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ABSTRACT

Out-of-distribution (OOD) detection tasks have made significant progress recently
since the distribution mismatch between training and testing can severely deterio-
rate the reliability of AI systems. Nevertheless, the lack of precise interpretation
for the in-distribution (ID) limits the application of the OOD detection methods
to real-world systems. To tackle this, we decompose the definition of the ID into
texture and semantics, motivated by the demands of real-world scenarios. We also
design new benchmarks to measure the robustness that OOD detection methods
should have. To achieve a good balance between the OOD detection performance
and robustness, our method takes a divide-and-conquer approach. Specifically, the
proposed model first handles each component of the texture and semantics sepa-
rately and then fuses these later. This philosophy is empirically proven by a series
of benchmarks including both the proposed and the conventional counterpart.

1 INTRODUCTION

Out-of-distribution (OOD) detection is the task that recognizes whether the given data comes from
the distribution of training samples, also known as in-distribution (ID), or not. Any machine
learning-based system could receive input samples that have a completely disparate distribution
from the training environments (e.g., dataset). Since the distribution shift can severely degrade the
model performance (Amodei et al., 2016), it is a potential threat to reliable real-world AI systems.

However, the ambiguous definition of the ID limits the feasibility of the OOD detection method in
real-world applications, considering the various OOD scenarios. For example, subtle corruption is
a clear signal of OOD in the machine vision field while a change in semantic information might
not be. On the other hand, an autonomous driving system may assume the ID from the semantic-
oriented perspective; e.g., an unseen traffic sign is OOD. Unfortunately, most of the conventional
OOD detection methods and benchmarks (Zhang et al., 2021; Tack et al., 2020; Ren et al., 2019;
Chan et al., 2021) assume the ID as a single-mode thus they cannot handle other aspects of OOD
properly (Figure 1a).

To tackle this, we revisit the definition of the ID by decomposing it into two factors: texture and
semantics (Figure 1b). For the texture factor, we define OOD as the textural difference between the
ID and OOD datasets. On the contrary, the semantic OOD focuses on the class labels that do not exist
in the ID environment. Note that the two aspects have a trade-off relationship, thus detecting both
problems with a single model is challenging with the (conventional) entangled OOD perspective.

Geirhos et al. (2018) investigated the texture-shape cue conflict in the deep network and a series of
subsequent studies (Hermann et al., 2019; Li et al., 2020; Ahmed & Courville, 2020) explored how
to achieve a balance between these perspectives. However, they only analyzed the texture-shape bias
inherited in deep networks. Instead, we focus on analyzing the texture and semantic characteristics
underlying the ID to build a more practically applicable OOD detection method.

Unfortunately, to the best of our knowledge, none of the studies on the OOD detection benchmark
have thoroughly analyzed the definition of the ID. It can be problematic when the method judges the
image corrupted by negligible distortion as OOD, even when the environment can tolerate the small
changes in texture. Because of such a complicated scenario, it is crucial to evaluate the OOD detec-
tion method in a comprehensive way that goes beyond the simple benchmark. Thus, in this study, we
propose a new approach to measuring the performance of the method according to the decomposed
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Figure 1: How to define the ID? (a) Traditional OOD detection studies manage the ID in an entan-
gled view. However, this could be naı̈ve considering the complex nature of the real environments.
(b) We decompose the definition of the ID into texture and semantic; this provides the flexibility to
handle complicated scenarios by determining which view of the ID is suitable for a given scenario.

definition of the ID. One notable observation in our benchmark is that most of the previous OOD
detection methods are highly biased to the texture information and ignore the semantic clues.

To mitigate aforementioned issue, our proposed method tackles the texture and semantic infor-
mation separately and aggregates these at the final module (Figure 2). To effectively extract tex-
ture information, we use a 2D Fourier transform motivated by the recent frequency domain-driven
deep method (Xu et al., 2020). For the semantic feature, we design an extraction module upon
the Deep support vector data description (Deep-SVDD) (Ruff et al., 2018) with a novel angular
distance-based initialization strategy. We then combine two features using the normalizing flow-
based method (Dinh et al., 2016), followed by the factor control mechanism. The control system
provides the flexibility to handle different OOD scenarios by choosing which decomposed feature is
more important in the given surrounding OOD circumstances. The main contributions of this work
are as follows:

• We decompose the “unclear” definition of the ID into texture and semantics. To the best of
our knowledge, this is the first attempt to clarify OOD itself in this field.

• Motivated by real-world problems, we create new OOD detection benchmark scenarios.

• We propose a novel OOD detection method that is effective on both texture and semantics
as well as the conventional benchmark. Furthermore, our method does not require any
auxiliary datasets or labels unlike the previous models.

2 RELATED WORK

Class labels of the ID. Early studies on deep OOD methods rely on class supervision. ODIN and
Generalized ODIN (Liang et al., 2017; Hsu et al., 2020) use the uncertainty measure derived by the
Softmax output. It determines a given sample as OOD when the output probability of all classes
is less than a predefined threshold. (Sastry & Oore, 2020; Lee et al., 2018) utilize the extracted
feature map (e.g., gram matrix) from the pre-trained networks to calculate the OOD score. Also,
Zhang et al. (2020) employ a flow-based model that is comparable to ours, but they require class
information during the training and solely pay attention to semantics.

