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ABSTRACT

We study online bilevel optimization (OBO) in the stochastic setting and ask
whether geometry can eliminate the severe dependence on the condition number of
the inner problem, kg = £, 1 /4. We introduce a family of Bregman-based algo-
rithms and analyze both oracle and practical regimes. In the oracle setting, where
exact hypergradients are available, generalized Bregman steps achieve sublinear
bilevel local regret (i.e., o(T")) while removing the cubic dependence on k4 incurred
by Euclidean updates. In the practical stochastic setting, where hypergradients
must be estimated, we design single-loop, sample-efficient algorithms that combine
Bregman steps with time-smoothed hypergradient estimates. Our analysis shows
that Bregman geometry again eliminates the «4-dependence and yields guarantees
of sublinear bilevel local regret in this setting. It further reveals a broader insight:
time smoothing, previously treated as a heuristic in deterministic OBO, naturally
functions as a variance-reduction mechanism while keeping bias controlled, clari-
fying its role across both regimes. Finally, experiments on preconditioner learning
and reinforcement learning support our theoretical findings across a variety of
nonstationary loss sequences and large-scale, ill-conditioned datasets.

1 INTRODUCTION

Bilevel optimization in machine learning is widespread, with applications in hyperparameter opti-
mization |Pedregosal (2016), learned optimizer training Andrychowicz et al.|(2016)), and reinforcement
learning (Chakraborty et al.| (2023)). It addresses problems with a nested structure: the outer variable
A € X C R% is chosen by minimizing a composite outer objective I’ = f -+ h, while the inner
variable 3 € R% comes from minimizing an inner objective:

X cargmin FA),  F(A)2 f(A, B°N) +h(A),  B7(A) € argming(A,B). (1)

AEX BER42

where F' is nonconvex and smooth, h is convex and potentially non-smooth, and g is smooth and
tg-strongly convex in 3. In many machine learning settings, f and g are expectations over data or
environment randomness and are not available in closed form. With samples (&, ¢), the stochastic
bilevel problem is

A* € argmin F(A) £ E¢[f(A, B*(A);§)] + h(A), B*(A) €argminE[g(A,B;¢)]. ()

AeXx BER2

Gradient-based methods update A using hypergradients of the composite outer objective F'(\),
computed either via implicit differentiation of the inner optimality condition Pedregosal (2016);
Lorraine et al.|(2020) or via iterative/truncated differentiation through an inner solver Maclaurin et al.
(2015)); |[Franceschi et al.|(2017). Prior stochastic bilevel algorithms in the offline regime provide
convergence and sample-complexity guarantees under noisy gradients |(Ghadimi & Wang (2018)); |J1
et al.|(2021). Recent works study more-efficient stochastic hypergradient estimators, via momentum
or variance reduction [Khanduri et al.| (2021)); /Chen et al.|(2021); Hong et al.| (2023).

Despite progress in the offline setting, the online bilevel optimization, e.g.,Vt =1,...,7T :
AL € arg H;in Fy(A) 2 Ee [fl X, Bi(A); &) + le(X),  Bi(A) carg H;in Ec.[gd( X B;¢)]  3)
€ BER2

remains underdeveloped. Existing methods are limited to deterministic and Euclidean Tarzanagh
et al.| (2024); |Lin et al.| (2024): they assume noiseless gradients and use Euclidean outer updates.
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Alg. Bregman Loop Stoch. Samples k4 dep.
OAGD [Tarzanagh et al.| (2024) X Double X N/A p(kg)
SOBOW [Lin et al.|(2024) X Single X N/A p(kg)
SOBO (ours) X Single v o) Ky
SOBBO (ours) v Single v o) o)

Table 1: Current Online Bilevel Optimizers. Bregman: supports Bregman geometry. Loop:
single vs. double loop. Stoch.: supports stochastic gradients. Samples: per-round gradients for
stochastic algorithms. kg dep.: leading dependence on the inner condition number in bounds.

These methods achieve sublinear bilevel local regret (BLR)—a stationarity-based regret on the outer
objective—but do not address two key challenges: (i) incorporating geometry-aware (Bregman)
outer updates for ill-conditioned problems, and (ii) handling stochastic, nonstationary data. We next
highlight how these gaps are significant in online bilevel optimization problems.

Gap 1: Geometry. Bregman geometry underlies many advances in online optimization, unifying
adaptivity and proximal regularization while improving robustness to ill-conditioning (e.g., Adagrad
Duchi et al.|(2011)), implicit online learning [Kulis & Bartlett (2010)). In online nonconvex single-
level settings, geometry-aware proximal (Bregman) updates are standard, and analyses based on
stationarity-type criteria (gradient mapping/local regret) yield sublinear guarantees under reasonable
smoothness and variation assumptions [Hazan et al.| (2017); |Aydore et al.[(2019); Hallak et al.|(2021).
In online bilevel problems, the challenge is related but distinct: ill-conditioning originates in the inner
problem, where the condition number 4 controls the sensitivity of 3*() and, via the hypergradient,
the stability of outer updates. When r is large, outer steps become fragile to noise and drift. Yet
existing online bilevel formulations [Tarzanagh et al.|(2024); |Lin et al.| (2024) rely on Euclidean outer
updates; to our knowledge, there are no geometry-aware outer steps even in deterministic settings.
As aresult, current methods exhibit strong dependence on x,—a critical liability in nonstationary
regimes where ill-conditioning is ubiquitous.

Gap 2: Stochasticity. Large-scale learning is inherently stochastic: both inner and outer gradients
are noisy, and hypergradients must be estimated. Deterministic formulations from Tarzanagh et al.
(2024); Lin et al.|(2024) cannot capture these dynamics because they require full-batch gradients. A
stochastic formulation aligns the theory with practice, where mini-batch sampling is essential for
scalability, computational efficiency, and robustness to noise. Moreover, a stochastic analysis provides
additional theoretical insight: as we later show in Corollary[6.2} time-smoothing—previously used
heuristically in deterministic OBO—emerges naturally as a variance-reduction mechanism, thereby
clarifying its role across both deterministic and stochastic regimes.

Our contributions. We develop a unified framework for online stochastic bilevel optimization
(OSBO) with guarantees in both oracle and stochastic settings:

1. Bregman geometry improves x, dependence. Bregman steps achieve sublinear BLR
(o(T)) and strictly better x4-dependence than Euclidean updates: in the oracle case they
remove the f-zg dependence; in the stochastic case they eliminate the lﬂg dependence (Table .

2. Single-loop, sample-efficient stochastic algorithms.:
¢ SOBO (Euclidean): sublinear BLR but ng dependence (Table .

* SOBBO (Bregman): time-smoothed hypergradients + Bregman steps, removing /@Z
while preserving sublinear BLR (Table[T).

3. Time smoothing as variance reduction. Stochastic analysis shows time smoothing is a
variance-reduction mechanism for noisy hypergradients with controlled bias, see Table

4. Empirical validation. On preconditioner learning and RL with nonstationary, ill-
conditioned data, our stochastic methods outperform current online bilevel baselines.

The paper is structured as follows. Section 2] introduces notation, Bregman-based gradient steps,
and bilevel local regret. Section [3|analyzes Bregman-based optimizers in an oracle setting. Section
M] addresses hypergradient estimation and presents the proposed algorithms. Section [5] provides
regret analysis. Section [6]includes experimental results on preconditioner learning and reinforcement
learning. Proofs and extensions to the deterministic setting are in the Appendix.
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Alg. Upper bound on BLR

OAGD [Tarzanagh et al{(2024) O(Z + Hyr + Ha,r)
SOBOW [Lin et al.|(2024) O(L+vir+Har)

SOBO (ours) O(TTE?’ (k2 +0F+kKZo2) +Vir+ HgHg,T)
SOBBO (ours) O(% (03 +02) + Vi + Har)

Table 2: Sublinear bilevel local regret. Bounds are given for comparator sequences
Vi, Hi,7, Ho, 7. SOBBO eliminates the ng dependence of SOBO and removes x4 from lead-

ing variance terms. Increasing the smoothing window w reduces variance via the % factor.

2 PRELIMINARIES

2.1 NOTATION AND ASSUMPTIONS

Let ||-|| denote the ¢5 norm for vectors and the spectral norm for matrices, with (31, 32) denoting the
inner product between 31 and (3. For a function g, (\, 3, {), we denote the gradient as Vg (A, 3, ().
Partial derivatives are denoted, for example with respect to A, as Vxg:(A, 3,¢). We make the
following assumptions that are standard in online [Tarzanagh et al.| (2024); |[Lin et al.| (2024) and
stochastic |(Ghadimi & Wang|(2018); Ji et al.[(2021)); [Huang et al.|(2022b)) bilevel optimization.

Assumption A (Smoothness of Objective Functions). Foreacht € {1,...,T}, A € X, and 3 € R%,
there exist Uso,0f1,0g.1,¢g,2 > 0 such that:
1. fi(X, B, €) is Lgo-Lipschitz and V fy is £y 1-Lipschitz.

2. Vgi(A, B, Q) is £y 1-Lipschitz, Viﬁgt and V%ﬁgt are L4 o-Lipschitz.

Assumption B (Strong Convexity of Lower-Level Objective). For all t, gi(, -, () is pg-strongly
convex in 3 for every A € X.

Assumptionsimply the inner condition number kg := €41 /1y > 1.

Assumption C (Stochastic Gradients). For all t and (X, 3), unbiased stochastic estimators exist for
the required first/second-order quantities (e.g. ]E[ﬁggt] = Vgg:), and analogously for @ft, @%ﬁgb
@%Agt. Their variances are bounded: E||§ggt —Vsgil* < o2 and E|Vfi—Vfi—B\B)|? < UJ%.
Assumption D (Bounded Decision Space). X C R s closed, convex, and bounded with diameter
atmost S, i.e., ||A\1 — Xo|| < S forall \y, s € X.

Assumption E (Bounded Objective). For all t, supycx |Fi(N)] < Q.

Assumption F (Distance Generating Function). For allt, ¢; : X — R is continuously differentiable
and p-strongly convex, so that D, is well-defined.

Smoothness and strong convexity ensure the inner problem is well-conditioned; the stochastic
oracle assumptions allow unbiased, bounded-variance access to gradients |Khanduri et al.| (2021));
boundedness of X’ and F; prevent divergence Hazan et al.|(2017); and the distance generating function
specifies the geometry in which our regret is measured Huang et al.|(2022afb)).

2.2 BREGMAN PROXIMAL GRADIENT

Introduced in [Bregman| (1967), Bregman divergences generalize the squared Euclidean distance.
Given a continuously differentiable and p-strongly convex function ¢(A), the Bregman divergence
is defined as Dy (A2, A1) := @(A2) — d(A1) — (Vo(A1), A2 — Aq). Given a Bregman divergence
Dy(,-), our proximal gradient step is

AT = arg min {(q, A) + h(X) + lD¢>()\, u)} ) “
Aex @

where ¢(A) is a continuously differentiable and p-strongly convex function, h(\) is a convex and
potentially nonsmooth regularization term, o > 0 is a step size, and q, w € R% are the estimate
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of the gradient, and current reference point, respectively. Proximal gradient methods in offline
bilevel optimization have been shown to improve convergence rates in the deterministic setting (e.g.,
Bio-BreD algorithm of Huang et al.|(2022b)) and stochastic setting (e.g., SBio-BreD algorithm of
Huang et al.| (2022b)). Special cases of the gradient update in equation@]include projected (stochastic)
gradient descent ($(A) = 3 A2, X C R%, and h(X) = 0), as well as proximal (stochastic)
gradient descent (¢(X) = |A|? and X = R¢). The aforementioned gradient step in equation
can be further extended to a time-varying distance generating function, e.g., ¢¢(A) = %)\THIL)\ with
an adaptive matrix H;, resulting in an adaptive proximal gradient method with similarities to Adagrad
from Duchi et al.|(2011)) and Super-Adam of [Huang et al.|(2021b). The proximal gradient step of
equation (4| has led to the introduction of a generalized projection from (Ghadimi et al| (2016) defined
for a step size @ > 0, g € R™, and w € X as Gx(u, q,a) := L (u — AT). Here Gx (A, Vfi(A), )
acts as a generalized gradient that simplifies to V f;(A) if X = Rdl and h(X) =

2.3 GENERALIZED BILEVEL LOCAL REGRET

Bilevel local regret is a stationary metric for online bilevel optimization |Tarzanagh et al.|(2024)); Lin
et al.| (2024) that extends the single-level local regret measure from|Hazan et al.|(2017). The work of
Lin et al.|(2024) in particular defines the bilevel local regret for a window length w > 1 and a sequence
{\}L, as BLR,(T) := Z? 1 IVF w(Ae) ||* where for simplicity we have defined F; w(Ag) =

L Z;‘ ’ 01 Fi_;(A¢t—;) as a time-smoothed outer level objective with F; = 0 V¢ < 0. Note for the
online stochastic bilevel formulation of equation [3] the bilevel local regret can be equivalently wrltten

s BLR(T) == Y, [VE w0 == X1, || (4 500 B (Va0 81, (0e-0.9]) [

To analyze convergence benefits from the Bregman-based gradlent step of equation[d]in online bilevel
optimization algorithms, we introduce a new generalized projection based bilevel local regret as

T
BLR,(T) == _ [IGx(Ae. VErw(Ar), ) )

t=1

where w > 1 is the window length, and {\;}7_, is the sequence of 1terat1ve updates generated. Note
that in the setting where X = R%, h(X) = 0, and ¢y (X) = ¢(A) = 3 L | AJ|%, our variation of local
regret in equation [5| reduces to the regret measure of [Lin et al.| (2024). However, our definition offers
an important generalization of bilevel local regret when an adaptive distance generating function
¢+(A) or a non-zero regularization term i () is present.

