa_g^2\Delta_{\boldsymbol{\beta}}}{(1-\nu)} + \frac{TC_K\kappa_g^2\eta^2\sigma_g^2}{s(1-\nu)} \right) \\ 1219 \\ 1220 \quad + \frac{99\alpha C_{\mu_g}\kappa_g^2}{16\rho(1-\nu)} \sum_{t=2}^T \|\boldsymbol{\beta}_t^*(\boldsymbol{\lambda}_{t-1}) - \boldsymbol{\beta}_{t-1}^*(\boldsymbol{\lambda}_{t-1})\|^2 \\ 1221 \\ 1222 \\ 1223 \\ 1224 \quad (55)$$

1225 or more succinctly with the choice of $s = O(1)$, $m = \log(w)/\log\left(1 - \frac{\mu_g}{\ell_{g,1}}\right) + 1$, and inner step
1226 size of $\eta \leq \frac{1}{w}$ we have
1227

$$1228 \quad \sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 \leq \frac{64}{\alpha\rho} \left(\sum_{t=1}^T (F_{t,w}(\boldsymbol{\lambda}_t) - F_{t,w}(\boldsymbol{\lambda}_{t+1})) + \Delta_h \right) \\ 1229 \\ 1230 \quad + \frac{198}{\rho^2} \frac{T}{w} \left(2\sigma_f^2 + 2\ell_{f,1}^2\kappa_g^2 + \frac{C_K\kappa_g^2\sigma_g^2}{(1-\nu)} \right) + \frac{198}{\rho^2} \frac{\kappa_g^2\Delta_{\boldsymbol{\beta}}}{(1-\nu)} \\ 1231 \\ 1232 \quad + \frac{396C_{\mu_g}\kappa_g^2}{\rho^2(1-\nu)} \sum_{t=2}^T \|\boldsymbol{\beta}_t^*(\boldsymbol{\lambda}_{t-1}) - \boldsymbol{\beta}_{t-1}^*(\boldsymbol{\lambda}_{t-1})\|^2 \\ 1233 \\ 1234 \\ 1235 \\ 1236 \\ 1237 \quad (56)$$

1238 Using the result of Lemma 13, we have
1239

$$1240 \quad \sum_{t=1}^T (F_{t,w}(\boldsymbol{\lambda}_t) - F_{t,w}(\boldsymbol{\lambda}_{t+1})) \leq \frac{2TQ}{w} + V_{1,T} \\ 1241 \\ 1242 \quad (57)$$

1242 or all together
 1243

$$\begin{aligned}
 \sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 &\leq \frac{64}{\alpha\rho} \left(\frac{2TQ}{w} + V_{1,T} + \Delta_h \right) \\
 &+ \frac{198}{\rho^2} \frac{T}{w} \left(2\sigma_f^2 + 2\ell_{f,1}^2 \kappa_g^2 + \frac{C_K \kappa_g^2 \sigma_g^2}{(1-\nu)} \right) + \frac{198}{\rho^2} \frac{\kappa_g^2 \Delta_{\beta}}{(1-\nu)} \\
 &+ \frac{396C_{\mu_g} \kappa_g^2}{\rho^2(1-\nu)} \sum_{t=2}^T \|\boldsymbol{\beta}_t^*(\boldsymbol{\lambda}_{t-1}) - \boldsymbol{\beta}_{t-1}^*(\boldsymbol{\lambda}_{t-1})\|^2
 \end{aligned} \tag{58}$$

1253 which by recalling definition of $H_{2,T}$, and as $\ell_{F,1} = O(\kappa_g^3)$ this implies $\alpha \leq$
 1254 $\min\{\frac{3\rho}{4\ell_{F,1}}, \frac{\rho\sqrt{(1-\nu)}}{\kappa_g^2\sqrt{72C_{\mu_g}}}\} = O\left(\frac{1}{\kappa_g^3}\right)$ this implies the bilevel local regret of Algorithm 3 is
 1255

$$BLR_w(T) \leq O\left(\frac{T\kappa_g^3}{w\rho} \left(1 + \frac{\kappa_g^2 + \sigma_f^2 + \kappa_g^2 \sigma_g^2}{\rho}\right) + \frac{V_{1,T}}{\rho} + \frac{\kappa_g^2 H_{2,T}}{\rho^2}\right) \tag{59}$$

□

C PROOF IN DETERMINISTIC SETTING

1264 First, we introduce some required lemmas. Lemma 18 provides an analytical form to compute the
 1265 hypergradient via iterative differentiation.

1266 **Lemma 18.** (Proposition 2 in Ji et al. (2021)) The partial $\frac{\partial f_t(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}}$ takes an analytical form of
 1267 $\frac{\partial f_t(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}} =$

$$\nabla_{\boldsymbol{\lambda}} f_t(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K) - \eta \sum_{k=0}^{K-1} \nabla_{\boldsymbol{\lambda}, \boldsymbol{\omega}}^2 g_t(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^k) H_{\boldsymbol{\omega}, \boldsymbol{\omega}} \nabla_{\boldsymbol{\omega}} f_t(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K), \tag{60}$$

1274 where $H_{\boldsymbol{\omega}, \boldsymbol{\omega}} := \prod_{j=k+1}^{K-1} (I_{d_2} - \eta \nabla_{\boldsymbol{\omega}, \boldsymbol{\omega}}^2 g_t(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^j))$, the d_2 -identity matrix is denoted I_{d_2} , with
 1275 $\eta > 0$ and K as the step size and number of iterations for the inner loop.
 1276

1277 Lemma 19 provides an upper bound on the hypergradient error when utilizing an iterative differentia-
 1278 tion approach for estimation.

1279 **Lemma 19.** (Lemma 6 in Ji et al. (2021)) Suppose Assumptions A and B are satisfied with $\eta < \frac{1}{\ell_{g,1}}$
 1280 and $K \geq 1$. Then we have $\forall t \in [1, T]$

$$\begin{aligned}
 &\left\| \frac{\partial f_t(\boldsymbol{\lambda}, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}} - \nabla F_t(\boldsymbol{\lambda}) \right\| \\
 &\leq \left(L_1 (1 - \eta \mu_g)^{\frac{K}{2}} + L_2 (1 - \eta \mu_g)^{\frac{K-1}{2}} \right) \|\boldsymbol{\beta}_t - \boldsymbol{\beta}_t^*(\boldsymbol{\lambda})\| + L_3 (1 - \eta \mu_g)^K,
 \end{aligned} \tag{61}$$

1287 where $L_1 = \kappa_g(\ell_{g,1} + \mu_g)$, $L_2 = \frac{2\ell_{f,0}\ell_{g,2}}{\mu_g}(1 + \kappa_g)$, and $L_3 = \ell_{f,0}\kappa_g$.
 1288

1289 Similar to the deterministic setting, we apply time-smoothing as specified by the estimator
 1290 $\tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1})$ defined for all $t \in [1, T]$, window size $w \geq 1$ as
 1291

$$\tilde{\nabla} f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_{t+1}) := \frac{1}{w} \sum_{i=0}^{w-1} \tilde{\nabla} f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t+1-i}), \quad f_t = 0 \quad \forall t \leq 0 \tag{62}$$

1292 Next we state our Bregman-bilevel optimizer in the deterministic setting.
 1293
 1294
 1295

1296

Algorithm 4 OBBO: Deterministic Online Bregman Bilevel Optimizer

1297

Require: Horizon T ; inner steps K ; step sizes $\alpha, \eta > 0$; Bregman reference ϕ ; window $w \geq 1$

1298

1: Initialize $\beta_1 \in \mathbb{R}^{d_2}$, $\lambda_1 \in \mathcal{X}$

1299

2: **for** $t = 1$ T **do**

1300

3: $\omega_t^0 \leftarrow \beta_t$

1301

4: **for** $k = 1$ K **do**

1302

5: $\omega_t^k \leftarrow \omega_t^{k-1} - \eta \nabla_{\omega} g_t(\lambda_t, \omega_t^{k-1})$

1303

6: **end for**

1304

7: $\beta_{t+1} \leftarrow \omega_t^K$

1305

8: $\tilde{\nabla} f_t(\lambda_t, \beta_{t+1}) \leftarrow \partial f_t(\lambda_t, \beta_{t+1}) / \partial \lambda$

▷ from equation 60

1306

9: Store $\tilde{\nabla} f_t(\lambda_t, \beta_{t+1})$ in memory

1307

10: $q \leftarrow \tilde{\nabla} f_{t,w}(\lambda_t, \beta_{t+1})$ ▷ from equation 62 with window w

1308

11: $u \leftarrow \lambda_t$

1309

12: $\lambda_{t+1} \leftarrow \text{GENERALGRADSTEP}(u, q, \alpha, \phi)$

▷ Alg. 2

1310

13: **end for**

1311

14: **return** $\lambda_{T+1}, \beta_{T+1}$

1312

1313

1314

The following Lemma provides an upper bound on the cumulative difference between the time-smoothed outer level objective $F_{t,w}(\lambda)$ evaluated at λ_t and λ_{t+1} in terms of the outer level objective upper bound Q , window size w , and the comparator sequence $V_{1,T}$.

