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ABSTRACT

We study online bilevel optimization (OBO) in the stochastic setting and ask
whether geometry can eliminate the severe dependence on the condition number of
the inner problem, κg = ℓg,1/µg. We introduce a family of Bregman-based algo-
rithms and analyze both oracle and practical regimes. In the oracle setting, where
exact hypergradients are available, generalized Bregman steps achieve sublinear
bilevel local regret (i.e., o(T )) while removing the cubic dependence on κg incurred
by Euclidean updates. In the practical stochastic setting, where hypergradients
must be estimated, we design single-loop, sample-efficient algorithms that combine
Bregman steps with time-smoothed hypergradient estimates. Our analysis shows
that Bregman geometry again eliminates the κg-dependence and yields guarantees
of sublinear bilevel local regret in this setting. It further reveals a broader insight:
time smoothing, previously treated as a heuristic in deterministic OBO, naturally
functions as a variance-reduction mechanism while keeping bias controlled, clari-
fying its role across both regimes. Finally, experiments on preconditioner learning
and reinforcement learning support our theoretical findings across a variety of
nonstationary loss sequences and large-scale, ill-conditioned datasets.

1 INTRODUCTION

Bilevel optimization in machine learning is widespread, with applications in hyperparameter opti-
mization Pedregosa (2016), learned optimizer training Andrychowicz et al. (2016), and reinforcement
learning Chakraborty et al. (2023). It addresses problems with a nested structure: the outer variable
λ ∈ X ⊆ Rd1 is chosen by minimizing a composite outer objective F = f + h, while the inner
variable β ∈ Rd2 comes from minimizing an inner objective:

λ∗ ∈ argmin
λ∈X

F (λ), F (λ) ≜ f(λ, β∗(λ)) + h(λ), β∗(λ) ∈ argmin
β∈Rd2

g(λ,β). (1)

where F is nonconvex and smooth, h is convex and potentially non-smooth, and g is smooth and
µg-strongly convex in β. In many machine learning settings, f and g are expectations over data or
environment randomness and are not available in closed form. With samples (ξ, ζ), the stochastic
bilevel problem is

λ∗ ∈ argmin
λ∈X

F (λ) ≜ Eξ

[
f
(
λ,β∗(λ); ξ

)]
+ h(λ), β∗(λ) ∈ argmin

β∈Rd2

Eζ

[
g
(
λ,β; ζ

)]
. (2)

Gradient-based methods update λ using hypergradients of the composite outer objective F (λ),
computed either via implicit differentiation of the inner optimality condition Pedregosa (2016);
Lorraine et al. (2020) or via iterative/truncated differentiation through an inner solver Maclaurin et al.
(2015); Franceschi et al. (2017). Prior stochastic bilevel algorithms in the offline regime provide
convergence and sample-complexity guarantees under noisy gradients Ghadimi & Wang (2018); Ji
et al. (2021). Recent works study more-efficient stochastic hypergradient estimators, via momentum
or variance reduction Khanduri et al. (2021); Chen et al. (2021); Hong et al. (2023).

Despite progress in the offline setting, the online bilevel optimization, e.g., ∀ t = 1, . . . , T :

λ∗t∈argmin
λ∈X

Ft(λ) ≜ Eξt

[
ft
(
λ,β∗t(λ); ξt

)]
+ ht(λ), β∗t(λ)∈argmin

β∈Rd2

Eζt

[
gt
(
λ,β; ζt

)]
(3)

remains underdeveloped. Existing methods are limited to deterministic and Euclidean Tarzanagh
et al. (2024); Lin et al. (2024): they assume noiseless gradients and use Euclidean outer updates.
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Alg. Bregman Loop Stoch. Samples κg dep.

OAGD Tarzanagh et al. (2024) ✗ Double ✗ N/A p(κg)
SOBOW Lin et al. (2024) ✗ Single ✗ N/A p(κg)
SOBO (ours) ✗ Single ✓ O(1) κ5

g

SOBBO (ours) ✓ Single ✓ O(1) O(1)
Table 1: Current Online Bilevel Optimizers. Bregman: supports Bregman geometry. Loop:
single vs. double loop. Stoch.: supports stochastic gradients. Samples: per-round gradients for
stochastic algorithms. κg dep.: leading dependence on the inner condition number in bounds.

These methods achieve sublinear bilevel local regret (BLR)—a stationarity-based regret on the outer
objective—but do not address two key challenges: (i) incorporating geometry-aware (Bregman)
outer updates for ill-conditioned problems, and (ii) handling stochastic, nonstationary data. We next
highlight how these gaps are significant in online bilevel optimization problems.

Gap 1: Geometry. Bregman geometry underlies many advances in online optimization, unifying
adaptivity and proximal regularization while improving robustness to ill-conditioning (e.g., Adagrad
Duchi et al. (2011), implicit online learning Kulis & Bartlett (2010)). In online nonconvex single-
level settings, geometry-aware proximal (Bregman) updates are standard, and analyses based on
stationarity-type criteria (gradient mapping/local regret) yield sublinear guarantees under reasonable
smoothness and variation assumptions Hazan et al. (2017); Aydore et al. (2019); Hallak et al. (2021).
In online bilevel problems, the challenge is related but distinct: ill-conditioning originates in the inner
problem, where the condition number κg controls the sensitivity of β∗(λ) and, via the hypergradient,
the stability of outer updates. When κg is large, outer steps become fragile to noise and drift. Yet
existing online bilevel formulations Tarzanagh et al. (2024); Lin et al. (2024) rely on Euclidean outer
updates; to our knowledge, there are no geometry-aware outer steps even in deterministic settings.
As a result, current methods exhibit strong dependence on κg—a critical liability in nonstationary
regimes where ill-conditioning is ubiquitous.

Gap 2: Stochasticity. Large-scale learning is inherently stochastic: both inner and outer gradients
are noisy, and hypergradients must be estimated. Deterministic formulations from Tarzanagh et al.
(2024); Lin et al. (2024) cannot capture these dynamics because they require full-batch gradients. A
stochastic formulation aligns the theory with practice, where mini-batch sampling is essential for
scalability, computational efficiency, and robustness to noise. Moreover, a stochastic analysis provides
additional theoretical insight: as we later show in Corollary 6.2, time-smoothing—previously used
heuristically in deterministic OBO—emerges naturally as a variance-reduction mechanism, thereby
clarifying its role across both deterministic and stochastic regimes.

Our contributions. We develop a unified framework for online stochastic bilevel optimization
(OSBO) with guarantees in both oracle and stochastic settings:

1. Bregman geometry improves κg dependence. Bregman steps achieve sublinear BLR
(o(T )) and strictly better κg-dependence than Euclidean updates: in the oracle case they
remove the κ3

g dependence; in the stochastic case they eliminate the κ5
g dependence (Table 1).

2. Single-loop, sample-efficient stochastic algorithms.:
• SOBO (Euclidean): sublinear BLR but κ5

g dependence (Table 2).
• SOBBO (Bregman): time-smoothed hypergradients + Bregman steps, removing κ5

g
while preserving sublinear BLR (Table 1).

3. Time smoothing as variance reduction. Stochastic analysis shows time smoothing is a
variance-reduction mechanism for noisy hypergradients with controlled bias, see Table 2.

4. Empirical validation. On preconditioner learning and RL with nonstationary, ill-
conditioned data, our stochastic methods outperform current online bilevel baselines.

The paper is structured as follows. Section 2 introduces notation, Bregman-based gradient steps,
and bilevel local regret. Section 3 analyzes Bregman-based optimizers in an oracle setting. Section
4 addresses hypergradient estimation and presents the proposed algorithms. Section 5 provides
regret analysis. Section 6 includes experimental results on preconditioner learning and reinforcement
learning. Proofs and extensions to the deterministic setting are in the Appendix.
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Alg. Upper bound on BLR

OAGD Tarzanagh et al. (2024) O
(
T
w
+H1,T +H2,T

)
SOBOW Lin et al. (2024) O

(
T
w
+ V1,T +H2,T

)
SOBO (ours) O

(
Tκ3

g

w

(
κ2
g + σ2

f + κ2
gσ

2
g

)
+ V1,T + κ2

gH2,T

)
SOBBO (ours) O

(
T
w

(
σ2
f + σ2

g

)
+ V1,T +H2,T

)
Table 2: Sublinear bilevel local regret. Bounds are given for comparator sequences
V1,T , H1,T , H2,T . SOBBO eliminates the κ5

g dependence of SOBO and removes κg from lead-
ing variance terms. Increasing the smoothing window w reduces variance via the T

w
factor.

2 PRELIMINARIES

2.1 NOTATION AND ASSUMPTIONS

Let ∥·∥ denote the ℓ2 norm for vectors and the spectral norm for matrices, with ⟨β1,β2⟩ denoting the
inner product between β1 and β2. For a function gt(λ,β, ζ), we denote the gradient as∇gt(λ,β, ζ).
Partial derivatives are denoted, for example with respect to λ, as ∇λgt(λ,β, ζ). We make the
following assumptions that are standard in online Tarzanagh et al. (2024); Lin et al. (2024) and
stochastic Ghadimi & Wang (2018); Ji et al. (2021); Huang et al. (2022b) bilevel optimization.
Assumption A (Smoothness of Objective Functions). For each t ∈ {1, . . . , T}, λ ∈ X , and β ∈ Rd2 ,
there exist ℓf,0, ℓf,1, ℓg,1, ℓg,2 > 0 such that:

1. ft(λ,β, ϵ) is ℓf,0-Lipschitz and∇ft is ℓf,1-Lipschitz.

2. ∇gt(λ,β, ζ) is ℓg,1-Lipschitz,∇2
λβgt and∇2

ββgt are ℓg,2-Lipschitz.

Assumption B (Strong Convexity of Lower-Level Objective). For all t, gt(λ, ·, ζ) is µg-strongly
convex in β for every λ ∈ X .

Assumptions A–B imply the inner condition number κg := ℓg,1/µg ≥ 1.
Assumption C (Stochastic Gradients). For all t and (λ,β), unbiased stochastic estimators exist for
the required first/second-order quantities (e.g. E[∇̂βgt] = ∇βgt), and analogously for ∇̂ft, ∇̂2

ββgt,

∇̂2
βλgt. Their variances are bounded: E∥∇̂βgt−∇βgt∥2 ≤ σ2

g and E∥∇̂ft−∇ft−B(λ, β)∥2 ≤ σ2
f .

Assumption D (Bounded Decision Space). X ⊆ Rd1 is closed, convex, and bounded with diameter
at most S, i.e., ∥λ1 − λ2∥ ≤ S for all λ1, λ2 ∈ X .
Assumption E (Bounded Objective). For all t, supλ∈X |Ft(λ)| ≤ Q.
Assumption F (Distance Generating Function). For all t, ϕt : X → R is continuously differentiable
and ρ-strongly convex, so that Dϕt

is well-defined.

Smoothness and strong convexity ensure the inner problem is well-conditioned; the stochastic
oracle assumptions allow unbiased, bounded-variance access to gradients Khanduri et al. (2021);
boundedness ofX and Ft prevent divergence Hazan et al. (2017); and the distance generating function
specifies the geometry in which our regret is measured Huang et al. (2022a;b).

2.2 BREGMAN PROXIMAL GRADIENT

Introduced in Bregman (1967), Bregman divergences generalize the squared Euclidean distance.
Given a continuously differentiable and ρ-strongly convex function ϕ(λ), the Bregman divergence
is defined as Dϕ(λ2,λ1) := ϕ(λ2) − ϕ(λ1) − ⟨∇ϕ(λ1),λ2 − λ1⟩. Given a Bregman divergence
Dϕ(·, ·), our proximal gradient step is

λ+ = argmin
λ∈X

{
⟨q,λ⟩+ h(λ) +

1

α
Dϕ(λ,u)

}
, (4)

where ϕ(λ) is a continuously differentiable and ρ-strongly convex function, h(λ) is a convex and
potentially nonsmooth regularization term, α > 0 is a step size, and q,u ∈ Rd1 are the estimate
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of the gradient, and current reference point, respectively. Proximal gradient methods in offline
bilevel optimization have been shown to improve convergence rates in the deterministic setting (e.g.,
Bio-BreD algorithm of Huang et al. (2022b)) and stochastic setting (e.g., SBio-BreD algorithm of
Huang et al. (2022b)). Special cases of the gradient update in equation 4 include projected (stochastic)
gradient descent (ϕ(λ) = 1

2 ∥λ∥
2, X ⊆ Rd1 , and h(λ) = 0), as well as proximal (stochastic)

gradient descent (ϕ(λ) = 1
2 ∥λ∥

2 and X = Rd1). The aforementioned gradient step in equation 4
can be further extended to a time-varying distance generating function, e.g., ϕt(λ) =

1
2λ

THtλ with
an adaptive matrix Ht, resulting in an adaptive proximal gradient method with similarities to Adagrad
from Duchi et al. (2011) and Super-Adam of Huang et al. (2021b). The proximal gradient step of
equation 4 has led to the introduction of a generalized projection from Ghadimi et al. (2016) defined
for a step size α > 0, q ∈ Rd1 , and u ∈ X as GX (u, q, α) := 1

α (u− λ+). Here GX (λ,∇ft(λ), α)
acts as a generalized gradient that simplifies to∇ft(λ) if X = Rd1 and h(λ) = 0.

2.3 GENERALIZED BILEVEL LOCAL REGRET

Bilevel local regret is a stationary metric for online bilevel optimization Tarzanagh et al. (2024); Lin
et al. (2024) that extends the single-level local regret measure from Hazan et al. (2017). The work of
Lin et al. (2024) in particular defines the bilevel local regret for a window length w ≥ 1 and a sequence
{λt}Tt=1 as BLRw(T ) :=

∑T
t=1 ∥∇Ft,w(λt)∥2 where for simplicity we have defined Ft,w(λt) :=

1
w

∑w−1
i=0 Ft−i(λt−i) as a time-smoothed outer level objective with Ft = 0 ∀t ≤ 0. Note for the

online stochastic bilevel formulation of equation 3, the bilevel local regret can be equivalently written

as BLRw(T ) :=
∑T

t=1 ∥∇Ft,w(λt)∥2 ==
∑T

t=1

∥∥∥( 1
w

∑w−1
i=0 Eϵ

[
∇λft−i(λ,β

∗
t−i(λt−i), ϵ)

])∥∥∥2.
To analyze convergence benefits from the Bregman-based gradient step of equation 4 in online bilevel
optimization algorithms, we introduce a new generalized projection based bilevel local regret as

BLRw(T ) :=

T∑
t=1

∥GX (λt,∇Ft,w(λt), α)∥2 (5)

where w ≥ 1 is the window length, and {λt}Tt=1 is the sequence of iterative updates generated. Note
that in the setting where X = Rd1 , h(λ) = 0, and ϕt(λ) = ϕ(λ) = 1

2 ∥λ∥
2, our variation of local

regret in equation 5 reduces to the regret measure of Lin et al. (2024). However, our definition offers
an important generalization of bilevel local regret when an adaptive distance generating function
ϕt(λ) or a non-zero regularization term h(λ) is present.

Besbes et al. (2015) shows that in order to derive useful regret bounds of online algorithms in time-
varying environments further regularity constraints must be imposed on the sequence, such as sublin-
ear comparator sequences. Example comparator sequences include path variation Yang et al. (2016),
function variation Besbes et al. (2015), or gradient variation Chiang et al. (2012). In online bilevel
optimization one proposed sequence is the p-th order inner level path variation of optimal decisions
from Tarzanagh et al. (2024), and is Hp,T :=

∑T
t=2 supλ∈X

∥∥β∗
t−1(λ)− β∗

t (λ)
∥∥p. A regularity

metric on the p-th order variation of the evaluations of the outer level function across time is suggested
by Lin et al. (2024) and is Vp,T :=

∑T
t=1 supλ∈X |Ft+1 (λ)− Ft (λ)|p. Note the latter regularity

metric, Vp,T , tracks how the optimal outer level variable, which is fixed for a given t ∈ [1, T ] , can
vary over time. For the online stochastic bilevel formulation of equation 3, the aforementioned com-
parator sequences can be equivalently written as Hp,T :=

∑T
t=2 supλ∈X

∥∥β∗
t−1(λ)− β∗

t (λ)
∥∥pand

Vp,T :=
∑T

t=1 supλ∈X
∣∣Eϵ

[
ft+1(λ,β

∗
t+1(λ), ϵ)

]
− Eϵ [ft(λ,β

∗
t (λ), ϵ)]

∣∣p. We will be utilizing the
regularity metrics of second-order inner-level path variation, H2,T , and first-order variation of the
evaluations of the outer level objective, V1,T , and impose a sublinear constraint, that is H2,T = o(T )
and V1,T = o(T ).