Auxiliary distribution. Outlier exposure (OE) (Hendrycks et al., 2018) exploits additional datasets
that are disjoint from the test dataset to guide the network to better representations for OOD de-
tection. (Papadopoulos et al., 2021) further improves the performance of OE by regularizing the
network with the total variation distance of the Softmax output.

Data augmentation. Recently, contrastive learning-based methods have shown remarkable success
on the tasks related to visual representation (He et al., 2020; Chen et al., 2020). Motivated by this,
several studies employ data augmentation methods such as image transformation or additional noise
on the OOD detection task or model (Hendrycks et al., 2019; Tack et al., 2020; Kirichenko et al.,
2020).
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Figure 2: Model overview. Our framework extracts the texture and semantic information with the
corresponding modules, then combines them via the normalizing flow-based method. (a) Texture
feature T (x) is distilled by the Fourier spectrum-based module. (b) We use multi-SVDD with
a novel angular initialization to extract the semantic information S(x). (c) Output features are
merged by the explicit probability inference method, RealNVP. Here, we introduce the user control
parameter λ ∈ {0.0, 0.5, 1.0} to determine which feature is more suitable for a given OOD scenario.

Unlike the prior studies that exploit additional information other than the ID dataset, we only utilize
the given (ID) training dataset. In addition, we separate and clarify the assumptions of OOD in terms
of texture and semantics to improve the real-world practicability.

3 METHOD

We present an overview of the proposed method (Section 3.1), and each feature extraction module
(Section 3.2 and 3.3). Finally, we introduce the normalizing flow-based conditional probabilistic
modeling component (Section 3.4). Conventional OOD detection has an assumption that ID data
are sampled from the distribution of the training dataset, x ∼ pdata. We decompose the image with
two factors and calculate the anomaly score based on each factor’s likelihood. The texture module
T (x) uses Fourier analysis to extract frequency-based features from input x. The semantic branch
S(x) extracts the content label features such as shape. Our framework calculates the likelihood of
these two factors and then combines them. Since we use the normalizing flow model that trains the
exact likelihood, the extracted information is adjusted using a user-controllable hyperparameter λ.

3.1 MODEL OVERVIEW

We aim to train our method with the decomposed ID likelihoods, p(T (x)|x) and p(S(x)|x) as shown
in Figure 2. With the given input image x, we extract features for each factor with different modules:
texture- and semantic-aided sub components.

The extracted features are combined by the controllable normalizing flow method. Since the normal-
izing flow-based model explicitly calculates the negative log-likelihood, we model each extracted
information as log pθ(T (x)|x) and log pϕ(S(x)|x), where θ and ϕ are trainable parameters of the
networks. In addition, we introduce the control parameter λ ∈ [0.0, 0.5, 1.0] to model the final
adjusted log-probability as λ · log p(S(x)|x) + (1− λ) · log p(T (x)|x). With this control mecha-
nism, users can switch to the appropriate model “mode” by referring to their prior knowledge. For
example, when the texture information overwhelms the semantic one for detecting OOD, we can
overweight λ for better performance. By default, we use the λ value of 0.5 (no prior knowledge).

3.2 EXTRACTING THE SEMANTIC INFORMATION

Multi-SVDD. Beyond the one-class anomaly detection methods that consider the normal data as a
single class (e.g., DeepSVDD (Ruff et al., 2018)), recent studies have viewed the normal data as
the union of the multiple hidden semantic information (Ghafoori & Leckie, 2020; Park et al., 2021).
Inspired by this idea, we use the multi-SVDD method to extract the semantic information in an
unsupervised manner for the OOD detection task.

Multi-SVDD embeds the samples to the multiple center vectors as closely as possible. Suppose a
set of center vectors C = {c1, ..., cK} is initialized via K-means and the radius of each center is
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Figure 3: Comparison of the initialization strategy in multi-SVDD. (a) The model with K-means
initialization is effective at the anomaly detection but not for the OOD detection scenario. This
is because the definition of the anomaly is when the samples do not belong to the cluster regions
(dark shade), while the definition of OOD is when the samples do not lie in the ID manifold (light
shade). (b) Our proposed angular distance-based initialization guides the initial center vectors to
be positioned following a (virtual) circular line. As a result, it prevents the OOD samples from not
belonging to the ID by creating tight cluster layouts without a hole.

r = [r1, ..., rK ]. In multi-SVDD, the objective function is defined as follows.

min
W,r

K∑
k=1

r2k +
1

νn

n∑
i=1

max {0, ∥ϕ(xi;W)− cj∥2 − r2j}+
η

2

∑
∥W∥2. (1)

Here, ϕ(xi;W) is the deep network with a set of weight parameters W and cj is assigned to
ϕ(xi;W). As the set r is decreased, the samples are condensed into the center vectors. By us-
ing the distance between the center vectors and the samples, we get an anomaly score.

Angular distance initialization. SVDD is proposed for the anomaly detection task. Because of the
disparity between OOD and anomaly detection, the direct application of the SVDD-based model
to OOD detection causes unexpected performance degradation. In anomaly detection, although the
abnormal samples lie in the ID manifold, it is possible to detect them as abnormal unless they are
close to the center vectors cj . For example, as in Figure 3a, OOD samples (red) that are located
inside of the ID manifold (light blue shade) can be detected as abnormal since they are outside of
the tight cluster boundary (dark blue shade). Because of these, a mixture of Gaussian probability
density is a reasonable density space for the anomaly detection model.

