

000 SCALABLE BAYESIAN MONTE CARLO: FAST 001 002 UNCERTAINTY ESTIMATION BEYOND DEEP ENSEMBLES 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 This work introduces a *new method* designed for Bayesian deep learning called
012 scalable Bayesian Monte Carlo (SBMC). The method is comprised of a *model* and
013 an *algorithm*. The model interpolates between a point estimator and the posterior.
014 The algorithm is a *parallel* implementation of sequential Monte Carlo sampler
015 (SMC_{||}) or Markov chain Monte Carlo (MCMC_{||}). We collectively refer to these
016 *consistent* (asymptotically unbiased) algorithms as *Bayesian Monte Carlo* (BMC),
017 and any such algorithm can be used in our SBMC method. The utility of the method
018 is demonstrated on practical examples: MNIST, CIFAR, IMDb. A systematic
019 numerical study reveals that *for a comparable wall-clock time to state-of-the-art*
020 (*SOTA*) *methods like deep ensembles (DE)*, SBMC achieves comparable or better
021 accuracy and substantially improved uncertainty quantification (UQ)—*in particular,*
022 *epistemic UQ*. The benefit is demonstrated on the downstream task of estimating
023 the confidence in predictions, which can be used for reliability assessment or
024 abstention decisions. Code is available in the supplementary material.

025 1 INTRODUCTION

028 Uncertainty quantification (UQ) in deep learning is critical for safe and reliable deployment, yet
029 remains a core challenge. The Bayesian formulation provides UQ in addition to Bayes optimal
030 accuracy, by averaging realizations from the posterior distribution, rather than relying on a single
031 point estimator. Fully Bayesian approaches like consistent Markov chain Monte Carlo (MCMC)
032 and sequential Monte Carlo (SMC) offer asymptotically unbiased posterior estimates, but at the cost
033 of prohibitive compute time compared to simple point estimators like the maximum a posteriori
034 (MAP). Bayesian deep learning (BDL) often rely on scalable approximations such as Monte Carlo
035 Dropout (Gal & Ghahramani, 2016), deep ensemble (DE) (Lakshminarayanan et al., 2017)¹, (KFAC-
036)Laplace approximation (Daxberger et al., 2021; Eschenhagen et al., 2021), Stochastic Weight
037 Averaging (SWA) (Izmailov et al., 2018), SWA-Gaussian (SWAG) (Maddox et al., 2019; Wilson &
038 Izmailov, 2020), which are fast and provide strong empirical performance, but lack formal consistency
039 guarantees.

040 Given data \mathcal{D} , the Bayesian posterior distribution over $\theta \in \Theta \subseteq \mathbb{R}^d$ is given by

$$041 \pi(\theta) \propto \mathcal{L}(\theta)\pi_0(\theta), \quad (1)$$

042 where $\mathcal{L}(\theta) := \mathcal{L}(\theta; \mathcal{D})$ is the likelihood of the data \mathcal{D} and $\pi_0(\theta)$ is the prior. The Bayes estimator of
043 a quantity of interest $\varphi : \Theta \rightarrow \mathbb{R}$ is $\mathbb{E}[\varphi | \mathcal{D}] = \int_{\Theta} \varphi(\theta)\pi(\theta)d\theta$. It minimizes the appropriate Bayes
044 risk at the population level and as such is Bayes optimal (MacKay, 1992; Neal, 2012; Andrieu et al.,
045 2003; Bishop, 2006).

046 Here we present a new approximate inference method called Scalable Bayesian Monte Carlo (SBMC),
047 which bridges the gap between fast but heuristic methods and principled yet expensive samplers.
048 It is a general method comprised of an approximate *model* and an *algorithm* to simulate from the
049 model. Our key insight is a model approximation $\bar{\pi}_s$ (defined precisely in equation 3), featuring
050 a scalar interpolation parameter $s \in (0, 1)$ that allows tuning between the MAP estimator ($s = 0$)
051 and the full Bayesian posterior ($s = 1$). For smaller s the target is *easier to simulate from*, albeit

053 ¹It is well-known that deep ensembles do not provide a consistent approximation of the posterior (Wild et al., 2023), yet Bayes is arguably the best lens through which to view them (Wilson & Izmailov, 2021).