1318

Lemma 20. Suppose Assumption E. If our Algorithm 4 is applied with window size $w \geq 1$ to generate the sequence $\{\lambda_t\}_{t=1}^T$, then we have

1319

1320

1321

$$\sum_{t=1}^T (F_{t,w}(\lambda_t) - F_{t,w}(\lambda_{t+1})) \leq \frac{2TQ}{w} + V_{1,T}.$$

1322

1323

1324

1325

1326

where $V_{1,T} := \sum_{t=1}^T \sup_{\lambda \in \mathcal{X}} [F_{t+1}(\lambda) - F_t(\lambda)]$

1327

1328

1329

1330

1331

Proof. By definition, in the deterministic setting, we have $F_t(\lambda) \triangleq f_t(\lambda, \beta_t^*(\lambda))$. Then it holds

1332

1333

1334

1335

1336

1337

1338

1339

1340

Which is equivalent to

1341

1342

1343

1344

1345

1346

1347

1348

1349

$$\begin{aligned} & \sum_{t=1}^T (F_{t,w}(\lambda_t) - F_{t,w}(\lambda_{t+1})) \\ &= \sum_{t=1}^T \frac{1}{w} \sum_{i=0}^{w-1} (f_{t-i}(\lambda_{t-i}, \beta_{t-i}^*(\lambda_{t-i})) - f_{t-i}(\lambda_{t+1-i}, \beta_{t-i}^*(\lambda_{t+1-i}))) \end{aligned}$$

$$\begin{aligned} & \sum_{t=1}^T \frac{1}{w} \sum_{i=0}^{w-1} (f_{t-i}(\lambda_{t-i}, \beta_{t-i}^*(\lambda_{t-i})) - f_{t+1-i}(\lambda_{t+1-i}, \beta_{t+1-i}^*(\lambda_{t+1-i}))) \quad (63) \\ &+ \sum_{t=1}^T \frac{1}{w} \sum_{i=0}^{w-1} (f_{t+1-i}(\lambda_{t+1-i}, \beta_{t+1-i}^*(\lambda_{t+1-i})) - f_{t-i}(\lambda_{t+1-i}, \beta_{t-i}^*(\lambda_{t+1-i}))) \quad (64) \end{aligned}$$

1350 For equation 63, we can write
 1351

$$\begin{aligned}
 1352 & \frac{1}{w} \sum_{i=0}^{w-1} (f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\beta}_{t-i}^*(\boldsymbol{\lambda}_{t-i})) - f_{t+1-i}(\boldsymbol{\lambda}_{t+1-i}, \boldsymbol{\beta}_{t+1-i}^*(\boldsymbol{\lambda}_{t+1-i}))) \\
 1353 & = \frac{1}{w} [f_t(\boldsymbol{\lambda}_t, \boldsymbol{\beta}_t^*(\boldsymbol{\lambda}_t)) + \dots + f_{t+1-w}(\boldsymbol{\lambda}_{t+1-w}, \boldsymbol{\beta}_{t+1-w}^*(\boldsymbol{\lambda}_{t+1-w}))] \\
 1354 & - \frac{1}{w} [f_{t+1}(\boldsymbol{\lambda}_{t+1}, \boldsymbol{\beta}_{t+1}^*(\boldsymbol{\lambda}_{t+1})) + \dots + f_{t+2-w}(\boldsymbol{\lambda}_{t+2-w}, \boldsymbol{\beta}_{t+2-w}^*(\boldsymbol{\lambda}_{t+2-w}))] \\
 1355 & = \frac{1}{w} [f_{t+1-w}(\boldsymbol{\lambda}_{t+1-w}, \boldsymbol{\beta}_{t+1-w}^*(\boldsymbol{\lambda}_{t+1-w})) - f_{t+1}(\boldsymbol{\lambda}_{t+1}, \boldsymbol{\beta}_{t+1}^*(\boldsymbol{\lambda}_{t+1}))] \\
 1356 & = \frac{1}{w} (F_{t+1-w}(\boldsymbol{\lambda}_{t+1-w}) - F_{t+1}(\boldsymbol{\lambda}_{t+1})) \leq \frac{2Q}{w}, \quad (65)
 \end{aligned}$$

1357 where the last inequality comes from Assumption E. Note equation 64 can be bounded through
 1358

$$\begin{aligned}
 1359 & \sum_{t=1}^T \frac{1}{w} \sum_{i=0}^{w-1} (f_{t+1-i}(\boldsymbol{\lambda}_{t+1-i}, \boldsymbol{\beta}_{t+1-i}^*(\boldsymbol{\lambda}_{t+1-i})) - f_{t-i}(\boldsymbol{\lambda}_{t+1-i}, \boldsymbol{\beta}_{t-i}^*(\boldsymbol{\lambda}_{t+1-i}))) \\
 1360 & \leq \sum_{t=1}^T \frac{1}{w} \sum_{i=0}^{w-1} \sup_{\boldsymbol{\lambda} \in \mathcal{X}} [f_{t+1-i}(\boldsymbol{\lambda}, \boldsymbol{\beta}_{t+1-i}^*(\boldsymbol{\lambda})) - f_{t-i}(\boldsymbol{\lambda}, \boldsymbol{\beta}_{t-i}^*(\boldsymbol{\lambda}))] \leq V_{1,T} \quad (66)
 \end{aligned}$$

1361 Combining equation 65 and equation 66 results in the upper bound of
 1362

$$\sum_{t=1}^T (F_{t,w}(\boldsymbol{\lambda}_t) - F_{t,w}(\boldsymbol{\lambda}_{t+1})) \leq \frac{2TQ}{w} + V_{1,T}.$$

□

1363 The next Lemma provides an upper bound on the error of $\|\boldsymbol{\beta}_t - \boldsymbol{\beta}_t^*(\boldsymbol{\lambda}_t)\|^2$ for all $t \in [1, T]$ in terms
 1364 of an initial error, the cumulative differences of the outer level variable, and the cumulative differences
 1365 of the optimal inner level variables.
 1366

1367 **Lemma 21.** *Suppose Assumptions A and B. Choose the inner step size of η and inner iteration count
 1368 of K to satisfy*

$$\eta < \min \left(\frac{1}{\ell_{g,1}}, \frac{1}{\mu_g} \right), \text{ and } K \geq 1,$$

1369 and define the decay parameter ν , inner level variable error constant C_{μ_g} , and initial error $\Delta_{\boldsymbol{\beta}}$
 1370 respectively as

$$\begin{aligned}
 1371 \nu &:= \left(1 - \frac{\eta\mu_g}{2}\right) (1 - \eta\mu_g)^{K-1}, \text{ and } C_{\mu_g} := \left(1 + \frac{2}{\eta\mu_g}\right), \\
 1372 & \text{ and } \Delta_{\boldsymbol{\beta}} := \|\boldsymbol{\beta}_1 - \boldsymbol{\beta}_1^*(\boldsymbol{\lambda}_1)\|^2.
 \end{aligned}$$

1373 Then our Algorithm 4 guarantees $\forall t \in [1, T]$

$$\begin{aligned}
 1374 \|\boldsymbol{\beta}_t - \boldsymbol{\beta}_t^*(\boldsymbol{\lambda}_t)\|^2 &\leq \nu^{t-1} \Delta_{\boldsymbol{\beta}} \\
 1375 + 2C_{\mu_g} \kappa_g^2 \sum_{j=0}^{t-2} \nu^j \|\boldsymbol{\lambda}_{t-1-j} - \boldsymbol{\lambda}_{t-j}\|^2 + 2C_{\mu_g} \sum_{j=0}^{t-2} \nu^j \|\boldsymbol{\beta}_{t-j}^*(\boldsymbol{\lambda}_{t-1-j}) - \boldsymbol{\beta}_{t-1-j}^*(\boldsymbol{\lambda}_{t-1-j})\|^2. \quad (67)
 \end{aligned}$$