Unlike the anomaly detection task, the OOD detection is to find the samples that are not ID. In
Figure 3a, all the OOD samples placed in the ID manifold (light dark shade) are recognized as the
ID. We propose an angular distance-based center vector initialization strategy to tackle this issue.
Angular-based embedding has a clear geometric interpretation (Deng et al., 2019), and they can
handle the complex and subtle differences in feature space. Our proposed method is as follows:

ck = γ
v

∥v∥
, v ∈ Rh ∼ N (0,1) (2)

where h is the dimension of the embedding space and γ is the hyper-parameter for the radius of
the sphere. After ϕ(xi;W) is trained based on angular initialization, semantic features are extracted
through this model; S(xi) = ϕ(xi;W). By setting the γ value sufficiently large, we ensure that all
sample data are within a radius of the sphere as illustrated in Figure 3b. While Equation 1 drives
the training samples to be embedded around the center vectors on the sphere, the OOD samples
remain near the origin. This embedding space may be weak to recognize the semantic label of a
given sample, but it is sufficient to identify whether a sample is OOD or not.

3.3 EXTRACTING THE TEXTURE INFORMATION

To effectively extract the texture property of the ID, we interpret the image in the frequency space.
With a given input image x ∈ R3×h×w, we first convert it into the frequency domain using Discrete
Fourier Transform (DFT) F as shown below.

F(fx, fy) =
1

hw

h−1∑
p=0

w−1∑
q=0

I(p, q) · e−i2π(fxp/h + fyq/w), (3)
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Here, I(p, q) denotes the pixel value of the image at the (p, q)-coordinate and F(fx, fy) is the output
of the DFT at the Cartesian coordinate (fx, fy) in the frequency space. In order to construct a scale
and rotation invariant frequency information in 2D image, we modify the coordinate system from
Cartesian (fx, fy) to polar (fr, θ), following (Dzanic et al., 2019).

F(fr, θ) = F(fx, fy) : fr =

√
f2
x + f2

y
1
4 (m

2 + n2)
, θ = atan2 (fy, fx). (4)

Since directly computing the polar coordinate is computationally expensive and tricky, we iteratively
calculate the rotation invariant frequency feature. To do that, we only utilize the first channel of the
image as x ∈ R1×h×w and assume that the image is square (i.e., h = w). Let T (x) ∈ Rw/2 be the
texture feature vector of the image x. Then, the i-th element of Ti(x) is calculated by Equation 5.

Ti(x) = Ri −Ri−1 : Rw =

w∑
fx=−w

w∑
fy=−w

F(fx, fy), R0 = F(0, 0) (5)

Note that fr represents the direction of the frequency of an image. Since Ti(x) gathers the boundary
region of the rectangular-shape feature map, Ri (as Equation 5), the same frequency power of an
image collapses into Ti(x). Consequently, T (x) loses the information of the object’s shape and it
only contains the frequency-based texture information.

CIFAR-10 w/ corruption CIFAR-100

0 10 20 30 40 50

C10
C10 w/ corruption
C100

Figure 4: PSD analysis.

Discussion. We compare the power spectrum density (PSD) of
CIFAR-10 (C10), CIFAR-100 (C100), and distorted C10 (Fig-
ure 4). The PSD discrepancy between the corrupted C10 and
the vanilla one indicates that the image feature acquired from
the frequency domain is adequate to represent the texture cue.
In contrast, C10 and C100 are not distinguishable in the fre-
quency domain since they have a very similar image texture due
to the small resolution. These observations support our assump-
tion that the OOD detection model should decouple the texture
and semantic information to handle real-world cases properly.

3.4 FEATURE COMPOSITION VIA NORMALIZING FLOW

Since we design our framework to directly sample the probability, it does not require any ad-hoc
scoring functions. Instead, we use a normalizing flow-based method (Dinh et al., 2014; Rezende
& Mohamed, 2015; Dinh et al., 2016) that uses the probability of given samples as a loss function.
In the following, we will describe how to get the probability of samples from the prior probability
(Normal distribution) using the normalizing flow.

Given sample x, a normal prior probability distribution pZ on a latent variable z ∈ Z, and a bijection
f : X → Z (with g = f−1), the change of variables defines a model distribution on X by

pX(x) = pZ
(
f(x)

) ∣∣∣∣det(∂f(x)

∂xT

)∣∣∣∣ , (6)

where ∂f(x)
∂xT is the Jacobian of f at x. The function f can be decomposed into f = f1 ◦ · · · ◦ fk.

To compose the features, we use a flow-based RealNVP with coupling layers (Dinh et al., 2016).
Here, T (xi) and S(xi) are input of RealNVP. Given the ID training dataset D, the objective of the
RealNVP model with the trainable parameters θ and ϕ is to minimize the following loss function.