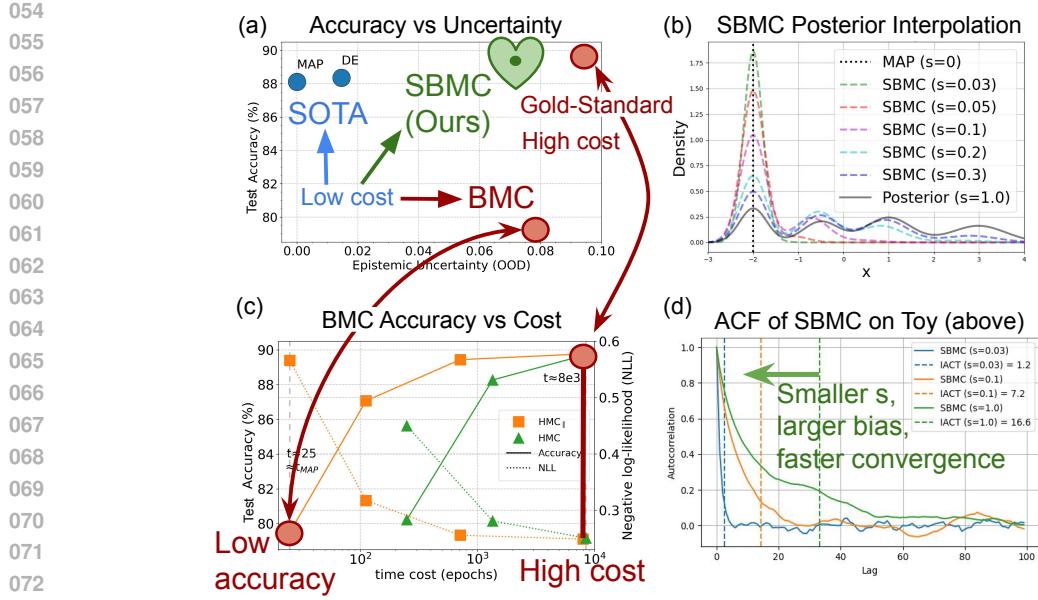


Figure 1: **Left panels:** IMDb sentiment classification. (a) SBMC provides a good *balance* of accuracy and UQ (quantified by epistemic entropy on OOD data), *for a comparable cost to deep ensembles* (every method runs for 25 epochs except the Gold-Standard (GS) BMC solution, which runs for 8000 epochs). (c) Standard implementation of HMC and HMC_{\parallel} . BMC methods typically deliver high accuracy for high cost (GS) and low accuracy for low cost. **Right panels:** SBMC *approximate models*, on a simple toy example. (b) The original posterior ($s = 1$) and the approximations for a range of s . (d) The autocorrelation function (ACF: correlation between samples separated by ‘Lag’ steps – this and integrated autocorrelation time (IACT) are defined in Appendix D.2) of SBMC for very long NUTS Hoffman et al. (2014) chains for a few choices of s . As s decreases the target becomes simpler and hence easier to explore, but the bias (with respect to the posterior) increases.

with a larger bias with respect to the posterior. See the right panels of Figure 1. By simulating from this approximate target with *parallel* implementations of BMC algorithms, which we will denote by S-SMC $_{\parallel}$ and S-MCMC $_{\parallel}$, SBMC delivers strong performance in accuracy and UQ *at a comparable cost to SOTA methods like DE* (less than double). The prefix “S-” is for “scalable”, and the scalability comes from the model approximation *in tandem* with the parallelism, denoted by the subscript \parallel . Without the model approximation, the required simulation time is prohibitive.

In general the posterior (target) distribution can only be evaluated up-to a constant of proportionality, and the available consistent methods for inference (learning) are of Monte Carlo type: notably Markov chain Monte Carlo (MCMC) (Metropolis et al., 1953; Hastings, 1970; Duane et al., 1987; Gelfand & Smith, 1990; Geyer, 1992; Robert et al., 1999; Roberts & Tweedie, 1996) and sequential Monte Carlo (SMC) samplers (Jarzynski, 1997; Berzuini & Gilks, 2001; Del Moral et al., 2006; Dai et al., 2022; Chopin et al., 2020). The past several decades have seen enormous progress in methodology as well as practical applications (Galison et al., 2022; Mohan & Scaife, 2024), however standard implementations of these algorithms are still too expensive for practical BDL, and so BMC algorithms are typically used only as a benchmark for cheaper approximations (Izmailov et al., 2021). See e.g. (Angelino et al., 2016; Papamarkou et al., 2024) for recent reviews and further references. The present work aims to address this computational intractability by (i) targeting an *approximation* of equation 1, and (ii) distributing the BMC workload across many workers in parallel. We will show that these two things together provide a *practical and scalable method*. The focus of the present work is on demonstrating the value of the SBMC method itself, independently of the particular BMC algorithm used, and so we mostly focus on standard implementations of HMC and SMC. But one of the virtues of SBMC is its extensibility: stochastic gradient MCMC methods Welling & Teh (2011); Chen et al. (2014) and/or other data-parallel techniques Angelino et al. (2016); Maclaurin & Adams (2014); Rendell et al. (2020) and more sophisticated adaptive methods Hoffman et al. (2021) can be swapped in later for additional gains.