Besbes et al.| (2015) shows that in order to derive useful regret bounds of online algorithms in time-
varying environments further regularity constraints must be imposed on the sequence, such as sublin-
ear comparator sequences. Example comparator sequences include path variation |Yang et al.| (2016),
function variation Besbes et al.| (2015), or gradient variation |Chiang et al.|(2012). In online bilevel
optimization one proposed sequence is the p-th order inner level path variation of optimal decisions
from [Tarzanagh et al.| (2024), and is H, 7 = Zf 9SUPcx H,Bt 1 || A regularity
metric on the p-th order variation of the evaluations of the outer level functlon across time is suggested
by Lin et al.| (2024) and is V,, 1 := EtT:l supacx |Fit1 (A) — F; (A)[P. Note the latter regularity
metric, V), 7, tracks how the optimal outer level variable, which is fixed for a given ¢ € [1,T], can
vary over time. For the online stochastic bilevel formulation of equation 3] the aforementioned com-
parator sequences can be equivalently written as H,, 7 := Z;‘FZQ supxcy ||Bi_1(A) = Br (A Hpand
Vpr == Zthl supxcx |[Be [fie1(A, Bi1(A), €)] — Ec [fe(X, BF (A), )] ’p. We will be utilizing the
regularity metrics of second-order inner-level path variation, H5 7, and first-order variation of the

evaluations of the outer level objective, Vi 7, and impose a sublinear constraint, that is Hy 7 = o(T)
and Vi 7 = o(T).

3 BREGMAN BILEVEL OPTIMIZATION UNDER HYPERGRADIENT ORACLE

The hypergradient in the online setting has been formally derived using the chain rule followed by an
implicit function theorem by |Lin et al.|(2024); Tarzanagh et al.|(2024). Namely,
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Lemma 1. (Tarzanagh et al|(2024)) Under Assumptions[A|and|B| we have YA € X
VE(A) = Vafe(X B (A) + VB (A)Va fi(X, BL(N))
= VAL B7(N) = V& 590X BE(N) (VB p90A BT (N) T Vaf (A Bi (V). (6)

The above gradient decomposition is a common expansion in bilevel optimization that utilizes the
smoothness and strong convexity assumptions[A]and [B] The next Lemma provides an upper bound
on the difference in the evaluated hypergradient ||V F; (A1) — VF;(A2)|| in terms of the Lipschitz
constant £ ;.

Lemma 2. (Lemma 3 in[Tarzanagh et al|(2024)) Under assumptions[A|and [B| it holds that, for
all X1, A2 € X, |[VF (A1) = VE(A2)|| < lpa||A1 — Xzl , where the constant {pq = O(K)S) is
dependent on the condition number k4, strong convexity parameter [iq, and Lipschitz constants
lr1,80,442, see Lemma equation forfull analytical form of (1.

In order to analyze the effect of generalized Bregman-based gradient steps in online bilevel optimiza-
tion, we introduce the hypergradient oracle. This obviates the need for a choice of the hypergradient
estimation and allows us to show the independent improvement of the rate of bilevel local regret.

Definition 1. The hypergradient oracle is a function O(\) that returns the true hypergradient
OA) : A= VE(A), where VF(X) = VAF, (X, Bf (X)) + VaABF(A)VEL(A, B (A)).

The oracle has access to the true hypergradient at optimal inner level variables 3; (A) VA € X. Algo-
rithm[T]employs the hypergradient oracle, and, together with the Bregman-based step implemented as
a subroutine in Algorithm[2] constitutes a special case of our general algorithm, to be introduced later.
Sections[d]and [5| present this general algorithm and complementary regret analysis for the generalized
Bregman-based gradient step in the practical setting which requires hypergradient estimation. With

Algorithm 1 Bregman Optimizer Algorithm 2 Generalized Gradient Step
Require: Initial variable A1 € X, step size Require: wu, g, step size a, reference function ¢
a > 0, Bregman reference function ¢ I: AT < argminyc x{(q, A)+h(A)+ 2Dy (A, u)}

1: fort:17...,Td0 2: returnA+
2 VEi(At) < O(A¢) > Query oracle
3: u < At

4: g+ VF:( )
5.
6:
7

At+1 < AlgorithmPfor u, q, o, ¢
end for
return Ar41

the oracle, Theorem (3| shows that Algorithm E] with generalized Bregman steps achieves regret o(T),

compared to o(x3T) for classical gradient descent (X = R4 h(X) = 0,4(A) = ||A[|?). The
p g g 2

improvement comes from eliminating the multiplicative nf’, > 1 factor. For background on the role of
condition numbers in bilevel optimization, see [Huang et al.| (2022b)).

Theorem 3 (Bregman Steps under Hypergradient Oracle). Suppose h(A) = 0 and X = R%. Assume
Assumptions[AHF| hold and that the cumulative variation is sublinear:

T
Z (Fy(At) = Fra1(Aeg1)) < o(T).

t=1

If Algorithm|l|uses a p-strongly convex reference function ¢(\) defining the Bregman divergence
Dy(X,u) with p = O(€p 1), then the bilevel local regret (with w = 1) satisfies

T

> |62 (A VE ), 0)|* < o(T),

t=1

i.e., a sublinear rate independent of the condition number kg > 1.

Remark. The result indicates that generalized Bregman steps eliminate the condition-number depen-
dence present in Euclidean updates.
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Corollary 3.1 (Classical Gradient Descent as Euclidean Bregman Step). Let ¢(X) = £||A[|% so that

Dy(A,u) = 3||A —u? and p = 1. Then Algorithmreduces to classical gradient descent and the
bilevel local regret satisfies

T

T
S G2 VEAD, @) = Y IVEA)I? < dlrT) = ok3T).

t=1 t=1

Theorem 3| shows the improvement a Bregman-based gradient step can have on the sublinear rate of
bilevel local regret of Algorithm|l|in terms of the condition number x4, > 1. Next, we extend our
Bregman algorithm and analysis to the setting where hypergradient estimation is required.

4 BREGMAN BILEVEL OPTIMIZATION UNDER HYPERGRADIENT ESTIMATION

4.1 STOCHASTIC HYPERGRADIENT ESTIMATION

Following previous work on bilevel optimization Ghadimi & Wang| (2018)); |Tarzanagh et al.| (2024);
Lin et al.| (2024), the computational difficulty in obtaining (3; (A) motivates the use of a sur-
rogate (3 in the hypergradient expansion of equation E] for a fixed A € X and B € R% as

~ 1
VA B) = VaLi(AB) — V3 50:(A, B) (V%ﬁgt()\,ﬁ)) Vsf(X, B). Note by further con-
sidering the stochastic setting, the hypergradient is composed of first and second-order stochastic

gradients, for which we have unbiased oracles with finite variances under Assumption|[C} However
-1
a stochastic estimator is still required for the inverse Hessian (V% 8 9t(A, B, ¢ )) . A common

stochastic estimator for the inverse Hessian has been proposed by |Ghadimi & Wang| (2018)), and
used in [Khanduri et al.| (2021)) and Huang et al.| (2022b). We use the aforementioned stochastic

hypergradient estimate in this work and denote the estimate as v ft(At, Bis1, E). Construction of
the stochastic hypergradient estimate is included in Lemma 4]

Lemma 4. (Algorithm 3 in|Ghadimi & Wang|(2018)) Suppose Assumptions|[A| B} and[CQ) Then for an
upper bound of m, learning rate 7}, and independent samples € = {¢, (", ... ("™}, the stochastic

gradient of V ft(X\, B, &) provides an estimate of v f+(X\, B) and is constructed via Algorithm
6.ft (>‘7 57 5) = v)\ft (>\7 57 6) - vi,ﬂgl‘ (Aa /67 CO)

< 211 (Id2 - ;V%gt(xﬁ,d)) Vg fe(X,Be), @)
j=1

where m ~U(0,1,...,m — 1) and, for m =0, H;nzl() = Ig,.

The next Lemma from |[Khanduri et al.| (2021) characterizes the bias of this stochastic estimate.
Lemma 5. (Lemma B.1 in [Khanduri et al) (2021))) Suppose Assumptions [A|B} and [Q For
any m > 1 the gradient estimator of equationﬂ satisfies the bias of B(A,(3) =

Rl - Tomnne| 2 (45

4.2 SINGLE-LOOP EFFICIENCY WITH TIME-SMOOTHING

Due to the computational cost double-loop algorithms can incur, single-loop algorithms for bilevel
optimization are often desired. However in the stochastic case, variability of stochastic gradients
impose a difficulty for the construction of single-loop algorithms. One proposed solution commonly
employed, see Khanduri et al.[(2021) and Huang et al.|(2021a), is the use of momentum techniques to
achieve variance reduction. A similar methodology appears in the online deterministic setting of [Lin
et al.[(2024)) where the technique of time-smoothing is applied to average evaluated hypergradients
and improve the rate of bilevel local regret.

Motivated by the success of momentum techniques in stochastic bilevel optimization and their
technical similarity to time-smoothing, we employ time-smoothing from |Lin et al.| (2024) to effi-
ciently average the evaluated stochastic hypergradients. In particular, we introduce time-smoothing
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with the estimator V fraw( e, By, Zt w) defined for all ¢ € [1, T, window size w > 1, and inde-
pendent samples Ziw ={&-i 15 ! where & = {et, &P, .-, t’”_l} as Ve w(Ae, Bit1, Zew) 1=
5, Z;ﬂ:ol vftfz(Atfzvﬁtlefza gtfz)v ft =0Vt S 0.

Our general algorithm is included in Algorithm 3]and states our novel Bregman bilevel optimizer that
efficiently utilizes stochastic hypergradient estimation with time-smoothing techniques to solve the
online stochastic bilevel optimization problem of equation[3] The special case of it, for K = 1, is
an efficient single-loop algorithm. In the next section (Section[5), we further show how the above
time-smoothing technique has the effect of variance reduction on the rate of regret.

Algorithm 3 Stochastic Online Bregman Bilevel Optimizer

Require: Horizon T7; inner steps K > 1; step sizes «, 7 > 0; batch sizes s, m; Bregman reference ¢;
window w > 1
1: Initialize B; € R%, X\ € X
2: fort =171 do

3: w? <— /Bt

4: fork =1 K do

5: Sample s i.i.d. draws of (; set G x, + {¢7 Vo,

6: wf Wi = Vg (A, wi T Gor)

7: end for

8: @t-‘rl — wtK

9: V fit(At, Bry1,E) + STOCHHYPERGRAD(A, Bi41,7, M) > Alg.