1376 *Proof.* By definition for $t = 1$, we have $\|\boldsymbol{\beta}_1 - \boldsymbol{\beta}_1^*(\boldsymbol{\lambda}_1)\|^2 = \Delta_{\boldsymbol{\beta}}$. Then $\forall t \in [2, T]$

$$\|\boldsymbol{\beta}_t - \boldsymbol{\beta}_t^*(\boldsymbol{\lambda}_t)\|^2 = \|\boldsymbol{\beta}_t - \boldsymbol{\beta}_{t-1}^*(\boldsymbol{\lambda}_{t-1}) + \boldsymbol{\beta}_{t-1}^*(\boldsymbol{\lambda}_{t-1}) - \boldsymbol{\beta}_t^*(\boldsymbol{\lambda}_t)\|^2, \quad (68)$$

1377 which can be expanded based on the Young's Inequality for any $\delta > 0$ as

$$\begin{aligned}
 1378 \|\boldsymbol{\beta}_t - \boldsymbol{\beta}_{t-1}^*(\boldsymbol{\lambda}_{t-1}) + \boldsymbol{\beta}_{t-1}^*(\boldsymbol{\lambda}_{t-1}) - \boldsymbol{\beta}_t^*(\boldsymbol{\lambda}_t)\|^2 \\
 1379 &\leq (1 + \delta) \|\boldsymbol{\beta}_t - \boldsymbol{\beta}_{t-1}^*(\boldsymbol{\lambda}_{t-1})\|^2 \\
 1380 &+ \left(1 + \frac{1}{\delta}\right) \|\boldsymbol{\beta}_{t-1}^*(\boldsymbol{\lambda}_{t-1}) - \boldsymbol{\beta}_t^*(\boldsymbol{\lambda}_t)\|^2.
 \end{aligned}$$

1404 Now it holds that

$$1405 \|\beta_{t-1}^*(\lambda_{t-1}) - \beta_t^*(\lambda_t)\|^2 \leq 2 \|\beta_t^*(\lambda_{t-1}) - \beta_t^*(\lambda_t)\|^2 + 2 \|\beta_t^*(\lambda_{t-1}) - \beta_{t-1}^*(\lambda_{t-1})\|^2$$

1406 which through Lemma 11 can be further upper bounded with the Lipschitz constant of κ_g as

$$1407 \|\beta_{t-1}^*(\lambda_{t-1}) - \beta_t^*(\lambda_t)\|^2 \leq 2\kappa_g^2 \|\lambda_{t-1} - \lambda_t\|^2 + 2 \|\beta_t^*(\lambda_{t-1}) - \beta_{t-1}^*(\lambda_{t-1})\|^2$$

1408 Combining above, we see that $\forall \delta > 0$, equation 68 is upper bounded as

$$1409 \|\beta_t - \beta_t^*(\lambda_t)\|^2 \leq (1 + \delta) \|\beta_t - \beta_{t-1}^*(\lambda_{t-1})\|^2 \\ 1410 + 2 \left(1 + \frac{1}{\delta}\right) \kappa_g^2 \|\lambda_{t-1} - \lambda_t\|^2 + 2 \left(1 + \frac{1}{\delta}\right) \|\beta_t^*(\lambda_{t-1}) - \beta_{t-1}^*(\lambda_{t-1})\|^2. \quad (69)$$

1411 As $\eta < \frac{1}{\ell_{g,1}}$, we apply Lemma 8 to see

$$1412 (1 + \delta) \|\beta_t - \beta_{t-1}^*(\lambda_{t-1})\|^2 \leq (1 + \delta)(1 - \eta\mu_g)^K \|\beta_{t-1} - \beta_{t-1}^*(\lambda_{t-1})\|^2$$

1413 Now setting $\delta = \frac{\eta\mu_g}{2} > 0$ implies that

$$1414 (1 + \delta)(1 - \eta\mu_g)^K = (1 + \frac{\eta\mu_g}{2})(1 - \eta\mu_g)^K < \left(1 - \frac{\eta\mu_g}{2}\right) (1 - \eta\mu_g)^{K-1} < 1$$

1415 Using $\nu := \left(1 - \frac{\eta\mu_g}{2}\right) (1 - \eta\mu_g)^{K-1}$ in equation 69, we get

$$1416 \nu \|\beta_t - \beta_t^*(\lambda_t)\|^2 \leq \nu^2 \|\beta_{t-1} - \beta_{t-1}^*(\lambda_{t-1})\|^2 \\ 1417 + 2C_{\mu_g} \nu \kappa_g^2 \|\lambda_{t-1} - \lambda_t\|^2 + 2C_{\mu_g} \nu \|\beta_t^*(\lambda_{t-1}) - \beta_{t-1}^*(\lambda_{t-1})\|^2,$$

1418 where $C_{\mu_g} = \left(1 + \frac{2}{\eta\mu_g}\right)$. Starting at $t = T$ and unrolling backward to $t = 1$, results in the upper bound of

$$1419 \|\beta_t - \beta_t^*(\lambda_t)\|^2 \leq \nu^{t-1} \Delta_{\beta} \\ 1420 + 2C_{\mu_g} \kappa_g^2 \sum_{j=0}^{t-2} \nu^j \|\lambda_{t-1-j} - \lambda_{t-j}\|^2 + 2C_{\mu_g} \sum_{j=0}^{t-2} \nu^j \|\beta_{t-j}^*(\lambda_{t-1-j}) - \beta_{t-1-j}^*(\lambda_{t-1-j})\|^2.$$

1421 \square

1422 The next Lemma utilizes Lemma 19 and Lemma 21 to derive an upper bound on the hypergradient error $\forall t \in [1, T]$ in terms of discounted variations of the (i) cumulative time-smoothed hypergradient error; (ii) bilevel local regret; and (iii) cumulative difference between optimal inner-level variables. A final term is included, composed of a discounted initial error and smoothness term of the inner objective.

1423 **Lemma 22.** Suppose Assumptions A, B, D, and F. Choose the inner step size of η and inner iteration count of K to satisfy

$$1424 \eta < \min \left(\frac{1}{\ell_{g,1}}, \frac{1}{\mu_g} \right), \text{ and } K \geq 1.$$

1425 Using the definitions of ν , C_{μ_g} , and Δ_{β} from Lemma 21 as well as the further definition of

$$1426 L_{\beta} := L_1^2(1 - \eta\mu_g)^K + L_2^2(1 - \eta\mu_g)^{K-1},$$

1427 then the hypergradient error from our OBBO algorithm in Algorithm 4 is bounded $\forall t \in [1, T]$ as

$$1428 \left\| \frac{\partial f_t(\lambda_t, \omega_t^K)}{\partial \lambda} - \nabla F_t(\lambda_t) \right\|^2 \leq \delta_t + A \sum_{j=0}^{t-2} \nu^j \left\| \frac{\partial f_{t-1-j,w}(\lambda_{t-1-j}, \omega_{t-1-j}^K)}{\partial \lambda} - \nabla F_{t-1-j,w}(\lambda_{t-1-j}) \right\|^2 \\ 1429 + B \sum_{j=0}^{t-2} \nu^j \|\mathcal{G}_{\mathcal{X}}(\lambda_{t-1-j}, \nabla F_{t-1-j,w}(\lambda_{t-1-j}), \alpha)\|^2 + C \sum_{j=0}^{t-2} \nu^j \|\beta_{t-j}^*(\lambda_{t-1-j}) - \beta_{t-1-j}^*(\lambda_{t-1-j})\|^2, \quad (70)$$

1430 where $\delta_t = 3L_3^2(1 - \eta\mu_g)^{2K} + 3L_{\beta}\nu^{t-1}\Delta_{\beta}$ and $A = \frac{12\alpha^2 C_{\mu_g} L_{\beta} \kappa_g^2}{\rho^2}$, $B = 12\alpha^2 C_{\mu_g} L_{\beta} \kappa_g^2$, and $C = 6L_{\beta} C_{\mu_g}$.