3 BREGMAN BILEVEL OPTIMIZATION UNDER HYPERGRADIENT ORACLE

The hypergradient in the online setting has been formally derived using the chain rule followed by an
implicit function theorem by Lin et al. (2024); Tarzanagh et al. (2024). Namely,
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Lemma 1. (Tarzanagh et al. (2024)) Under Assumptions A and B, we have ∀λ ∈ X

∇Ft(λ) = ∇λft(λ,β
∗
t (λ)) +∇β∗

t (λ)∇βft(λ,β
∗
t (λ))

= ∇λft(λ,β
∗
t (λ))−∇2

λ,βgt(λ,β
∗
t (λ))

(
∇2

β,βgt(λ,β
∗
t (λ))

)−1∇βf(λ,β
∗
t (λ)). (6)

The above gradient decomposition is a common expansion in bilevel optimization that utilizes the
smoothness and strong convexity assumptions A and B. The next Lemma provides an upper bound
on the difference in the evaluated hypergradient ∥∇Ft(λ1)−∇Ft(λ2)∥ in terms of the Lipschitz
constant ℓF,1.
Lemma 2. (Lemma 3 in Tarzanagh et al. (2024)) Under assumptions A and B, it holds that, for
all λ1,λ2 ∈ X , ∥∇Ft(λ1)−∇Ft(λ2)∥ ≤ ℓF,1 ∥λ1 − λ2∥ , where the constant ℓF,1 = O(κ3

g) is
dependent on the condition number κg, strong convexity parameter µg, and Lipschitz constants
ℓf,1, ℓf,0, ℓg,2, see Lemma equation 11 for full analytical form of ℓF,1.

In order to analyze the effect of generalized Bregman-based gradient steps in online bilevel optimiza-
tion, we introduce the hypergradient oracle. This obviates the need for a choice of the hypergradient
estimation and allows us to show the independent improvement of the rate of bilevel local regret.
Definition 1. The hypergradient oracle is a function O(λ) that returns the true hypergradient
O(λ) : λ 7→ ∇Ft(λ), where ∇Ft(λ) = ∇λFt(λ,β

∗
t (λ)) +∇λβ

∗
t (λ)∇βFt(λ,β

∗
t (λ)).

The oracle has access to the true hypergradient at optimal inner level variables β∗
t (λ) ∀λ ∈ X . Algo-

rithm 1 employs the hypergradient oracle, and, together with the Bregman-based step implemented as
a subroutine in Algorithm 2, constitutes a special case of our general algorithm, to be introduced later.
Sections 4 and 5 present this general algorithm and complementary regret analysis for the generalized
Bregman-based gradient step in the practical setting which requires hypergradient estimation. With

Algorithm 1 Bregman Optimizer

Require: Initial variable λ1 ∈ X , step size
α > 0, Bregman reference function ϕ

1: for t = 1, . . . , T do
2: ∇Ft(λt)← O(λt) ▷ Query oracle
3: u← λt

4: q ← ∇Ft(λt)
5: λt+1 ← Algorithm 2 for u, q, α, ϕ
6: end for
7: return λT+1

Algorithm 2 Generalized Gradient Step

Require: u, q, step size α, reference function ϕ
1: λ+ ← argminλ∈X{⟨q,λ⟩+h(λ)+ 1

α
Dϕ(λ,u)}

2: return λ+

the oracle, Theorem 3 shows that Algorithm 1 with generalized Bregman steps achieves regret o(T ),
compared to o(κ3

gT ) for classical gradient descent (X = Rd1 , h(λ) = 0, ϕ(λ) = 1
2∥λ∥

2). The
improvement comes from eliminating the multiplicative κ3

g > 1 factor. For background on the role of
condition numbers in bilevel optimization, see Huang et al. (2022b).
Theorem 3 (Bregman Steps under Hypergradient Oracle). Suppose h(λ) = 0 and X = Rd1 . Assume
Assumptions A–F hold and that the cumulative variation is sublinear:

T∑
t=1

(
Ft(λt)− Ft+1(λt+1)

)
≤ o(T ).

If Algorithm 1 uses a ρ-strongly convex reference function ϕ(λ) defining the Bregman divergence
Dϕ(λ,u) with ρ = O(ℓF,1), then the bilevel local regret (with w = 1) satisfies

T∑
t=1

∥∥GX (λt,∇Ft(λt), α)
∥∥2 ≤ o(T ),

i.e., a sublinear rate independent of the condition number κg > 1.

Remark. The result indicates that generalized Bregman steps eliminate the condition-number depen-
dence present in Euclidean updates.
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Corollary 3.1 (Classical Gradient Descent as Euclidean Bregman Step). Let ϕ(λ) = 1
2∥λ∥

2, so that
Dϕ(λ,u) =

1
2∥λ− u∥2 and ρ = 1. Then Algorithm 1 reduces to classical gradient descent and the

bilevel local regret satisfies
T∑

t=1

∥∥GX (λt,∇Ft(λt), α)
∥∥2 =

T∑
t=1

∥∇Ft(λt)∥2 ≤ o
(
ℓF,1T

)
= o
(
κ3
gT
)
.

Theorem 3 shows the improvement a Bregman-based gradient step can have on the sublinear rate of
bilevel local regret of Algorithm 1 in terms of the condition number κg > 1. Next, we extend our
Bregman algorithm and analysis to the setting where hypergradient estimation is required.

4 BREGMAN BILEVEL OPTIMIZATION UNDER HYPERGRADIENT ESTIMATION

4.1 STOCHASTIC HYPERGRADIENT ESTIMATION

Following previous work on bilevel optimization Ghadimi & Wang (2018); Tarzanagh et al. (2024);
Lin et al. (2024), the computational difficulty in obtaining β∗

t (λ) motivates the use of a sur-
rogate β in the hypergradient expansion of equation 6 for a fixed λ ∈ X and β ∈ Rd2 as

∇̃ft(λ,β) := ∇λft(λ,β) − ∇2
λ,βgt(λ,β)

(
∇2

β,βgt(λ,β)
)−1

∇βf(λ,β). Note by further con-
sidering the stochastic setting, the hypergradient is composed of first and second-order stochastic
gradients, for which we have unbiased oracles with finite variances under Assumption C. However

a stochastic estimator is still required for the inverse Hessian
(
∇2

β,βgt(λ,β, ζ)
)−1

. A common
stochastic estimator for the inverse Hessian has been proposed by Ghadimi & Wang (2018), and
used in Khanduri et al. (2021) and Huang et al. (2022b). We use the aforementioned stochastic
hypergradient estimate in this work and denote the estimate as ∇̃ft(λt,βt+1, Et). Construction of
the stochastic hypergradient estimate is included in Lemma 4.
Lemma 4. (Algorithm 3 in Ghadimi & Wang (2018)) Suppose Assumptions A, B, and C. Then for an
upper bound of m, learning rate η̃, and independent samples E = {ϵ, ζ0, . . . , ζm−1}, the stochastic
gradient of ∇̃ft(λ,β, E) provides an estimate of ∇̃ft(λ,β) and is constructed via Algorithm 5

∇̃ft(λ,β, E) := ∇λft(λ,β, ϵ)−∇2
λ,βgt(λ,β, ζ

0)

×

m
η̃

m̃∏
j=1

(
Id2
− 1

η̃
∇2

βgt(λ,β, ζ
j)

)∇βft(λ,β, ϵ), (7)

where m̃ ∼ U(0, 1, . . . ,m− 1) and, for m = 0,
∏m

j=1(·) = Id2
.

The next Lemma from Khanduri et al. (2021) characterizes the bias of this stochastic estimate.
Lemma 5. (Lemma B.1 in Khanduri et al. (2021)) Suppose Assumptions A,B, and C. For
any m ≥ 1 the gradient estimator of equation 7 satisfies the bias of B(λ,β) :=∥∥∥∇̃ft(λ,β)− EE

[
∇̃ft(λ,β, E)

]∥∥∥ ≤ ℓf,1κg

(
1− µg

ℓg,1

)m
4.2 SINGLE-LOOP EFFICIENCY WITH TIME-SMOOTHING

Due to the computational cost double-loop algorithms can incur, single-loop algorithms for bilevel
optimization are often desired. However in the stochastic case, variability of stochastic gradients
impose a difficulty for the construction of single-loop algorithms. One proposed solution commonly
employed, see Khanduri et al. (2021) and Huang et al. (2021a), is the use of momentum techniques to
achieve variance reduction. A similar methodology appears in the online deterministic setting of Lin
et al. (2024) where the technique of time-smoothing is applied to average evaluated hypergradients
and improve the rate of bilevel local regret.

Motivated by the success of momentum techniques in stochastic bilevel optimization and their
technical similarity to time-smoothing, we employ time-smoothing from Lin et al. (2024) to effi-
ciently average the evaluated stochastic hypergradients. In particular, we introduce time-smoothing

6
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with the estimator ∇̃ft,w(λt,βt+1,Zt,w) defined for all t ∈ [1, T ], window size w ≥ 1, and inde-
pendent samples Zt,w = {Et−i}w−1

i=0 where Et = {ϵt, ζ0t , . . . , ζm−1
t } as ∇̃ft,w(λt,βt+1,Zt,w) :=

1
w

∑w−1
i=0 ∇̃ft−i(λt−i,βt+1−i, Et−i), ft = 0 ∀t ≤ 0.

Our general algorithm is included in Algorithm 3 and states our novel Bregman bilevel optimizer that
efficiently utilizes stochastic hypergradient estimation with time-smoothing techniques to solve the
online stochastic bilevel optimization problem of equation 3. The special case of it, for K = 1, is
an efficient single-loop algorithm. In the next section (Section 5), we further show how the above
time-smoothing technique has the effect of variance reduction on the rate of regret.

Algorithm 3 Stochastic Online Bregman Bilevel Optimizer

Require: Horizon T ; inner steps K≥1; step sizes α, η > 0; batch sizes s,m; Bregman reference ϕ;
window w≥1

1: Initialize β1 ∈ Rd2 , λ1 ∈ X
2: for t = 1 T do
3: ω0

t ← βt

4: for k = 1K do
5: Sample s i.i.d. draws of ζ; set ζ̄t,k ← {ζ k−1

t,i }si=1

6: ωk
t ← ωk−1

t − η∇ωgt(λt,ω
k−1
t , ζ̄t,k)

7: end for
8: βt+1 ← ωK

t

9: ∇̃ft(λt,βt+1, Et)← STOCHHYPERGRAD(λt,βt+1, η,m) ▷ Alg. 5
10: Store ∇̃ft(λt,βt+1, Et) in memory
11: q ← ∇̃ft,w(λt,βt+1,Zt,w) via time-smoothing
12: u← λt

13: λt+1 ← GENERALGRADSTEP(u, q, α, ϕ) ▷ Alg. 2
14: end for
15: return λT+1, βT+1

5 CONVERGENCE ANALYSIS

To analyze the bilevel local regret of Algorithm 3, we require a bound on the error introduced by
stochastic hypergradient estimation. In the oracle setting (Theorem 3), this error is absent, but in the
stochastic case it contributes an additional term to the regret. Lemma 16 (Appendix) provides such a
bound: it decomposes the cumulative hypergradient error into contributions from (i) past bilevel local
regret, (ii) time-smoothed hypergradient error, (iii) variations in the optimal inner solutions, and (iv)
the variance σ2

g of stochastic inner gradients. Building on this decomposition, we now establish the
main regret bound for Algorithm 3.
Theorem 6. (Proof in Appendix: Theorem 17) Suppose Assumptions A-F. Let the inner step be

η = Ω(1/µg) such that η ≤ min{ 2
ℓg,1+µg

, 1
w}, outer step be α ≤ min{ 3ρ

4ℓF,1
,

ρ
√

(1−ν)

κ2
g

√
72Cµg

}, and batch

size for stochastic inverse Hessian approximation m = log (w)/ log
(
1− µg

ℓg,1

)
+1. Then the bilevel

local regret of the single-loop (K = 1) and sample-efficient (s = O(1)) Algorithm 3 satisfies

BLRw(T ) ≤ O

(
Tκ3

g

wρ

(
1 +

κ2
g + σ2

f + κ2
gσ

2
g

ρ

)
+

V1,T

ρ
+

κ2
gH2,T

ρ2

)
(8)

with comparator sequences V1,T and H2,T , σ2
g , σ

2
f are finite variances from Assumption C, and

κg > 1 is the condition number of the inner level objective.

The next corollary highlights the improvement with a Bregman-based gradient step to equation 4.
Corollary 6.1 (Effect of Bregman Steps). As in Theorem 12, selecting ρ = O(ℓF,1) = O(κ3

g) implies
the bilevel local regret of

BLRw(T ) ≤ O

(
T

w

(
1 + σ2

f + σ2
g

)
+ V1,T +H2,T

)
(9)
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where with gradient descent (ρ = 1), the rate is increased by a constant factor of κ5
g .

The next corollary highlights how time-smoothing with window length w ≥ 1 is variance reduction.
Corollary 6.2 (Variance Reduction via Windowing). Increasing w reduces the variance terms in the
regret bound, as evidenced by

BLRw(T ) ≤ O

(
Tκ3

g

wρ

(
1 +

κ2
g + σ2

f + κ2
gσ

2
g

ρ

)
+

V1,T

ρ
+

κ2
gH2,T

ρ2

)
(10)

where larger w leads to a lower contribution of variance terms σ2
f and σ2

g to the regret.

The next corollary as in deterministic online bilevel optimization problems (Lin et al. (2024))
considers sublinear comparator sequences, e.g., V1,T = o(T ) and H2,T = o(T ). For a properly
chosen window of w = o(T ) note the rate of regret is sublinear, i.e. BLRw(T ) = o(T ).
Corollary 6.3 (Sublinear Regret with Sublinear Comparators). If w = o(T ), and the comparator
sequences satisfy V1,T = o(T ) and H2,T = o(T ), then the regret bound

BLRw(T ) ≤ O

(
Tκ3

g

wρ

(
1 +

κ2
g + σ2

f + κ2
gσ

2
g

ρ

)
+

V1,T

ρ
+

κ2
gH2,T

ρ2

)
(11)

ensures that BLRw(T ) = o(T ), implying a sublinear regret rate.
Corollary 6.4 (Window-Free Sublinear Regret). Run with w = 1 and select Bregman Divergence
such that ρ = Tα for any α ∈ (0, 1). Then

BLRw(T ) ≤ O

(
T 1−α

(
1 + σ2

f + σ2
g

)
+

V1,T

Tα
+

H2,T

T 2α

)
, (12)

so BLR(T ) = o(T ) or equivalently achieves sublinear bilevel local regret without time-smoothing.