10: Store V f1(A¢, Biy1, &) in memory

11: q < V fi.w(At, Big1, Zi) via time-smoothing

12: u < >\t

13: At+1 < GENERALGRADSTEP(u, q, @, ¢) > Alg.[2]
14: end for

15: return Ariq, Bri1

5 CONVERGENCE ANALYSIS

To analyze the bilevel local regret of Algorithm [3] we require a bound on the error introduced by
stochastic hypergradient estimation. In the oracle setting (Theorem [3)), this error is absent, but in the
stochastic case it contributes an additional term to the regret. Lemma [T6|(Appendix) provides such a
bound: it decomposes the cumulative hypergradient error into contributions from (i) past bilevel local
regret, (ii) time-smoothed hypergradient error, (iii) variations in the optimal inner solutions, and (iv)
the variance o2 of stochastic inner gradients. Building on this decomposition, we now establish the
main regret bound for Algorithm 3]

Theorem 6. (Proof in Appendix: Theorem[I7) Suppose Assumptions [AfF] Let the inner step be

oY) Y, and batch

n = Q(1/pg) such that n < min{e ST LY, outer step be o < min{ ;7 4€F1 N om

size for stochastic inverse Hessian approximation m = log (w)/ log (1 - ” = ) + 1. Then the bilevel
local regret of the single-loop (K = 1) and sample-efficient (s = O(1)) Algmzthm.satzsﬁes

T’/i3 /{,2 + 0-2 + I€20'2 K H
BLR,(T)<O | —9 (14077 "7 ) | Vir 4 B 22,T ®

with comparator sequences Vi, and H 7, 02 o? are finite variances from Assumption @ and
kg > 1is the condition number of the inner level objective.

The next corollary highlights the improvement with a Bregman-based gradient step to equation 4]

Corollary 6.1 (Effect of Bregman Steps). As in Theoremn 12} selecting p = O(Lp,1) = O(k}) implies
the bilevel local regret of

BLR,(T )<0< (1+of+o)+V1T+H2T> ©)
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where with gradient descent (p = 1), the rate is increased by a constant factor of 52.

The next corollary highlights how time-smoothing with window length w > 1 is variance reduction.

Corollary 6.2 (Variance Reduction via Windowing). Increasing w reduces the variance terms in the
regret bound, as evidenced by

Tx; K2+ 02 + K202 K2H
BLR,(T) <O | 9 (14271 770 ) Vir L f 22,T a0)
we p p p

where larger w leads to a lower contribution of variance terms O'J% and 03 to the regret.

The next corollary as in deterministic online bilevel optimization problems (Lin et al.| (2024))
considers sublinear comparator sequences, e.g., Vi = o(T') and Ha 7 = o(T'). For a properly
chosen window of w = o(T") note the rate of regret is sublinear, i.e. BLR,,(T") = o(T).

Corollary 6.3 (Sublinear Regret with Sublinear Comparators). If w = o(T), and the comparator
sequences satisfy Vi r = o(T) and Hy v = o(T'), then the regret bound

Tk3 K2 + 02 + k202 2H.
BLR,(T) < O ("59 <1+ g f 9% | | Vit n Kgt2 T (a1
wp p

P p?
ensures that BLR,,(T) = o(T), implying a sublinear regret rate.

Corollary 6.4 (Window-Free Sublinear Regret). Run with w = 1 and select Bregman Divergence
such that p = T for any o € (0,1). Then

Vir  H
BLR,(T) < 0(T1—a(1+a§+a§) + ot TQQ’QT) (12)

so BLR(T) = o(T') or equivalently achieves sublinear bilevel local regret without time-smoothing.

6 EXPERIMENTS

6.1 PRECONDITIONER LEARNING

Task. Adaptive methods (e.g., AdaGrad Duchi et al.|(2011))) use data—dependent preconditioners
but require hand-crafted choices. We instead learn a diagonal preconditioner online via bilevel
optimization. At round ¢, we set P(\) = diag(A) > 0 and couple: (i) an inner preconditioned
proximal update 3} (\) = argming E¢, [L (85 () + 3116 — 5t,1||2p(/\)_1]; and (ii) an outer up-
date \} = argminycx E, [Lvai+(8; (A); €)]. This shapes the inner geometry so training transfer
improves validation, with 5 and A both adapting online. Models. We use the same bilevel structure
(inner: preconditioned proximal objective; outer: validation loss) across: (i) quadratic regression
with diagonal P(\); and (ii) linear classification with smoothed hinge/logistic loss and the same
proximal term. Datasets. We evaluate on the GDSC drug—response dataset in a high-dimensional
regime (p > n) for both regression and classification; to stress nonstationarity and conditioning, we
also use an imbalanced variant with three feature-based cohorts (marked vertical lines) and standard
train/validation streams. Baselines. We compare SOBBO to deterministic online bilevel methods
OBBO, SOBOW Lin et al.|(2024), OAGD Tarzanagh et al.| (2024)), and our stochastic online bilevel
method SOBO. Deterministic baselines (SOBOW and OAGD) compute hypergradients from full
batches; SOBO uses stochastic mini-batched hypergradients and Euclidean steps. SOBBO performs
outer steps with the quadratic divergence, Dy, (A2, A1) = 5|[A2—A1]|%;,, such that ¢¢(\) = AT H A
with diagonal matrix H; updated adaptively, as in Adagrad, similar to|Huang et al.| (2022a)).

Results. Figure|l|shows that SOBBO attains lower local regret relative to deterministic Euclidean
baselines as well as our stochastic baseline with Euclidean gradient descent. The middle panel of
Figure [T| shows that larger window parameters reduce both the regret incurred and the variance of
stochastic hypergradient estimates as we theoretically show in Corollary [6.2} a large improvement
from the setting of SOBBO when w = 1. For the task of preconditioner learning, Figure [2]illustrates
the difference in the learned optimizers across algorithms and window sizes, and the resulting
validation improvements. SOBBO achieves the best validation loss (0.7214), outperforming OBBO
(0.7880), OAGD (1.0110), and SOBOW (1.5291).
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Figure 1: Left: Regret for deterministic and stochastic online bilevel optimizers; SOBBO attains smaller regret.
Middle: Increasing window size reduces regret by stabilizing updates. Right: Larger window size reduces the
variance of stochastic hypergradient estimates, as shown theoretically in Corollary@
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Figure 2: Left: KDE of diagonal preconditioner entries (d = 500) across algorithms. Middle: KDE for
different window sizes, showing the effect of time-smoothing. Right: Final validation loss across methods.

6.2 ACTOR-CRITIC REINFORCEMENT LEARNING

Task. Following the formulation of [Prakash et al.| (2025) we cast actor—critic as online bilevel
optimization with actor (outer) 6 and critic (inner) w: the actor solves ming E, [f+(0, w; (0), €:)]+7(0)
while the critic solves w; (0) € arg min,, E¢,[9:(0, w, (;)]. Models. The actor 7y is a 2-layer MLP
(128-128), the critic @, is a matching MLP with TD updates. Datasets. We consider a nonstationary
Pendulum environment within Gymnasium with scheduled nonstationarity jumps occurring in the
gravity and max torque, see left panel of Figure 3] Baselines. We compare our algorithm SOBBO,
using the quadratic divergence Dy, (A2, A1) = [[A2 — A1|[3;,, against SOBOW and OAGD adapted
to this RL setting, measuring bilevel local regret and the effect of window size.

Results: Figure 3] shows lower bilevel local regret of SOBBO relative to deterministic and stochastic
baselines with increasing window parameter (w = 50, 500, 5000) further reducing regret.

Bilevel Local Regret Window Parameter Reduces Regret

Relative Change of Pendulum Gravity and Max Torque

— Gravity (9)
Max Torque (1) 10

B

0 2500 5000 7500 10000 12500 15000 17500 [
Time (steps)

Relative Change (wrt. start)
Cumulative Local Regret
BLR(T)

— 50880 (w=50)
50880 (=500}
50880 (w=5000)

2500 s000 7500 10000 12500 15000 17300

Iteration Update

Figure 3: Bilevel RL experiments. (a) Relative changes in the Pendulum environment. (b) Bilevel local regret
across algorithms; SOBBO achieves lowest. (¢) Bilevel local regret over window sizes shows improved regret.

7 CONCLUSION

This work shows that Bregman geometry removes the dependence on the inner condition number
in stochastic online bilevel optimization while attaining sublinear bilevel local regret. We develop
single-loop, sample-efficient algorithms that couple generalized Bregman steps with time-smoothed
hypergradient estimates, and our analysis identifies smoothing as an intrinsic variance-reduction
mechanism that controls bias and unifies prior heuristics with theory. Empirical results corroborate
these claims across ill-conditioned, large-scale datasets and nonstationary losses.
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7.1 REPRODUCIBILITY STATEMENT

To ensure reproducibility, Sections [3|to 5] present the key algorithmic details of our Bregman-based
bilevel optimizers. Section [6]documents the experimental setup, baselines, hyperparameters, and
the open-source datasets used. Upon acceptance, we will release an open-source repository with
implementations, configurations, and scripts to reproduce all experiments. All assumptions and
complete proofs, including regret bounds in the stochastic setting (Appendix [B) and the reduction to
the deterministic setting (Appendix [C), are provided in the appendices.
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A PRELIMINARIES

Lemma 7. (Lemma 12 in|Tarzanagh et al. (2024 )) For any set of vectors {[3;}",, it holds that

m

<m§jmﬂ| (13)

The following lemma provides progress bounds for gradient descent applied to a y4-strongly convex
and twice differentiable function g(/3).

Lemma 8. Let g(w) be a twice differentiable and y1,-strongly convex function with V g(w) satisfying
4 1-Lipschitz continuity. Further assume g(w) has a global minimizer & over the domain R?, Then

under the gradient descent method of

wk _ wk—l _ nvg(wk—l)’

1
— L,
2

)

Jeo” —WH (1= mp1g) [l - &

The following two lemmas characterize useful properties known for the generalized projection
Gr(u,q,q).

Lemma 9. (Lemma 1 in|Ghadimi et al.|(2016)) Let At be from equation ThenVu € X, q € R™,
and o > 0 we have

<Q7gX(uaq7a)> >p ”gX(u’q? )H ( (A+) h(u)) (14)

such that p > 0 is the strong convexity parameter of the dlstance generating function ¢().

Lemma 10. (Proposition 1 in|Ghadimi et al.|(2016)) Let G (u, q, ) be the generalized projection.
ThenVqy,qs € R Y € X, Va > 0, we have

1
||gX(u7qlaa) - gX(u7q27a)H S ; ||q1 - q2|| . (15)

The next Lemma provides useful bounds on the hypergradient V F} (), gradient estimate V f; (X, 3),
and optimal inner level variables 3; (A) in the deterministic online bilevel optimization problem.

Lemma 11. (Lemma 3 in|Tarzanagh et al(2024)) Under assumptions [A] and B} it holds for all
t€[1,T], A1, A2 € X, and B € R*® that

18; (A1) = Bi A2)l < kg [ A1 = Aol (16)
where kg 1= % = O(ky), the gradient estimator V (A, B) satisfies
[V1e(X8) = VRN < M 18— B; (M), (17)

where My := {54 +€f’1ﬁg+M(l+f$g) O(k32), and
IVE(A1) = VE(A2)[| < Lra | A1 = Aff, (13)
where Ugq := L1 (1 + Ky) + L 25‘7 2(14 kg) + Myrg = O(K).

B PROOF IN STOCHASTIC SETTING

The first theorem states the convergence result in the hypergradient oracle setting.
Theorem 12. Suppose that h(\) = 0 and X = R%. Additionally, let Assumptions@@hold. If the
cumulative difference of subsequent function evaluations satisfies the sublinearity condition:
T

Y (F(A) = Fra(Aign) < o(T), (19)

t=1
then, by selecting a p-strongly convex reference function ¢(X) that uniquely defines the Bregman
Divergence Dy(A, u) such that p = O(€ F,1) in the generalized step of equationd] the bilevel local
regret (for w = 1) of Algorithm[I} using the generalized Bregman-based step from Algorithm 2]
achieves a sublinear rate of o(T), independent of the condition number k4 > 1.