¹Autocorrelation function (ACF) and integrated autocorrelation time (IACT) are defined in Appendix D.2.

108
109

The contributions of the present work are concisely summarized as follows:

110
111
112
113
114
115
116
117
118
119
120

- New SBMC method (e.g. S-SMC_{||} and S-MCMC_{||}) targets a model which allows the practitioner to *interpolate* between the MAP (or another point) estimator for $s = 0$ (0 additional simulation time) and the full posterior for $s = 1$ (long simulation time), thus balancing their UQ demands against their budget.
- A thorough systematic empirical evaluation of SBMC on several benchmarks demonstrates that it achieves excellent performance on both accuracy and UQ *at a cost comparable to DE*, where traditional BMC methods fail severely, demonstrating its strong scalability and robustness. See the top left panel of Figure 1.
- This benefit is illustrated on the downstream task of estimating prediction confidence, which can be used to improve safety and reliability. To that end, a meta-classifier is built using seven features of the SBMC posterior which characterize the epistemic uncertainty.

121
122
123
124
125

The paper is organized as follows. In Section 2, we introduce the SBMC method. In Section 3 we discuss its UQ abilities and the downstream task of output confidence prediction, as motivation, and present the main results. Section 4 discusses related literature. Section 5 presents the conclusion and additional discussion.

126
127

2 SCALABLE BAYESIAN MONTE CARLO (SBMC) METHOD

128
129
130
131
132
133
134
135
136
137
138
139
140
141

We define *time cost* as the required *simulation time per chain/particle*, and we will measure this by *epochs*, i.e. likelihood plus gradient evaluations, as a *hardware-agnostic proxy* for wall-clock time. Parallel implementations of consistent BMC algorithms like SMC_{||} and HMC_{||} improve time cost with near linear speed-up (Liang et al., 2025), but each process still needs to run for a long time, as seen in Figure 1 (c). This section introduces the model and algorithm choices that define the SBMC method in Algorithm 1, which delivers improved performance on metrics of interest *for a comparable time cost to deep ensembles*.

142

The model. Assume the prior is $\pi_0 = \mathcal{N}(0, V)$ for simplicity and define the MAP estimator as

$$\theta_{\text{MAP}} = \text{argmax}_{\theta} \mathcal{L}(\theta; \mathcal{D}) \pi_0(\theta),$$

144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

where \mathcal{L} is the likelihood defined in equation 1. For a fixed tuning parameter $s \in (0, 1)$, we define $0 \prec \Sigma(s) = \Sigma(s)^T \in \mathbb{R}^{d \times d}$ and $\alpha(s) \in [0, 1]$, such that $\Sigma(0) = 0$ and $\Sigma(1) = V$, and $\alpha(0) = 1$ and $\alpha(1) = 0$. Define the new prior as

$$\bar{\pi}_0(\theta) = \mathcal{N}(\theta; \alpha(s)\theta_{\text{MAP}}, \Sigma(s)). \quad (2)$$

The SBMC method then targets the following distribution

$$\bar{\pi}(\theta) \propto \mathcal{L}(\theta) \bar{\pi}_0(\theta), \quad (3)$$

which we will refer to as the *anchored* posterior. We will refer to θ_{MAP} as the *anchor*.

For $s \rightarrow 0$, we recover a Dirac measure concentrated on the MAP estimator, which means no sampling is required. Conversely, as $s \rightarrow 1$, we recover the *original posterior*. Hence s is a scalar interpolation parameter which allows us to tune between these limits. For simplicity we will typically consider only the standard isotropic case $V = \text{vld}$ and let $\alpha(s) = \mathbf{1}_{\{s < \frac{1}{2}\}}$ and $\Sigma = s\text{vld}$.