6 EXPERIMENTS

6.1 PRECONDITIONER LEARNING

Task. Adaptive methods (e.g., AdaGrad Duchi et al. (2011)) use data–dependent preconditioners
but require hand-crafted choices. We instead learn a diagonal preconditioner online via bilevel
optimization. At round t, we set P (λ) = diag(λ) ≻ 0 and couple: (i) an inner preconditioned
proximal update β∗

t (λ) = argminβ Eζt [Ltr,t(β; ζt) +
γ
2 ∥β − βt−1∥2P (λ)−1 ]; and (ii) an outer up-

date λ∗
t = argminλ∈X Eϵt [Lval,t(β

∗
t (λ); ϵt)]. This shapes the inner geometry so training transfer

improves validation, with β and λ both adapting online. Models. We use the same bilevel structure
(inner: preconditioned proximal objective; outer: validation loss) across: (i) quadratic regression
with diagonal P (λ); and (ii) linear classification with smoothed hinge/logistic loss and the same
proximal term. Datasets. We evaluate on the GDSC drug–response dataset in a high-dimensional
regime (p≫ n) for both regression and classification; to stress nonstationarity and conditioning, we
also use an imbalanced variant with three feature-based cohorts (marked vertical lines) and standard
train/validation streams. Baselines. We compare SOBBO to deterministic online bilevel methods
OBBO, SOBOW Lin et al. (2024), OAGD Tarzanagh et al. (2024), and our stochastic online bilevel
method SOBO. Deterministic baselines (SOBOW and OAGD) compute hypergradients from full
batches; SOBO uses stochastic mini-batched hypergradients and Euclidean steps. SOBBO performs
outer steps with the quadratic divergence,Dϕt

(λ2, λ1) =
1
2 ||λ2−λ1||2Ht

, such that ϕt(λ) =
1
2λ

THtλ
with diagonal matrix Ht updated adaptively, as in Adagrad, similar to Huang et al. (2022a).

Results. Figure 1 shows that SOBBO attains lower local regret relative to deterministic Euclidean
baselines as well as our stochastic baseline with Euclidean gradient descent. The middle panel of
Figure 1 shows that larger window parameters reduce both the regret incurred and the variance of
stochastic hypergradient estimates as we theoretically show in Corollary 6.2, a large improvement
from the setting of SOBBO when w = 1. For the task of preconditioner learning, Figure 2 illustrates
the difference in the learned optimizers across algorithms and window sizes, and the resulting
validation improvements. SOBBO achieves the best validation loss (0.7214), outperforming OBBO
(0.7880), OAGD (1.0110), and SOBOW (1.5291).
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Figure 1: Left: Regret for deterministic and stochastic online bilevel optimizers; SOBBO attains smaller regret.
Middle: Increasing window size reduces regret by stabilizing updates. Right: Larger window size reduces the
variance of stochastic hypergradient estimates, as shown theoretically in Corollary 6.2.

Method Loss
OAGD 1.0110
SOBOW 1.5291
OBBO 0.7880
SOBBO 0.7214

Figure 2: Left: KDE of diagonal preconditioner entries (d = 500) across algorithms. Middle: KDE for
different window sizes, showing the effect of time-smoothing. Right: Final validation loss across methods.

6.2 ACTOR–CRITIC REINFORCEMENT LEARNING

Task. Following the formulation of Prakash et al. (2025) we cast actor–critic as online bilevel
optimization with actor (outer) θ and critic (inner) ω: the actor solves minθ Eϵt [ft(θ, ω

∗
t (θ), ϵt)]+r(θ)

while the critic solves ω∗
t (θ) ∈ argminω Eζt [gt(θ, ω, ζt)]. Models. The actor πθ is a 2-layer MLP

(128–128), the critic Qω is a matching MLP with TD updates. Datasets. We consider a nonstationary
Pendulum environment within Gymnasium with scheduled nonstationarity jumps occurring in the
gravity and max torque, see left panel of Figure 3. Baselines. We compare our algorithm SOBBO,
using the quadratic divergence Dϕt

(λ2, λ1) =
1
2 ||λ2 − λ1||2Ht

, against SOBOW and OAGD adapted
to this RL setting, measuring bilevel local regret and the effect of window size.

Results: Figure 3 shows lower bilevel local regret of SOBBO relative to deterministic and stochastic
baselines with increasing window parameter (w = 50, 500, 5000) further reducing regret.

Figure 3: Bilevel RL experiments. (a) Relative changes in the Pendulum environment. (b) Bilevel local regret
across algorithms; SOBBO achieves lowest. (c) Bilevel local regret over window sizes shows improved regret.

7 CONCLUSION

This work shows that Bregman geometry removes the dependence on the inner condition number
in stochastic online bilevel optimization while attaining sublinear bilevel local regret. We develop
single-loop, sample-efficient algorithms that couple generalized Bregman steps with time-smoothed
hypergradient estimates, and our analysis identifies smoothing as an intrinsic variance-reduction
mechanism that controls bias and unifies prior heuristics with theory. Empirical results corroborate
these claims across ill-conditioned, large-scale datasets and nonstationary losses.
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7.1 REPRODUCIBILITY STATEMENT

To ensure reproducibility, Sections 3 to 5 present the key algorithmic details of our Bregman-based
bilevel optimizers. Section 6 documents the experimental setup, baselines, hyperparameters, and
the open-source datasets used. Upon acceptance, we will release an open-source repository with
implementations, configurations, and scripts to reproduce all experiments. All assumptions and
complete proofs, including regret bounds in the stochastic setting (Appendix B) and the reduction to
the deterministic setting (Appendix C), are provided in the appendices.
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A PRELIMINARIES

Lemma 7. (Lemma 12 in Tarzanagh et al. (2024)) For any set of vectors {βi}mi=1, it holds that∥∥∥∥∥
m∑
i=1

βi

∥∥∥∥∥
2

≤ m

m∑
i=1

∥βi∥2 (13)

The following lemma provides progress bounds for gradient descent applied to a µg-strongly convex
and twice differentiable function g(β).
Lemma 8. Let g(ω) be a twice differentiable and µg-strongly convex function with∇g(ω) satisfying
ℓg,1-Lipschitz continuity. Further assume g(ω) has a global minimizer ω̂ over the domain Rd2 . Then
under the gradient descent method of

ωk = ωk−1 − η∇g(ωk−1),

the following satisfies for η ≤ 1
ℓg,1∥∥ωk − ω̂

∥∥2 ≤ (1− ηµg)
∥∥ωk−1 − ω̂

∥∥2 ,
The following two lemmas characterize useful properties known for the generalized projection
GX (u, q, α).
Lemma 9. (Lemma 1 in Ghadimi et al. (2016)) Let λ+ be from equation 4. Then ∀u ∈ X , q ∈ Rd1 ,
and α > 0 we have

⟨q,GX (u, q, α)⟩ ≥ ρ ∥GX (u, q, α)∥2 + 1

α

(
h(λ+)− h(u)

)
(14)

such that ρ > 0 is the strong convexity parameter of the distance generating function ϕ(λ).
Lemma 10. (Proposition 1 in Ghadimi et al. (2016)) Let GX (u, q, α) be the generalized projection.
Then ∀q1, q2 ∈ Rd1 , ∀u ∈ X , ∀α > 0, we have

∥GX (u, q1, α)− GX (u, q2, α)∥ ≤
1

ρ
∥q1 − q2∥ . (15)

The next Lemma provides useful bounds on the hypergradient∇Ft(λ), gradient estimate∇ft(λ,β),
and optimal inner level variables β∗

t (λ) in the deterministic online bilevel optimization problem.
Lemma 11. (Lemma 3 in Tarzanagh et al. (2024)) Under assumptions A and B, it holds for all
t ∈ [1, T ], λ1,λ2 ∈ X , and β ∈ Rd2 that

∥β∗
t (λ1)− β∗

t (λ2)∥ ≤ κg ∥λ1 − λ2∥ , (16)

where κg :=
ℓg,1
µg

= O(κg), the gradient estimator ∇̃ft(λ,β) satisfies

∥∇̃ft(λ,β)−∇Ft(λ)∥ ≤Mf ∥β − β∗
t (λ)∥ , (17)

where Mf := ℓf,1 + ℓf,1κg +
ℓf,0ℓg,2

µg
(1 + κg) = O(κ2

g), and

∥∇Ft(λ1)−∇Ft(λ2)∥ ≤ ℓF,1 ∥λ1 − λ2∥ , (18)

where ℓF,1 := ℓf,1(1 + κg) +
ℓf,0ℓg,2

µg
(1 + κg) +Mfκg = O(κ3

g).

B PROOF IN STOCHASTIC SETTING

The first theorem states the convergence result in the hypergradient oracle setting.
Theorem 12. Suppose that h(λ) = 0 and X = Rd1 . Additionally, let Assumptions A-F hold. If the
cumulative difference of subsequent function evaluations satisfies the sublinearity condition:

T∑
t=1

(Ft(λt)− Ft+1(λt+1)) ≤ o(T ), (19)

then, by selecting a ρ-strongly convex reference function ϕ(λ) that uniquely defines the Bregman
Divergence Dϕ(λ,u) such that ρ = O(ℓF,1) in the generalized step of equation 4, the bilevel local
regret (for w = 1) of Algorithm 1, using the generalized Bregman-based step from Algorithm 2,
achieves a sublinear rate of o(T ), independent of the condition number κg > 1.
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Proof. We analyze the convergence of the Bregman optimizer in Algorithm 1, under the generalized
Bregman-based gradient step of Algorithm 2. Note with Assumptions A and B, we apply Lemma 2
that says Ft is ℓF,1-smooth and implies that

Ft(λt+1)− Ft(λt) ≤ ⟨∇Ft(λt),λt+1 − λt⟩+
ℓF,1

2
∥λt+1 − λt∥2.

Substituting the generalized projection of GX (λt,∇Ft(λt), α) :=
1
α (λt − λt+1) from the general-

ized Bregman-based gradient step of equation 4 gives us

Ft(λt+1)−Ft(λt) ≤ ⟨∇Ft(λt),−αGX (λt,∇Ft(λt), α)⟩+
ℓF,1

2
∥αGX (λt,∇Ft(λt), α)∥2. (20)

Now applying Lemma 9, we obtain

⟨∇Ft(λt),−αGX (λt,∇Ft(λt), α)⟩ ≤ −ρα∥GX (λt,∇Ft(λt), α)∥2. (21)

Substituting equation 21 into equation 20 and rearranging this inequality and telescoping we get

−
(
ρα− ℓF,1α

2

2

) T∑
t=1

∥GX (λt,∇Ft(λt), α)∥2 ≤
T∑

t=1

Ft(λt)− Ft+1(λt+1).

Choosing α = 1
ℓF,1

with our assumption on sublinear subsequent function evaluations, that is it holds

that
∑T

t=1 Ft(λt)− Ft+1(λt+1) ≤ o(T ), then we have the sublinear rate

T∑
t=1

∥GX (λt,∇Ft(λt), α)∥2 ≤
ℓF,1

∑T
t=1 (Ft(λt)− Ft+1(λt+1))

(ρ− 1/2)
≤ o

(
ℓF,1

ρ
T

)
.

Selecting the ρ-strongly convex function ϕ(λ) that specifies the Bregman Divergence Dϕ(λ,u) in
equation 4 such that ρ = O(ℓF,1) = O(κ3

g) implies that the bilevel local regret is sublinear with the
rate of

T∑
t=1

∥GX (λt,∇Ft(λt), α)∥2 ≤ o (T ) .

Our first Lemma upper bounds the expected cumulative difference between the time-smoothed outer
level objective Ft,w(λ) evaluated at λt and λt+1 in terms of the outer level objective upper bound Q
from Assumption E, window size w, and a comparator sequence on subsequent function evaluations
V1,T .

Lemma 13. Suppose Assumption E. If Algorithm 3 is applied with window size w ≥ 1 to generate
the sequence {λt}Tt=1, then we have the upper bound in expectation of

T∑
t=1

(Ft,w(λt)− Ft,w(λt+1)) ≤
2TQ

w
+ V1,T .

Proof. By definition in the stochastic setting, we have Ft(λ) ≜ Eϵ [ft(λ,β
∗
t (λ), ϵ)]. Then it holds,

with the linearity of expectation that

T∑
t=1

(Ft,w(λt)− Ft,w(λt+1)) =

T∑
t=1

1

w

w−1∑
i=0

(Ft−i(λt−i)− Ft−i(λt+1−i))

=

T∑
t=1

1

w

w−1∑
i=0

(
Eϵ

[
ft−i

(
λt−i,β

∗
t−i(λt−i), ϵ

)]
− Eϵ

[
ft−i

(
λt+1−i,β

∗
t−i(λt+1−i), ϵ

)])
=

T∑
t=1

1

w

w−1∑
i=0

Eϵ

[
ft−i

(
λt−i,β

∗
t−i(λt−i), ϵ

)
− ft−i

(
λt+1−i,β

∗
t−i(λt+1−i), ϵ

)]

13
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Which with the linearity of expectation is equivalent to
T∑

t=1

1

w

w−1∑
i=0

Eϵ

[
ft−i

(
λt−i,β

∗
t−i(λt−i), ϵ

)
− ft−i

(
λt+1−i,β

∗
t−i(λt+1−i), ϵ

)]
=

T∑
t=1

1

w

w−1∑
i=0

Eϵ

[
ft−i

(
λt−i,β

∗
t−i(λt−i), ϵ

)
− ft+1−i

(
λt+1−i,β

∗
t+1−i(λt+1−i), ϵ

)]
(22)

+

T∑
t=1

1

w

w−1∑
i=0

Eϵ

[
ft+1−i

(
λt+1−i,β

∗
t+1−i(λt+1−i), ϵ

)
− ft−i

(
λt+1−i,β

∗
t−i(λt+1−i), ϵ

)]
(23)

For equation 22, with linearity of expectation, we have

1

w

w−1∑
i=0

Eϵ

[
ft−i

(
λt−i,β

∗
t−i(λt−i), ϵ

)
− ft+1−i

(
λt+1−i,β

∗
t+1−i(λt+1−i), ϵ

)]
=

1

w
Eϵ

[
ft (λt,β

∗
t (λt), ϵ) + . . .+ ft+1−w

(
λt+1−w,β

∗
t+1−w(λt+1−w), ϵ

)]
− 1

w
Eϵ

[
ft+1

(
λt+1,β

∗
t+1(λt+1)

)
+ . . .+ ft+2−w

(
λt+2−w,β

∗
t+2−w(λt+2−w), ϵ

)]
=

1

w
Eϵ

[
ft+1−w

(
λt+1−w,β

∗
t+1−w(λt+1−w), ϵ

)
− ft+1

(
λt+1,β

∗
t+1(λt+1), ϵ

)]
=

1

w
(Ft+1−w(λt+1−w)− Ft+1(λt+1)) ≤

2Q

w
, (24)

where the last inequality comes from Assumption E. Note equation 23 can be bounded through
T∑

t=1

1

w

w−1∑
i=0

Eϵ

[
ft+1−i

(
λt+1−i,β

∗
t+1−i(λt+1−i), ϵ

)
− ft−i

(
λt+1−i,β

∗
t−i(λt+1−i), ϵ

)]
≤

T∑
t=1

1

w

w−1∑
i=0

sup
λ

Eϵ

[
ft+1−i

(
λ,β∗

t+1−i(λ), ϵ
)
− ft−i

(
λ,β∗

t−i(λ), ϵ
)]

=

T∑
t=1

sup
λ∈X

[Ft+1 (λ)− Ft (λ)] := V1,T (25)

Combining equation 23 and equation 25 results in the upper bound of
T∑

t=1

(Ft,w(λt)− Ft,w(λt+1)) ≤
2TQ

w
+ V1,T .