12
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Proof. We analyze the convergence of the Bregman optimizer in Algorithm[I] under the generalized
Bregman-based gradient step of Algorithm 2] Note with Assumptions [A]and[B] we apply Lemma ]
that says F} is £ 1-smooth and implies that

Y4
Fy(Air1) = Fe(Ae) < (VE(A), A — M) + EHNH = A%

Substituting the generalized projection of Gy (A¢, VF (), @) := i (At — A1) from the general-
ized Bregman-based gradient step of equation 4] gives us

Ft()\t+1) Ft()\t) <VFt()\t) —O(gx()\t,VFt()\t),Oé»—F £l ()\t,VFt()\t),Oé)H2. (20)

Now applying Lemma(9] we obtain
(VE(Ar), —aGx (A, VE (M), @) < —pal|Ga(Ae, VE(Ar), o) || (2D

Substituting equation 21]into equation [20|and rearranging this inequality and telescoping we get

lria
— (POZ - F’; > tzl G2 (N, VE (), ) ||* < ZFt (At) = Frp1(Aeg1)-

Choosing a = ﬁ with our assumption on sublinear subsequent function evaluations, that is it holds

that Zthl Fiy(XA¢) — Frr1(A¢x1) < o(T), then we have the sublinear rate

U1 Yo (Fi(A) = Fri1(Aeq1)) o lpa
(h—172) : ( ’ T)'

T

S TIGx (A, VE(Ar),0)]? <

t=1

Selecting the p-strongly convex function ¢ () that specifies the Bregman Divergence Dy (A, u) in
equation I such that p = O({F,1) = O(k}) implies that the bilevel local regret is sublinear with the
rate of

T
D lIGx (A, VE (), 0)[* < o(T).

t=1
O

Our first Lemma upper bounds the expected cumulative difference between the time-smoothed outer
level objective F} ,,(A) evaluated at A; and A,y in terms of the outer level objective upper bound @
from Assumption [E| window size w, and a comparator sequence on subsequent function evaluations
Vir.

Lemma 13. Suppose Assumption[E] If Algorithm[3)is applied with window size w > 1 to generate
the sequence {\;}1_,, then we have the upper bound in expectation of

T
2T

E (Frw(At) = Frw(Aeg1)) < TUQ +Vir.

=1

Proof. By definition in the stochastic setting, we have F;(X) 2 E. [f:(X, 37 (M), €)]. Then it holds,
with the linearity of expectation that

T T w—1
> Fr) = Fraoes) = 3 2 57 (Fioahsi) = Frales )
=1 =1 =0
T 1 'w—lf f
=2 =D (B [fimi (i B i)y )] = Ee [fii Ao B (M), €)])
t=1 =0
T 1 w—1
=D D e [Fimi (Mt BN, ) = froi (Aea—is B Arga i), €)]

t

1 1=0

13
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Which with the linearity of expectation is equivalent to

T w—1
Z % Z Ee [fimi (At—i, Br_i(Ae—i)s€) — fimi (Aeg1—i, Bi_i(Aer1-i), €) ]

-1

T
1%
Z " Ee [fooi (Ae—is Br_i(Ai—i)€) = fryr—i Mep1-6, B i(Aes1-i),€)| (22)
t=1 =0
w—1
+Z D B [frer—i M-, Bii(Aeg1-i)s€) = frmi (Aes1—i, B7i(Aes1-i),€)] (23)
t= 1 =0
For equation 22} with linearity of expectation, we have
w—1
*Z]E [fi—i Ae—i, Bi_i(Aimi)s€) = frrr—i (Aes1—i Bry1—i(Aig1—i) €]
1=0
1

- EEe [ft (Aty/B:(At)76) -+ ft+1 w ()‘tJrl 'LU)IBtJrl w AtJrl w 76)]
1
—EEE [fer1 (A1, Brp1 Neg1)) + -+ frrz—w (Atg2—ws Bro—wAir2—w), €) |
1
= EEG [fre1—w Atgr1—w: Brp1—wAer1—w), €) = frer (Aeg1, B (Aes1), €) |
Q

1
= (Fig1—wAit1—w) — Fra1(Xig1)) < ; 24

where the last inequality comes from Assumption[E} Note equation [23|can be bounded through

Z% Z [feri—i Aeri—i Bii—ier1-0),€) = fri (Ae1—i, B (A1), )]
t=1 =0
T w—1
< Z% Z UPE ft+1fi ()‘7 5t*+1—i()‘)’€) = fii ()"ﬁ;k*i()‘)’eﬂ
t=1 =0

= Z sup [Fyp1 (A) — F,(N)] :=Vir (25
=1 AEX

Combining equation [23]and equation 3] results in the upper bound of

2T
Z Fiw(A) = Fraw(Aeg1)) < TQ +Vir.
=1

O

The next Lemma provides an upper bound on the expected error of E¢, | | [|| Bt — B () ||2] for

all t € [1,T] in terms of an expected initial error, the expected cumulative differences of the outer
level variable, the expected cumulative differences of the optimal inner level variables, and a variance
term arising from the stochasticity of g¢(\, 3, ¢).

Lemma 14. Suppose Assumptions@ @ and @ Choose the inner step size of 1 = Q(1/1,) with the
inner iteration count K as

0<n< ,and K > 1,

2
4, Hg
and define the decay parameter v, the inner level variable error constant C » the initial error Ag,
and the inner level variable error variance Ci respectively as

K—-1
2
U= (1_7W7> <1_776971“9> .G, = <1+€g71+:u9>’
Ly + pig b+ Hyg g1 kg
K

ol §
— 82— BIAWI? = O(1), and Cci= (1—/7““9> e
=1 g1t Hg

14



Under review as a conference paper at ICLR 2026

Then we have C,,, = O(1), and Vt € [1,T), t

t—2

Bt s [1Bir1 = B O0IP] <07 8 +2C,, 52 > [ A1y = Ay ]
=0
t—2 2 2 t—2
. Ckn‘o
j * * 2 KT
+20Mg Z Zah |:H/8t7j()‘t71*j) - 6&1#0\%14)” } — V.
j=0 7=0
Proof. Note Vk € [1, K] the following expansion holds
2

[wf =87 ()|
= [|wf = wf 7"+ 2wk - wf T wf T - B () >+Hwk*1—5f ]
=17? ||Vwge A, wi™ aCt,k)H =20 (Vg A, wp ™ Qi) wi ™ = B ()\t)>

+||w; — B

2

Using the definition of variance of
VARC_t k [vagt At7 wfila Et k)”]
:Egt’k |:vagt()\t7wf_l’Et’k)‘|2:| ECtk H|vwgt Atv aCtk H]

k—1

and conditioning on w; ~ ~, we take expectation (Assumption|C) to provide the upper bound of

k * 2 2 02
Ee,, [lwf B0 <o {72+ [ Vomrnwf )

=20 (Vg A, wi™h), wf—l—Bz‘(At>>+||wf—1—5:<xt>||2. 27)

The above upper bound is deterministic, and as such we can utilize the u,-strong convexity of g; to
bound

—2n) <vugt<xt,wf‘1), b1 ﬁm»

l 11U _ 2
<=2 2wt - B (A +7 Vgt A, w
< 2 (G ol B+ e VOt
which we can substitute in equation[27]to get
2
k * 2 n 2 k—1y 12
B¢, , [Hwt —B; ()| } <—2 -y <€g1+ug _77> [VewgeAe, wi ]|
2nlg1pt > k-1 2
+(1 - 0 ) |lw — B (A .
(1- 72t ) b~ = gria0)
Asn < 75— thls provides the upper bound to equatlonof
2 20l 11 b1 > ol
E; [ kB }<1—# ~ B (A 3
G [lor =B A)|7] < ot + i i B+ 5
This can be unrolled, through iterative conditioning, from k = K, ..., 1
2 2y 1p1g \ 2 COgn?o?
E- [ K _ g* A :| < 1— g,1rg E- 0 _ % A 9’
Ce, K41 ||wt Bt( t)H = é%l""ﬂg Cin ||wt ﬂt( t)” + s
k
for Cg := E,}f:l (1 - %’7;59) . By definition of 3,11 = wtK and w = B gives us
K 2 2
cry \[12 2nlg,1p1 ey 2, CrmO
Bt [18ir1 = BIAIP] < (1— Al ) g 8= B+
9,1 T Hg s

15



Under review as a conference paper at ICLR 2026

Note we can decompose

* 2 * * *
Eftfl,}(+1 ||ﬂt_13t (At)H :Eétfl,;(+1 H/gt _6t71(At71)+/8t71(At71) _ﬂt (At)|
which can be expanded based on Young’s Inequality and the linearity of expectation for any & > 0 as

¢ e 18— Biaemt) + Bi_i (A1) — Br ()|
<(U+0)E ., 18— B M)

1
" (1 * 5) EEt—1,K+1 Hﬁ:fl()‘tfl) - ﬁ:(At>H2 : (28)

Now it holds through linearity of expectation that
* * 2 * * 2
Eq},u@rl Hﬁt—l()‘t—l) - /6t ()‘t)H < 2E§t,1,K+1 ||ﬁt (At—l) - 5t ()‘t)H

* % 2
+2E§t—1,1<+1 ||ﬁt ()‘tfl) _IBt—l(Atfl)H (29)
which through Lemmaﬂzl can be further upper bounded with the Lipschitz constant of x4 as

EEﬂ*l,K#»l HIB:—I(At—l) - ﬂ:()\t)HQ
< 2%31[‘3@71’1{“ ||)\t—1 — )\t”Q + 2E€t—1,K+1 ||Bz<(>\t—1) _ 5:_1()\t_1)"2
=262 ||A1 = Adf® 42187 (Ar) = B (M)

2

)

(30)

where the last line comes from the non-randomness of ﬁ}\tl —)\t||2 and

185 (Ae—1) — @21(&71)“2 with respect to (; . Combining equation [29| and equation
we have Vé > 0

20 K
B, ey |81 — BN < (1 - "“) U+ 0Bz, oy, 18- B )]

by + by
2nly 11 K 1
+2 1—9’19) <1+>/€2 A1 —Ad?
< Ly + pg 6) 7 1A 4
277@ 1M1 K 1 2 CK’I720'2
+2(1 - —4—1 1+ F( o) = B () ||+ ——2
(1 Patto )™ (1 ) 3t ) = BT a(hn) |+ =
Now setting § = ;’fglijr‘lz > ( implies the upper bound of
20 K ¢ 210 K=t
(1 + 6) <1 _ n 9¢1M9> < (1 _ Mg, 1Hg ) (1 _ n galp’g) < 1’
g1+ pig g1+ pig by + g
K-1
which defining v := (1 — %) (1 — 27%7;55) and § > 0 implies
2l K
(1 _ g1ty g,1Mg> <v,
L1+ g

Using the definition of v, we get

V]E@,,K+1 [Hﬁt—&-l - ﬁ:(At)H2:| < V2]EEt—1,K+1 {H'@t - B:—I(At—l)Hﬂ
2

. . o  vCOgn?o?
+2C,, VK2 [ Ai-1 — Al +2C,, V7 1B (M—1) = Bioy ()| + ——2,

s
where C,, = (1 + %) Starting at £ = T, and unrolling to ¢ = 1, we can write
g, g
t—2
* 2 — ] 2
Eg, e |18t = BIODIP] <017 8p 420,62 3 07 Aoy = Ay ]
i=0
t—2 2 2 t—2
) Cknco .
* * 2 KT}
+2C,, Y v [HI@t—j()‘t—l—j) — Bt (A1) } t Sz
=0 =0
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The next Lemma utilizes Lemma [IT] and Lemma [T4] to derive an upper bound on the expected
hypergradient error V¢ € [1,T] with respect to ¢, in terms of discounted variations of the (i)
cumulative time-smoothed hypergradient error; (ii) bilevel local regret; and (iii) cumulative difference
between optimal inner-level variables. There is a term composed of a discounted initial error and
smoothness term of the inner objective, as well as an additional term arising from the variance of the
stochastic gradients of g;(\, 3, ().

Lemma 15. Suppose Assumptions@ @ @ @ and@ Choose the inner step size of 1 = Q(1/114)
and inner iteration count K as

0<n and K > 1.