Lt(D) =
1

N

N∑
i=1

− log pθ(T (xi)|xi), Ls(D) =
1

N

N∑
i=1

− log pϕ(S(xi)|xi) (7)

Although we extract image features from two different aspects, it is not guaranteed that the features
are completely disentangled. To mitigate the unexpected entangling, we propose disentanglement
loss using the independence property of log probabilities. If T (xi) and S(xi) are independent given
xi, then log p(T (xi)) + log p(S(xi)) = log p(T (xi), S(xi)). Note that log p(T (xi), S(xi)) can be
computed by concatenating features S(x) and T (x). The disentanglement loss is calculated as:

Ldisentangle =
1

N

N∑
i=1

{(log p(T (xi)) + log p(S(xi)))− log p(T (xi), S(xi))}2. (8)
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ID → OOD Using Labels Other Dist. Self-supervised Ours λ =
Maha Gram OE OEC Rot SSL CSI 0.0 0.5 1.0

SV
H

N
C10 99.3 97.3 99.3 99.8 - 99.8 - 93.9 99.9 100.
C100 - - 99.0 99.9 - 99.8 - 91.1 99.8 99.9
TinyImgNet 99.3 97.3 - - - - - 99.5 100. 100.
LSUN* 99.9 99.8 99.9 99.9 - 99.9 - 99.9 100. 100.

C
10

SVHN 99.1 99.5 98.2 99.2 97.8 99.2 99.8 86.1 99.9 99.9
C100 88.2 79.0 92.9 93.8 82.3 93.8 89.2 55.7 93.6 93.5
TinyImgNet 99.5 99.7 - - - - - 65.4 99.9 99.9
LSUN* 99.3 99.9 96.4 98.9 92.8 98.9 97.5 99.9 99.8 81.9

C
10

0

SVHN 98.4 97.3 82.8 95.8 - 95.8 - 80.0 99.9 100.
C10 77.5 67.9 77.5 77.7 - 77.7 - 49.4 83.1 84.2
TinyImgNet 97.4 99.0 - - - - - 91.7 100. 100.
LSUN* 98.2 99.3 79.5 88.8 - 88.8 - 99.9 100. 100.

Table 1: Conventional OOD detection benchmark. We evaluate the detection performance by
AUC (in- vs. out-distribution detection based on confidence/score) in percentage (higher is better).
* indicates the high-resolution dataset.

The final loss is the sum of all the aforementioned losses; L = Lt + Ls + Ldisentangle. One nice
side-effect of this probabilistic modeling for texture-semantics decomposition is that we can adjust
the contribution of these components by referring to the given OOD environment. Since we designed
the features to be separate, we combine them with a linear interpolation as:

λ · log pϕ(S(x)|x) + (1− λ) · log pθ(T (x)|x) (9)

where λ ∈ [0.0, 0.5, 1.0] is the control parameter (default is 0.5). In our experiments, we denote
λ = 0.0 as “texture mode” and λ = 1.0 as “semantic mode”.

4 EXPERIMENTS

We demonstrate the effectiveness of our method on various benchmark setups. In Section 4.1, we
report the performance on the conventional OOD detection task and discuss the limitations of the
previous OOD detection studies. We use the area under the curve (AUC) for the receiver operating
characteristic (ROC) curve to evaluate the performance. Then, we will discuss the factor-aware
OOD detection that is proposed to fill the gap between the current benchmark and the real-world
environment (Section 4.2). We conclude this part with model analysis (Section 4.3).

4.1 CONVENTIONAL OOD DETECTION

Setups. Here, we evaluate OOD detection methods on the widely used OOD detection benchmark.
We select SVHN (Netzer et al., 2011), CIFAR-10 (Krizhevsky et al., 2009) (C10), and CIFAR-
100 (Krizhevsky et al., 2010) (C100) as the ID dataset. To simulate the OOD samples, LSUN (Yu
et al., 2015) and Tiny-ImageNet (Torralba et al., 2008) datasets are additionally used.

Baselines. We compare our approach to the methods belonging to three different OOD detection
groups. 1) Methods that use class labels of the training samples; feature-based methods such as
Maha (Lee et al., 2018) and Gram (Sastry & Oore, 2020) fall into this category. 2) Methods that
utilize an additional distribution (dataset) such as OE (Hendrycks et al., 2018) and OEC (Papadopou-
los et al., 2021). 3) Self-supervised based methods; rotation-based (Rot) (Hendrycks et al., 2019),
SSL (Mohseni et al., 2020), and CSI (Tack et al., 2020) are in this group.

Results. As shown in Table 1, our proposed method surpasses the competitors on the conventional
OOD detection tasks without using any extra information such as class labels, other datasets, or
image-transformation techniques that the other methods required. In detail, ours with λ = 1.0
(semantic mode) achieves the best performance in all the cases with the exception of two scenarios.

Discussion. As we have discussed, it is often risky to assume that the input samples of a real-world
system have a single and entangled characteristic. We argue that it is more natural to consider in
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terms of multiple factors such as texture and semantics when detecting OOD. For example, when a
given environment requires detection of the textural discrepancy as OOD, then the detection method
should concentrate on the textural side alone, not the semantic counterpart.

Unfortunately, conventional OOD detection benchmarks are not developed to measure the disen-
tangled view of the ID. Here, we dissect the traditional benchmark to quantify the effect of each
factor we decompose. We first categorized the datasets into the high- and low-resolution groups by
their image resolution: C10, C100, SVHN, and TinyImageNet belong to the low-resolution (LR)
group while LSUN is high-resolution (HR). Table 1 shows that previous studies achieve high per-
formance on the LR → HR scenario, and especially the label-based methods produce outstanding
results. However, we will show the superior performance of these methods derives from their abuse
of texture information (e.g., detect as OOD by highly referring to image resolution) in Section 4.2.