The next Lemma provides an upper bound on the expected error of Eζ̄t,K+1

[
∥βt − β∗

t (λt)∥2
]

for
all t ∈ [1, T ] in terms of an expected initial error, the expected cumulative differences of the outer
level variable, the expected cumulative differences of the optimal inner level variables, and a variance
term arising from the stochasticity of gt(λ,β, ζ).
Lemma 14. Suppose Assumptions A, B, and C. Choose the inner step size of η = Ω(1/µg) with the
inner iteration count K as

0 < η ≤ 2

ℓg,1 + µg
, and K ≥ 1,

and define the decay parameter ν, the inner level variable error constant Cµg
, the initial error ∆β,

and the inner level variable error variance CK respectively as

ν :=

(
1− ηℓg,1µg

ℓg,1 + µg

)(
1− 2ηℓg,1µg

ℓg,1 + µg

)K−1

, Cµg
:=

(
1 +

ℓg,1 + µg

ηℓg,1µg

)
,

∆β := ∥β2 − β∗
1(λ1)∥2 = O(1), and CK :=

K∑
k=1

(
1− 2ηℓg,1µg

ℓg,1 + µg

)k

. (26)

14
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Then we have Cµg
= O(1), and ∀t ∈ [1, T ], t

Eζ̄t,K+1

[
∥βt+1 − β∗

t (λt)∥2
]
≤ νt−1∆β + 2Cµgκ

2
g

t−2∑
j=0

νj+1
[
∥λt−1−j − λt−j∥2

]

+2Cµg

t−2∑
j=0

νj+1
[∥∥β∗

t−j(λt−1−j)− β∗
t−1−j(λt−1−j)

∥∥2]+ CKη2σ2
g

s

t−2∑
j=0

νj .

Proof. Note ∀k ∈ [1,K] the following expansion holds ∥∥ωk
t − β∗

t (λt)
∥∥2

=
∥∥ωk

t − ωk−1
t

∥∥2 + 2
〈
ωk

t − ωk−1
t ,ωk−1

t − β∗
t (λt)

〉
+
∥∥ωk−1

t − β∗
t (λt)

∥∥2
= η2

∥∥∇ωgt(λt,ω
k−1
t , ζ̄t,k)

∥∥2 − 2η
〈
∇ωgt(λt,ω

k−1
t , ζ̄t,k),ω

k−1
t − β∗

t (λt)
〉

+
∥∥ωk−1

t − β∗
t (λt)

∥∥2 .
Using the definition of variance of

V ARζ̄t,k

[∥∥∇ωgt(λt,ω
k−1
t , ζ̄t,k)

∥∥]
= Eζ̄t,k

[∥∥∇ωgt(λt,ω
k−1
t , ζ̄t,k)

∥∥2]− Eζ̄t,k

[∥∥∇ωgt(λt,ω
k−1
t , ζ̄t,k)

∥∥]2 ,
and conditioning on ωk−1

t , we take expectation (Assumption C) to provide the upper bound of

Eζ̄t,k

[∥∥ωk
t − β∗

t (λt)
∥∥2] ≤ η2

(
σ2
g

s
+
∥∥∇ωgt(λt,ω

k−1
t )

∥∥2)
−2η

〈
∇ωgt(λt,ω

k−1
t ),ωk−1

t − β∗
t (λt)

〉
+
∥∥ωk−1

t − β∗
t (λt)

∥∥2 . (27)

The above upper bound is deterministic, and as such we can utilize the µg-strong convexity of gt to
bound

−2η
〈
∇ωgt(λt,ω

k−1
t ),ωk−1

t − β∗
t (λt)

〉
≤ −2η

(
ℓg,1µg

ℓg,1 + µg

∥∥ωk−1
t − β∗

t (λt)
∥∥2 + 1

ℓg,1 + µg

∥∥∇ωgt(λt,ω
k−1
t )

∥∥2) ,

which we can substitute in equation 27 to get

Eζ̄t,k

[∥∥ωk
t − β∗

t (λt)
∥∥2] ≤ η2σ2

g

s
− η

(
2

ℓg,1 + µg
− η

)∥∥∇ωgt(λt,ω
k−1
t )

∥∥2
+

(
1− 2ηℓg,1µg

ℓg,1 + µg

)∥∥ωk−1
t − β∗

t (λt)
∥∥2 .

As η ≤ 2
ℓg,1+µg

this provides the upper bound to equation 27 of

Eζ̄t,k

[∥∥ωk
t − β∗

t (λt)
∥∥2] ≤ (1− 2ηℓg,1µg

ℓg,1 + µg

)∥∥ωk−1
t − β∗

t (λt)
∥∥2 + η2σ2

g

s
.

This can be unrolled, through iterative conditioning, from k = K, . . . , 1

Eζ̄t,K+1

[∥∥ωK
t − β∗

t (λt)
∥∥2] ≤ (1− 2ηℓg,1µg

ℓg,1 + µg

)K

Eζ̄t,1

∥∥ω0
t − β∗

t (λt)
∥∥2 + CKη2σ2

g

s
,

for CK :=
∑K

k=1

(
1− 2ηℓg,1µg

ℓg,1+µg

)k
. By definition of βt+1 = ωK

t and ω0
t = βt gives us

Eζ̄t,K+1

[
∥βt+1 − β∗

t (λt)∥2
]
≤
(
1− 2ηℓg,1µg

ℓg,1 + µg

)K

Eζ̄t−1,K+1
∥βt − β∗

t (λt)∥2 +
CKη2σ2

g

s
.
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Note we can decompose

Eζ̄t−1,K+1
∥βt − β∗

t (λt)∥2 = Eζ̄t−1,K+1

∥∥βt − β∗
t−1(λt−1) + β∗

t−1(λt−1)− β∗
t (λt)

∥∥2 ,
which can be expanded based on Young’s Inequality and the linearity of expectation for any δ > 0 as

Eζ̄t−1,K+1

∥∥βt − β∗
t−1(λt−1) + β∗

t−1(λt−1)− β∗
t (λt)

∥∥2
≤ (1 + δ)Eζ̄t−1,K+1

∥∥βt − β∗
t−1(λt−1)

∥∥2
+

(
1 +

1

δ

)
Eζ̄t−1,K+1

∥∥β∗
t−1(λt−1)− β∗

t (λt)
∥∥2 . (28)

Now it holds through linearity of expectation that

Eζ̄t−1,K+1

∥∥β∗
t−1(λt−1)− β∗

t (λt)
∥∥2 ≤ 2Eζ̄t−1,K+1

∥β∗
t (λt−1)− β∗

t (λt)∥2

+2Eζ̄t−1,K+1

∥∥β∗
t (λt−1)− β∗

t−1(λt−1)
∥∥2 (29)

which through Lemma 11 can be further upper bounded with the Lipschitz constant of κg as

Eζ̄t−1,K+1

∥∥β∗
t−1(λt−1)− β∗

t (λt)
∥∥2

≤ 2κ2
gEζ̄t−1,K+1

∥λt−1 − λt∥2 + 2Eζ̄t−1,K+1

∥∥β∗
t (λt−1)− β∗

t−1(λt−1)
∥∥2

= 2κ2
g ∥λt−1 − λt∥2 + 2

∥∥β∗
t (λt−1)− β∗

t−1(λt−1)
∥∥2

(30)

where the last line comes from the non-randomness of ∥λt−1 − λt∥2 and∥∥β∗
t (λt−1)− β∗

t−1(λt−1)
∥∥2 with respect to ζ̄t,k. Combining equation 29 and equation 28,

we have ∀δ > 0

Eζ̄t,K+1

[
∥βt+1 − β∗

t (λt)∥2
]
≤
(
1− 2ηℓg,1µg

ℓg,1 + µg

)K

(1 + δ)Eζ̄t−1,K+1

[∥∥βt − β∗
t−1(λt−1)

∥∥2]
+2

(
1− 2ηℓg,1µg

ℓg,1 + µg

)K (
1 +

1

δ

)
κ2
g ∥λt−1 − λt∥2

+2

(
1− 2ηℓg,1µg

ℓg,1 + µg

)K (
1 +

1

δ

)∥∥β∗
t (λt−1)− β∗

t−1(λt−1)
∥∥2 + CKη2σ2

g

s
.

Now setting δ =
ηℓg,1µg

ℓg,1+µg
> 0 implies the upper bound of

(1 + δ)

(
1− 2ηℓg,1µg

ℓg,1 + µg

)K

<

(
1− ηℓg,1µg

ℓg,1 + µg

)(
1− 2ηℓg,1µg

ℓg,1 + µg

)K−1

< 1,

which defining ν :=
(
1− ηµgℓg,1

ℓg,1+µg

)(
1− 2ηℓg,1µg

ℓg,1+µg

)K−1

and δ > 0 implies(
1− 2ηℓg,1µg

ℓg,1 + µg

)K

< ν,

Using the definition of ν, we get

νEζ̄t,K+1

[
∥βt+1 − β∗

t (λt)∥2
]
≤ ν2Eζ̄t−1,K+1

[∥∥βt − β∗
t−1(λt−1)

∥∥2]
+2Cµg

ν2κ2
g ∥λt−1 − λt∥2 + 2Cµg

ν2
∥∥β∗

t (λt−1)− β∗
t−1(λt−1)

∥∥2 + νCKη2σ2
g

s
,

where Cµg
=
(
1 +

ℓg,1+µg

ηℓg,1µg

)
. Starting at t = T , and unrolling to t = 1, we can write

Eζ̄t,K+1

[
∥βt+1 − β∗

t (λt)∥2
]
≤ νt−1∆β + 2Cµgκ

2
g

t−2∑
j=0

νj+1
[
∥λt−1−j − λt−j∥2

]

+2Cµg

t−2∑
j=0

νj+1
[∥∥β∗

t−j(λt−1−j)− β∗
t−1−j(λt−1−j)

∥∥2]+ CKη2σ2
g

s

t−2∑
j=0

νj .
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The next Lemma utilizes Lemma 11 and Lemma 14 to derive an upper bound on the expected
hypergradient error ∀t ∈ [1, T ] with respect to ζ̄t,k in terms of discounted variations of the (i)
cumulative time-smoothed hypergradient error; (ii) bilevel local regret; and (iii) cumulative difference
between optimal inner-level variables. There is a term composed of a discounted initial error and
smoothness term of the inner objective, as well as an additional term arising from the variance of the
stochastic gradients of gt(λ,β, ζ).
Lemma 15. Suppose Assumptions A, B, C, D, and F. Choose the inner step size of η = Ω(1/µg)
and inner iteration count K as

0 < η ≤ 2

ℓg,1 + µg
, and K ≥ 1.

With the definitions of ν, Cµg
, ∆β, and CK from Lemma 14, the expected hypergradient error can

be bounded as

Eζ̄t,K+1

[∥∥∥∇̃ft(λt,βt+1)−∇Ft (λt)
∥∥∥2] ≤ δt +A

t−2∑
j=0

νj+1 ∥GX (λt−1−j ,∇Ft−1−j,w(λt−1−j), α)∥2

+B

t−2∑
j=0

νj+1
∥∥∥∇̃ft−1−j,w(λt−1−j ,βt−j ,Zt−1−j,w)−∇Ft−1−j,w(λt−1−j)

∥∥∥2
+C

t−2∑
j=0

νj+1
[∥∥β∗

t−j(λt−1−j)− β∗
t−1−j(λt−1−j)

∥∥2]+ Dσ2
g

s
.

where δt = κ2
gν

t−1∆β and A = 4Cµg
κ4
gα

2, B =
4Cµgκ

4
gα

2

ρ2 , C = 2Cµg
κ2
g, and D =

CKκ2
gη

2
∑t−2

j=0 ν
j .

Proof. First, from Lemma 11 (Assumption A,B) we have that ∀λ ∈ X and β ∈ Rd2∥∥∥∇̃ft(λt,βt+1)−∇Ft (λt)
∥∥∥2 ≤ κ2

g ∥βt+1 − β∗
t (λt)∥2 . (31)

Taking expectation of equation 31 with respect to ζ̄t,K+1 (Assumption C) and substituting the upper
bound of Lemma 14, note

Eζ̄t,K+1

[∥∥∥∇̃ft(λt,βt+1)−∇Ft (λt)
∥∥∥2]

≤ κ2
g

νt−1∆β + 2Cµg
κ2
g

t−2∑
j=0

νj+1 ∥λt−1−j − λt−j∥2
 (32)

+κ2
g

2Cµg

t−2∑
j=0

νj+1
∥∥β∗

t−j(λt−1−j)− β∗
t−1−j(λt−1−j)

∥∥2 + CKη2σ2
g

s

t−2∑
j=0

νj

 . (33)

Focusing on the second term of equation 32 we see by definition
t−2∑
j=0

νj+1 ∥λt−1−j − λt−j∥2

=

t−2∑
j=0

νj+1α2
∥∥∥GX (λt−1−j , ∇̃ft−1−j,w(λt−1−j ,βt−j ,Zt−1−j,w), α)

∥∥∥2 . (34)

Using Lemma 10 (Assumption D,F) we have ∀j ∈ [0, t− 2]∥∥∥GX (λt−1−j , ∇̃ft−1−j,w(λt−1−j ,βt−j ,Zt−1−j,w), α)
∥∥∥2 ≤ 2 ∥GX (λt−1−j ,∇Ft−1−j,w(λt−1−j), α)∥2

+2
∥∥∥GX (λt−1−j ,∇Ft−1−j,w(λt−1−j), α)− GX (λt−1−j , ∇̃ft−1−j,w(λt−1−j ,βt−j ,Zt−1−j,w), α)

∥∥∥2
≤ 2 ∥GX (λt−1−j ,∇Ft−1−j,w(λt−1−j), α)∥2

+
2

ρ2

∥∥∥∇̃ft−1−j,w(λt−1−j ,βt−j ,Zt−1−j,w)−∇Ft−1−j,w(λt−1−j)
∥∥∥2 .
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We can write an upper bound to equation 34 as
t−2∑
j=0

νj+1 ∥λt−1−j − λt−j∥2 ≤ 2α2
t−2∑
j=0

νj+1 ∥GX (λt−1−j ,∇Ft−1−j,w(λt−1−j), α)∥2

+
2α2

ρ2

t−2∑
j=0

νj+1

(∥∥∥∇̃ft−1−j,w(λt−1−j ,βt−j ,Zt−1−j,w)−∇Ft−1−j,w(λt−1−j)
∥∥∥2) . (35)

Using equation 35, we get

Eζ̄t,K+1

[∥∥∥∇̃ft(λt,βt+1)−∇Ft (λt)
∥∥∥2] ≤ δt +A

t−2∑
j=0

νj+1 ∥GX (λt−1−j ,∇Ft−1−j,w(λt−1−j), α)∥2

+B

t−2∑
j=0

νj+1
∥∥∥∇̃ft−1−j,w(λt−1−j ,βt−j ,Zt−1−j,w)−∇Ft−1−j,w(λt−1−j)

∥∥∥2
+C

t−2∑
j=0

νj+1
[∥∥β∗

t−j(λt−1−j)− β∗
t−1−j(λt−1−j)

∥∥2]+ Dσ2
g

s
.

where δt = κ2
gν

t−1∆β and A = 4Cµg
κ4
gα

2, B =
4Cµgκ

4
gα

2

ρ2 , C = 2Cµg
κ2
g, and D =

CKκ2
gη

2
∑t−2

j=0 ν
j .

Lemma 16 provides an upper bound on the expected cumulative time-smoothed hypergradient error
in terms of an initial error, expected bilevel local regret, expected cumulative differences of optimal
inner level variables, as well as variance terms from the stochastic approximated gradients.
Lemma 16. Suppose Assumptions A, B, C, D, and F. Choose the inner step size of η = Ω(1/µg), the
inner iteration count K, and the outer step size α respectively as

0 < η ≤ 2

ℓg,1 + µg
, K ≥ 1, and α <

ρ
√

(1− ν)

κ2
g

√
72Cµg

.

Then ∀t ∈ [1, T ] the expected cumulative time-smoothed hypergradient error with respect to indepen-
dent samples Zt,w satisfies

EZt,w

[
T∑

t=1

∥∥∥∇̃ft,w(λt,βt+1,Zt,w)−∇Ft,w (λt)
∥∥∥2] ≤ AT

w
+BT

(
1− µg

ℓg,1

)2m

+C

T∑
t=1

E ∥GX (λt,∇Ft,w(λt), α)∥2 +D

T∑
t=2

E
[∥∥β∗

t (λt−1)− β∗
t−1(λt−1)

∥∥2]+ TEη2σ2
g

s
.

where the initial term δt :=
9κ2

g∆β

4(1−ν) and constants are defined as A :=
9σ2

f

2 , B :=
9ℓ2f,1κ

2
g

2 , C := ρ2

8 ,

D :=
9Cµgκ

2
g

2(1−ν) , and E :=
9CKκ2

g

4(1−ν) . Note ∆β, ν, Cµg , CK are defined in Lemma 14, σ2
f , σ

2
g are from

Assumption C, κg denotes the condition number and ρ specifies Bregman Divergence in equation 4.