We show that this approximate model balances the complementary strengths of the two approaches for small s , and enables BMC methods to deliver *scalable gains over alternatives like deep ensembles at a comparable cost*. The method is relatively insensitive to the exact value of s and we recommend a default value of $s = 0.1$. We will use the notation S-SMC_{||} and S-MCMC_{||} to distinguish the SBMC method from standard implementations of the algorithms targeting equation 1. For example, S-SMC_{||} means the SMC_{||} algorithm is used to sample from equation 3.

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Algorithm 2 S-SMC sampler

Inputs: $\mathcal{L}, \bar{\pi}_0, N$.

Init. $\theta_0^i \sim \bar{\pi}_0$ for $i = 1, \dots, N$. $Z^N = 1$.

for $j = 1$ to J (in serial) **do**

(Optional) Select λ_j s.t. ESS = ρN , $\rho < 1$.

for $i = 1$ to N (in parallel) **do**

Define $w_j^i \propto \tilde{w}_j^i \equiv \mathcal{L}(\theta_{j-1}^i)^{\lambda_j - \lambda_{j-1}}$.

Selection: $I_j^i \sim \{w_j^1, \dots, w_j^N\}$.

Mutation: $\theta_j^i \sim \mathcal{M}_j(\theta_{j-1}^{I_j^i}, \cdot)$.

end for

Store $Z^N \leftarrow \frac{1}{N} \sum_{i=1}^N \tilde{w}_j^i$.

end for

Outputs: $\{\theta_j^i\}_{i=1}^N$ and Z^N .

The algorithm can be *any BMC method*. In the present work we will focus on SMC sampler and MCMC, but any alternative is admissible. For example, SG-MCMC or other methods which allow mini-batch gradients may be quite convenient for managing the memory requirements of very large problems.

SMC sampler. Define a sequence of intermediate targets $\bar{\pi}_j(\theta) \propto \mathcal{L}(\theta)^{\lambda_j} \bar{\pi}_0(\theta)$, according to a tempering schedule $0 = \lambda_0, \dots, \lambda_J = 1$, which will be chosen adaptively according to the effective sample size (ESS), as described in C.1 in the Appendix. The SMC sampler (Del Moral, 2004) alternates between *selection* by importance re-sampling, and *mutation* according to an appropriate intermediate MCMC transition kernel \mathcal{M}_j , such that $(\bar{\pi}_j \mathcal{M}_j)(d\theta) = \bar{\pi}_j(d\theta)$

(Geyer, 1992). This operation must sufficiently de-correlate the samples, and as such we typically define the MCMC kernels \mathcal{M}_j by several steps of some basic MCMC kernel, leading to L_j epochs (likelihood/gradient evaluations). We will employ two standard MCMC kernels: preconditioned Crank-Nicolson (pCN) (Bernardo et al., 1998; Cotter et al., 2013) and Hamiltonian Monte Carlo (HMC) (Duane et al., 1987; Neal et al., 2011). In the latter case, there are also several leapfrog steps for each HMC step contributing to L_j .

For a quantity of interest $\varphi : \Theta \rightarrow \mathbb{R}$, the S-SMC estimator from Algorithm 2 is given by

$$\bar{\pi}^N(\varphi) := \frac{1}{N} \sum_{i=1}^N \varphi(\theta^i) \xrightarrow{N \rightarrow \infty} \mathbb{E}_{\bar{\pi}}[\varphi] \approx \mathbb{E}_{\pi}[\varphi] = \mathbb{E}[\varphi \mid \mathcal{D}]. \quad (4)$$

S-SMC_{||} refers to P parallel executions of Algorithm 2, each with N particles, leading to a P times lower communication and memory overhead than a single S-SMC sampler with NP samples. This simplification is crucial for massive problems such as BDL, which require distributed architectures. Synchronous Single Instruction, Multiple Data (SIMD) resources can be used for the N communicating particles (and model- and data-parallel likelihood calculations), while all communication between the P processes is eliminated. The S-SMC_{||} ratio estimator is defined for P i.i.d. realizations $\bar{\pi}^{N,p}(\varphi)$ of equation 4 as

$$\hat{\varphi}_{\text{S-SMC}_{||}} = \sum_{p=1}^P \omega_p \bar{\pi}^{N,p}(\varphi), \quad \omega_p = \frac{Z^{N,p}}{\sum_{p'=1}^P Z^{N,p'}}. \quad (5)$$

S-MCMC_{||} refers to P parallel executions of Algorithm 3, which already features N parallel short chains free from any communication. The purpose of formulating MCMC in this way is to match SMC, which itself features N parallel chains that need to communicate intermittently at the selection stage. The estimator is built exactly as equation 5, with $\{\theta^{i,p} = \theta_J^{i,p}\}_{i=1}^N$ in equation 4 and $Z^{N,p} = 1$.