1458 *Proof.* Note that Lemma 19 implies $\forall t \in [1, T]$

$$1460 \quad \left\| \frac{\partial f_t(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}} - \nabla F_t(\boldsymbol{\lambda}_t) \right\|^2 \leq 3L_{\beta} \|\boldsymbol{\beta}_t - \boldsymbol{\beta}_t^*(\boldsymbol{\lambda}_t)\|^2 + 3L_3^2(1 - \eta\mu_g)^{2K}.$$

1463 Substituting the upper bound on $\|\boldsymbol{\beta}_t - \boldsymbol{\beta}_t^*(\boldsymbol{\lambda}_t)\|^2$ from Lemma 21, we have

$$1464 \quad \left\| \frac{\partial f_t(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}} - \nabla F_t(\boldsymbol{\lambda}_t) \right\|^2 \leq 3L_3^2(1 - \eta\mu_g)^{2K}$$

$$1465 \quad + 3L_{\beta} \left(\nu^{t-1} \Delta_{\beta} + 2C_{\mu_g} \kappa_g^2 \sum_{j=0}^{t-2} \nu^j \|\boldsymbol{\lambda}_{t-1-j} - \boldsymbol{\lambda}_{t-j}\|^2 \right)$$

$$1466 \quad + 6L_{\beta} C_{\mu_g} \sum_{j=0}^{t-2} \nu^j \|\boldsymbol{\beta}_{t-j}^*(\boldsymbol{\lambda}_{t-1-j}) - \boldsymbol{\beta}_{t-1-j}^*(\boldsymbol{\lambda}_{t-1-j})\|^2,$$

$$1467 \quad 1468 \quad 1469 \quad 1470 \quad 1471 \quad 1472 \quad 1473$$

$$1474 \quad \text{By definition, we have } \mathcal{G}_{\mathcal{X}} \left(\boldsymbol{\lambda}_{t-1-j}, \frac{\partial f_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}, \boldsymbol{\omega}_{t-1-j}^K)}{\partial \boldsymbol{\lambda}}, \alpha \right) := \frac{1}{\alpha} (\boldsymbol{\lambda}_{t-1-j} - \boldsymbol{\lambda}_{t-j})$$

$$1475 \quad 1476 \quad 1477 \quad 1478 \quad 1479 \quad 1480 \quad 1481 \quad 1482$$

$$1483 \quad \sum_{j=0}^{t-2} \nu^j \|\boldsymbol{\lambda}_{t-1-j} - \boldsymbol{\lambda}_{t-j}\|^2 = \alpha^2 \sum_{j=0}^{t-2} \nu^j \left\| \mathcal{G}_{\mathcal{X}} \left(\boldsymbol{\lambda}_{t-1-j}, \frac{\partial f_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}, \boldsymbol{\omega}_{t-1-j}^K)}{\partial \boldsymbol{\lambda}}, \alpha \right) \right\|^2$$

$$1484 \quad \leq 2\alpha^2 \sum_{j=0}^{t-2} \nu^j \left(\|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_{t-1-j}, \nabla F_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}), \alpha)\|^2 \right)$$

$$1485 \quad + 2\alpha^2 \sum_{j=0}^{t-2} \nu^j \left(\left\| \mathcal{G}_{\mathcal{X}} \left(\boldsymbol{\lambda}_{t-1-j}, \frac{\partial f_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}, \boldsymbol{\omega}_{t-1-j}^K)}{\partial \boldsymbol{\lambda}}, \alpha \right) - \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_{t-1-j}, \nabla F_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}), \alpha) \right\|^2 \right)$$

$$1486 \quad \leq 2\alpha^2 \sum_{j=0}^{t-2} \nu^j \left(\|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_{t-1-j}, \nabla F_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}), \alpha)\|^2 \right)$$

$$1487 \quad + 2\alpha^2 \sum_{j=0}^{t-2} \nu^j \left(\frac{1}{\rho^2} \left\| \frac{\partial f_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}, \boldsymbol{\omega}_{t-1-j}^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}) \right\|^2 \right)$$

$$1488 \quad (71)$$

$$1489 \quad 1490 \quad 1491 \quad 1492 \quad 1493$$

1494 such that the last inequality comes from Lemma 10. Rearranging terms, we have decomposed the
1495 hypergradient error term at t in terms of the cumulative hypergradient error from $j = 1, \dots, t-1$

$$1496 \quad \left\| \frac{\partial f_t(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}} - \nabla F_t(\boldsymbol{\lambda}_t) \right\|^2 \leq 3L_3^2(1 - \eta\mu_g)^{2K} + 3L_{\beta} \nu^{t-1} \Delta_{\beta}$$

$$1497 \quad + 12\alpha^2 C_{\mu_g} L_{\beta} \kappa_g^2 \sum_{j=0}^{t-2} \nu^j \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_{t-1-j}, \nabla F_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}), \alpha)\|^2$$

$$1498 \quad + \frac{12\alpha^2 C_{\mu_g} L_{\beta} \kappa_g^2}{\rho^2} \sum_{j=0}^{t-2} \nu^j \left\| \frac{\partial f_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}, \boldsymbol{\omega}_{t-1-j}^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}) \right\|^2$$

$$1499 \quad 1500 \quad 1501 \quad 1502 \quad 1503 \quad 1504 \quad 1505 \quad 1506 \quad 1507$$

$$1506 \quad + 6L_{\beta} C_{\mu_g} \sum_{j=0}^{t-2} \nu^j \|\boldsymbol{\beta}_{t-j}^*(\boldsymbol{\lambda}_{t-1-j}) - \boldsymbol{\beta}_{t-1-j}^*(\boldsymbol{\lambda}_{t-1-j})\|^2,$$

$$1507 \quad 1508 \quad 1509 \quad 1510 \quad 1511$$

□

1511 The next Lemma provides an upper bound on the cumulative time-smoothed hypergradient error
using the result of Lemma 22.

1512 **Lemma 23.** Suppose Assumptions A, B, D, and F. Choose the inner step size of $\eta < \min\left(\frac{1}{\ell_{g,1}}, \frac{1}{\mu_g}\right)$,
 1513 the outer step size $\alpha \leq \frac{\rho\sqrt{(1-\nu)}}{\kappa_g\sqrt{108C_{\mu_g}L_{\beta}}}$, and inner iteration count $K = \frac{\log(T)}{\log((1-\eta\mu_g)^{-1})} + 1$. Then the
 1514 cumulative time-smoothed hypergradient error from our OBBO algorithm in Algorithm 4 satisfies
 1515

$$1517 \sum_{t=1}^T \left\| \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2 \leq \frac{27}{8} \left(\frac{\Delta_{\beta} L_{\beta}}{(1-\nu)} + L_3^2 \right)$$

$$1520 + A \sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_{t-1-j}, \nabla F_{t-1-j,w}(\boldsymbol{\lambda}_{t-1-j}), \alpha)\|^2 + B \sum_{t=2}^T \|\boldsymbol{\beta}_t^*(\boldsymbol{\lambda}_{t-1}) - \boldsymbol{\beta}_{t-1}^*(\boldsymbol{\lambda}_{t-1})\|^2,$$

$$1523 \text{ where } A := \frac{\rho^2}{8} \text{ and } B := \frac{27L_{\beta}C_{\mu_g}}{2(1-\nu)}.$$

1526 *Proof.* Note by definition of the time-smoothed outer level objective and application of Young's
 1527 inequality we have
 1528

$$1529 \begin{aligned} \left\| \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2 &= \left\| \frac{1}{w} \sum_{i=0}^{w-1} \left[\frac{\partial f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\omega}_{t-i}^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t-i}(\boldsymbol{\lambda}_{t-i}) \right] \right\|^2 \\ 1530 &= \left[\sum_{i=0}^{w-1} \frac{1}{w} \sum_{j=0}^{w-1} \frac{1}{w} \left\langle \frac{\partial f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\omega}_{t-i}^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t-i}(\boldsymbol{\lambda}_{t-i}), \frac{\partial f_{t-j}(\boldsymbol{\lambda}_{t-j}, \boldsymbol{\omega}_{t-j}^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t-j}(\boldsymbol{\lambda}_{t-j}) \right\rangle \right] \\ 1531 &\leq \left[\sum_{i=0}^{w-1} \frac{1}{w} \sum_{j=0}^{w-1} \frac{1}{w} \left(\frac{1}{2} \left\| \frac{\partial f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\omega}_{t-i}^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t-i}(\boldsymbol{\lambda}_{t-i}) \right\|^2 \right. \right. \\ 1532 &\quad \left. \left. + \frac{1}{2} \left\| \frac{\partial f_{t-j}(\boldsymbol{\lambda}_{t-j}, \boldsymbol{\omega}_{t-j}^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t-j}(\boldsymbol{\lambda}_{t-j}) \right\|^2 \right) \right] \\ 1533 &= \frac{1}{w} \sum_{i=0}^{w-1} \left\| \frac{\partial f_{t-i}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\omega}_{t-i}^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t-i}(\boldsymbol{\lambda}_{t-i}) \right\|^2 \\ 1534 &\quad (72) \\ 1535 &\quad \end{aligned}$$