< /0

lga + 1ig
With the definitions of v, C,,,, Ag, and C from Lemma the expected hypergradient error can
be bounded as

B 2 t—2 )
Eé i {vat()‘taﬂt+l) - VFE ()\t)H ] <4+ AZ G (Nem1—jy V- jw(Nmi—g), @) |2
=0

t—2
. ~ 2
+BY v vat—l—j,w()‘t—l—jn@t—jaZt—l—j,w) = VF1jw(Ae-1-5) ’
j=0
t—2 2
) Do
+1 * * 2 g
+CZ;JVJ |:H/6t—j()‘t—1—j) — B (M) || } +—
j:
4 2
where §; = Klgl/t_lAB and A = 4C’Mg/$§a2,B = 40”‘;)7;9&, C = 2Cug/<a§, and D =

t—2
Crrin? di—o V.
Proof. First, from Lemma (Assumption |AlB) we have that VA € X and 3 € R9

|95 Be) = VE )| < 52181 — B G

Taking expectation of equation [31{ with respect to ft, k+1 (Assumption|C) and substituting the upper
bound of Lemma[T4} note
]

E¢ i |:H%ft(>\tvﬁt+l) — VF; (A\t)

t—2
_ j 2
< mg VT AG + ZCHng Z ZAn D VST V| (32)
§=0
t—2 2 2 t—2
, Ckgno .
* * 2 KN
2 120, > V1B (Am—s) = B ()| Tg v (33)
§=0 §=0
Focusing on the second term of equation [32] we see by definition
t—2
S o A = AP
j=0
=2 ~ 2
=Y v |Gxa 5 Vw5 B Bl o) - G4

§=0
Using Lemma (Assumption we have Vj € [0,t — 2]

_ 2
HQX(Atflfjvvftflfj,w(ktflfjaﬁtfjathlfj,w)aa)H S2||gX(At717jaVthlfj,w()\tflfj)va)HQ
_ 2

+2 ng()\tq—j’ VFi 1 jwA—1-5),0) = Gx(Ae—1-5, V fim1—jw(Xe—1—-5, Be—j, thlfj,w)aa)H
<2|Gx (Aem1—j, VE 1 jaw(Xe—1—j), a)|?

9 |~ 2
+? vat—l—j,w(At—l—jyﬂt—jﬁZt—l—j,w) —VE_1_juw(Ai—1—j) ‘ .

17
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We can write an upper bound to equation [34]as

t—2 i—2
Do A = AP <207 Y G (N1, V1w (A1), )|
=0 =0

20{2 t—2 , N 2
— ZVJH (HVftlj,w()\t1j7ﬂtj,Zt1j,w) - Vthlfj,w(Atflfj)H ) . (35

=0
Using equation[33] we get

B ) -2
B xcir {vat(At,ﬂtH) - VF; () ] <o+ AZ VG N1, V1 jw(Ao1-5), )|
=0

t—2
T 2
+B Z Zan vat—l—j,w()‘t—l—ja Bi—j, Zt-1—jw) — VFt—l—j,w()\t—l—j)H
=0

t—2 2
) Do
+1 * * 2 g
+O (1815 A1) = Bra L )] + =2
j:
where 6, = k2v'"'Ag and A = 4C, k}a®, B = 40”% C = 2C,,k2 and D =
Crrin? ZJ Ol/j
O

Lemma T6]provides an upper bound on the expected cumulative time-smoothed hypergradient error
in terms of an initial error, expected bilevel local regret, expected cumulative differences of optimal
inner level variables, as well as variance terms from the stochastic approximated gradients.

Lemma 16. Suppose Assumptions@ @ @ @I and @ Choose the inner step size of 1 = Q(1/ 1), the
inner iteration count K, and the outer step size a respectively as

2 1-—
0<77_7, K >1, and a<w.
‘ggl /Lg K’g 720#9

Then ¥t € [1,T] the expected cumulative time-smoothed hypergradient error with respect to indepen-
dent samples Z; ,, satisfies

T
S |[¥ O B, Ze) — T ()|

AT 2m
Ez., §+BT<1—“9>
. w Ly
t=1 g,
T T 2 2
" " 2 TE?? [0}
+O Y E 2 (A VE (), )l + DY E [[|8; Aet) = By (Aem)|[F] + ——2
t=1 t=2
.o Ik2Ag 90? 9/f 1/{ P>
where the initial term 0; := ﬁ and constants are defined as A := —t, B := ,Ci= 5,

D = 92%@% and E = Z(C;K 5. Note Ag,v,C,,,Ck are defined in Lemma af,a are from

Assumption

kg denotes the condition number and p specifies Bregman Divergence in equatlonl

Proof. With the linearity of expectation we have

Ez, ., lZT: Hﬁft,w()\t; Bi+1: Ztw) — Vi ()\t)‘ﬂ
t=1

iEzt,w |:H§ft,w()\t7ﬂt+17 Ztw) — VFi (&)HT
=1

2

T w—1
= %Z Eg, . Z [Vft i(Ae—i, Beyi—i, E—i) — VF_; ()\tfi)} (36)
=1 i=0

18
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Note that we can upper bound equation|3_3| as

T
1
2 E Ezt,w
w
t=1

2

[Vft i Brsiois €)= Vs ()|

i=0
2 T w—1 2:
< w*z:: 240 ; [Vft i(Ai—is Brg1—i, Er—i) — Eg,_, [6ft7i(>\t7i;,6t+17i;gtfi)}}
(37)
2 & - ’
+E Z]Ezt,w [Est,i {%ftfi()\tfiy Bt+1—is 5t7i)} - VF; (Atfi):|
t=1 i=0
(38)

The linearity of expectatlon definition of variance, and independence of Z; ,, := {&,_ z}w_ Vit €
[1, T implies for y; = Vft,z()\t,l, Bir1—i, ;) with finite variance af, we have
2

Eg, ., —i(Mi—is Big1—is E—i) — Eg,_,

w—1
Z VfeoiNi—is Bes1—is 51:—1')1

=0

|
—

w

< 0'?» = wa?c. 39)

-
Il
=]

Expanding equation 38 we have

T
2
) E Ezt,w
w

t=1

> [Bers [Vhmimis B €| = Vi ()]

i=0
4 T w—1 ~ B . 27
< el ZEZM Z [Est_i {Vft—i(At—int—&-l—ia5t—i):| — Vfi—ilxe—i, Ber1-:) (40)
t=1 i=0 B

w—1

> [V B = VEs )] || | @n

1=0

QZ

Utilizing Lemmas [5]and[7) for equation [40] gives us the expected stochastic gradient bias

4 T
ﬁ ZEzt,w

w—1 2

> {Est,i [%ft—i(/\t—uﬂtﬂ—i’gt—i)} - ﬁft—i()\t—iaﬂt-i-l—i)}

=0

w—1
< wi Z:Ezw lw Zz:; HEEH {ﬁft—i()\t—ivﬁt-&-l—i’gt—i)] — VfiiN—i, Biy1—:) 2]

4 T 1 2m L 2m
< — 203 n(—g) = 4T3 H(—g> 42

— w? ; ( 1 lgn Uk lg1 (42)
Applying Lemma 7] with linearity of expectation to equation [d|results in

sz
1 T
Sﬁzw

ML

2
{Vftfi()\tfiaﬁt+17i) — VEi—i ()‘t*i)} ‘ ]

I
o

%

[

g

1]

|:H€fti</\ti; Bit1-i) = VFi_i (A=) ﬂ
t=1 1=0
4 T w-—1 ~ 2
= Z U’Vft—i(At—iaﬁtH—i) —VFi_; (A=) ‘ } (43)
t=1 =0
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Combining equation[37] equation [38] equation[39} and equation[d3] we have the upper bound of
’2

2m T w—1
4 _
+AT(} K, (1 - ;i) *t5 E E [vat—i()‘t—iugt+1—i) —VE i (Xi—i)
9 i=0

2
4T o 7

w

T
Ez,.. l ¥ s s Bt Zo) = Vi (W)
t=1

2
] ;44

Taking expectation with respect to @, K+1, we utilize the upper bound from Lemma By iterative
conditioning and re-indexing the expected cumulative hypergradient error as well as dropping

expectation for non-random quantities, we derive an upper bound on equation #4] as
2 ]
1

<4T f 4T£ Hg 2 2 ~ 2 t i— 1A
— AT g (1= +;ZZ 8)

g,1

T
B .., |Ez.. ZHVft,w(At,ﬂm,zt,m—VFt,w (Ar)

’ t=1 1=0
2 w—1 t—i—2
+*ZZ 40# Kg ga” Z Zan G (Ag—ie iy VE i (X—im J) 0‘)H2
Wi i=0 j=0
T w—1 4 2 t—i—2
2 4C’Hy/£ga i1
155 3) Dl [y SRV
t=1 i=0 =0
T w—1 t—i—2 T w-—1 2 92 2t—i—2
2 , 2 Ckrin®o .
553D Bl FENTD SRT TS i) 3) 9l [l SU¥) FENTD
t=2 i=0 j=0 t=1 i=0 j=0

where

~ 2
A =B s [Ezu,w {vatjfw()\tjvﬂmj>th,w) - Vthj,w()\tfj)H ”

By j =B ;(Ae1-j) — 5?-1—j(>\t—1—j)||2

Given v < 1, it holds that Z 2 < oV = —L., which lets us upper bound equation as

2 4T 2m
Hg
4TY¢ - =7
11_ w + flﬁ( Eg,l)

T
Ee, .., [Ezt,w S|V Bt Ziw) = TEw (M)
t=1

T w—1 4 2
2 4C, Kia
+EZ <m2yt i lA + lﬂgii ||gX()\ti7VFti,w()\ti)7a)||2>
t=1 1=0
g T w-l a? _ 2
+EZ V)p2 B¢ i vein [Egti,w |:HVft_i,w()\t—ia/Bt+1—iaZt—i,w) = VEFiw(Xe—i) ”
t=1 i=0
T w—1 2 T w—1 2.2 2
2 201,55 |1 s . 2 2 CKchn o
*a;; <1_y||ﬂt—i<kt—1—i>ﬂt—l—i(kt—l—i)ﬂ e\ )
(46)
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Next we derive the upper bound of equation #6]as

XT: Hﬁfmw(}\t,ﬂﬂrl, Zi0) — VEi ()‘t)HZ

t=1

EEt,K+1 ]Ezfyw

4TJ2 2m
Hg
< — AT 0> 1—-—=
w + 717 ( 69,1)

26205 8C,, ki &

T 0 2 19 V(). a)
t=1
8C, Kkia? T 1~ 2
ﬁ Crorct1 EZt’” Zvat,w (AtvﬂtJtht,w)_VFt’w(At) ‘|
t=1
4C K2 L 2TCk ﬁgnzog

Hg 3 Z Hﬁt (Ae-1) 5:71()%71)“2 +

s(1—v)
which implies through linearity of expectation that

C’MQAZLQQ 2
PRy ) B |Ba

4Ta2 Ly 2m 2H2A5 80, kia? L
<—Jur 1—- = + + L g E VFE
" €f 1Kyg ( €g1> = = 1Gx (At VF (X)), a)|®

XT: H6ft,’w<At7 Bii1, Ztw) — VFiw ()\t)H
=1

2TC’K/-@(2]77202
s(1—v)

T
ZH@ A1) = B (e)||* +

=2

—~

—_

\/
~+

we have the upper bound of

XT: H6ft,w(/\t, Bit1: Ztw) — VFiw ()\t)H

EC},K-H |‘Eztww

2 ]
9T0_2 9T€ Ii 2m 9K2A 2 z
- I 1 (1 Hg ) g8 % Z 1Gx (A, VFrw(Ar), )|

- 2w 2 ly1 4(1—v) p
9Cug/-e3 2l 9 9T Cx K2n’0?
(A )] e
2(1 ) tz_;“ﬂt —1) — B (A1) ||| + 151 —v)