Proof. With the linearity of expectation we have

EZt,w

[
T∑

t=1

∥∥∥∇̃ft,w(λt,βt+1,Zt,w)−∇Ft,w (λt)
∥∥∥2]

=

T∑
t=1

EZt,w

[∥∥∥∇̃ft,w(λt,βt+1,Zt,w)−∇Ft,w (λt)
∥∥∥2]

=
1

w2

T∑
t=1

EZt,w

∥∥∥∥∥
w−1∑
i=0

[
∇̃ft−i(λt−i,βt+1−i, Et−i)−∇Ft−i (λt−i)

]∥∥∥∥∥
2
 . (36)
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Note that we can upper bound equation 36 as

1

w2

T∑
t=1

EZt,w

∥∥∥∥∥
w−1∑
i=0

[
∇̃ft−i(λt−i,βt+1−i, Et−i)−∇Ft−i (λt−i)

]∥∥∥∥∥
2


≤ 2

w2

T∑
t=1

EZt,w

∥∥∥∥∥
w−1∑
i=0

[
∇̃ft−i(λt−i,βt+1−i, Et−i)− EEt−i

[
∇̃ft−i(λt−i,βt+1−i, Et−i)

]]∥∥∥∥∥
2


(37)

+
2

w2

T∑
t=1

EZt,w

∥∥∥∥∥
w−1∑
i=0

[
EEt−i

[
∇̃ft−i(λt−i,βt+1−i, Et−i)

]
−∇Ft−i (λt−i)

]∥∥∥∥∥
2
 .

(38)

The linearity of expectation, definition of variance, and independence of Zt,w := {Et−i}w−1
i=0 ∀t ∈

[1, T ] implies for yi = ∇̃ft−i(λt−i,βt+1−i, Et−i) with finite variance σ2
f , we have

EZt,w

∥∥∥∥∥
w−1∑
i=0

∇̃ft−i(λt−i,βt+1−i, Et−i)− EEt−i

[
w−1∑
i=0

∇̃ft−i(λt−i,βt+1−i, Et−i)

]∥∥∥∥∥
2


≤
w−1∑
i=0

σ2
f = wσ2

f . (39)

Expanding equation 38 we have

2

w2

T∑
t=1

EZt,w

∥∥∥∥∥
w−1∑
i=0

[
EEt−i

[
∇̃ft−i(λt−i,βt+1−i, Et−i)

]
−∇Ft−i (λt−i)

]∥∥∥∥∥
2


≤ 4

w2

T∑
t=1

EZt,w

∥∥∥∥∥
w−1∑
i=0

[
EEt−i

[
∇̃ft−i(λt−i,βt+1−i, Et−i)

]
− ∇̃ft−i(λt−i,βt+1−i)

]∥∥∥∥∥
2
 (40)

+
4

w2

T∑
t=1

∥∥∥∥∥
w−1∑
i=0

[
∇̃ft−i(λt−i,βt+1−i)−∇Ft−i (λt−i)

]∥∥∥∥∥
2
 (41)

Utilizing Lemmas 5 and 7 for equation 40 gives us the expected stochastic gradient bias

4

w2

T∑
t=1

EZt,w

∥∥∥∥∥
w−1∑
i=0

[
EEt−i

[
∇̃ft−i(λt−i,βt+1−i, Et−i)

]
− ∇̃ft−i(λt−i,βt+1−i)

]∥∥∥∥∥
2


≤ 4

w2

T∑
t=1

EZt,w

[
w

w−1∑
i=0

∥∥∥EEt−i

[
∇̃ft−i(λt−i,βt+1−i, Et−i)

]
− ∇̃ft−i(λt−i,βt+1−i)

∥∥∥2]

≤ 4

w2

T∑
t=1

(
w2ℓ2f,1κ

2
g

(
1− µg

ℓg,1

)2m
)

= 4Tℓ2f,1κ
2
g

(
1− µg

ℓg,1

)2m

(42)

Applying Lemma 7 with linearity of expectation to equation 41 results in

4

w2

T∑
t=1

∥∥∥∥∥
w−1∑
i=0

[
∇̃ft−i(λt−i,βt+1−i)−∇Ft−i (λt−i)

]∥∥∥∥∥
2


≤ 4

w2

T∑
t=1

w

w−1∑
i=0

[∥∥∥∇̃ft−i(λt−i,βt+1−i)−∇Ft−i (λt−i)
∥∥∥2]

=
4

w

T∑
t=1

w−1∑
i=0

[∥∥∥∇̃ft−i(λt−i,βt+1−i)−∇Ft−i (λt−i)
∥∥∥2] (43)
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Combining equation 37, equation 38, equation 39, and equation 43, we have the upper bound of

EZt,w

[
T∑

t=1

∥∥∥∇̃ft,w(λt,βt+1,Zt,w)−∇Ft,w (λt)
∥∥∥2] ≤ 4Tσ2

f

w

+4Tℓ2f,1κ
2
g

(
1− µg

ℓg,1

)2m

+
4

w

T∑
t=1

w−1∑
i=0

[∥∥∥∇̃ft−i(λt−i,βt+1−i)−∇Ft−i (λt−i)
∥∥∥2] , (44)

Taking expectation with respect to ζ̄t,K+1, we utilize the upper bound from Lemma 15. By iterative
conditioning and re-indexing the expected cumulative hypergradient error as well as dropping
expectation for non-random quantities, we derive an upper bound on equation 44 as

Eζ̄t,K+1

[
EZt,w

[
T∑

t=1

∥∥∥∇̃ft,w(λt,βt+1,Zt,w)−∇Ft,w (λt)
∥∥∥2]]

≤
4Tσ2

f

w
+ 4Tℓ2f,1κ

2
g

(
1− µg

ℓg,1

)2m

+
2

w

T∑
t=1

w−1∑
i=0

(
κ2
gν

t−i−1∆β

)
+

2

w

T∑
t=1

w−1∑
i=0

4Cµg
κ4
gα

2
t−i−2∑
j=0

νj+1 ∥GX (λt−i−j ,∇Ft−i−j,w(λt−i−j), α)∥2


+
2

w

T∑
t=1

w−1∑
i=0

4Cµg
κ4
gα

2

ρ2

t−i−2∑
j=0

νj+1At−i,j


+

2

w

T∑
t=2

w−1∑
i=0

2Cµg
κ2
g

t−i−2∑
j=0

νj+1Bt−i,j

+
2

w

T∑
t=1

w−1∑
i=0

CKκ2
gη

2σ2
g

s

t−i−2∑
j=0

νj

 , (45)

where

At,j := Eζ̄t−j,K+1

[
EZt−j,w

[∥∥∥∇̃ft−j,w(λt−j ,βt+1−j ,Zt−j,w)−∇Ft−j,w(λt−j)
∥∥∥2]]

Bt,j :=
∥∥β∗

t−j(λt−1−j)− β∗
t−1−j(λt−1−j)

∥∥2 .
Given ν < 1, it holds that

∑t−2
j=0 ν

j <
∑∞

j=0 ν
j = 1

1−ν , which lets us upper bound equation 45 as

Eζ̄t,K+1

[
EZt,w

[
T∑

t=1

∥∥∥∇̃ft,w(λt,βt+1,Zt,w)−∇Ft,w (λt)
∥∥∥2]] ≤ 4Tσ2

f

w
+ 4Tℓ2f,1κ

2
g

(
1− µg

ℓg,1

)2m

+
2

w

T∑
t=1

w−1∑
i=0

(
κ2
gν

t−i−1∆β +
4Cµg

κ4
gα

2

1− ν
∥GX (λt−i,∇Ft−i,w(λt−i), α)∥2

)

+
2

w

T∑
t=1

w−1∑
i=0

(
4Cµg

κ4
gα

2

(1− ν)ρ2
Eζ̄t−i,K+1

[
EZt−i,w

[∥∥∥∇̃ft−i,w(λt−i,βt+1−i,Zt−i,w)−∇Ft−i,w(λt−i)
∥∥∥2]])

+
2

w

T∑
t=2

w−1∑
i=0

(
2Cµg

κ2
g

1− ν

∥∥β∗
t−i(λt−1−i)− β∗

t−1−i(λt−1−i)
∥∥2)+

2

w

T∑
t=1

w−1∑
i=0

(
CKκ2

gη
2σ2

g

(1− ν)s

)
.

(46)
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Next we derive the upper bound of equation 46 as

Eζ̄t,K+1

[
EZt,w

[
T∑

t=1

∥∥∥∇̃ft,w(λt,βt+1,Zt,w)−∇Ft,w (λt)
∥∥∥2]] ≤ 4Tσ2

f

w
+ 4Tℓ2f,1κ

2
g

(
1− µg

ℓg,1

)2m

+
2κ2

g∆β

(1− ν)
+

8Cµgκ
4
gα

2

(1− ν)

T∑
t=1

∥GX (λt,∇Ft,w(λt), α)∥2

+
8Cµg

κ4
gα

2

ρ2(1− ν)
Eζ̄t,K+1

[
EZt,w

[
T∑

t=1

∥∥∥∇̃ft,w (λt,βt+1,Zt,w)−∇Ft,w(λt)
∥∥∥2]]

+
4Cµgκ

2
g

(1− ν)

T∑
t=2

∥∥β∗
t (λt−1)− β∗

t−1(λt−1)
∥∥2 + 2TCKκ2

gη
2σ2

g

s(1− ν)
.

which implies through linearity of expectation that(
1−

8Cµgκ
4
gα

2

ρ2(1− ν)

)
Eζ̄t,K+1

[
EZt,w

[
T∑

t=1

∥∥∥∇̃ft,w(λt,βt+1,Zt,w)−∇Ft,w (λt)
∥∥∥2]]

≤
4Tσ2

f

w
+ 4Tℓ2f,1κ

2
g

(
1− µg

ℓg,1

)2m

+
2κ2

g∆β

(1− ν)
+

8Cµg
κ4
gα

2

(1− ν)

T∑
t=1

∥GX (λt,∇Ft,w(λt), α)∥2

+
4Cµgκ

2
g

(1− ν)

T∑
t=2

∥∥β∗
t (λt−1)− β∗

t−1(λt−1)
∥∥2 + 2TCKκ2

gη
2σ2

g

s(1− ν)
.

As 0 < α ≤ ρ
√

(1−ν)

κ2
g

√
72Cµg (

1−
8Cµg

κ4
g

ρ2(1− ν)

)
≥ 8

9
,

we have the upper bound of

Eζ̄t,K+1

[
EZt,w

[
T∑

t=1

∥∥∥∇̃ft,w(λt,βt+1,Zt,w)−∇Ft,w (λt)
∥∥∥2]]

≤
9Tσ2

f

2w
+

9Tℓ2f,1κ
2
g

2

(
1− µg

ℓg,1

)2m

+
9κ2

g∆β

4(1− ν)
+

ρ2

8

T∑
t=1

∥GX (λt,∇Ft,w(λt), α)∥2

+
9Cµg

κ2
g

2(1− ν)

T∑
t=2

[∥∥β∗
t (λt−1)− β∗

t−1(λt−1)
∥∥2]+ 9TCKκ2

gη
2σ2

g

4s(1− ν)
.

The following theorem presents the bilevel local regret of Algorithm 3.
Theorem 17. Suppose Assumptions A-F. Let the inner step be η = Ω(1/µg) such that η ≤

min{ 2
ℓg,1+µg

, 1
w}, outer step be α ≤ min{ 3ρ

4ℓF,1
,

ρ
√

(1−ν)

κ2
g

√
72Cµg

}, and batch size for stochastic in-

verse Hessian approximation m = log (w)/ log
(
1− µg

ℓg,1

)
+ 1. Then the bilevel local regret of the

single-loop (K = 1) and sample-efficient (s = O(1)) instance of Algorithm 3 satisfies

BLRw(T ) ≤ O

(
Tκ3

g

wρ

(
1 +

κ2
g + σ2

f + κ2
gσ

2
g

ρ

)
+

V1,T

ρ
+

κ2
gH2,T

ρ2

)
(47)

where comparator sequences V1,T and H2,T , σ2
g , σ

2
f are finite variances from Assumption C, and

κg > 1 is the condition number of the inner level objective.
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Proof. Note, Lemma H.2 of Lin et al. (2024) shows how with Assumption A, we have

Ft,w (λt+1)− Ft,w (λt) ≤ ⟨∇Ft,w (λt) ,λt+1 − λt⟩+
ℓF,1

2
∥λt+1 − λt∥2 .

then by substituting the step of GX
(
λt, ∇̃ft,w(λt,βt+1,Zt,w), α

)
:= 1

α (λt − λt+1), we have

Ft,w (λt+1)− Ft,w (λt) ≤ ⟨∇Ft,w (λt) ,λt+1 − λt⟩+
ℓF,1

2
∥λt+1 − λt∥2

= −α
〈
∇Ft,w (λt) ,GX

(
λt, ∇̃ft,w(λt,βt+1,Zt,w), α

)〉
+
α2ℓF,1

2

∥∥∥GX (λt, ∇̃ft,w(λt,βt+1,Zt,w), α
)∥∥∥2 ,

= −α
〈
∇̃ft,w(λt,βt+1,Zt,w),GX

(
λt, ∇̃ft,w(λt,βt+1,Zt,w), α

)〉
+α

〈
∇̃ft,w(λt,βt+1,Zt,w)−∇Ft,w (λt) ,GX

(
λt, ∇̃ft,w(λt,βt+1,Zt,w), α

)〉
+
α2ℓF,1

2

∥∥∥GX (λt, ∇̃ft,w(λt,βt+1,Zt,w), α
)∥∥∥2 . (48)

With Lemma 9, note for q = ∇̃ft,w(λt,βt+1,Zt,w)

α
〈
∇̃ft,w(λt,βt+1,Zt,w),GX

(
λt, ∇̃ft,w(λt,βt+1,Zt,w), α

)〉
≥ αρ

∥∥∥GX (λt, ∇̃ft,w(λt,βt+1,Zt,w), α
)∥∥∥2 + h(λt+1)− h(λt) (49)

and further we get the following based on a variation of Young’s Inequality〈
∇̃ft,w(λt,βt+1,Zt,w)−∇Ft,w (λt) ,GX

(
λt, ∇̃ft,w(λt,βt+1,Zt,w), α

)〉
≤ 1

ρ

∥∥∥∇̃ft,w(λt,βt+1,Zt,w)−∇Ft,w (λt)
∥∥∥2

+
ρ

4

∥∥∥GX (λt, ∇̃ft,w(λt,βt+1,Zt,w), α
)∥∥∥2 . (50)

Combining equation 49 and equation 50 in equation 48 we get

Ft,w (λt+1)− Ft,w (λt) ≤
(
α2ℓF,1

2
− 3αρ

4

)∥∥∥GX (λt, ∇̃ft,w(λt,βt+1,Zt,w), α
)∥∥∥2

+
α

ρ

∥∥∥∇̃ft,w(λt,βt+1,Zt,w)−∇Ft,w (λt)
∥∥∥2 + h(λt)− h(λt+1),

which as 0 < α ≤ 3ρ
4ℓF,1

results in the further upper bound of

Ft,w (λt+1)− Ft,w (λt) ≤
3αρ

8

∥∥∥GX (λt, ∇̃ft,w(λt,βt+1,Zt,w), α
)∥∥∥2

+
α

ρ

∥∥∥∇̃ft,w(λt,βt+1,Zt,w)−∇Ft,w (λt)
∥∥∥2 + h(λt)− h(λt+1). (51)