3 MOTIVATION AND RESULTS

Here we introduce UQ to motivate SBMC. We experimentally validate the quality of the epistemic UQ it delivers by using very long HMC runs as a ‘gold-standard’ (GS), and we show that it can be used to *directly predict model confidence*. We also assess SBMC against SOTA competitor baselines using epistemic and first order metrics on several challenging benchmark datasets. In subsection 3.1 we demonstrate how features derived from the epistemic uncertainty can be used to build a meta-classifier for predicting model confidence and deciding whether to abstain or respond.

216 **UQ** is a crucial pain-point for neural networks, and BDL is one of the leading contenders to deliver it.
 217 Our primary UQ metric will be *epistemic entropy*, which is the difference between *total* and aleatoric
 218 entropy, defined as follows (Hüllermeier & Waegeman, 2021; Depeweg et al., 2018)

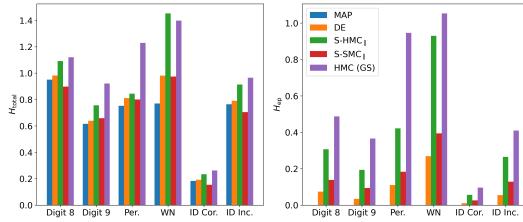
$$220 \quad H_{\text{ep}}(x) = - \underbrace{\sum_{y \in \mathcal{Y}} \mathbb{E}[p(y|x, \theta)|\mathcal{D}] \log \mathbb{E}[p(y|x, \theta)|\mathcal{D}]}_{H_{\text{tot}}(x)} - \underbrace{\mathbb{E} \left[- \sum_{y \in \mathcal{Y}} p(y|x, \theta) \log(p(y|x, \theta))|\mathcal{D} \right]}_{H_{\text{al}}(x)}. \quad (6)$$

$$221$$

$$222$$

$$223$$

Aleatoric uncertainty is irreducible and can be thought of as label error (people may sometimes disagree on the label of a given hand-written digit), whereas epistemic entropy quantifies uncertainty which can be reduced with more data (Shaker & Hüllermeier, 2020; Krause & Hübotter, 2025). Our focus is the latter, as it is *only* captured by Bayesian methods. It can be viewed as the mutual information between parameter and predictive posterior random variables for input x , and as such is 0 by definition for point estimators that yield deterministic predictive estimators.



230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 Figure 2: Average *predictive* total and epistemic entropy (having seen only ID data) over four OOD classes and correct and incorrect predictions ID for MNIST7 ($N = 10, P = 1$).

in Figure 2 (per-digit result is given in Appendix F.1). This quantity is clearly predictive of misclassifications, and this downstream task will be revisited below. A long HMC chain is included as gold-standard (GS) for validation.

In Table 1 we compare several SOTA competitors, including the **MAP** (computed with SGD and early stopping on validation data), DE, MC Dropout, KFAC-Laplace approximation, SWA, SWAG, and DEI-MCMC, with **(S-)HMC_{||}** **(S-)SMC_{||}**, and **(S-)SGHMC_{||}**. All methods are run with time cost of ≈ 170 epochs, but SBMC methods *require the MAP estimator(s)*, so their total time cost is roughly **double** that of the methods which do not initialize with the MAP(s). In order to also consider exactly equal cost, we include runs of **(S-)HMC_{||}** with half as many epochs, and runs of MAP and DE with twice as many epochs. A single HMC run using $2e4 - 2e5$ epochs is also included as a GS baseline. All methods can be further parallelized with model- and data-parallel techniques, but we do not consider that here. Convergence for all methods is verified by running 5 chains with dispersed initial conditions and measuring the standard error. Ensemble methods use P independent ensembles of $N = 10$ particles, and all particles are used for estimating posterior expectations. A limited set of metrics are presented in Table 1 because of limited space. More comprehensive results, including Brier, ECE, and per-OOD-category H_{tot} and H_{ep} , are presented in the Appendix Table 17.