The following theorem presents the bilevel local regret of Algorithm 3]
Theorem 17. Suppose Assumptions EHE Let the inner step be n = Q(1/p,) such that n <

mm{l FETe LY, outer step be a < min{; 4£F -3 \/7”(712(;} and batch size for stochastic in-
verse Hessian approximation m = log (w)/ log (1 - 7) + 1. Then the bilevel local regret of the
single-loop (K = 1) and sample-efficient (s = O(1)) instance OfAlgorlthmI satisfies
Tk3 m + 02 + k202 V. K2 H
BLRU,(T) < 9] - g 1+ f 9”9 + 1,T + g 227T (47)
wp P P P

where comparator sequences Vi r and Hy 1, 0‘3, a]% are finite variances from Assumption@ and
kg > 1is the condition number of the inner level objective.
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Proof. Note, Lemma H.2 of [Lin et al.| (2024) shows how with Assumption E[, we have
Y4
Frw (Ait1) — Frw (M) < (VFpw (M) s A1 — Ag) + % A — Al

then by substituting the step of Gy ()\t, 6ft’w()\t, Bis1s Ztw)s a) = = (At — A¢41), we have

Fiw (A1) = Frow (M) S (VFw (M), A1 — Ae) + 1;’1 A1 — Al
—« <VFt w ()\t) ;gX <>\t7 6fimu()‘ta /6t+17 Zt,w)v 05>>

o € 2

+— L HQX ()\tavft w( At Bty Ziw), )‘ )

= -« <§ft,w()‘tn@t+1azt,w)agév (Ahvft,w(/\taﬁt+lazt,w)>a)>
« <%ft,w(Atw8t+17 Zt,w) - VF, ()‘t) ,Gx ()\u %ft,w(AthtJrl, Z, w)7a)>

251«“ 1

ox (A ¥ Brn, Za)a) [ )
With Lemmal9] note for g = ¥V f;.., (A, ﬂm, Ziw)
a<%ft,w(>\t,gt+1,zt,w),gx (Atﬁfw(xt,ﬁm,ztw) a)>
> OépHgX (At,Vftw()\t,ﬁtH,th )H + h(Aes1) — h(Ae) (49)

and further we get the following based on a variation of Young’s Inequality

<§ft,w()\ta Bit1, Ztw) — VFiw (A),Gx ()\u 6ft,w()\t, Bit1, Ziw), 04>>
< ! Heft,w()‘tvﬁt-&-la Ztw) — Vi (At)HQ

ng ()\tavft w(At, Bea1, Zew)s )H (50)
Combining equation #9)and equation [50|in equation 48] we get

Fiw (At41) = Frw (Ag) < (ang’l - 3ap) ng (Atavft w( At Bt Ziw)s )H

all~
+— vat,w(Atyﬁt-‘rla Ztw) = Vi (&)H + h(Ae) = M Aig1),
which as 0 < a < 75— results in the further upper bound of
ap
Fiaw Oen) = Fuw ) < 222 6 (2, 91, w(At,ﬁm, zu).0)|

a ~
+ HVft,u,(At, Bes1, zt,w) —VEw M)+ B = Besr). 51)

Further, we have
~ 2
163 VErw)s )2 < 2 [[Ga (M ¥ fuow s B, Zew) )|
20 (Atﬁftww,ﬁm,zt,w),a) ~ G0 VEu), )|

)

_ 2
<2 HQX ()\tavft w(Aes Bi1s Ziyw) )H 2 vat,w(Atvﬂt+1aZt7w) —VFE; ()\t)‘

where the last inequality comes from through Lemma@ Then we have

— ng (Abvftw(’\tvﬂt-‘rlaztw )H < -5 ||gX()\taVFtw()‘t) a)|

2
+; |90 B, Zuw) = VEow (0)

(52)
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Substituting equation [52]in equation [51]
Frw Aer1) = Fraw (M) < ——— IIQX(At,VFtw(At) a)|?

a 3o =
-+ <p + Sp) vat,w()‘t;ﬁt+lv Zt,w) - thv“’ (At)

+ h(Ae) — h(Ae+1)

Telescoping t = 1,...,7 and taking expectation with respect to C_t,k and Z; ,, gives us
3ap a
Zugx A, VE (M), Z Fraw (M) = Fraw (Aig1))

+ Ay, (53)

T
1la Z ~ 2
gE@,KH |‘EZNH vat,w(ktv Bit1, Zt,w) = Vi (Ar)
t=1

where Aj, := h(A1) — h(Ar41) . Substituting the result of Lemma[16]in equation[53]

T
3(1
2ap Z 1Gx (Ae; VE;w(Ar), Z Fiw (At) = Frow (A1) + Ay
+11704 9To? N 9TE5 |k LM 2m+ Ik2Ag  ITCgrin’o;
8p 2w 2 lg1 41 —v) 45(1 —v)
1la [ p? & 9C,, K2 d . 2
S (8 Z 1Gx (Ae, VEy (), )] + 2(1H g) Z [ 1B (Ni-1) = Bi_a (M) | }
t=1 t=2
(54)
we have to rearrange
Z 1Gx (Ae, VEy(Ar), Z Fiw (M) — Frw (Aeg1)) + Ay,
t=1
99 [ 2T0% g K2Ag  TCgrin’o?
oy el Yy V7 L g
+32p< w o 11 ( Zg,l) (1-v) * s(1—v)
99aC QHQ r " 2
16,01 ;) S B A—1) = B (A1) (55)

t=2

or more succinctly with the choice of s = O(1), m = log (w)/ log ( 2 ) + 1, and inner step
ot

size of n < % we have

162 VE ), )2 < 22 (S (Frw (M) = Fonw egn)) + A
ap

t=1

198 T OKK)QO'Q 198 HZAB
—— |2 202 = 9°9 799 g
+p2w<af+ s ¥ (1-v) p? (1-v)
396C,,, k2
"9 9 (A A 56
+p2(1—u) ;Hﬂt( t—1) — B (A 1)” (56)
Using the result of Lemma T3] we have
T
2T
Z (Ft,w(At) - Ft,w(>\t+1)> S TQ + VI,T (57)
t=1
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or all together

- 2T
> 10w VR, )l < 2 (T4 Vi )

«
t=1 p

BT ey gz ey CKRa% 195 1 Y
77w k) S0 v)
3966‘ w2 & )
A0 v) S8 Am1) = By ()| (58)
t=2
which by recalling definition of Hy 7, and as f{p; = O(ng) this implies o <
mm{ 42“ Nz\/\/;} = (%3) this implies the bilevel local regret of Algorithmis
T3 K2+ 0% + K202 V; k2H.
BLR,(T)<O|—2(1+ f 9% | uT | Py 22,T (59)
wp P P P

C PROOF IN DETERMINISTIC SETTING

First, we introduce some required lemmas. Lemma[I8|provides an analytical form to compute the
hypergradient via iterative differentiation.

K
Lemma 18. (Proposition 2 in\Ji et al.|(2021)) The partial %

Oft(Ae,w; )
O

takes an analytical form of

K—-1
Vafi Ae,wf) =1 Vi oo (A, wF) Ho Ve fr (A, wi') (60)
k=0

where H, o, := Hf:_klﬂ (Id2 - nVi)wgt ()\t, wi)) the dy-identity matrix is denoted 14,, with

n > 0 and K as the step size and number of iterations for the inner loop.
Lemma [I9] provides an upper bound on the hypergradient error when utilizing an iterative differentia-
tion approach for estimation.

Lemma 19. (Lemma 6 inJi et al.|(2021)) Suppose Assumptions@and @are satisfied with n < ﬁ
and K > 1. Then we have ¥t € [1,T]

K
< (Ea(t = mig) ¥ + Lo = mag) “7°) 180 = BV + L =)™, 61)

205 00y, _
where L1 = kg(£g1 + ig), Lo = %(1 + Kg), and Lz = l; kg

Similar to the deterministic setting, we apply time-smoothing as specified by the estimator
V ft.w(A¢, Big1) defined for all ¢ € [1,T], window size w > 1 as

V fraw(Ar, Brga) : Zwt iAmi, Be1-i), fr=0Yt<0 (62)

=0

Next we state our Bregman-bilevel optimizer in the deterministic setting.
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Algorithm 4 OBBO: Deterministic Online Bregman Bilevel Optimizer

Require: Horizon T'; inner steps K; step sizes «, 7 > 0; Bregman reference ¢; window w > 1
1: Initialize 3; € R%, A\ € X

2: fort =17 do

3 wf «— B

4: fork=1K do

5: wk —whl nVugt()\t,wf_l)

6 end for

7 @Hl — wtK

8: Vfe(At, Bet1) = Ofe(Ae, Bei1)/OA > from equation
9: Store V fi(A¢, Bii1) in memory

10: q < V frw(Ae, Ber1) > from equation |62| with window w
11: u <— >\t

12: A¢+1 < GENERALGRADSTEP(u, q, @, ¢) > Alg.[2]
13: end for

14: return Ari1, Bri1

The following Lemma provides an upper bound on the cumulative difference between the time-
smoothed outer level objective F} ,,(\) evaluated at A; and A;1; in terms of the outer level objective
upper bound @), window size w, and the comparator sequence V; 7.

Lemma 20. Suppose Assumption|E] If our AlgorithmH|is applied with window size w > 1 to generate
the sequence {\;}1_,, then we have

T

2T
E (Fraw(A) = Fruw(Aegr)) < 710@ +Vir.
t=1

where Vir = 3 supac [Fie1 (A) = Fy (V)]

Proof. By definition, in the deterministic setting, we have F;(A) = f; (X, 3 (\)). Then it holds

T
Z Ftw )\t Ft,w()‘t-‘rl))
t=1

g
L

(frmi (Ne—is Br_iAemi)) = femi (Neg1—i, B i Aeg1—4)))

S

=2

t=1 %

I§
o

Which is equivalent to
1
Z E (ft i (>\t zvﬂt z()‘t 1)) - ftfi (AtJrlfiaﬁ:fi()‘H»lfi)))
T
1
= Z w - (fimi N Br—s A=) = fra1—i (Aeg1—i, Bip1—i(Aeg1-0)))  (63)

T
1
> > (ferimi erimis Bl ie1-0)) = fims erimis Bii(Aeaa))) - (64)
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For equation[63] we can write

w—1
=3 (et et BaO) = Frrni st Bl g1
=0

_ [ft A6 Br D)) + -+ frati—w (Ae1—w: Bry1—w(Ai1-w)) |

)

1
- [frr1 (Aetts Brpr A1) + -+ frro—w (Ait2—w, Biga—w(Ait2—w))]
)

1
= [fer1mw Aeg1—w Bip1—wNeg1-w)) = frar (Ag1, Bia(Aeg))]

1
=% (Fi1—wAir1-w) = Frr1(Aeg1)) < Qa (65)

where the last inequality comes from Assumption [E] Note equation [64] can be bounded through

w—1

Z Z Si1—i (Aeg1—6, B s Aer1-3)) — fimi (Aeg1—6, Bi_i(Aev1-4)))

w—1
< Z% Z )S‘lelg [fra1—i (N Bria—iN) = fii (A Bi_i(N)] <Var (66)
—1 Y iso

Combining equation [65]and equation [66|results in the upper bound of

T

2T
3 (FrwM) = FrwAea)) < TQ .
t=1

O

The next Lemma provides an upper bound on the error of ||3; — B;(A¢)||* forall ¢ € [1,T] in terms
of an initial error, the cumulative differences of the outer level variable, and the cumulative differences
of the optimal inner level variables.