Further, we have

∥GX (λt,∇Ft,w(λt), α)∥2 ≤ 2
∥∥∥GX (λt, ∇̃ft,w(λt,βt+1,Zt,w), α

)∥∥∥2
+2
∥∥∥GX (λt, ∇̃ft,w(λt,βt+1,Zt,w), α

)
− GX (λt,∇Ft,w(λt), α)

∥∥∥2
≤ 2

∥∥∥GX (λt, ∇̃ft,w(λt,βt+1,Zt,w), α
)∥∥∥2 + 2

ρ2

∥∥∥∇̃ft,w(λt,βt+1,Zt,w)−∇Ft,w (λt)
∥∥∥2 ,

where the last inequality comes from through Lemma 10. Then we have

−
∥∥∥GX (λt, ∇̃ft,w(λt,βt+1,Zt,w), α

)∥∥∥2 ≤ −1

2
∥GX (λt,∇Ft,w(λt), α)∥2

+
1

ρ2

∥∥∥∇̃ft,w(λt,βt+1,Zt,w)−∇Ft,w (λt)
∥∥∥2 . (52)
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Substituting equation 52 in equation 51

Ft,w (λt+1)− Ft,w (λt) ≤ −
3αρ

16
∥GX (λt,∇Ft,w(λt), α)∥2

+

(
α

ρ
+

3α

8ρ

)∥∥∥∇̃ft,w(λt,βt+1,Zt,w)−∇Ft,w (λt)
∥∥∥2 + h(λt)− h(λt+1)

Telescoping t = 1, . . . , T and taking expectation with respect to ζ̄t,k and Zt,w gives us

3αρ

16

T∑
t=1

∥GX (λt,∇Ft,w(λt), α)∥2 ≤
T∑

t=1

(Ft,w (λt)− Ft,w (λt+1))

+
11α

8ρ
Eζ̄t,K+1

[
EZt,w

[
T∑

t=1

∥∥∥∇̃ft,w(λt,βt+1,Zt,w)−∇Ft,w (λt)
∥∥∥2]]+∆h, (53)

where ∆h := h(λ1)− h(λT+1) . Substituting the result of Lemma 16 in equation 53

3αρ

16

T∑
t=1

∥GX (λt,∇Ft,w(λt), α)∥2 ≤
T∑

t=1

(Ft,w (λt)− Ft,w (λt+1)) + ∆h

+
11α

8ρ

(
9Tσ2

f

2w
+

9Tℓ2f,1κ
2
g

2

(
1− µg

ℓg,1

)2m

+
9κ2

g∆β

4(1− ν)
+

9TCKκ2
gη

2σ2
g

4S(1− ν)

)

+
11α

8ρ

(
ρ2

8

T∑
t=1

∥GX (λt,∇Ft,w(λt), α)∥2 +
9Cµgκ

2
g

2(1− ν)

T∑
t=2

[∥∥β∗
t (λt−1)− β∗

t−1(λt−1)
∥∥2])

(54)

we have to rearrange

αρ

64

T∑
t=1

∥GX (λt,∇Ft,w(λt), α)∥2 ≤
T∑

t=1

(Ft,w (λt)− Ft,w (λt+1)) + ∆h

+
99α

32ρ

(
2Tσ2

f

w
+ 2Tℓ2f,1κ

2
g

(
1− µg

ℓg,1

)2m

+
κ2
g∆β

(1− ν)
+

TCKκ2
gη

2σ2
g

s(1− ν)

)

+
99αCµg

κ2
g

16ρ(1− ν)

T∑
t=2

∥∥β∗
t (λt−1)− β∗

t−1(λt−1)
∥∥2 (55)

or more succinctly with the choice of s = O(1), m = log (w)/ log
(
1− µg

ℓg,1

)
+ 1, and inner step

size of η ≤ 1
w we have

T∑
t=1

∥GX (λt,∇Ft,w(λt), α)∥2 ≤
64

αρ

(
T∑

t=1

(Ft,w (λt)− Ft,w (λt+1)) + ∆h

)

+
198

ρ2
T

w

(
2σ2

f + 2ℓ2f,1κ
2
g +

CKκ2
gσ

2
g

(1− ν)

)
+

198

ρ2
κ2
g∆β

(1− ν)

+
396Cµgκ

2
g

ρ2(1− ν)

T∑
t=2

∥∥β∗
t (λt−1)− β∗

t−1(λt−1)
∥∥2 (56)

Using the result of Lemma 13, we have

T∑
t=1

(Ft,w(λt)− Ft,w(λt+1)) ≤
2TQ

w
+ V1,T (57)
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or all together

T∑
t=1

∥GX (λt,∇Ft,w(λt), α)∥2 ≤
64

αρ

(
2TQ

w
+ V1,T +∆h

)

+
198

ρ2
T

w

(
2σ2

f + 2ℓ2f,1κ
2
g +

CKκ2
gσ

2
g

(1− ν)

)
+

198

ρ2
κ2
g∆β

(1− ν)

+
396Cµg

κ2
g

ρ2(1− ν)

T∑
t=2

∥∥β∗
t (λt−1)− β∗

t−1(λt−1)
∥∥2 (58)

which by recalling definition of H2,T , and as ℓF,1 = O(κ3
g) this implies α ≤

min{ 3ρ
4ℓF,1

,
ρ
√

(1−ν)

κ2
g

√
72Cµg

} = O
(

1
κ3
g

)
this implies the bilevel local regret of Algorithm 3 is

BLRw(T ) ≤ O

(
Tκ3

g

wρ

(
1 +

κ2
g + σ2

f + κ2
gσ

2
g

ρ

)
+

V1,T

ρ
+

κ2
gH2,T

ρ2

)
(59)

C PROOF IN DETERMINISTIC SETTING

First, we introduce some required lemmas. Lemma 18 provides an analytical form to compute the
hypergradient via iterative differentiation.

Lemma 18. (Proposition 2 in Ji et al. (2021)) The partial ∂ft(λt,ω
K
t )

∂λ takes an analytical form of
∂ft(λt,ω

K
t )

∂λ =

∇λft
(
λt,ω

K
t

)
− η

K−1∑
k=0

∇2
λ,ωgt

(
λt,ω

k
t

)
Hω,ω∇ωft

(
λt,ω

K
t

)
, (60)

where Hω,ω :=
∏K−1

j=k+1

(
Id2
− η∇2

ω,ωgt

(
λt,ω

j
t

))
, the d2-identity matrix is denoted Id2

, with
η > 0 and K as the step size and number of iterations for the inner loop.

Lemma 19 provides an upper bound on the hypergradient error when utilizing an iterative differentia-
tion approach for estimation.

Lemma 19. (Lemma 6 in Ji et al. (2021)) Suppose Assumptions A and B are satisfied with η < 1
ℓg,1

and K ≥ 1. Then we have ∀t ∈ [1, T ] ∥∥∥∥∂ft(λ,ωK
t )

∂λ
−∇Ft(λ)

∥∥∥∥
≤
(
L1(1− ηµg)

K
2 + L2(1− ηµg)

K−1
2

)
∥βt − β∗

t (λ)∥+ L3(1− ηµg)
K , (61)

where L1 = κg(ℓg,1 + µg), L2 =
2ℓf,0ℓg,2

µg
(1 + κg), and L3 = ℓf,0κg .

Similar to the deterministic setting, we apply time-smoothing as specified by the estimator
∇̃ft,w(λt,βt+1) defined for all t ∈ [1, T ], window size w ≥ 1 as

∇̃ft,w(λt,βt+1) :=
1

w

w−1∑
i=0

∇̃ft−i(λt−i,βt+1−i), ft = 0 ∀t ≤ 0 (62)

Next we state our Bregman-bilevel optimizer in the deterministic setting.
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Algorithm 4 OBBO: Deterministic Online Bregman Bilevel Optimizer

Require: Horizon T ; inner steps K; step sizes α, η > 0; Bregman reference ϕ; window w ≥ 1
1: Initialize β1 ∈ Rd2 , λ1 ∈ X
2: for t = 1 T do
3: ω0

t ← βt

4: for k = 1K do
5: ωk

t ← ωk−1
t − η∇ωgt(λt,ω

k−1
t )

6: end for
7: βt+1 ← ωK

t

8: ∇̃ft(λt,βt+1)← ∂ft(λt,βt+1)/∂λ ▷ from equation 60
9: Store ∇̃ft(λt,βt+1) in memory

10: q ← ∇̃ft,w(λt,βt+1) ▷ from equation 62 with window w
11: u← λt

12: λt+1 ← GENERALGRADSTEP(u, q, α, ϕ) ▷ Alg. 2
13: end for
14: return λT+1, βT+1

The following Lemma provides an upper bound on the cumulative difference between the time-
smoothed outer level objective Ft,w(λ) evaluated at λt and λt+1 in terms of the outer level objective
upper bound Q, window size w, and the comparator sequence V1,T .

Lemma 20. Suppose Assumption E. If our Algorithm 4 is applied with window size w ≥ 1 to generate
the sequence {λt}Tt=1, then we have

T∑
t=1

(Ft,w(λt)− Ft,w(λt+1)) ≤
2TQ

w
+ V1,T .

where V1,T :=
∑T

t=1 supλ∈X [Ft+1 (λ)− Ft (λ)]

Proof. By definition, in the deterministic setting, we have Ft(λ) ≜ ft (λ,β
∗
t (λ)). Then it holds

T∑
t=1

(Ft,w(λt)− Ft,w(λt+1))

=

T∑
t=1

1

w

w−1∑
i=0

(
ft−i

(
λt−i,β

∗
t−i(λt−i)

)
− ft−i

(
λt+1−i,β

∗
t−i(λt+1−i)

))
Which is equivalent to

T∑
t=1

1

w

w−1∑
i=0

(
ft−i

(
λt−i,β

∗
t−i(λt−i)

)
− ft−i

(
λt+1−i,β

∗
t−i(λt+1−i)

))
=

T∑
t=1

1

w

w−1∑
i=0

(
ft−i

(
λt−i,β

∗
t−i(λt−i)

)
− ft+1−i

(
λt+1−i,β

∗
t+1−i(λt+1−i)

))
(63)

+

T∑
t=1

1

w

w−1∑
i=0

(
ft+1−i

(
λt+1−i,β

∗
t+1−i(λt+1−i)

)
− ft−i

(
λt+1−i,β

∗
t−i(λt+1−i)

))
(64)
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For equation 63, we can write

1

w

w−1∑
i=0

(
ft−i

(
λt−i,β

∗
t−i(λt−i)

)
− ft+1−i

(
λt+1−i,β

∗
t+1−i(λt+1−i)

))
=

1

w

[
ft (λt,β

∗
t (λt)) + . . .+ ft+1−w

(
λt+1−w,β

∗
t+1−w(λt+1−w)

)]
− 1

w

[
ft+1

(
λt+1,β

∗
t+1(λt+1)

)
+ . . .+ ft+2−w

(
λt+2−w,β

∗
t+2−w(λt+2−w)

)]
=

1

w

[
ft+1−w

(
λt+1−w,β

∗
t+1−w(λt+1−w)

)
− ft+1

(
λt+1,β

∗
t+1(λt+1)

)]
=

1

w
(Ft+1−w(λt+1−w)− Ft+1(λt+1)) ≤

2Q

w
, (65)

where the last inequality comes from Assumption E. Note equation 64 can be bounded through
T∑

t=1

1

w

w−1∑
i=0

(
ft+1−i

(
λt+1−i,β

∗
t+1−i(λt+1−i)

)
− ft−i

(
λt+1−i,β

∗
t−i(λt+1−i)

))
≤

T∑
t=1

1

w

w−1∑
i=0

sup
λ∈X

[
ft+1−i

(
λ,β∗

t+1−i(λ)
)
− ft−i

(
λ,β∗

t−i(λ)
)]
≤ V1,T (66)

Combining equation 65 and equation 66 results in the upper bound of
T∑

t=1

(Ft,w(λt)− Ft,w(λt+1)) ≤
2TQ

w
+ V1,T .

The next Lemma provides an upper bound on the error of ∥βt − β∗
t (λt)∥2 for all t ∈ [1, T ] in terms

of an initial error, the cumulative differences of the outer level variable, and the cumulative differences
of the optimal inner level variables.
Lemma 21. Suppose Assumptions A and B. Choose the inner step size of η and inner iteration count
of K to satisfy

η < min

(
1

ℓg,1
,
1

µg

)
, and K ≥ 1,

and define the decay parameter ν, inner level variable error constant Cµg
, and initial error ∆β

respectively as

ν :=
(
1− ηµg

2

)
(1− ηµg)

K−1, and Cµg
:=

(
1 +

2

ηµg

)
,

and ∆β := ∥β1 − β∗
1(λ1)∥2 .

Then our Algorithm 4 guarantees ∀t ∈ [1, T ]

∥βt − β∗
t (λt)∥2 ≤ νt−1∆β

+2Cµg
κ2
g

t−2∑
j=0

νj ∥λt−1−j − λt−j∥2 + 2Cµg

t−2∑
j=0

νj
∥∥β∗

t−j(λt−1−j)− β∗
t−1−j(λt−1−j)

∥∥2 . (67)

Proof. By definition for t = 1, we have ∥β1 − β∗
1(λ1)∥2 = ∆β. Then ∀t ∈ [2, T ]

∥βt − β∗
t (λt)∥2 =

∥∥βt − β∗
t−1(λt−1) + β∗

t−1(λt−1)− β∗
t (λt)

∥∥2 , (68)
which can be expanded based on the Young’s Inequality for any δ > 0 as∥∥βt − β∗

t−1(λt−1) + β∗
t−1(λt−1)− β∗

t (λt)
∥∥2

≤ (1 + δ)
∥∥βt − β∗

t−1(λt−1)
∥∥2

+

(
1 +

1

δ

)∥∥β∗
t−1(λt−1)− β∗

t (λt)
∥∥2 .
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Now it holds that∥∥β∗
t−1(λt−1)− β∗

t (λt)
∥∥2 ≤ 2 ∥β∗

t (λt−1)− β∗
t (λt)∥2 + 2

∥∥β∗
t (λt−1)− β∗

t−1(λt−1)
∥∥2

which through Lemma 11 can be further upper bounded with the Lipschitz constant of κg as∥∥β∗
t−1(λt−1)− β∗

t (λt)
∥∥2 ≤ 2κ2

g ∥λt−1 − λt∥2 + 2
∥∥β∗

t (λt−1)− β∗
t−1(λt−1)

∥∥2
Combining above, we see that ∀δ > 0, equation 68 is upper bounded as

∥βt − β∗
t (λt)∥2 ≤ (1 + δ)

∥∥βt − β∗
t−1(λt−1)

∥∥2
+2

(
1 +

1

δ

)
κ2
g ∥λt−1 − λt∥2 + 2

(
1 +

1

δ

)∥∥β∗
t (λt−1)− β∗

t−1(λt−1)
∥∥2 . (69)

As η < 1
ℓg,1

, we apply Lemma 8 to see

(1 + δ)
∥∥βt − β∗

t−1(λt−1)
∥∥2 ≤ (1 + δ)(1− ηµg)

K
∥∥βt−1 − β∗

t−1(λt−1)
∥∥2

Now setting δ =
ηµg

2 > 0 implies that

(1 + δ)(1− ηµg)
K = (1 +

ηµg

2
)(1− ηµg)

K <
(
1− ηµg

2

)
(1− ηµg)

K−1 < 1

Using ν :=
(
1− ηµg

2

)
(1− ηµg)

K−1 in equation 69, we get

ν ∥βt − β∗
t (λt)∥2 ≤ ν2

∥∥βt−1 − β∗
t−1(λt−1)

∥∥2
+2Cµgνκ

2
g ∥λt−1 − λt∥2 + 2Cµgν

∥∥β∗
t (λt−1)− β∗

t−1(λt−1)
∥∥2 ,

where Cµg =
(
1 + 2

ηµg

)
. Starting at t = T and unrolling backward to t = 1, results in the upper

bound of
∥βt − β∗

t (λt)∥2 ≤ νt−1∆β

+2Cµg
κ2
g

t−2∑
j=0

νj ∥λt−1−j − λt−j∥2 + 2Cµg

t−2∑
j=0

νj
∥∥β∗

t−j(λt−1−j)− β∗
t−1−j(λt−1−j)

∥∥2 .