1546 Substituting the upper bound on $\left\| \frac{\partial f_t(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}} - \nabla F_t(\boldsymbol{\lambda}_t) \right\|^2$ from Lemma 22 and re-indexing the
 1547 bilevel local regret and the cumulative time-smoothed hypergradient error, we construct the upper
 1548 bound of
 1549

$$1550 \begin{aligned} \sum_{t=1}^T \left\| \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2 \\ 1551 &\leq \sum_{t=1}^T \frac{1}{w} \left[\sum_{i=0}^{w-1} (3L_3^2(1-\eta\mu_g)^{2K} + 3L_{\beta}\nu^{t-i-1}\Delta_{\beta}) \right] \\ 1552 &\quad + \sum_{t=1}^T \frac{1}{w} \left[\sum_{i=0}^{w-1} \left(12\alpha^2 C_{\mu_g} L_{\beta} \kappa_g^2 \sum_{j=0}^{t-i-2} \nu^j \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_{t-i-j}, \nabla F_{t-i-j,w}(\boldsymbol{\lambda}_{t-i-j}), \alpha)\|^2 \right) \right] \\ 1553 &\quad + \sum_{t=1}^T \frac{1}{w} \left[\sum_{i=0}^{w-1} \left(\frac{12\alpha^2 C_{\mu_g} L_{\beta} \kappa_g^2}{\rho^2} \sum_{j=0}^{t-i-2} \nu^j \left\| \frac{\partial f_{t-i-j,w}(\boldsymbol{\lambda}_{t-i-j}, \boldsymbol{\omega}_{t-i-j}^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t-i-j,w}(\boldsymbol{\lambda}_{t-i-j}) \right\|^2 \right) \right] \\ 1554 &\quad + \sum_{t=2}^T \frac{1}{w} \left[\sum_{i=0}^{w-1} \left(6L_{\beta} C_{\mu_g} \sum_{j=0}^{t-i-2} \nu^j \|\boldsymbol{\beta}_{t-i-j}^*(\boldsymbol{\lambda}_{t-i-1-j}) - \boldsymbol{\beta}_{t-i-1-j}^*(\boldsymbol{\lambda}_{t-i-1-j})\|^2 \right) \right] \\ 1555 &\quad (73) \\ 1556 &\quad \end{aligned}$$

Given $\nu < 1$, it holds that $\sum_{j=0}^{t-2} \nu^j < \sum_{j=0}^{\infty} \nu^j = \frac{1}{1-\nu}$, which lets us upper bound equation 73 as

$$\begin{aligned}
 & \sum_{t=1}^T \left\| \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2 \\
 & \leq \sum_{t=1}^T \frac{1}{w} \left[\sum_{i=0}^{w-1} (3L_3^2(1-\eta\mu_g)^{2K} + 3L_{\beta}\nu^{t-i-1}\Delta_{\beta}) \right] \\
 & + \frac{12\alpha^2 C_{\mu_g} L_{\beta} \kappa_g^2}{(1-\nu)} \sum_{t=1}^T \frac{1}{w} \left[\sum_{i=0}^{w-1} \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_{t-i}, \nabla F_{t-i,w}(\boldsymbol{\lambda}_{t-i}), \alpha)\|^2 \right] \\
 & + \frac{12\alpha^2 C_{\mu_g} L_{\beta} \kappa_g^2}{\rho^2(1-\nu)} \sum_{t=1}^T \frac{1}{w} \left[\sum_{i=0}^{w-1} \left\| \frac{\partial f_{t-i,w}(\boldsymbol{\lambda}_{t-i}, \boldsymbol{\omega}_{t-i}^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t-i,w}(\boldsymbol{\lambda}_{t-i}) \right\|^2 \right] \\
 & + \frac{6L_{\beta} C_{\mu_g}}{(1-\nu)} \sum_{t=2}^T \frac{1}{w} \left[\sum_{i=0}^{w-1} \|\boldsymbol{\beta}_{t-i}^*(\boldsymbol{\lambda}_{t-i-1}) - \boldsymbol{\beta}_{t-i-1}^*(\boldsymbol{\lambda}_{t-i-1})\|^2 \right].
 \end{aligned}$$

and further

$$\begin{aligned}
 & \sum_{t=1}^T \left\| \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2 \\
 & \leq \sum_{t=1}^T (3L_3^2(1-\eta\mu_g)^{2K} + 3L_{\beta}\nu^{t-1}\Delta_{\beta}) + \frac{12\alpha^2 C_{\mu_g} L_{\beta} \kappa_g^2}{(1-\nu)} \sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 \\
 & + \frac{12\alpha^2 C_{\mu_g} L_{\beta} \kappa_g^2}{\rho^2(1-\nu)} \sum_{t=1}^T \left\| \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2 + \frac{6L_{\beta} C_{\mu_g}}{(1-\nu)} \sum_{t=2}^T \|\boldsymbol{\beta}_t^*(\boldsymbol{\lambda}_{t-1}) - \boldsymbol{\beta}_{t-1}^*(\boldsymbol{\lambda}_{t-1})\|^2
 \end{aligned}$$

which implies that

$$\begin{aligned}
 & \left(1 - \frac{12\alpha^2 C_{\mu_g} L_{\beta} \kappa_g^2}{\rho^2(1-\nu)} \right) \sum_{t=1}^T \left\| \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2 \\
 & \leq \frac{3\Delta_{\beta} L_{\beta}}{1-\nu} + \sum_{t=1}^T (3L_3^2(1-\eta\mu_g)^{2K}) + \frac{12\alpha^2 C_{\mu_g} L_{\beta} \kappa_g^2}{(1-\nu)} \sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 \\
 & + \frac{6L_{\beta} C_{\mu_g}}{(1-\nu)} \sum_{t=2}^T \|\boldsymbol{\beta}_t^*(\boldsymbol{\lambda}_{t-1}) - \boldsymbol{\beta}_{t-1}^*(\boldsymbol{\lambda}_{t-1})\|^2,
 \end{aligned}$$

Setting $K = \log(T)/\log((1-\eta\mu_g)^{-1}) + 1$ and $0 < \alpha \leq \frac{\rho\sqrt{(1-\nu)}}{\kappa_g\sqrt{108C_{\mu_g}L_{\beta}}}$

$$\left(1 - \frac{12\alpha^2 C_{\mu_g} L_{\beta} \kappa_g^2}{\rho^2(1-\nu)} \right) \geq \frac{8}{9}$$

implies the upper bound of

$$\begin{aligned}
 & \sum_{t=1}^T \left\| \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2 \leq \frac{27}{8} \left(\frac{\Delta_{\beta} L_{\beta}}{(1-\nu)} + L_3^2 \right) \\
 & + \frac{\rho^2}{8} \sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 + \frac{27L_{\beta} C_{\mu_g}}{2(1-\nu)} \sum_{t=2}^T \|\boldsymbol{\beta}_t^*(\boldsymbol{\lambda}_{t-1}) - \boldsymbol{\beta}_{t-1}^*(\boldsymbol{\lambda}_{t-1})\|^2,
 \end{aligned}$$

□

The next theorem presents the theoretical contribution for Algorithm 4. For suitably chosen step sizes, the sequence of iterates $\{\boldsymbol{\lambda}_t\}_{t=1}^T$ achieves sublinear bilevel local regret.

1620 **Theorem 24.** Suppose Assumptions A, B, D, E, F. Choose the inner step size of $\eta < \min\left(\frac{1}{\ell_{g,1}}, \frac{1}{\mu_g}\right)$,
 1621 the outer step size of $\alpha \leq \min\left\{\frac{3\rho}{4\ell_{F,1}}, \frac{\rho\sqrt{(1-\nu)}}{\kappa_g\sqrt{108C_{\mu_g}L_{\beta}}}\right\}$, and inner iteration count $K =$
 1622 $\frac{\log(T)}{\log((1-\eta\mu_g)^{-1})} + 1$. Then the bilevel local regret of Algorithm 4 satisfies the bound of
 1623

1624
$$BLR_w(T) := \sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 \leq O\left(\frac{T}{w} + V_{1,T} + \kappa_g^2 H_{2,T}\right), \quad (74)$$

 1625

1626 *Proof.* Note, Lemma H.2 of Lin et al. (2024) shows how with Assumption A, we have
 1627

1628
$$F_{t,w}(\boldsymbol{\lambda}_{t+1}) - F_{t,w}(\boldsymbol{\lambda}_t) \leq \langle \nabla F_{t,w}(\boldsymbol{\lambda}_t), \boldsymbol{\lambda}_{t+1} - \boldsymbol{\lambda}_t \rangle + \frac{\ell_{F,1}}{2} \|\boldsymbol{\lambda}_{t+1} - \boldsymbol{\lambda}_t\|^2.$$