On the other hand, we argue that the semantic property is the key component to identity the OOD
of LR → LR scenarios. For example, C10 ↔ C100 solely requires semantic information to detect
OOD since these datasets use very similar images (in terms of the texture and image resolution).
This is the reason why ours with λ = 0.0 (texture mode) cannot detect OOD at all (55.7 and 49.4
AUC). Note that other competitors also show inferior performance, especially in the C10 ↔ C100
case, which demonstrates that these methods have weakness at handling semantic information.

4.2 FACTOR-AWARE OOD DETECTION

Motivation. For a more in-depth evaluation of OOD detection performance, we propose a novel
OOD detection benchmark in which multiple factors (or environments) are involved. Conventional
setups simply define the ID and OOD as different datasets. Unfortunately, this assumption is often
invalid in real-world use cases. Imagine a distorted image scenario; would we have to label this cor-
rupted image as OOD? Most previous studies would obviously determine it as OOD, but this heavily
depends on the surrounding circumstances; for example, if an OOD detection system is granted a
role to send an alert when a new class object appears, then it has to disregard mild corruption.

Therefore, the goal of this benchmark is to evaluate from the OOD detection performance (Figure
5a and b) and the robustness, whether the model can judge the given sample as ID when it differs
from the training set while still coming from inside the “interest boundary” (Figure 5c and d). One
consecutive question may arise: what kind of factors should be considered? Certainly, in real-world
applications, various factors can be derived from given samples or datasets. However, we narrow
the scope of the factors to texture (Figure 5a and c) and semantics (Figure 5b and d), since these are
the most important aspects considering the decision-making process in the real world.

Setups. To evaluate OOD detection performance, AUC is used; 100.0% AUC is the best. To mea-
sure robustness, we define 50% AUC as the best since this indicates that the detection method
cannot distinguish test samples as OOD (determined as ID). In this benchmark, we use corrupted
C10, SVIRO (Cruz et al., 2020), BTAD (Mishra et al., 2021), MNIST variants, and rotated MNIST
datasets as shown in Figure A.1. Detailed descriptions of each dataset are described in the experience
parts.

Detecting texture discrepancy of OOD. The goal of this scenario is to detect the texture discrep-
ancy. In real-world application, the factory process requires quality control to find cracks in indus-
trial products. To meet the demand, we use BTAD dataset (Mishra et al., 2021), which is composed
of 2,830 industry-oriented images of normal and defective products. We set the normal samples as
the ID and the cracked ones as OOD. Furthermore, as discussed earlier, we simulate the severe dis-
tortion scenario by applying severe levels of frost, shot noise, haze, and motion blur to C10. In this
case, the model is required to detect the distortions as OOD, simulating the circumstances where the
system should find the corrupted sensing module.

As shown in Table 2, our method with texture mode (λ = 0.0) outperforms all the others in BTAD
case and achieves comparable performance for severe distortion scenario. On the other hand, the
semantic mode (λ = 1.0) shows substantially lower AUC. This is unsurprising because the current
benchmark scenario does not require semantic information; distortions and cracks (BTAD) are only
related to the texture clue. Gram and Maha also achieve high performance; however, we find that
these methods do not have sufficient robustness as will be discussed in the Robustness experiment.
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Mild distortion (T4)

Robust - Seman.
SVIRO (Cruz et al., 2020) (T5)
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Figure 5: Taxonomy of our proposed benchmark. Left: (a, b) OOD detection scenario on two
factors: texture, and semantics. In this case, the training set is ID, while the test set is OOD. (c, d)
Evaluating the robustness on factor discrepancy of ID by providing ID samples at test time. Here,
an oracle produces 50.0 AUC (cannot distinguish it as OOD at all) since the given samples are from
ID. Right: A list of the corresponding experiments in each scenario.

Method
Severe distortion BTAD

C10→ Normal→
Frost Haze Motion Shot Anomaly

ODIN 79.9 69.5 80.9 84.2 52.2
Maha 97.2 99.8 97.4 99.8 79.1
Gram 99.9 99.9 99.9 99.8 81.1

CSI 84.3 81.6 87.6 97.1 61.1

0.0 83.4 94.4 91.0 96.1 92.1
λ = 0.5 80.4 73.5 90.8 82.5 90.0

1.0 67.5 67.1 63.1 74.1 61.0

Table 2: Comparison of the texture discrepancy
detection of OOD.

Method
Rotated MNIST MNISTs

0◦→ MNIST→
15◦ 30◦ 45◦ 60◦ 75◦ FMNIST

ODIN 68.1 84.4 91.9 96.3 97.7 74.4
Maha 80.0 86.1 88.1 87.9 89.9 96.8
Gram 88.8 91.0 96.6 98.8 99.1 99.9

CSI 59.2 60.0 60.8 61.8 61.9 56.1

0.0 51.1 51.1 52.3 54.6 59.1 91.8
λ = 0.5 65.5 84.1 90.1 95.5. 91.1 100.

1.0 67.1 89.6 96.8 98.5 99.8 99.9.

Table 3: Comparison of the semantic discrepancy
detection of OOD.

Detecting semantic discrepancy of OOD. With this benchmark, we evaluate the method’s sen-
sitivity to the semantic difference between the training and test samples. Catching semantic dis-
crepancies is important in many applications such as autonomous systems. For example, this should
judge whether a given traffic symbol is geometrically distorted for a stable recognition system (some
recognition models are vulnerable to rotation). Here, we use two testbeds: MNIST→F-MNIST and
rotated MNIST scenarios. For the rotated MNIST, we train the model on MNIST and evaluate the
rotated version. In most cases, our method with semantic mode surpasses the others (Table 3).