The next Lemma utilizes Lemma 19 and Lemma 21 to derive an upper bound on the hypergradient
error ∀t ∈ [1, T ] in terms of discounted variations of the (i) cumulative time-smoothed hypergradient
error; (ii) bilevel local regret; and (iii) cumulative difference between optimal inner-level variables.
A final term is included, composed of a discounted initial error and smoothness term of the inner
objective.
Lemma 22. Suppose Assumptions A, B, D, and F. Choose the inner step size of η and inner iteration
count of K to satisfy

η < min

(
1

ℓg,1
,
1

µg

)
, and K ≥ 1.

Using the definitions of ν, Cµg
, and ∆β from Lemma 21 as well as the further definition of

Lβ := L2
1(1− ηµg)

K + L2
2(1− ηµg)

K−1,

then the hypergradient error from our OBBO algorithm in Algorithm 4 is bounded ∀t ∈ [1, T ] as

∥∥∥∥∂ft(λt,ω
K
t )

∂λ
−∇Ft(λt)

∥∥∥∥2 ≤ δt +A

t−2∑
j=0

νj

∥∥∥∥∥∂ft−1−j,w(λt−1−j ,ω
K
t−1−j)

∂λ
−∇Ft−1−j,w(λt−1−j)

∥∥∥∥∥
2

+B

t−2∑
j=0

νj ∥GX (λt−1−j ,∇Ft−1−j,w(λt−1−j), α)∥2 + C

t−2∑
j=0

νj
∥∥β∗

t−j(λt−1−j)− β∗
t−1−j(λt−1−j)

∥∥2 ,
(70)

where δt = 3L2
3(1 − ηµg)

2K + 3Lβν
t−1∆β and A =

12α2CµgLβκ2
g

ρ2 , B = 12α2Cµg
Lβκ

2
g, and

C = 6LβCµg .
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Proof. Note that Lemma 19 implies ∀t ∈ [1, T ]∥∥∥∥∂ft(λt,ω
K
t )

∂λ
−∇Ft(λt)

∥∥∥∥2 ≤ 3Lβ ∥βt − β∗
t (λt)∥2 + 3L2

3(1− ηµg)
2K .

Substituting the upper bound on ∥βt − β∗
t (λt)∥2 from Lemma 21, we have∥∥∥∥∂ft(λt,ω

K
t )

∂λ
−∇Ft(λt)

∥∥∥∥2 ≤ 3L2
3(1− ηµg)

2K

+3Lβ

νt−1∆β + 2Cµg
κ2
g

t−2∑
j=0

νj ∥λt−1−j − λt−j∥2


+6LβCµg

t−2∑
j=0

νj
∥∥β∗

t−j(λt−1−j)− β∗
t−1−j(λt−1−j)

∥∥2 ,
By definition, we have GX

(
λt−1−j ,

∂ft−1−j,w(λt−1−j ,ω
K
t−1−j)

∂λ , α

)
:= 1

α (λt−1−j − λt−j)

t−2∑
j=0

νj ∥λt−1−j − λt−j∥2 = α2
t−2∑
j=0

νj

∥∥∥∥∥GX
(
λt−1−j ,

∂ft−1−j,w(λt−1−j ,ω
K
t−1−j)

∂λ
, α

)∥∥∥∥∥
2

≤ 2α2
t−2∑
j=0

νj
(
∥GX (λt−1−j ,∇Ft−1−j,w(λt−1−j), α)∥2

)

+2α2
t−2∑
j=0

νj

∥∥∥∥∥GX
(
λt−1−j ,

∂ft−1−j,w(λt−1−j ,ω
K
t−1−j)

∂λ
, α

)
− GX (λt−1−j ,∇Ft−1−j,w(λt−1−j), α)

∥∥∥∥∥
2


≤ 2α2
t−2∑
j=0

νj
(
∥GX (λt−1−j ,∇Ft−1−j,w(λt−1−j), α)∥2

)

+2α2
t−2∑
j=0

νj

 1

ρ2

∥∥∥∥∥∂ft−1−j,w(λt−1−j ,ω
K
t−1−j)

∂λ
−∇Ft−1−j,w(λt−1−j)

∥∥∥∥∥
2


(71)

such that the last inequality comes from Lemma 10. Rearranging terms, we have decomposed the
hypergradient error term at t in terms of the cumulative hypergradient error from j = 1, . . . , t− 1∥∥∥∥∂ft(λt,ω

K
t )

∂λ
−∇Ft(λt)

∥∥∥∥2 ≤ 3L2
3(1− ηµg)

2K + 3Lβν
t−1∆β

+12α2Cµg
Lβκ

2
g

t−2∑
j=0

νj ∥GX (λt−1−j ,∇Ft−1−j,w(λt−1−j), α)∥2

+
12α2Cµg

Lβκ
2
g

ρ2

t−2∑
j=0

νj

∥∥∥∥∥∂ft−1−j,w(λt−1−j ,ω
K
t−1−j)

∂λ
−∇Ft−1−j,w(λt−1−j)

∥∥∥∥∥
2

+6LβCµg

t−2∑
j=0

νj
∥∥β∗

t−j(λt−1−j)− β∗
t−1−j(λt−1−j)

∥∥2 ,

The next Lemma provides an upper bound on the cumulative time-smoothed hypergradient error
using the result of Lemma 22.
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Lemma 23. Suppose Assumptions A, B, D, and F. Choose the inner step size of η < min
(

1
ℓg,1

, 1
µg

)
,

the outer step size α ≤ ρ
√

(1−ν)

κg

√
108CµgLβ

, and inner iteration count K = log (T )
log ((1−ηµg)−1) + 1. Then the

cumulative time-smoothed hypergradient error from our OBBO algorithm in Algorithm 4 satisfies

T∑
t=1

∥∥∥∥∂ft,w(λt,ω
K
t )

∂λ
−∇Ft,w(λt)

∥∥∥∥2 ≤ 27

8

(
∆βLβ

(1− ν)
+ L2

3

)

+A

T∑
t=1

∥GX (λt−1−j ,∇Ft−1−j,w(λt−1−j), α)∥2 +B

T∑
t=2

∥∥β∗
t (λt−1)− β∗

t−1(λt−1)
∥∥2 ,

where A := ρ2

8 and B :=
27LβCµg

2(1−ν) .

Proof. Note by definition of the time-smoothed outer level objective and application of Young’s
inequality we have∥∥∥∥∂ft,w(λt,ω

K
t )

∂λ
−∇Ft,w(λt)

∥∥∥∥2 =

∥∥∥∥∥ 1w
w−1∑
i=0

[
∂ft−i(λt−i,ω

K
t−i)

∂λ
−∇Ft−i(λt−i)

]∥∥∥∥∥
2

=

w−1∑
i=0

1

w

w−1∑
j=0

1

w

〈
∂ft−i(λt−i,ω

K
t−i)

∂λ
−∇Ft−i(λt−i),

∂ft−j(λt−j ,ω
K
t−j)

∂λ
−∇Ft−j(λt−j)

〉
≤ [

w−1∑
i=0

1

w

w−1∑
j=0

1

w
(
1

2

∥∥∥∥∂ft−i(λt−i,ω
K
t−i)

∂λ
−∇Ft−i(λt−i)

∥∥∥∥2

+
1

2

∥∥∥∥∥∂ft−j(λt−j ,ω
K
t−j)

∂λ
−∇Ft−j(λt−j)

∥∥∥∥∥
2

)]

=
1

w

w−1∑
i=0

∥∥∥∥∂ft−i(λt−i,ω
K
t−i)

∂λ
−∇Ft−i(λt−i)

∥∥∥∥2
(72)

Substituting the upper bound on
∥∥∥∂ft(λt,ω

K
t )

∂λ −∇Ft(λt)
∥∥∥2 from Lemma 22 and re-indexing the

bilevel local regret and the cumulative time-smoothed hypergradient error, we construct the upper
bound of

T∑
t=1

∥∥∥∥∂ft,w(λt,ω
K
t )

∂λ
−∇Ft,w(λt)

∥∥∥∥2

≤
T∑

t=1

1

w

[
w−1∑
i=0

(
3L2

3(1− ηµg)
2K + 3Lβν

t−i−1∆β

)]

+

T∑
t=1

1

w

w−1∑
i=0

12α2Cµg
Lβκ

2
g

t−i−2∑
j=0

νj ∥GX (λt−i−j ,∇Ft−i−j,w(λt−i−j), α)∥2


+

T∑
t=1

1

w

w−1∑
i=0

12α2CµgLβκ
2
g

ρ2

t−i−2∑
j=0

νj

∥∥∥∥∥∂ft−i−j,w(λt−i−j ,ω
K
t−i−j)

∂λ
−∇Ft−i−j,w(λt−i−j)

∥∥∥∥∥
2


+

T∑
t=2

1

w

w−1∑
i=0

6LβCµg

t−i−2∑
j=0

νj
∥∥β∗

t−i−j(λt−i−1−j)− β∗
t−i−1−j(λt−i−1−j)

∥∥2
(73)
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Given ν < 1, it holds that
∑t−2

j=0 ν
j <

∑∞
j=0 ν

j = 1
1−ν , which lets us upper bound equation 73 as

T∑
t=1

∥∥∥∥∂ft,w(λt,ω
K
t )

∂λ
−∇Ft,w(λt)

∥∥∥∥2

≤
T∑

t=1

1

w

[
w−1∑
i=0

(
3L2

3(1− ηµg)
2K + 3Lβν

t−i−1∆β

)]

+
12α2Cµg

Lβκ
2
g

(1− ν)

T∑
t=1

1

w

[
w−1∑
i=0

∥GX (λt−i,∇Ft−i,w(λt−i), α)∥2
]

+
12α2Cµg

Lβκ
2
g

ρ2(1− ν)

T∑
t=1

1

w

[
w−1∑
i=0

∥∥∥∥∂ft−i,w(λt−i,ω
K
t−i)

∂λ
−∇Ft−i,w(λt−i)

∥∥∥∥2
]

+
6LβCµg

(1− ν)

T∑
t=2

1

w

[
w−1∑
i=0

∥∥β∗
t−i(λt−i−1)− β∗

t−i−1(λt−i−1)
∥∥2] .

and further
T∑

t=1

∥∥∥∥∂ft,w(λt,ω
K
t )

∂λ
−∇Ft,w(λt)

∥∥∥∥2

≤
T∑

t=1

(
3L2

3(1− ηµg)
2K + 3Lβν

t−1∆β

)
+

12α2Cµg
Lβκ

2
g

(1− ν)

T∑
t=1

∥GX (λt,∇Ft,w(λt), α)∥2

+
12α2CµgLβκ

2
g

ρ2(1− ν)

T∑
t=1

∥∥∥∥∂ft,w(λt,ω
K
t )

∂λ
−∇Ft,w(λt)

∥∥∥∥2 + 6LβCµg

(1− ν)

T∑
t=2

∥∥β∗
t (λt−1)− β∗

t−1(λt−1)
∥∥2

which implies that (
1−

12α2Cµg
Lβκ

2
g

ρ2(1− ν)

)
T∑

t=1

∥∥∥∥∂ft,w(λt,ω
K
t )

∂λ
−∇Ft,w(λt)

∥∥∥∥2

≤ 3∆βLβ

1− ν
+

T∑
t=1

(
3L2

3(1− ηµg)
2K
)
+

12α2CµgLβκ
2
g

(1− ν)

T∑
t=1

∥GX (λt,∇Ft,w(λt), α)∥2

+
6LβCµg

(1− ν)

T∑
t=2

∥∥β∗
t (λt−1)− β∗

t−1(λt−1)
∥∥2 ,

Setting K = log (T )/ log
(
(1− ηµg)

−1
)
+ 1 and 0 < α ≤ ρ

√
(1−ν)

κg

√
108CµgLβ(

1−
12α2CµgLβκ

2
g

ρ2(1− ν)

)
≥ 8

9

implies the upper bound of
T∑

t=1

∥∥∥∥∂ft,w(λt,ω
K
t )

∂λ
−∇Ft,w(λt)

∥∥∥∥2 ≤ 27

8

(
∆βLβ

(1− ν)
+ L2

3

)

+
ρ2

8

T∑
t=1

∥GX (λt,∇Ft,w(λt), α)∥2 +
27LβCµg

2(1− ν)

T∑
t=2

∥∥β∗
t (λt−1)− β∗

t−1(λt−1)
∥∥2 ,

The next theorem presents the theoretical contribution for Algorithm 4. For suitably chosen step
sizes, the sequence of iterates {λt}Tt=1 achieves sublinear bilevel local regret.
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Theorem 24. Suppose Assumptions A, B, D, E, F. Choose the inner step size of η < min
(

1
ℓg,1

, 1
µg

)
,

the outer step size of α ≤ min

{
3ρ

4ℓF,1
,

ρ
√

(1−ν)

κg

√
108CµgLβ

}
, and inner iteration count K =

log (T )
log ((1−ηµg)−1) + 1. Then the bilevel local regret of Algorithm 4 satisfies the bound of

BLRw(T ) :=

T∑
t=1

∥GX (λt,∇Ft,w(λt), α)∥2 ≤ O

(
T

w
+ V1,T + κ2

gH2,T

)
, (74)

Proof. Note, Lemma H.2 of Lin et al. (2024) shows how with Assumption A, we have

Ft,w (λt+1)− Ft,w (λt) ≤ ⟨∇Ft,w (λt) ,λt+1 − λt⟩+
ℓF,1

2
∥λt+1 − λt∥2 .

then by substituting the step of GX
(
λt,

∂ft,w(λt,ω
K
t )

∂λ , α
)
:= 1

α (λt − λt+1),

Ft,w (λt+1)− Ft,w (λt) ≤ ⟨∇Ft,w (λt) ,λt+1 − λt⟩+
ℓF,1

2
∥λt+1 − λt∥2

= −α
〈
∇Ft,w (λt) ,GX

(
λt,

∂ft,w(λt,ω
K
t )

∂λ
, α

)〉
+

α2ℓF,1

2

∥∥∥∥GX (λt,
∂ft,w(λt,ω

K
t )

∂λ
, α

)∥∥∥∥2 ,
= −α

〈
∂ft,w(λt,ω

K
t )

∂λ
,GX

(
λt,

∂ft,w(λt,ω
K
t )

∂λ
, α

)〉
+α

〈
∂ft,w(λt,ω

K
t )

∂λ
−∇Ft,w (λt) ,GX

(
λt,

∂ft,w(λt,ω
K
t )

∂λ
, α

)〉
+
α2ℓF,1

2

∥∥∥∥GX (λt,
∂ft,w(λt,ω

K
t )

∂λ
, α

)∥∥∥∥2 .
(75)

Using Lemma 9 with q =
∂ft,w(λt,ω

K
t )

∂λ , note that

α

〈
∂ft,w(λt,ω

K
t )

∂λ
,GX

(
λt,

∂ft,w(λt,ω
K
t )

∂λ
, α

)〉
≥ αρ

∥∥∥∥GX (λt,
∂ft,w(λt,ω

K
t )

∂λ
, α

)∥∥∥∥2 + h(λt+1)− h(λt) (76)

and further we get the following based on a variation of Young’s Inequality〈
∂ft,w(λt,ω

K
t )

∂λ
−∇Ft,w (λt) ,GX

(
λt,

∂ft,w(λt,ω
K
t )

∂λ
, α

)〉
≤ 1

ρ

∥∥∥∥∂ft,w(λt,ω
K
t )

∂λ
−∇Ft,w (λt)

∥∥∥∥2 + ρ

4

∥∥∥∥GX (λt,
∂ft,w(λt,ω

K
t )