 1629

1630 then by substituting the step of $\mathcal{G}_{\mathcal{X}}\left(\boldsymbol{\lambda}_t, \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}}, \alpha\right) := \frac{1}{\alpha}(\boldsymbol{\lambda}_t - \boldsymbol{\lambda}_{t+1})$,
 1631

1632
$$\begin{aligned} F_{t,w}(\boldsymbol{\lambda}_{t+1}) - F_{t,w}(\boldsymbol{\lambda}_t) &\leq \langle \nabla F_{t,w}(\boldsymbol{\lambda}_t), \boldsymbol{\lambda}_{t+1} - \boldsymbol{\lambda}_t \rangle + \frac{\ell_{F,1}}{2} \|\boldsymbol{\lambda}_{t+1} - \boldsymbol{\lambda}_t\|^2 \\ 1633 &= -\alpha \left\langle \nabla F_{t,w}(\boldsymbol{\lambda}_t), \mathcal{G}_{\mathcal{X}}\left(\boldsymbol{\lambda}_t, \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}}, \alpha\right) \right\rangle + \frac{\alpha^2 \ell_{F,1}}{2} \left\| \mathcal{G}_{\mathcal{X}}\left(\boldsymbol{\lambda}_t, \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}}, \alpha\right) \right\|^2, \\ 1634 &= -\alpha \left\langle \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}}, \mathcal{G}_{\mathcal{X}}\left(\boldsymbol{\lambda}_t, \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}}, \alpha\right) \right\rangle \\ 1635 &\quad + \alpha \left\langle \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t,w}(\boldsymbol{\lambda}_t), \mathcal{G}_{\mathcal{X}}\left(\boldsymbol{\lambda}_t, \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}}, \alpha\right) \right\rangle \\ 1636 &\quad + \frac{\alpha^2 \ell_{F,1}}{2} \left\| \mathcal{G}_{\mathcal{X}}\left(\boldsymbol{\lambda}_t, \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}}, \alpha\right) \right\|^2. \end{aligned} \quad (75)$$

 1637

1638 Using Lemma 9 with $\boldsymbol{q} = \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}}$, note that
 1639

1640
$$\begin{aligned} &\alpha \left\langle \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}}, \mathcal{G}_{\mathcal{X}}\left(\boldsymbol{\lambda}_t, \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}}, \alpha\right) \right\rangle \\ 1641 &\geq \alpha \rho \left\| \mathcal{G}_{\mathcal{X}}\left(\boldsymbol{\lambda}_t, \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}}, \alpha\right) \right\|^2 + h(\boldsymbol{\lambda}_{t+1}) - h(\boldsymbol{\lambda}_t) \end{aligned} \quad (76)$$

 1642

1643 and further we get the following based on a variation of Young's Inequality
 1644

1645
$$\begin{aligned} &\left\langle \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t,w}(\boldsymbol{\lambda}_t), \mathcal{G}_{\mathcal{X}}\left(\boldsymbol{\lambda}_t, \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}}, \alpha\right) \right\rangle \\ 1646 &\leq \frac{1}{\rho} \left\| \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2 + \frac{\rho}{4} \left\| \mathcal{G}_{\mathcal{X}}\left(\boldsymbol{\lambda}_t, \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}}, \alpha\right) \right\|^2 \end{aligned} \quad (77)$$

 1647

1648 Using equation 76 and equation 77 in equation 75 we get
 1649

1650
$$\begin{aligned} F_{t,w}(\boldsymbol{\lambda}_{t+1}) - F_{t,w}(\boldsymbol{\lambda}_t) &\leq \left(\frac{\alpha^2 \ell_{F,1}}{2} - \frac{3\alpha\rho}{4} \right) \left\| \mathcal{G}_{\mathcal{X}}\left(\boldsymbol{\lambda}_t, \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}}, \alpha\right) \right\|^2 \\ 1651 &\quad + \frac{\alpha}{\rho} \left\| \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2 + h(\boldsymbol{\lambda}_t) - h(\boldsymbol{\lambda}_{t+1}) \end{aligned} \quad (78)$$

 1652

1653 which as $0 < \alpha \leq \frac{3\rho}{4\ell_{F,1}}$ results in the further upper bound of
 1654

1655
$$\begin{aligned} F_{t,w}(\boldsymbol{\lambda}_{t+1}) - F_{t,w}(\boldsymbol{\lambda}_t) &\leq -\frac{3\alpha\rho}{8} \left\| \mathcal{G}_{\mathcal{X}}\left(\boldsymbol{\lambda}_t, \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}}, \alpha\right) \right\|^2 \\ 1656 &\quad + \frac{\alpha}{\rho} \left\| \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2 + h(\boldsymbol{\lambda}_t) - h(\boldsymbol{\lambda}_{t+1}) \end{aligned} \quad (79)$$

 1657

1674 Further note we can upper bound the local regret as
 1675

$$\begin{aligned}
 1676 \quad & \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 \leq 2 \left\| \mathcal{G}_{\mathcal{X}} \left(\boldsymbol{\lambda}_t, \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}}, \alpha \right) \right\|^2 \\
 1677 \quad & \quad + 2 \left\| \mathcal{G}_{\mathcal{X}} \left(\boldsymbol{\lambda}_t, \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}}, \alpha \right) - \mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha) \right\|^2 \\
 1678 \quad & \leq 2 \left\| \mathcal{G}_{\mathcal{X}} \left(\boldsymbol{\lambda}_t, \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}}, \alpha \right) \right\|^2 + \frac{2}{\rho^2} \left\| \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2,
 \end{aligned}$$

1683 where the last inequality comes from Lemma 10. This then implies that
 1684

$$\begin{aligned}
 1685 \quad & - \left\| \mathcal{G}_{\mathcal{X}} \left(\boldsymbol{\lambda}_t, \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}}, \alpha \right) \right\|^2 \leq -\frac{1}{2} \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 \\
 1686 \quad & \quad + \frac{1}{\rho^2} \left\| \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2
 \end{aligned} \tag{80}$$

1690 Substituting equation 80 into equation 79 gives us
 1691

$$\begin{aligned}
 1691 \quad & F_{t,w}(\boldsymbol{\lambda}_{t+1}) - F_{t,w}(\boldsymbol{\lambda}_t) \leq -\frac{3\alpha\rho}{16} \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 \\
 1692 \quad & \quad + \left(\frac{\alpha}{\rho} + \frac{3\alpha}{8\rho} \right) \left\| \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2 + h(\boldsymbol{\lambda}_t) - h(\boldsymbol{\lambda}_{t+1}).
 \end{aligned} \tag{81}$$

1695 Rearranging we see
 1696

$$\begin{aligned}
 1697 \quad & \frac{3\alpha\rho}{16} \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 \leq F_{t,w}(\boldsymbol{\lambda}_t) - F_{t,w}(\boldsymbol{\lambda}_{t+1}) \\
 1698 \quad & \quad + \frac{11\alpha}{8\rho} \left\| \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2 + h(\boldsymbol{\lambda}_t) - h(\boldsymbol{\lambda}_{t+1}).
 \end{aligned} \tag{82}$$

1701 Summing from 1, ..., T and telescoping $h(\boldsymbol{\lambda}_t)$
 1702

$$\begin{aligned}
 1703 \quad & \frac{3\alpha\rho}{16} \sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 \leq \sum_{t=1}^T (F_{t,w}(\boldsymbol{\lambda}_t) - F_{t,w}(\boldsymbol{\lambda}_{t+1})) \\
 1704 \quad & \quad + \frac{11\alpha}{8\rho} \sum_{t=1}^T \left(\left\| \frac{\partial f_{t,w}(\boldsymbol{\lambda}_t, \boldsymbol{\omega}_t^K)}{\partial \boldsymbol{\lambda}} - \nabla F_{t,w}(\boldsymbol{\lambda}_t) \right\|^2 \right) + \Delta_h,
 \end{aligned}$$