Robustness on Texture Discrepancy of ID. We conduct the benchmark on two scenarios: mild
distortion and varying image resolution. Both cases assume that the definition of OOD is in the
disparity of semantic information. Particularly, a subtle change of image should not be considered
as a signal of OOD, but rather recognized as ID. For example, the system that is requested to detect
abnormal events should be robust on the mild image distortions. To implement the distortion case,
we corrupt C10 with a mild level. For the varying resolution, we center-crop and resize back to the
original resolution. We carefully adjust the crop operation so as not to harm the image information.

Table 4 shows the AUC score of this benchmark. Since this experiment focuses on detecting the test
samples as the ID, 50.0% AUC is the best. We observe that the deep feature-based methods (e.g.,
Maha and Gram) have little robustness against the texture discrepancies. They are not potentially
appropriate for applications that do not treat a mild corruption as OOD. Furthermore, all the methods
except ours with semantic mode are extremely sensitive to image resolution change, although no
other information is modified. In contrast, our method with λ = 1.0 (semantic mode) achieves the
best performance because this focuses on the semantic information alone.

Robustness on Semantic Discrepancy of ID. Unlike the above, we focus on the robustness
against the semantic discrepancy presented in ID. To evaluate this, we use MNIST→KMNIST and
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Method
Mild distortion Image resolution

C10→ 322 →
Frost Haze Motion Shot 362 402 442 482

ODIN 72.6 75.2 80.9 84.2 55.7 62.7 67.5 91.2
Maha 88.3 99.3 97.4 99.8 69.0 71.1 79.9 80.0
Gram 99.8 99.6 99.9 99.8 66.5 74.8 82.4 92.9

CSI 73.1 60.1 87.6 97.1 81.5 86.1 89.9 93.5

0.0 68.8 59.3 79.0 91.1 59.9 67.7 75.8 82.8
λ = 0.5 64.3 58.0 71.8 82.5 50.2 55.8 71.2 72.8

1.0 56.6 55.0 54.1 74.1 50.1 55.0 60.9 66.0

Table 4: Comparison of the robustness on the texture
discrepancy of ID.

Method
SVIRO MNISTs

A-class→ MNIST→
Tesla Escape Tiguan i3 KMNIST

ODIN 67.3 53.4 56.2 58.9 94.4
Maha 90.0 76.0 88.1 77.2 91.6
Gram 91.1 91.9 81.1 81.2 97.1

CSI 65.5 54.4 53.2 57.2 72.2

0.0 60.0 59.4 55.8 55.3 50.6
λ = 0.5 90.0 79.2 79.0 76.6 100.

1.0 96.5 84.1 87.6 90.9 100.

Table 5: Comparison of the robustness on
the semantic discrepancy of ID.

Method C10→ C100→ SVHN→
C100 SVHN C10 SVHN C10 C100

Multi-SVDD 53.7 99.7 67.5 84.2 87.5 84.2
+ Ldisentangle 69.5 99.8 70.9 91.0 99.9 98.9
+ Angular init. 93.5 99.9 84.2 100. 100. 99.9

Table 6: Ablation study on the semantic module.
Multi-SVDD without our proposed components can-
not properly handle the semantics information.

Method C10 C100 SVHN

ODIN 56.2 53.3 52.2
Gram 79.1 69.1 71.1

CSI 61.9 52.2 51.1
Ours 50.1 49.8 50.0

Table 7: ID→ID scenario. All the models
are trained on the “training set” of the ID
dataset and evaluated on its “test set”.

SVIRO (Cruz et al., 2020) scenarios. SVIRO is the collection of images from diverse vehicle interior
rear seats. Among them, we set Mercedes A-class as ID and other car brands as the OOD datasets.
With this, we simulate the following scenario: the machine learning system utilizing the camera
installed inside of the vehicle should be robust to the vehicle type (semantics discrepancy).

For MNIST → K-MNIST (Table 5), our method with λ = 0.0 (texture mode) successfully de-
termines that K-MNIST is the ID (AUC is 50.6). In contrast, our model with other λ values (0.5
and 1.0) cannot, since these mostly depend on the semantic clue which is meaningless in this case.
Similarly, our method with λ = 0.0 (texture mode) achieves good performance on SIVRO.

4.3 MODEL ANALYSIS

Semantic module. We validate the proposed component of the semantic module (Table 6). The
disentangle loss plays an important role in the model performance and the angular initialization
also improves the conventional initialization method in a huge margin, implying the superiority of
our method when extracting the semantic information. To further present the effectiveness of our
strategy, we plot the distribution of the embedding results in Figure B.2.

ID → ID scenario. If we test an OOD detection model using the test set of the ID dataset, then
ideally the prediction for it should be ID. On the other hand, when the OOD detection model overfits
the training set, then the AUC score for the test set would go to 100.0%. As shown in Table 7, our
method determines the ID almost perfectly, and CSI and ODIN also show reasonable performance.
However, the Gram-based method is rather sensitive to this and we argue that it might be due to
abuse of features of the seen (training) dataset.