Lemma 21. Suppose Assumptions[Aland[B| Choose the inner step size of 1) and inner iteration count
of K to satisfy

1 1
7 < min (,), and K > 1,
g1 Hg

and define the decay parameter v, inner level variable error constant C,, ,, and initial error Ag
respectively as

,7 ﬁlig) K—1 2
V.—(* 1—np , and Cq.<1+ )
59 (1~ ng) . o
and ANg =B — B\
Then ourAlgorithmguarantees Yt e [1,T]

18 = Br A)l* < v/ Ag

-2 t—2
C(Mg’ig Z V7 [Ae—1-5 — ’\t—j||2 + zcug Z v Hﬁ:—j(At—l—j) — ,3:_1_j(/\t_1_j)H2 . (67)
7=0 j=0
Proof. By definition for ¢ = 1, we have |81 — 8;(A1)||> = Ag. Then V¢ € [2,T]
18: = B: AI” = 18: = By (A1) + B (h-1) = B (A (68)

which can be expanded based on the Young’s Inequality for any § > 0 as
* * *k 2

18 = Bi—1(Xi—1) + Bi_i (A1) — B (M) |
< (1+68) |18 = Br_1(Ae—)]|

+ (1 + i) 1871 (A-1) = B A"

2
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Now it holds that
* * 2 * * 2 * * 2
181 (A1) = BE A || < 21187 (A1) = BE AT + 2|85 (Ae—1) = B (M) ||
which through Lemmal'l;fl can be further upper bounded with the Lipschitz constant of x4 as

* * 2 * * 2
181 (A1) = B (A || < 262 [ A1 — Al +2]|8f (Aem1) = Br_1(Ae-1)|
Combining above, we see that Vé > 0, equation[68]is upper bounded as

18: = BrA)> < (1+6) |8 — Biy (M)

1 1
+2 (1 + 5) K2 A1 — Nel|” + 2 (1 + 5) 18 (At—1) = 51:*71(&71)“2- (69)

Asn < Zg%, we apply Lemmato see

(1+0)]|B: - ﬂﬁl(*t—l)Hg < (1+0)(1 = nug)™ ||Be-1 — ﬁ;‘fl(xt,l)Hg
Now setting § = 252 > 0 implies that

(L4 0)(1 = mig)™ = (1+ T0) (1 = mpag)™ < (1= T22) (1= mpay) "~ <1

Using v := (1 — 22) (1 — npg)® ' in equation we get
V(18— B; (M) < V2|8t — B ()|
+20,, 062 A1 = Mdl|* +2C,, v |18 (M—1) = B ()|

where C),, = (1 + &) Starting at £ = T" and unrolling backward to ¢ = 1, results in the upper
bound of '

1B — By (A)|* < v Ag

t—2 t—2
1 2 j * * 2
+2C,, 12> v Ay = AP 4200, Y V1B (A1) = B ()|
i=0 =0

O

The next Lemma utilizes Lemma[T9) and Lemma 21]to derive an upper bound on the hypergradient
error V¢ € [1,T] in terms of discounted variations of the (i) cumulative time-smoothed hypergradient
error; (ii) bilevel local regret; and (iii) cumulative difference between optimal inner-level variables.
A final term is included, composed of a discounted initial error and smoothness term of the inner
objective.

Lemma 22. Suppose Assumptions|[A} [B| [D} and[F] Choose the inner step size of 1) and inner iteration
count of K to satisfy
1 1
7 < min <,>, and K > 1.
b1 1g
Using the definitions of v, C,,,, and Ag from Lemma@as well as the further definition of

Lp = L%(l - UMQ)K + Lg(l - nMg)K_la
then the hypergradient error from our OBBO algorithm in Algorithm is bounded ¥Vt € [1,T] as

dfi( A, wk 2 22 ofi1 w1, wE )
Hft(at)\t) = VE(A)|| < 5t+A;V7 il ;)\ Al = VF1—juw(Ae-1-5)
=2 =2 )
+B> 17 1Gx Mo1-5, V1 jwe1—5),0) P+ C D 07 ||Br (A1) = B ()]
Jj=0 j=0
(70)
2 2K t—1 120Cy, Lk 2 2
where 0y = 3L3(1 — npg)*™ + 3L Ag and A = —— 34—, B = 120°Cy, Lgry, and

C =6LgC,y,.
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Proof. Note that Lemma|[19]implies V¢ € [1, 7]

Haftm,wf) ?

S~ VEM|| < 3LallB — B (M) + BLE(L — nprg)

Substituting the upper bound on [|3; — B (A¢)||* from Lemma we have
2

0 )\,w
H fil, —VE\)|| <3L21 —nuy)*™
t—2 .
+3Lg Vt_lAlg +20;LQH§ZVJ H}\t—l—j - )\t_jHQ
7=0
t—2 ‘ 9
+6L5Cr, Y17 (187 (N-1-5) = Bi1 e[|
j=0

.. o w (A
By definition, we have Gy ()\tlj, feo1mju( é)\l 3wl ) ) é Aim1—j — Ae—j)

2

t—2 K
aft—l—j,w(kt—l—ﬁwtflf‘)
jZOVJ [ Aim1—j — A g|| —QQZVJ Gx (At1j, X o
t—2
20230 (92 (Ai-1-5 Vo1 (i) ||2)
7=0
t—2 K
. 6](717’,71)()\ 1y Wi )
+2042Zl/] ‘gx <>\t—1—j, G ;)\ DI o) =G (Ao 3y VFE 1 jw(Ae—1-5)
=0

o~
no

<2020 (G (A1 gy V1 (M), )

| )

I
=)

aft 1— Jw()\t 1— ]awtKl ])
oA

_VFt 1— ijt 1— ]

+202 Z vl =

(71)

such that the last inequality comes from Lemma[T0] Rearranging terms, we have decomposed the
hypergradient error term at ¢ in terms of the cumulative hypergradient error from 5 = 1,...,f — 1

aft(AtthK)
%

2

— VFE(A)|| <3L3(1—nuy)?® +3Lgr' ' Ag

t—2
+120°Cpy, Lgrg » 17 |G (N1, VE 1 jw(Xi15), )|
i=0
aft 1— jw(At 1— ]7wtKl ])
oA

_9 2

+12a C’ Z

7=0

—VEF_1—juw(Ai—1—j)

t—2
+6LgC,,, Z vl Hﬂzlj(/\t—l—j) - /6:—173'(At—1—j)’

Jj=0

2

)

O

The next Lemma provides an upper bound on the cumulative time-smoothed hypergradient error
using the result of Lemma 22}
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Lemma 23. Suppose AssumptionsEl El El and ﬁ Choose the inner step size of n < min ( 7 1 -, /%)
g9, g

. 1-v) . . . log (T)
PAYA S B —__log(m 4
the outer step size o < ror/ 1050 I’ and inner iteration count K Tog ((T—m1ig)" D) + 1. Then the

cumulative time-smoothed hypergradient error from our OBBO algorithm in Algorithmd|satisfies

2 AgL
> S

— 8 \(1-v)

8ftw Atth ) ?

— VEF ()

)

T T
+AD NG (M1, VE 1 juwNe1-5), )P+ BY |87 (A1) = By (A1) ’

t=1 t=2

where A := % and B := S)

Proof. Note by definition of the time-smoothed outer level objective and application of Young’s
inequality we have

2
— VEF; ()

H O ftw(Ar, wi*)

o Z [aft i(Ae— z""’t i) _VFt_i()\t—i):|

=0

1 1/ O0fi—iNe—i,wis;) Dfi—j( Mg, wf))
- Z - Z — < X — VE, (A=), Y —VE_j(Ai—j)

=0 7=0 w
w—1 w—1 2
1 1 1|[0fimi( N, wis))
< 1 Z 1.1 _ . )
<[ w 4 w(2 H oA VEi-i(Ais)
i=0 7=0
2
1| 0fi—j(Xe—jwit ;)
2 : 8)5 - VE (M) )]
w—1 2
1 8ft—i(>‘t—iawtlii)
= E i:E - aA - Vthz(At71>
(72)

2
Substituting the upper bound on H M VFi () H from Lemma [22| and re-indexing the

bilevel local regret and the cumulative tlme smoothed hypergradient error, we construct the upper
bound of

T
Ofrw(Ae, wE
z:: % - VFt,w(At)
T 1 w—1 ]
= 3L2 1— 2K 3L t—1— IA
2:: - [2; Ntg)*" +3Lgv )
L t—i—2 ]
. 2
+ZE 12aQCﬂngH3 Z VG (Ne—iejy VE i jw(Ni—imyj), @) |
t=1 i=0 j=0 J
T w—1 2 2 t—i—2 K ”\ |
1 12c C’Mng/i MNOfr—icjuw(Xe—icj, Wit ;)
LIS (Bt s ) on
t=1 i=0 Jj=0 .
T w—1 t—i1—2 1
1 ] * * 2
+ Z a Z 6Lﬁcﬂg Z v/ Hﬂt,ifj(ktfiflfj) - ﬁtfiflfj ()‘t*iflfj)H
t=2 i=0 j=0

(73)
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Given v < 1, it holds that Z; I < Z o V! = 7=, which lets us upper bound equatlon as
T

T w—1 1
1 L
<> - [ > (BL3(L—nmg)™™ +3Lgv' ™" M)

2
aftw Atﬂwt ) th (At)
W

T w—1 T
1
=) ZE [Z 1Gx Ai—i, VEis(Ai—i), )|
t=1 i=0 ]
12@20# LBH?] T 1 w! a t—iw()‘t—iawtK’) “]
- — . — — VF, iw)\ 7
p2(1—v) tz:;w ~ oA =i (A=) ]
6LaC,, o= 1 [ .
Jr(l_;) ZE [Z ||/6f—z(>‘t i—1) = Bi—im1(Ae—ima ||
t=2 i=0
and further
T 2
Z 8ftw A157"‘)15 ) th,w(At)
T 2
1204C, L K2
<> (BL3(1 — mpg)* + 3BLgv T Ag) + @ifa ZIIGX A VEw (), @)l
t=1
120Gy, Lk & 8fwA,w  6LgC . . 2
et | ey £ i + 2% S 18 ) — B4 )|
=1 t=2
which implies that
12@26’ Lk ) 8w)\,w 2
( ﬁ)z 01w, i) — VF;w(A)
P( 1
30l  — 120%C,,, Lgk>
< SR8 N (BLE — iy ™) +(1+V)£’ZHQX At VE w(Ar), )|
t=1

6L Ch,
- ZH@ (A1) — B ()|,
=2

Setting K = log (T')/log (1 —npg) ") +1and 0 < a < py(-v)

- Iig,/IOSC“gLﬂ
1 120(2CMQL5K§ S §
Pl-v) ) =9
implies the upper bound of
T 2
aftw )‘tawt ) 27 ABLﬁ 9
Fy (A < — L
; “VEL| S g g,y T
2 L 27L Cy —
P ﬁ gLy, . 2
+2 D 1Ge (A VELw (A, )| + L ZHﬁt A1) = B ()|

t=1
O

The next theorem presents the theoretical contribution for Algorithm 4] For suitably chosen step
sizes, the sequence of iterates { )\t}thl achieves sublinear bilevel local regret.
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Theorem 24. Suppose AssumpnonsEl El El @ E Choose the inner step size of 1 < min ( - - #1 )
9, 9
3p m and inner iteration count K =

the outer step size of a« < min { 417 kg, /108C,, Lg [’
iy + 1. Then the bilevel local regret of Algorithmsatisﬁes the bound of

log (T)
log (1—npg)~
BLR,, ZHQX Ats VF w(Ae), a)|? <O< +Vir+k H2T) (74)
t=1
Proof. Note, Lemma H.2 of [Lin et al.| (2024) shows how with Assumption[A] we have
Fiw ANis1) = Frw (M) S (VEw (Ae) s A1 — Ag) + Att1 — >\t||2 .
then by substituting the step of G (At, W, a) =1 (A — A1),
fF 1 2
Fiw At41) — Frw (A) <(VFpw (M), A1 — A) + — ¢l
Of .o >\ : 2@ Ofrw(Ae, 2
——a<vm,w (A), G (At, i t“’t a>> otra (Atvft,(a)\twt)’@ 7

-

aftw )\t,wt < aft,w(ktthK) >>
,Gx Ty O
oA

K K
+a<8ftw(kt7w ) VFtw(At) gX <Atvaft7w(ak)i’Wt ),Ol >
2

oA
8ft,w(AtthK)7a>

gX (Afm 8A

LR 2£F1

K
Using Lemma@with qg= W, note that

3ft,w(>\t,wtK) 8ft,w(>‘t7wtK)
O{< 8)\ ;gX Atv BA , &
2

Oft w(Ae, wk
> ap (Gx (At, %, a) +h(Aee) — h(A) (76)
and further we get the following based on a variation of Young’s Inequality
a w A 7wK a w A ,wK
R )
Oft .l )\ ,w 2 Oftw(Ae, wE 2
< || e gr, | + 4 o (3 ) o) a7

Using equation[76|and equation [77]in equation [75| we get
2

2€ 3 8 w A ) K
FruwOuss) — Frw () < (Oz 2F,1 _ Zp) gy ()\t, W,a)
K 2
. W =V )| +hA) = h(Aia)  (T8)