1709 where $\Delta_h := h(\boldsymbol{\lambda}_1) - h(\boldsymbol{\lambda}_{T+1})$ Then we can substitute Lemma 23 to get
 1710

$$\begin{aligned}
 1711 \quad & \frac{3\alpha\rho}{16} \sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 \leq \sum_{t=1}^T (F_{t,w}(\boldsymbol{\lambda}_t) - F_{t,w}(\boldsymbol{\lambda}_{t+1})) \\
 1712 \quad & \quad + \frac{11\alpha}{8\rho} \left(\frac{27}{8} \left(\frac{\Delta_{\boldsymbol{\beta}} L_{\boldsymbol{\beta}}}{(1-\nu)} + L_3^2 \right) + \frac{\rho^2}{8} \sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 \right) \\
 1713 \quad & \quad + \frac{11\alpha}{8\rho} \left(\frac{27 L_{\boldsymbol{\beta}} C_{\mu_g}}{2(1-\nu)} \sum_{t=2}^T \|\boldsymbol{\beta}_t^*(\boldsymbol{\lambda}_{t-1}) - \boldsymbol{\beta}_{t-1}^*(\boldsymbol{\lambda}_{t-1})\|^2 \right) + \Delta_h.
 \end{aligned}$$

1719 Rearranging we have
 1720

$$\begin{aligned}
 1721 \quad & \frac{12\alpha\rho}{64} \sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 \leq \sum_{t=1}^T (F_{t,w}(\boldsymbol{\lambda}_t) - F_{t,w}(\boldsymbol{\lambda}_{t+1})) \\
 1722 \quad & \quad + \frac{11\alpha\rho}{64} \sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 + \frac{11\alpha}{8\rho} \left(\frac{27}{8} \left(\frac{\Delta_{\boldsymbol{\beta}} L_{\boldsymbol{\beta}}}{(1-\nu)} + L_3^2 \right) \right) \\
 1723 \quad & \quad + \frac{11\alpha}{8\rho} \left(\frac{27 L_{\boldsymbol{\beta}} C_{\mu_g}}{2(1-\nu)} \sum_{t=2}^T \|\boldsymbol{\beta}_t^*(\boldsymbol{\lambda}_{t-1}) - \boldsymbol{\beta}_{t-1}^*(\boldsymbol{\lambda}_{t-1})\|^2 \right) + \Delta_h,
 \end{aligned}$$

1728 or more succinctly
 1729

$$\begin{aligned}
 1730 \quad & \sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 \leq \frac{64}{\alpha\rho} \sum_{t=1}^T (F_{t,w}(\boldsymbol{\lambda}_t) - F_{t,w}(\boldsymbol{\lambda}_{t+1})) \\
 1731 \quad & + \frac{88}{\rho^2} \left(\frac{27}{8} \left(\frac{\Delta_{\beta} L_{\beta}}{(1-\nu)} + L_3^2 \right) \right) + \frac{88}{\rho^2} \frac{27 L_{\beta} C_{\mu_g}}{2(1-\nu)} \sum_{t=2}^T \|\boldsymbol{\beta}_t^*(\boldsymbol{\lambda}_{t-1}) - \boldsymbol{\beta}_{t-1}^*(\boldsymbol{\lambda}_{t-1})\|^2 + \frac{64\Delta_h}{\alpha\rho}. \quad (83)
 \end{aligned}$$

1735 Applying Lemma 20 we see
 1736

$$\begin{aligned}
 1737 \quad & \sum_{t=1}^T (F_{t,w}(\boldsymbol{\lambda}_t) - F_{t,w}(\boldsymbol{\lambda}_{t+1})) \leq \frac{2TQ}{w} + V_{1,T}, \quad (84)
 \end{aligned}$$

1740 which by using equation 84 in equation 83 we get for $L_{\beta} = O(\kappa_g^2)$
 1741

$$\begin{aligned}
 1742 \quad & \sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 \leq \frac{64}{\alpha\rho} \left(\frac{2TQ}{w} + V_{1,T} \right) + \frac{297}{\rho^2} \left(\frac{\Delta_{\beta} L_{\beta}}{(1-\nu)} + L_3^2 \right) \\
 1743 \quad & + \frac{64\Delta_h}{\alpha\rho} + \frac{1188 L_{\beta} C_{\mu_g}}{\rho^2(1-\nu)} H_{2,T}, \quad (85)
 \end{aligned}$$

1747 which dividing by T and recalling we imposed regularity constraints of $H_{2,T} = o(T)$, as well as
 1748 $V_{1,T} = o(T)$, implies the bilevel local regret of Algorithm 4 is sublinear on the order of
 1749

$$\begin{aligned}
 1750 \quad & BLR_w(T) := \sum_{t=1}^T \|\mathcal{G}_{\mathcal{X}}(\boldsymbol{\lambda}_t, \nabla F_{t,w}(\boldsymbol{\lambda}_t), \alpha)\|^2 \leq O \left(\frac{T}{w} + V_{1,T} + \kappa_g^2 H_{2,T} \right). \quad (86)
 \end{aligned}$$

1753 \square
 1754

1755 D ADDITIONAL ALGORITHMS

1757 Algorithm 5 (following Ghadimi & Wang (2018)) forms a stochastic hypergradient by replacing
 1758 the inverse Hessian–vector product with a randomized Neumann-series approximation: a uniformly
 1759 sampled truncation level \tilde{m} yields the product operator \mathbf{B}_t , which serves as an unbiased estimator of
 1760 $(\nabla_{\beta}^2 g_t)^{-1}$. This avoids explicit matrix inversion while retaining correctness in expectation and is
 1761 standard in scalable bilevel optimization.

1763 Algorithm 5 Stochastic Hypergradient Estimation (Ghadimi & Wang (2018))

1764 **Require:** Get $\boldsymbol{\lambda} \in \mathcal{X}, \boldsymbol{\beta} \in \mathbb{R}^{d_2}$, sample upper bound m , learning rate $\tilde{\eta}$
 1765

1766 Sample $\tilde{m} \sim \mathcal{U}(0, 1, \dots, m-1)$ and $\mathcal{E} = \{\epsilon, \zeta^0, \dots, \zeta^{\tilde{m}-1}\}$
 1767

1768 Compute : $\mathbf{g}_t \leftarrow \nabla_{\boldsymbol{\lambda}} f_t(\boldsymbol{\lambda}, \boldsymbol{\beta}, \epsilon)$
 1769

1770 Compute : $\mathbf{H}_t \leftarrow \nabla_{\boldsymbol{\lambda}, \boldsymbol{\beta}}^2 g_t(\boldsymbol{\lambda}, \boldsymbol{\beta}, \zeta^0)$
 1771

1772 Compute approximation: $\mathbf{B}_t \leftarrow \frac{m}{\tilde{\eta}} \prod_{j=1}^{\tilde{m}} \left(I_{d_2} - \frac{1}{\tilde{\eta}} \nabla_{\boldsymbol{\beta}}^2 g_t(\boldsymbol{\lambda}, \boldsymbol{\beta}, \zeta^j) \right)$
 1773

1774 Get estimate: $\tilde{\nabla} f_t(\boldsymbol{\lambda}, \boldsymbol{\beta}, \mathcal{E}) \leftarrow \mathbf{g}_t - \mathbf{H}_t \mathbf{B}_t \nabla_{\boldsymbol{\beta}} f_t(\boldsymbol{\lambda}, \boldsymbol{\beta}, \epsilon)$
 1775

1776 Return stochastic hypergradient estimate $\tilde{\nabla} f_t(\boldsymbol{\lambda}, \boldsymbol{\beta}, \mathcal{E})$
 1777

1778 E ADDITIONAL EXPERIMENTAL DETAILS

1780 **Hyperparameter Details:** In both experiments, we employed single-loop updates ($K = 1$)
 1781 and evaluated a range of window sizes $w \in \{50, 100, 250, 500, 1000, 5000\}$. Step sizes $\alpha, \eta \in$

1782 $\{10^{-4}, 10^{-3}, 10^{-2}\}$ were selected via a grid search, following standard practice Ji et al. (2021);
 1783 Huang et al. (2022a). We tune (α, η) through this grid search and perform ablations over the window
 1784 size w (Figures 1 and 3). The only new hyperparameter relative to prior work is the curvature
 1785 parameter ρ , which in experiments is implicitly instantiated through the adaptive metric H_t in the
 1786 Bregman divergence $D_t(\lambda, \lambda') = \frac{1}{2} \|\lambda - \lambda'\|_{H_t}^2$. Thus, no additional hyperparameters require tuning.
 1787

1788 Extended Task Formulation.

1790 For our first experiment, we consider the task of learning a preconditioner $P(\lambda) \succ 0$ directly from
 1791 data—a special case of optimizer learning Andrychowicz et al. (2016); Wichrowska et al. (2017).
 1792 Given the previous iterate β_{t-1} , the inner problem is the proximal form of a preconditioned gradient
 1793 step under the metric $P(\lambda)^{-1}$:
 1794

$$\beta_t(\lambda) = \arg \min_{\beta} \left\{ L_{\text{tr},t}(\beta) + \frac{\gamma}{2} \|\beta - \beta_{t-1}\|_{P(\lambda)^{-1}}^2 \right\}.$$