5 CONCLUSION

In this work, we introduce a novel viewpoint of the ID for the practically applicable OOD detection.
We separate the definition of the “single-mode” ID into “texture” and “semantics” factors by fol-
lowing the requirements of the real-world applications. To effectively handle both aspects, we take
a divide-and-conquer strategy that extracts the features using the appropriate method in each factor
and then combines these with the normalizing flow-based model. By doing so, our method outper-
forms previous models on both our newly proposed benchmark scenarios and the conventional OOD
detection cases. We hope that our work can provide useful guidance for future OOD detection work.
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A EXPERIMENT SETUPS

A.1 MODEL TRAINING

We use Adam (Kingma & Ba, 2014) with a weight decay of 5e-5 and a batch size of 256 for 100
epochs to train all the modules in our framework. Extracted features by the ET and ES have the
same 112 dimensions. We train and test with a single NVIDIA 1080TI GPU.

A.2 MODEL ARCHITECTURE

Multi-SVDD. We use ResNet-18 as the encoder network and modify the dimension of the last layer
to 512. All the hidden dimensions of semantic modules have the same as the original setup. The γ
parameter for the angular distance is set as 250 for all in-distribution datasets.

RealNVP. We use the RealNVP implementation following (Izmailov et al., 2020)1. In detail, each
perspective model has 8 blocks of 8 flows and we use an affine coupling that is defined by the fully
connected shift and scale networks each of which 16 dimensions of hidden layers.

A.3 OOD BENCHMARK

Datasets. Figure A.1 shows examples of the datasets in the proposed OOD detection benchmark.
To quantify the role of texture information, we use corrupted C10 dataset (Figure A.1a). We distort
images of the C10 dataset with frost, haze, motion blur, and shot noises (following C10-C set-
tings (Hendrycks & Dietterich, 2019)). With such corrupted C10 scenarios, we try to simulate the
weather change or small sensing error of the vision system. Note that we separate the distortion sce-
nario into mild and severe corruption cases to cover the various demands from the real applications.
Specifically, the mild scenario is utilized to evaluate the textural robustness of the method. It sim-
ulates the environments where slight textural deviation should be ignored and the algorithm should
concentrate on the semantics changes. For instance, the vision-based surveillance system requires
such capability since it should be robust to minor changes (e.g., weather, dust, etc.) and detect the
environment change regarding the semantics (e.g., trespassing). The severe distortion case, on the
other hand, is used to measure the OOD detection performance with a given textural change. A
system that should notice the deviation of textural dissimilarity falls in this category.

Figure A.1: Examples of the datasets used in the proposed benchmark. The corresponding
experiment for each dataset is illustrated in Figure 5.

Figure A.1b displays the SVIRO dataset (Cruz et al., 2020), which is a collection of vehicle interior
images. Each car dataset is consist of images taken on the rear seats with six car brands (as shown in
figure) and among them, we set the ID as whole directions of Mercedes A-class rear seat and OOD

1https://github.com/izmailovpavel/flowgmm
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as other car datasets. With this dataset, we measure the robustness of the semantics change for the
following potential scenario: The machine learning system utilizing the camera installed inside of
the vehicle should not behave differently although the vehicle interior is changed. In other words,
the system should be robust to the vehicle type (semantics discrepancy).

MNIST variants such as K-MNIST and F-MNIST are used to measure semantics-aware benchmarks
(Figure A.1c). In addition, we generate a rotated MNIST dataset by rotating images of the MNIST
dataset as illustrated in Figure A.1d. Since MNIST-based datasets are composed of grayscale im-
ages, we replicate the color channel by three times before feeding into the detection method.

To evaluate the ability to detect the products’ crack from the real environment, we use the BTAD
dataset (Mishra et al., 2021) as shown in Figure A.1e. In detail, we selected the cracked image from
the test dataset of BTAD and reorganize it as the ID dataset contains only non-cracked (normal)
product images and the OOD dataset has cracked images only.

Image resolution. When we are able to acquire the official pre-trained network or samples, we
provide the 32×32 resolution images as input, which is de facto setup in this field. If not the case
(such as our benchmark), we prepossess the image as to have 32×32 resolution following the official
setup. In our method, except for the resolution change experiment, we resize the images to 112×112
resolution to give enough information to the texture extraction module.

B MODEL ANALYSIS

0 10 20 30 40 50

C10
C100
Blend
Jigsaw

Figure B.1: Power spectrum density (PSD) analysis of the blending and Jigsaw augmentations.

Texture information analysis. Our texture extraction module T (x) is induced to lose the shape
information so that we can ensure that the texture and semantic features are disentangled. To validate
that T (x) concentrates on the texture information, we analyze the power spectrum density (PSD)
on the transformed CIFAR dataset (Figure B.1). For transformation of CIFAR, we blend the C10
and C100 in half ratios with alpha-blending (denoted as Blend). Also, we cut the image into four
parts and randomly arrange them as Jigsaw augmentation (denoted as Jigsaw). We observe slight
differences in the mid-level frequency for Jigsaw due to the hard crossing border at the center of the
image but no significant change. Moreover, even though the sample’s shape is mixed in the alpha-
blend case, it can be seen that PSD is almost identical. These inspections support that T (.) forgets
the semantics (especially the shape clue) as expected when embedding the features.

Semantic embedding results. In Figure B.2, we plot the embedding results of the proposed seman-
tics extraction module to verify the effectiveness of using semantic information. To visualize, we
apply principal component analysis (PCA) to the extracted feature and make the dimension three.
Figure B.2a depicts the scenario where MNIST is used as the ID dataset and other MNIST variants
are the OOD. Figure B.2b shows the case where C10 is used as the ID dataset while C100 and SVHN
are OOD. For both results, we observe that the embedding manifolds of the ID datasets are easily
separable from the OODs’ counterparts, and our semantics extraction module S(x) concentrates on
semantics information, such as labels of C10 and C100.