∂λ
, α

)∥∥∥∥2 (77)

Using equation 76 and equation 77 in equation 75 we get

Ft,w (λt+1)− Ft,w (λt) ≤
(
α2ℓF,1

2
− 3αρ

4

)∥∥∥∥GX (λt,
∂ft,w(λt,ω

K
t )

∂λ
, α

)∥∥∥∥2
+
α

ρ

∥∥∥∥∂ft,w(λt,ω
K
t )

∂λ
−∇Ft,w (λt)

∥∥∥∥2 + h(λt)− h(λt+1) (78)

which as 0 < α ≤ 3ρ
4ℓF,1

results in the further upper bound of

Ft,w (λt+1)− Ft,w (λt) ≤ −
3αρ

8

∥∥∥∥GX (λt,
∂ft,w(λt,ω

K
t )

∂λ
, α

)∥∥∥∥2
+
α

ρ

∥∥∥∥∂ft,w(λt,ω
K
t )

∂λ
−∇Ft,w (λt)

∥∥∥∥2 + h(λt)− h(λt+1) (79)
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Further note we can upper bound the local regret as

∥GX (λt,∇Ft,w(λt), α)∥2 ≤ 2

∥∥∥∥GX (λt,
∂ft,w(λt,ω

K
t )

∂λ
, α

)∥∥∥∥2
+2

∥∥∥∥GX (λt,
∂ft,w(λt,ω

K
t )

∂λ
, α

)
− GX (λt,∇Ft,w(λt), α)

∥∥∥∥2
≤ 2

∥∥∥∥GX (λt,
∂ft,w(λt,ω

K
t )

∂λ
, α

)∥∥∥∥2 + 2

ρ2

∥∥∥∥∂ft,w(λt,ω
K
t )

∂λ
−∇Ft,w (λt)

∥∥∥∥2 ,
where the last inequality comes from Lemma 10. This then implies that

−
∥∥∥∥GX (λt,

∂ft,w(λt,ω
K
t )

∂λ
, α

)∥∥∥∥2 ≤ −1

2
∥GX (λt,∇Ft,w(λt), α)∥2

+
1

ρ2

∥∥∥∥∂ft,w(λt,ω
K
t )

∂λ
−∇Ft,w (λt)

∥∥∥∥2 (80)

Substituting equation 80 into equation 79 gives us

Ft,w (λt+1)− Ft,w (λt) ≤ −
3αρ

16
∥GX (λt,∇Ft,w(λt), α)∥2

+

(
α

ρ
+

3α

8ρ

)∥∥∥∥∂ft,w(λt,ω
K
t )

∂λ
−∇Ft,w (λt)

∥∥∥∥2 + h(λt)− h(λt+1). (81)

Rearranging we see
3αρ

16
∥GX (λt,∇Ft,w(λt), α)∥2 ≤ Ft,w (λt)− Ft,w (λt+1)

+
11α

8ρ

∥∥∥∥∂ft,w(λt,ω
K
t )

∂λ
−∇Ft,w (λt)

∥∥∥∥2 + h(λt)− h(λt+1). (82)

Summing from 1, . . . , T and telescoping h(λt)

3αρ

16

T∑
t=1

∥GX (λt,∇Ft,w(λt), α)∥2 ≤
T∑

t=1

(Ft,w (λt)− Ft,w (λt+1))

+
11α

8ρ

T∑
t=1

(∥∥∥∥∂ft,w(λt,ω
K
t )

∂λ
−∇Ft,w (λt)

∥∥∥∥2
)

+∆h,

where ∆h := h(λ1)− h(λT+1) Then we can substitute Lemma 23 to get

3αρ

16

T∑
t=1

∥GX (λt,∇Ft,w(λt), α)∥2 ≤
T∑

t=1

(Ft,w (λt)− Ft,w (λt+1))

+
11α

8ρ

(
27

8

(
∆βLβ

(1− ν)
+ L2

3

)
+

ρ2

8

T∑
t=1

∥GX (λt,∇Ft,w(λt), α)∥2
)

+
11α

8ρ

(
27LβCµg

2(1− ν)

T∑
t=2

∥∥β∗
t (λt−1)− β∗

t−1(λt−1)
∥∥2)+∆h.

Rearranging we have

12αρ

64

T∑
t=1

∥GX (λt,∇Ft,w(λt), α)∥2 ≤
T∑

t=1

(Ft,w (λt)− Ft,w (λt+1))

+
11αρ

64

T∑
t=1

∥GX (λt,∇Ft,w(λt), α)∥2 +
11α

8ρ

(
27

8

(
∆βLβ

(1− ν)
+ L2

3

))

+
11α

8ρ

(
27LβCµg

2(1− ν)

T∑
t=2

∥∥β∗
t (λt−1)− β∗

t−1(λt−1)
∥∥2)+∆h,
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or more succinctly
T∑

t=1

∥GX (λt,∇Ft,w(λt), α)∥2 ≤
64

αρ

T∑
t=1

(Ft,w (λt)− Ft,w (λt+1))

+
88

ρ2

(
27

8

(
∆βLβ

(1− ν)
+ L2

3

))
+

88

ρ2
27LβCµg

2(1− ν)

T∑
t=2

∥∥β∗
t (λt−1)− β∗

t−1(λt−1)
∥∥2 + 64∆h

αρ
. (83)

Applying Lemma 20 we see
T∑

t=1

(Ft,w (λt)− Ft,w (λt+1)) ≤
2TQ

w
+ V1,T , (84)

which by using equation 84 in equation 83 we get for Lβ = O(κ2
g)

T∑
t=1

∥GX (λt,∇Ft,w(λt), α)∥2 ≤
64

αρ

(
2TQ

w
+ V1,T

)
+

297

ρ2

(
∆βLβ

(1− ν)
+ L2

3

)
+
64∆h

αρ
+

1188LβCµg

ρ2(1− ν)
H2,T , (85)

which dividing by T and recalling we imposed regularity constraints of H2,T = o(T ), as well as
V1,T = o(T ), implies the bilevel local regret of Algorithm 4 is sublinear on the order of

BLRw(T ) :=

T∑
t=1

∥GX (λt,∇Ft,w(λt), α)∥2 ≤ O

(
T

w
+ V1,T + κ2

gH2,T

)
. (86)

D ADDITIONAL ALGORITHMS

Algorithm 5 (following Ghadimi & Wang (2018)) forms a stochastic hypergradient by replacing
the inverse Hessian–vector product with a randomized Neumann-series approximation: a uniformly
sampled truncation level m̃ yields the product operator Bt, which serves as an unbiased estimator of
(∇2

ββgt)
−1. This avoids explicit matrix inversion while retaining correctness in expectation and is

standard in scalable bilevel optimization.

Algorithm 5 Stochastic Hypergradient Estimation (Ghadimi & Wang (2018))

Require: Get λ ∈ X , β ∈ Rd2 , sample upper bound m, learning rate η̃

Sample m̃ ∼ U(0, 1, . . . ,m− 1) and E = {ϵ, ζ0, . . . , ζm̃−1}

Compute : gt ← ∇λft(λ,β, ϵ)

Compute : Ht ← ∇2
λ,βgt(λ,β, ζ

0)

Compute approximation: Bt ← m
η̃

∏m̃
j=1

(
Id2 − 1

η̃∇
2
β,βgt(λ,β, ζ

j)
)

Get estimate: ∇̃ft(λ,β, E)← gt −HtBt∇βft(λ,β, ϵ)

Return stochastic hypergradient estimate ∇̃ft(λ,β, E)

E ADDITIONAL EXPERIMENTAL DETAILS

Hyperparameter Details: In both experiments, we employed single-loop updates (K = 1)
and evaluated a range of window sizes w ∈ {50, 100, 250, 500, 1000, 5000}. Step sizes α, η ∈
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{10−4, 10−3, 10−2} were selected via a grid search, following standard practice Ji et al. (2021);
Huang et al. (2022a). We tune (α, η) through this grid search and perform ablations over the window
size w (Figures 1 and 3). The only new hyperparameter relative to prior work is the curvature
parameter ρ, which in experiments is implicitly instantiated through the adaptive metric Ht in the
Bregman divergence Dt(λ, λ

′) = 1
2∥λ− λ′∥2Ht

. Thus, no additional hyperparameters require tuning.

Extended Task Formulation.

For our first experiment, we consider the task of learning a preconditioner P (λ) ≻ 0 directly from
data—a special case of optimizer learning Andrychowicz et al. (2016); Wichrowska et al. (2017).
Given the previous iterate βt−1, the inner problem is the proximal form of a preconditioned gradient
step under the metric P (λ)−1:

βt(λ) = argmin
β

{
Ltr,t(β) +

γ
2 ∥β − βt−1∥2P (λ)−1

}
.

The outer problem selects preconditioner parameters

λt ∈ argmin
λ

Ft(λ), Ft(λ) := Lval,t(βt(λ)),

so that the updated parameters generalize on the validation set. At each round, the bilevel optimization
is naturally online: both preconditioners and model parameters evolve sequentially over T steps, and
the optimal solution varies across the evolving loss landscape.

Extended Model Details and Results

• Quadratic loss. We use Ltr,t(β) =
1
2 β

⊤Htrβ − b⊤trβ, with diagonal P (λ) = diag(λ). The
inner problem admits a closed-form minimizer, enabling us to track the comparator sequence

H2,T :=

T∑
t=1

sup
λ∈X

∥∥β∗
t−1(λ)− β∗

t (λ)
∥∥2.

The validation loss is quadratic as well, Lval,t(β) =
1
2 β

⊤Hvalβ − b⊤valβ, with Hval, bval
derived from a validation set.

• SVM loss. For linear scores fθ(x) = θ⊤x and labels y ∈ {−1,+1}, we define

Lsvm,t(θ) =
1

nt

nt∑
i=1

τ log
(
1 + exp

(
(1− yiθ

⊤xi)/τ
))

, τ > 0.

The inner problem becomes

gsvmt (θ, λ) = Lsvm,t(θ) +
γ
2 (θ − θt−1)

⊤ diag(1/λ) (θ − θt−1),

which is smooth and convex (indeed strongly convex for γ > 0), and can be solved efficiently
by descent methods.

Results:
Bilevel local regret for the SVM model on the GSDC dataset is included in Figure 4.

Runtime Comparison. To complement the regret analysis, we report wall-clock running times across
all algorithms and window sizes used in our experiments. Table 3 summarizes these running times in
seconds. We highlight three key takeaways: (i) stochastic algorithms provide substantial speedups
over deterministic methods due to mini-batching; (ii) increasing the window size w noticeably
increases the runtime of OAGD due to the cost of averaging hypergradients, whereas the runtime
of all other algorithms remains largely insensitive to w due to averaging hypergradient evaluations;
and (iii) the additional computational overhead introduced by the Bregman proximal gradient step in
OBBO and SOBBO is negligible in practice.
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Figure 4: SOBBO offers the lowest regret relative to baselines.

Table 3: Running times (seconds) for preconditioner learning across algorithms and window sizes. Note that
SOBBO with (w = 1) reduces to the SBio-BreD algorithm of Huang et al. (2022a).

Algorithm w=1 w=5 w=25 w=100 w=250

OAGD 29.52± 0.23 30.01± 0.27 31.76± 0.28 42.38± 0.66 60.56± 0.37
SOBOW 29.20± 0.15 29.65± 0.29 29.54± 0.11 29.68± 0.17 29.81± 0.22
OBBO 30.78± 0.25 31.98± 0.24 31.55± 0.39 29.41± 0.14 28.89± 0.39
SOBO 13.34± 0.29 13.47± 0.42 13.41± 0.29 13.92± 0.21 14.02± 0.30
SOBBO 13.72± 0.10 13.35± 0.16 13.33± 0.20 14.44± 0.19 14.56± 0.35

E.1 BILEVEL MATRIX REGRESSION TASK

Task. We evaluate a Muon-style Jordan et al. instance of our Bregman bilevel optimizer on a
bilevel matrix regression task. The outer variable U ∈ Rp×r induces a weighting matrix W (U) =
UU⊤, which represents a data-dependent weighting. Models. The inner variable X ∈ Rm×n

solves the strongly-convex weighted ridge regression X⋆(U) = argminX , 1
2 |W (U)1/2(AtrXBtr −

Ctr)|2F + µ
2 |X|

2
F , and the outer objective evaluates the nonconvex validation objective F (U) =

1
2 |AvalX

⋆(U)Bval − Cval|2F . Datasets. The validation set is a strict subset of the training set,
introducing distribution shift and forcing the optimizer to learn which samples matter through the
adaptive weights W (U). Baselines We instantiate SOBBO with a Muon-style step as defined by
the time-varying quadratic potential ϕt(U) = 1

2∥U∥
2
Ht

= 1
2 tr(U

⊤HtU), which yields the Bregman
divergence Dϕt(U,Ut) = 1

2∥U − Ut∥2Ht
. The adaptive metric Ht follows the Muon update rule,

using exponential moving averages of gradients: first the momentum Mt = βMt−1 + (1 − β)Gt,
then the second-moment accumulator Vt = γVt−1 + (1− γ)M⊙2

t , and finally Ht =
√
Vt + ε, where

Gt = ∇UF (Ut) is the outer-level gradient. The resulting trust-region–normalized update takes
the form Ut+1 = Ut − αtH

−1
t M̂t with M̂t = Mt/max{1, |H−1/2

t Mt|F /τ}, yielding a curvature-
adaptive Muon-style update directly on U . Baselines include OAGD, SOBOW, OBBO, stochastic
SOBO, and direct Adam and Muon applied to outer variable U .

Results. Figure 5 shows that our Muon-Style SOBBO achieves the lowest bilevel local regret,
compared to the deterministic Euclidean baselines (OAGD and SOBOW) as well as direct single-level
optimizers (Adam and Muon). Table 4 further demonstrates that all methods attain comparable mean
squared error, indicating that our advantage does not come from overfitting or improved estimation
accuracy, but rather from more stable and geometry-aware optimization dynamics. Together, these
results show that Muon-Style SOBBO provides an effective curvature-adaptive mechanism for
online bilevel learning, outperforming both existing bilevel methods (OAGD, SOBOW) and strong
single-level baselines (Adam, Muon).
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Figure 5: Left: Regret for deterministic and stochastic online bilevel optimizers on bilevel matrix reweighted
regression; Middle: Increasing window size reduces regret incurred by stabilizing updates. Right: Larger
window size reduces the variance of stochastic hypergradient estimates, as shown theoretically in Corollary 6.2.

Algorithm t=2500 t=5000 t=7500 Mean ± SE

Values reported as (X̂t − 1.125)× 103

OAGD −1.1 +2.3 +4.4 +1.9± 1.6
SOBOW −2.1 +2.7 −0.3 +0.1± 1.4
OBBO −2.4 +2.0 +0.2 −0.1± 1.3
SOBO −0.6 +1.2 −1.4 −0.2± 0.8
SOBBO −0.9 +2.3 −2.0 −0.2± 1.3
Adam (direct) +4.9 +5.3 +4.7 +4.9± 0.2
Muon (direct) +4.9 +5.4 +4.9 +5.1± 0.2

Table 4: MSE between Xtrue and X̂t (over 3 seeds), (X̂t − 1.125)× 103 to highlight relative differences.

36


	Introduction
	Preliminaries
	Notation and Assumptions
	Bregman Proximal Gradient
	Generalized Bilevel Local Regret

	Bregman Bilevel Optimization under Hypergradient Oracle
	Bregman Bilevel Optimization under Hypergradient Estimation
	Stochastic Hypergradient Estimation
	Single-Loop Efficiency with Time-Smoothing

	Convergence Analysis
	Experiments
	Preconditioner Learning
	Actor–Critic Reinforcement Learning

	Conclusion
	Reproducibility Statement

	Preliminaries
	Proof in Stochastic Setting
	Proof in Deterministic Setting
	Additional Algorithms
	Additional Experimental Details
	Bilevel Matrix Regression Task