1795 The outer problem selects preconditioner parameters
 1796

$$\lambda_t \in \arg \min_{\lambda} F_t(\lambda), \quad F_t(\lambda) := L_{\text{val},t}(\beta_t(\lambda)),$$

1800 so that the updated parameters generalize on the validation set. At each round, the bilevel optimization
 1801 is naturally *online*: both preconditioners and model parameters evolve sequentially over T steps, and
 1802 the optimal solution varies across the evolving loss landscape.
 1803

1804 Extended Model Details and Results

1805 • *Quadratic loss.* We use $L_{\text{tr},t}(\beta) = \frac{1}{2} \beta^\top H_{\text{tr}} \beta - b_{\text{tr}}^\top \beta$, with diagonal $P(\lambda) = \text{diag}(\lambda)$. The
 1806 inner problem admits a closed-form minimizer, enabling us to track the comparator sequence
 1807

$$H_{2,T} := \sum_{t=1}^T \sup_{\lambda \in \mathcal{X}} \|\beta_{t-1}^*(\lambda) - \beta_t^*(\lambda)\|^2.$$

1811 The validation loss is quadratic as well, $L_{\text{val},t}(\beta) = \frac{1}{2} \beta^\top H_{\text{val}} \beta - b_{\text{val}}^\top \beta$, with $H_{\text{val}}, b_{\text{val}}$
 1812 derived from a validation set.
 1813

1814 • *SVM loss.* For linear scores $f_\theta(x) = \theta^\top x$ and labels $y \in \{-1, +1\}$, we define
 1815

$$L_{\text{svm},t}(\theta) = \frac{1}{n_t} \sum_{i=1}^{n_t} \tau \log(1 + \exp((1 - y_i \theta^\top x_i)/\tau)), \quad \tau > 0.$$

1816 The inner problem becomes
 1817

$$g_t^{\text{svm}}(\theta, \lambda) = L_{\text{svm},t}(\theta) + \frac{\gamma}{2} (\theta - \theta_{t-1})^\top \text{diag}(1/\lambda) (\theta - \theta_{t-1}),$$

1818 which is smooth and convex (indeed strongly convex for $\gamma > 0$), and can be solved efficiently
 1819 by descent methods.
 1820

1821 Results:

1822 Bilevel local regret for the SVM model on the GSDC dataset is included in Figure 4.
 1823

1824 **Runtime Comparison.** To complement the regret analysis, we report wall-clock running times across
 1825 all algorithms and window sizes used in our experiments. Table 3 summarizes these running times in
 1826 seconds. We highlight three key takeaways: (i) stochastic algorithms provide substantial speedups
 1827 over deterministic methods due to mini-batching; (ii) increasing the window size w noticeably
 1828 increases the runtime of **OAGD** due to the cost of averaging hypergradients, whereas the runtime
 1829 of all other algorithms remains largely insensitive to w due to averaging *hypergradient evaluations*;
 1830 and (iii) the additional computational overhead introduced by the Bregman proximal gradient step in
 1831 **OBBO** and **SOBBO** is negligible in practice.
 1832

Figure 4: SOBBO offers the lowest regret relative to baselines.

Table 3: Running times (seconds) for preconditioner learning across algorithms and window sizes. Note that SOBBO with ($w = 1$) reduces to the SBio-BreD algorithm of Huang et al. (2022a).

Algorithm	$w=1$	$w=5$	$w=25$	$w=100$	$w=250$
OAGD	29.52 ± 0.23	30.01 ± 0.27	31.76 ± 0.28	42.38 ± 0.66	60.56 ± 0.37
SOBOW	29.20 ± 0.15	29.65 ± 0.29	29.54 ± 0.11	29.68 ± 0.17	29.81 ± 0.22
OBBO	30.78 ± 0.25	31.98 ± 0.24	31.55 ± 0.39	29.41 ± 0.14	28.89 ± 0.39
SOBO	13.34 ± 0.29	13.47 ± 0.42	13.41 ± 0.29	13.92 ± 0.21	14.02 ± 0.30
SOBBO	13.72 ± 0.10	13.35 ± 0.16	13.33 ± 0.20	14.44 ± 0.19	14.56 ± 0.35

E.1 BILEVEL MATRIX REGRESSION TASK

Task. We evaluate a Muon-style Jordan et al. instance of our Bregman bilevel optimizer on a bilevel matrix regression task. The outer variable $U \in \mathbb{R}^{p \times r}$ induces a weighting matrix $W(U) = UU^\top$, which represents a data-dependent weighting. **Models.** The inner variable $X \in \mathbb{R}^{m \times n}$ solves the strongly-convex weighted ridge regression $X^*(U) = \arg \min_X, \frac{1}{2} \|W(U)^{1/2}(A_{\text{tr}} X B_{\text{tr}} - C_{\text{tr}})\|_F^2 + \frac{\mu}{2} \|X\|_F^2$, and the outer objective evaluates the nonconvex validation objective $F(U) = \frac{1}{2} \|A_{\text{val}} X^*(U) B_{\text{val}} - C_{\text{val}}\|_F^2$. **Datasets.** The validation set is a strict subset of the training set, introducing distribution shift and forcing the optimizer to learn which samples matter through the adaptive weights $W(U)$. **Baselines** We instantiate SOBBO with a Muon-style step as defined by the time-varying quadratic potential $\phi_t(U) = \frac{1}{2} \|U\|_{H_t}^2 = \frac{1}{2} \text{tr}(U^\top H_t U)$, which yields the Bregman divergence $D_{\phi_t}(U, U_t) = \frac{1}{2} \|U - U_t\|_{H_t}^2$. The adaptive metric H_t follows the Muon update rule, using exponential moving averages of gradients: first the momentum $M_t = \beta M_{t-1} + (1 - \beta) G_t$, then the second-moment accumulator $V_t = \gamma V_{t-1} + (1 - \gamma) M_t^{\odot 2}$, and finally $H_t = \sqrt{V_t} + \varepsilon$, where $G_t = \nabla_U F(U_t)$ is the outer-level gradient. The resulting trust-region-normalized update takes the form $U_{t+1} = U_t - \alpha_t H_t^{-1} \widehat{M}_t$ with $\widehat{M}_t = M_t / \max\{1, |H_t^{-1/2} M_t|_F / \tau\}$, yielding a curvature-adaptive Muon-style update directly on U . Baselines include OAGD, SOBOW, OBBO, stochastic SOBO, and direct Adam and Muon applied to outer variable U .

Results. Figure 5 shows that our Muon-Style SOBBO achieves the lowest bilevel local regret, compared to the deterministic Euclidean baselines (OAGD and SOBOW) as well as direct single-level optimizers (Adam and Muon). Table 4 further demonstrates that all methods attain comparable mean squared error, indicating that our advantage does not come from overfitting or improved estimation accuracy, but rather from more stable and geometry-aware optimization dynamics. Together, these results show that Muon-Style SOBBO provides an effective curvature-adaptive mechanism for online bilevel learning, outperforming both existing bilevel methods (OAGD, SOBOW) and strong single-level baselines (Adam, Muon).

Figure 5: **Left:** Regret for deterministic and stochastic online bilevel optimizers on bilevel matrix reweighted regression; **Middle:** Increasing window size reduces regret incurred by stabilizing updates. **Right:** Larger window size reduces the variance of stochastic hypergradient estimates, as shown theoretically in Corollary 6.2.

Table 4: MSE between X_{true} and \hat{X}_t (over 3 seeds), $(\hat{X}_t - 1.125) \times 10^3$ to highlight relative differences.

Algorithm	$t=2500$	$t=5000$	$t=7500$	Mean \pm SE
<i>Values reported as $(\hat{X}_t - 1.125) \times 10^3$</i>				
OAGD	-1.1	+2.3	+4.4	+1.9 \pm 1.6
SOBOW	-2.1	+2.7	-0.3	+0.1 \pm 1.4
OBBO	-2.4	+2.0	+0.2	-0.1 \pm 1.3
SOBO	-0.6	+1.2	-1.4	-0.2 \pm 0.8
SOBBO	-0.9	+2.3	-2.0	-0.2 \pm 1.3
Adam (direct)	+4.9	+5.3	+4.7	+4.9 \pm 0.2
Muon (direct)	+4.9	+5.4	+4.9	+5.1 \pm 0.2