— results in the further upper bound of

which as 0 < « <
2

3 Oftw(Ae, Wk
Fiw Aig1) — Frw (M) < — oap ’ Gy </\t7 %7 a)
O ftw (A, 2
% —VFiwA)|| +h(A) = h(Aeg1) (79)

p
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Further note we can upper bound the local regret as

K
Gu (Aafw@w)a>

2 <
O3 VM)l <2 o

where the last inequality comes from Lemma|[I0} This then implies that

3w, wf 1
o (3 2 ) | < - 1Gen T )

O fr.w(Ap, wk) 2

2 X —VEF; 4 (Ae)

Substituting equation [80|into equation [79] gives us

3o
Fraw (Ars1) = Fras (M) < ——p 1Gx (At Vs a(Ar), )|

a 3o\ ||0fiwA, wf ?
+ (p + 8p> Hft(a)\tt) = VFiw )| +2(A) = B Xi41)-

Rearranging we see

3a
T NG A VELw ), ) < Frow (M) = Frow (Aey)
1la || 0 fpw( A, w 2
o Ol el) g )|+ A0~ hOv)
Summing from 1, ..., 7T and telescoping h(A;)
T
3a
”anx (A, VE (A, Z Fruw (A0) = Frw (Aer1))
t=1 =1
2
u w(e
8pOé (Haft t (-l-’t VFt,w ()\t) > +Ah7
t=1

where Ay, := h(A1) — h(A7r41) Then we can substitute Lemmagto get

3a
2ap Z 1Gx (Ae, VEyw(Ar), Z Fiw (At) — Frw (Ae41))

2 T
|

11a AgLﬁ P 2
+8p (8 (1—u L>+8Z|QX/\t,VFtw(>\t) a)l

t=1

1la (27Lﬂ d

. 2
sp \ 20=0) F (A1) = B ()| > + Ap.

t=
Rearranging we have

T
12
ap Z 1Gx(Ae, VE; 1(Ae), cx 2 < Z (Fiw (At) = Frw (Ai41))
=1

11ap 2 AﬁLB 3
ZHQX At, VE; w(Ar), )|| + 8p (8 ((1V)+L3))

27LgC)
. <2 : HQZ”@ M) ﬁzlutl)Hz)*Ah,
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Oftw( A, wk
2(|Gx (Auft’ (8; i )70) = Gx(At, VE w(Ae), @)
K 2
< 2oy (x, Hreleeh) o) 2| helbeel) _gr,a)

(80)

(81
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or more succinctly

¢ 64 —
Z G2\ VEw), ) < 23 (o V) = Fi (1)
t=1 t:l
88 AgLg ) 88 27L3C,, T :, G4A,
+p2 <8 ((1_ )+L3 + = 2 2 l/ tZH/Bt A15 1 ﬁt 1(>\t 1)“ ap . (83)
Applying Lemma [20] we see
T - Q
Z (Frw (X)) = Frw (Aig1)) < —— + Vi, (84)
t=1

g
T
64 (2T 297 [ AgL
S 102 VEw) o) < 2 (222 vy 0 ) + 20 (2els
— ap \ w P2 \(1-v)
| 644, 1188LC,
ap p*(1=v)

which by using equation in equation we get for Lg = O(k2)

LHy o, (85)

which dividing by 7" and recalling we imposed regularity constraints of Ho 7 = o(T'), as well as
Vit = o(T), implies the bilevel local regret of Algorlthmlls sublinear on the order of

T
BLR., Z 1G2e(A, VEr (M) )| < O <w Vit ngHQ,T) @6
t=1

O

D ADDITIONAL ALGORITHMS

Algorithm [5] (following [Ghadimi & Wang| (2018)) forms a stochastic hypergradient by replacing
the inverse Hessian—vector product with a randomized Neumann-series approximation: a uniformly
sampled truncation level m yields the product operator B, which serves as an unbiased estimator of
(V2 g¢)~*. This avoids explicit matrix inversion while retaining correctness in expectation and is
standard in scalable bilevel optimization.

Algorithm 5 Stochastic Hypergradient Estimation (Ghadimi & Wang|(2018))

Require: Get A € X, 3 € R%, sample upper bound m, learning rate 7j
Sample m ~ U(0,1,...,m —1)and £ = {,¢%,..., (™1}
Compute : g; < Vafi(\, B, ¢)

Compute : H; + V3 59:(\, 8,¢°)
Compute approximation: By « anzl (Id2 - %V%ﬁgt()\,ﬁ, Cj))
Get estimate: ﬁft()\,ﬁ, £) g —H;B:Vgfi(A B, e)

Return stochastic hypergradient estimate V f;(X, 3, &)

E ADDITIONAL EXPERIMENTAL DETAILS

Hyperparameter Details: In both experiments, we employed single-loop updates (K = 1)
and evaluated a range of window sizes w € {50,100, 250, 500, 1000, 5000}. Step sizes «,n €
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{107%,1073, 102} were selected via a grid search, following standard practice Ji et al.| (2021);
Huang et al.| (2022a)). We tune («, 1)) through this grid search and perform ablations over the window
size w (Figures 1 and 3). The only new hyperparameter relative to prior work is the curvature
parameter p, which in experiments is implicitly instantiated through the adaptive metric H, in the
Bregman divergence Dy (A, \') = $[|A — X (|3, Thus, no additional hyperparameters require tuning.

Extended Task Formulation.

For our first experiment, we consider the task of learning a preconditioner P(\) > 0 directly from
data—a special case of optimizer learning |/Andrychowicz et al.| (2016); |Wichrowska et al.|(2017).
Given the previous iterate 3;_1, the inner problem is the proximal form of a preconditioned gradient
step under the metric P(\)~1:

B = argmin {Luna(8) + 3118 = Bl |-

The outer problem selects preconditioner parameters

A € arg m}%n Fi(N), Fy(X) := Lyat,e(Be(N)),

so that the updated parameters generalize on the validation set. At each round, the bilevel optimization
is naturally online: both preconditioners and model parameters evolve sequentially over 7" steps, and
the optimal solution varies across the evolving loss landscape.

Extended Model Details and Results

* Quadratic loss. We use Ly, ;(8) = 3 8" Hy, 8 — b/ 3, with diagonal P()) = diag(\). The
inner problem admits a closed-form minimizer, enabling us to track the comparator sequence

T
Hyp = ) =27
o ;iggﬂﬁt_ﬂ )= BrN)||

The validation loss is quadratic as well, Lya,¢(8) = 3 8" Hyal — byy 8, With Hya, byal
derived from a validation set.

* SVM loss. For linear scores fa(x) = 6" x and labels y € {—1,+1}, we define

1
Lavm.t(0) = o > rlog(1+exp((1 -y zi)/7)), 7>0.

i=1
The inner problem becomes
970, 2) = Lovmt(0) + 3 (0 — 01-1) " diag(1/X) (0 — ;1)

which is smooth and convex (indeed strongly convex for v > 0), and can be solved efficiently
by descent methods.

Results:
Bilevel local regret for the SVM model on the GSDC dataset is included in Figure f]

Runtime Comparison. To complement the regret analysis, we report wall-clock running times across
all algorithms and window sizes used in our experiments. Table [ summarizes these running times in
seconds. We highlight three key takeaways: (i) stochastic algorithms provide substantial speedups
over deterministic methods due to mini-batching; (ii) increasing the window size w noticeably
increases the runtime of OAGD due to the cost of averaging hypergradients, whereas the runtime
of all other algorithms remains largely insensitive to w due to averaging hypergradient evaluations;
and (iii) the additional computational overhead introduced by the Bregman proximal gradient step in
OBBO and SOBBO is negligible in practice.
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Table 3: Running times (seconds) for preconditioner learning across algorithms and window sizes. Note that

Local Regret

1000 2000

4000 5000 6000

Epoch

7000

Figure 4: SOBBO offers the lowest regret relative to baselines.

SOBBO with (w = 1) reduces to the SBio-BreD algorithm of [Huang et al.| (2022a).

Algorithm w=1 w=5H w=25 w=100 w=250

OAGD 29.52+0.23 30.01 £0.27 31.76 £0.28 42.38+0.66 60.56 +0.37

SOBOW 29.20+0.15 29.654+0.29 29.54+0.11 29.68+0.17 29.81 +0.22

OBBO 30.78 +£0.25 31.98+0.24 31.55+0.39 29.41+0.14 28.89+0.39

SOBO 13.34£0.29 13.47+042 13.414+0.29 13.92+0.21 14.02+0.30

SOBBO 13.724+0.10 13.35+£0.16 13.33+0.20 14.444+0.19 14.56+0.35
E.1 BILEVEL MATRIX REGRESSION TASK

Task. We evaluate a Muon-style Jordan et al.| instance of our Bregman bilevel optimizer on a

bilevel matrix regression task. The outer variable U € RP*" induces a weighting matrix W (U)
UU", which represents a data-dependent weighting. Models. The inner variable X € R™*"
solves the strongly-convex weighted ridge regression X*(U) = argminx, |W (U)"/?(Ay X By —
Ci)|3 + £1X]%, and the outer objective evaluates the nonconvex validation objective F(U) =
%|AV61X *(U)Byal — Cyall%. Datasets. The validation set is a strict subset of the training set,
introducing distribution shift and forcing the optimizer to learn which samples matter through the
adaptive weights W (U ). Baselines We instantiate SOBBO with a Muon-style step as defined by
the time-varying quadratic potential ¢(U) = 3[|U||3;, = 5 tr(U " H,U), which yields the Bregman
divergence Dy, (U,Uy) = ||U — U, 13;,- The adaptive metric H; follows the Muon update rule,
using exponential moving averages of gradients: first the momentum M; = SM;_1 + (1 — 8)GY,
then the second-moment accumulator V; = vV, + (1 — 'y)MtGQ, and finally H; = \/V; + ¢, where
Gy = VyF(U,) is the outer-level gradient. The resulting trust-region—normalized update takes
the form Uy 1 = Uy — ath’lj\/it with ]\Z = M;/ max{1, \H[I/QMAF/T}, yielding a curvature-
adaptive Muon-style update directly on U. Baselines include OAGD, SOBOW, OBBO, stochastic
SOBO, and direct Adam and Muon applied to outer variable U.

Results. Figure [5] shows that our Muon-Style SOBBO achieves the lowest bilevel local regret,
compared to the deterministic Euclidean baselines (OAGD and SOBOW) as well as direct single-level
optimizers (Adam and Muon). Tabled] further demonstrates that all methods attain comparable mean
squared error, indicating that our advantage does not come from overfitting or improved estimation
accuracy, but rather from more stable and geometry-aware optimization dynamics. Together, these
results show that Muon-Style SOBBO provides an effective curvature-adaptive mechanism for
online bilevel learning, outperforming both existing bilevel methods (OAGD, SOBOW) and strong
single-level baselines (Adam, Muon).
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Local Regret (mean + s.e.) Local Regret across Window Sizes Window Impact on Hypergradient Variance
40000 — oo
sogow
35,000 —. o880
<ees S0BO
— sosso
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Muon (direct

— 50880, w=1
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Figure 5: Left: Regret for deterministic and stochastic online bilevel optimizers on bilevel matrix reweighted
regression; Middle: Increasing window size reduces regret incurred by stabilizing updates. Right: Larger
window size reduces the variance of stochastic hypergradient estimates, as shown theoretically in Corollary

Algorithm t=2500  =5000  ¢=7500  Mean + SE
Values reported as ()?t —1.125) x 10°
OAGD -1.1 +2.3 +4.4 +19+1.6
SOBOW -2.1 +2.7 -0.3 +0.1+1.4
OBBO —2.4 +2.0 +0.2 —0.1+1.3
SOBO —0.6 +1.2 -14 —-0.2+0.8
SOBBO -0.9 +2.3 -2.0 —-0.2+13
Adam (direct) +4.9 +5.3 +4.7 +4.9+0.2
Muon (direct) +4.9 +5.4 +4.9 +5.1£0.2

Table 4: MSE between Xi,ue and X; (over 3 seeds), ()A( + — 1.125) x 10® to highlight relative differences.
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