On the other hand, as presented in Figure B.2c and d, the semantics module S(x) cannot identify
the textural change such as the image distortions or resolution changes; all the embeddings lie in
similar manifolds. These results are natural and expected since the semantics extraction module is
designed to solely focus on the semantics side, not the texture.

Power Spectrum Density (PSD) analysis. To validate our assumption that texture information
could be handled via Fourier transform, we visualize the PSD for all the datasets of the proposed
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(a) ID: MNIST OOD:{K, F}-MNIST (b) ID: C10 OOD: C100, SVHN

(c) ID: C10 OOD: C10 with motion blur (d) ID: C10 OOD: C10 with resolution change

Figure B.2: Embedding results of the semantics extraction module. The proposed semantics
module S(x) focuses on the semantics information. (a, b) The embedding outputs between ID and
OOD are easily separable since the ID and OOD datasets have distinct semantic information. (c, d)
It fails to disentangle the textural difference cases such as motion blur or image resolution change.
This is a natural outcome since S(x) is not guided to follow the textural cues.

OOD benchmark. In the case of the MNIST variant datasets (Figure B.3a), MNIST and K-MNIST
show a similar spectrum because they have identical textures but only the semantics (letters) are
different as illustrated in Figure A.1. On the other hand, F-MNIST has a different spectrum trend
due to the disparate texture (letters vs. cloths). In Figure B.3b, we compare C10 to the C100 and
SVHN datasets. Here, although C10 and C100 are separable in the embedding space (as shown
in Figure B.2b), which has semantic information, the frequency domain-based approach, in which
only texture information is extracted, cannot distinguish them. The SVHN dataset, however, shows
disparate PSD, implying that the texture extraction module can identify this effectively.

We visualize PSD analysis results when the image distortions are applied to the C10 dataset (Figure
B.3c-f). In many cases, the C10 dataset (blue) and mild corruptions (orange) appear as aligned
spectrum, thus the texture-only mode may struggle in detecting mild corruptions as OOD. However,
based on the real-world applications, we assumed that the mild distortion would be treated as ID,
in other words, to be the textural robustness (Table 4). In contrast, severe corruptions (green) are
distinctive compared to original C10, indicating that texture information is useful for detecting the
severe corruptions as OOD.
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(a) ID: MNIST OOD: {K, F}-MNIST (b) ID: C10 OOD: C100, SVHN

(c) ID: C10 OOD: C10 with frost (d) ID: C10 OOD: C10 with shot noise

(e) ID: C10 OOD: C10 with haze (f) ID: C10 OOD: C10 with motion blur

Figure B.3: Power spectrum density (PSD) analysis. We extend the PSD analysis conducted on
Figure 4 to all the benchmark datasets we proposed.
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C MODEL COMPARISON

Table C.1 presents the OOD detection performance of various methods when C10 and C100 datasets
are set to the ID. We compare with R-Flow (Zisselman & Tamar, 2020), MOOD (Lin et al., 2021),
1-Dim (Zaeemzadeh et al., 2021) and G-ODIN (Hsu et al., 2020) algorithms. In the table, (c) and (r)
depict the center-cropped and resized, respectively. To get a standard image resolution (32×32), we
downsize high-resolution datasets by described downsizing procedure. Note that the resized datasets
are similar to the one presented in this work. We would like to emphasize that we mainly compare
the competitors to our method with the λ = 0.5 setting. This makes the comparison fairer because
λ = 0.5 does not require prior knowledge of which factor is important. Our method outperforms
the previous algorithms in many cases and the proposed framework does not utilize any information
other than the given ID dataset (C10 or C100) in the training phase. Unlike ours, the other methods
use external information such as class labels or additional datasets to boost the performance.

ID → OOD R-Flow MOOD 1-Dim G-ODIN Ours λ =
0.0 0.5 1.0

C
10

SVHN 98.2 96.4 - 98.8 86.1 99.9 99.9
TinyImgNet 99.6 - - - 65.4 99.9 99.9
LSUN (c) - 99.2 99.4 98.3 68.3 90.9 98.6
LSUN (r) 99.6 93.2 99.3 99.4 97.0 99.4 99.6
ImgNet (c) - - 98.1 98.7 85.2 98.1 98.5
ImgNet (r) - - 98.5 99.1 85.0 98.1 98.9

C
10

0

SVHN 95.1 85.8 - 95.9 80.9 99.9 100.
TinyImgNet 98.1 - - - 91.7 100. 100.
LSUN (c) - 96.8 93.8 95.3 65.6 91.9 92.2
LSUN (r) 98.9 77.6 95.7 98.7 97.0 99.8 99.6
ImgNet (c) - - 88.6 97.6 94.1 100. 100.
ImgNet (r) - - 93.7 98.6 94.7 97.7 98.2

Table C.1: Comparison on the conventional OOD detection benchmark. We compare to other
representative methods with various settings: R-Flow (Zisselman & Tamar, 2020), MOOD (Lin
et al., 2021), 1-Dim (Zaeemzadeh et al., 2021) and G-ODIN (Hsu et al., 2020). Note that (c) and (r)
indicate center-cropped and resized, respectively.
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