The results show that when directly targeting equation 1, SMC_{||}, HMC_{||}, and SGHMC_{||}, degrade rapidly away from convergence, to the point of **catastrophic failure** in first order metrics at this cost level. However, their UQ performance is still adequate—for example, some of the HMC_{||} and SGHMC_{||} H_{ep} estimators are within our tolerance of 50% of the GS solution (in bold). The MAP and DE quickly deliver good accuracy, but do not accurately estimate H_{ep} . These failure modes are perfectly *complementary*. To achieve the “best of both worlds”, SBMC anchors to the MAP estimator(s) to preserve accuracy, and then uses an ensemble of short parallel runs of BMC to augment that with uncertainty. MC Dropout performs particularly well and is notably the only non-BMC method which achieves an H_{ep} estimator within our tolerance of 50% of the GS solution (in bold), and for a low total cost.

To account for possible beneficial impact of initialization, we consider also short DE-initialized chains (DEI-HMC) with the original target Sommer et al. (2024). Performance *significantly improves* in comparison to the prior-initialized chains, however it is still not competitive with SBMC. All HMC chains are tuned the same for a fair comparison. The details are given in Appendix E.

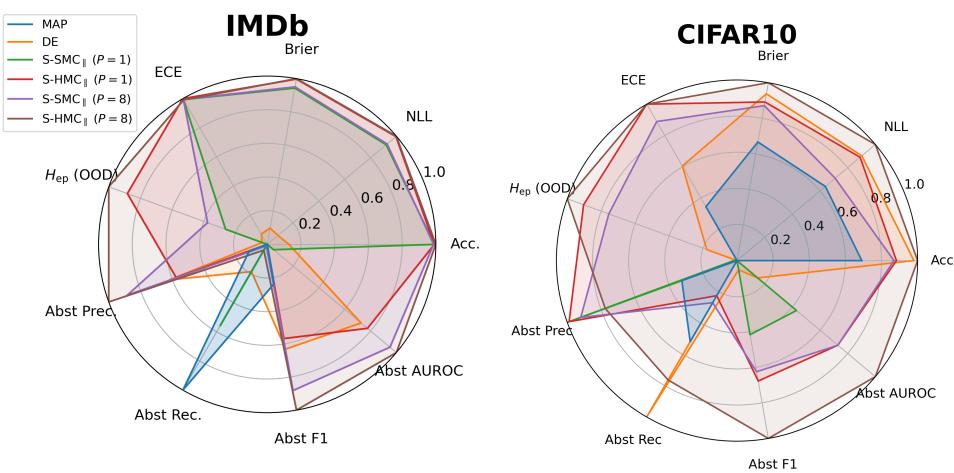


Figure 3: Test Accuracy, NLL, Brier, and ECE, H_{ep} on OOD, and confidence meta-classifier abstention (Abst) metrics (all min-max scaled so 1 is best) for IMDb (left) and CIFAR10 (right).

Table 1: Comparison of methods on MNIST7 test data. SBMC methods are bold ($N = 10$). For metrics, the best gold-standard (GS) value is bold, along with others within 1% for accuracy and NLL, and 50% for entropies (entropy is harder to estimate, and also high precision is less critical). SMC $_{\parallel}$, HMC $_{\parallel}$, and SGHMC $_{\parallel}$ are highlighted in red as they are particularly bad for these very short chains, and this is precisely the problem the approximate methods like SBMC address.

Method	P	Time Cost (epochs) \downarrow	Total Cost (epochs) \downarrow	Accuracy \uparrow	NLL \downarrow	H_{ep} correct	H_{ep} incorrect	H_{ep} OOD
MAP	1	160	160	92.3 \pm 0.366	0.253 \pm 0.012	0	0	0
MAP	1	320	320	92.1 \pm 0.264	0.260 \pm 0.010	0	0	0
SWA	1	160	160	92.3 \pm 0.387	0.27 \pm 0.017	0	0	0
SWAG	1	160	160	92.3 \pm 0.365	0.267 \pm 0.017	0.001 \pm 0.000	0.008 \pm 0.001	0.009 \pm 0.001
MC Drop	1	160	160	93.9\pm0.626	0.214\pm0.021	0.049 \pm 0.007	0.269\pm0.008	0.267 \pm 0.01
Laplace	1	160	160	88.2 \pm 0.235	0.539 \pm 0.022	0.504 \pm 0.036	0.901 \pm 0.038	1.22 \pm 0.033
Deep Ens	1	176	1760	92.4 \pm 0.150	0.245 \pm 0.004	0.011 \pm 0.000	0.057 \pm 0.001	0.123 \pm 0.011
Deep Ens	1	320	3200	92.2 \pm 0.157	0.252 \pm 0.005	0.007 \pm 0.000	0.041 \pm 0.003	0.104 \pm 0.013
Deep Ens	8	178	14,240	92.5 \pm 0.059	0.239 \pm 0.001	0.011 \pm 0.000	0.059 \pm 0.001	0.134 \pm 0.004
SMS-UBU $_{\parallel}$	8	160+160	25600	92.6 \pm 0.107	0.247 \pm 0.002	0.055 \pm 0.001	0.201 \pm 0.001	0.316 \pm 0.003
DEI-HMC	8	176+160	14560	91.6 \pm 0.000	0.308 \pm 0.001	0.038 \pm 0.000	0.114 \pm 0.001	0.230 \pm 0.006
SGHMC	1	160	1600	87.7\pm0.742	0.974\pm0.05	0.652 \pm 0.031	0.725 \pm 0.031	0.883\pm0.036
S-SGHMC	1	160 + 160	1760	90.3 \pm 0.758	0.409 \pm 0.014	0.342 \pm 0.015	0.687 \pm 0.027	0.836\pm0.039
S-SGHMC$_{\parallel}$	8	160 + 160	12,960	92.3 \pm 0.160	0.388 \pm 0.001	0.434 \pm 0.005	0.782 \pm 0.007	0.965\pm0.003
SMC	1	173	1730	79.7\pm2.71	0.623\pm0.091	0.013 \pm 0.002	0.033 \pm 0.009	0.045 \pm 0.011
S-SMC	1	170 + 160	1860	92.2 \pm 0.371	0.267 \pm 0.014	0.026 \pm 0.003	0.129 \pm 0.014	0.202 \pm 0.028
S-SMC$_{\parallel}$	8	178 + 160	14,400	93.3\pm0.160	0.226\pm0.004	0.059\pm0.001	0.272\pm0.003	0.378\pm0.03
HMC	1	160	1600	78.4\pm2.38	1.27\pm0.085	0.303 \pm 0.025	0.325\pm0.026	0.594\pm0.021
S-HMC	1	160 + 160	1760	93.0\pm0.166	0.232\pm0.002	0.056\pm0.001	0.264\pm0.002	0.463\pm0.009
S-HMC	1	80 + 80	1600	93.0\pm0.057	0.242 \pm 0.002	0.059\pm0.001	0.243\pm0.004	0.417\pm0.013
S-HMC(lin)	1	160 + 160	3200	92.9\pm0.140	0.239 \pm 0.003	0.059\pm0.001	0.249\pm0.002	0.450\pm0.011
S-HMC$_{\parallel}$	8	160 + 160	12,960	93.1\pm0.085	0.231\pm0.002	0.070\pm0.000	0.299\pm0.002	0.531\pm0.011
S-HMC$_{\parallel}$	8	80 + 80	12800	93.1\pm0.071	0.237\pm0.001	0.069\pm0.000	0.272\pm0.002	0.484\pm0.005
S-HMC$_{\parallel}$(lin)	8	160 + 160	25600	93.1\pm0.069	0.240 \pm 0.002	0.073\pm0.000	0.284\pm0.002	0.518\pm0.011
HMC (GS)	1	20,000	20,000	93.6\pm0.415	0.222\pm0.009	0.096\pm0.004	0.410\pm0.013	0.768\pm0.084
HMC (GS)	1	200,000	200,000	94.8\pm0.211	0.194\pm0.004	0.120\pm0.004	0.493\pm0.008	1.04\pm0.122

For the next experiments, we look at the IMDb sentiment classification dataset (Maas et al., 2011) and the CIFAR dataset (Krizhevsky et al., 2009). Results for these cases are comparable and summarized in Figure 3 and Appendix F, along with further figures and tables. Further details on all model architectures are given in Appendix D.3.

Small Language Model example proof of concept. The natural next step is to apply this methodology to LLMs. Here we present some preliminary results on GPT-2, on consumer hardware (an old MacBook Pro with an M2 processor and 16GB RAM). These are early results, just to further emphasize scalability and potential utility in hallucination detection.

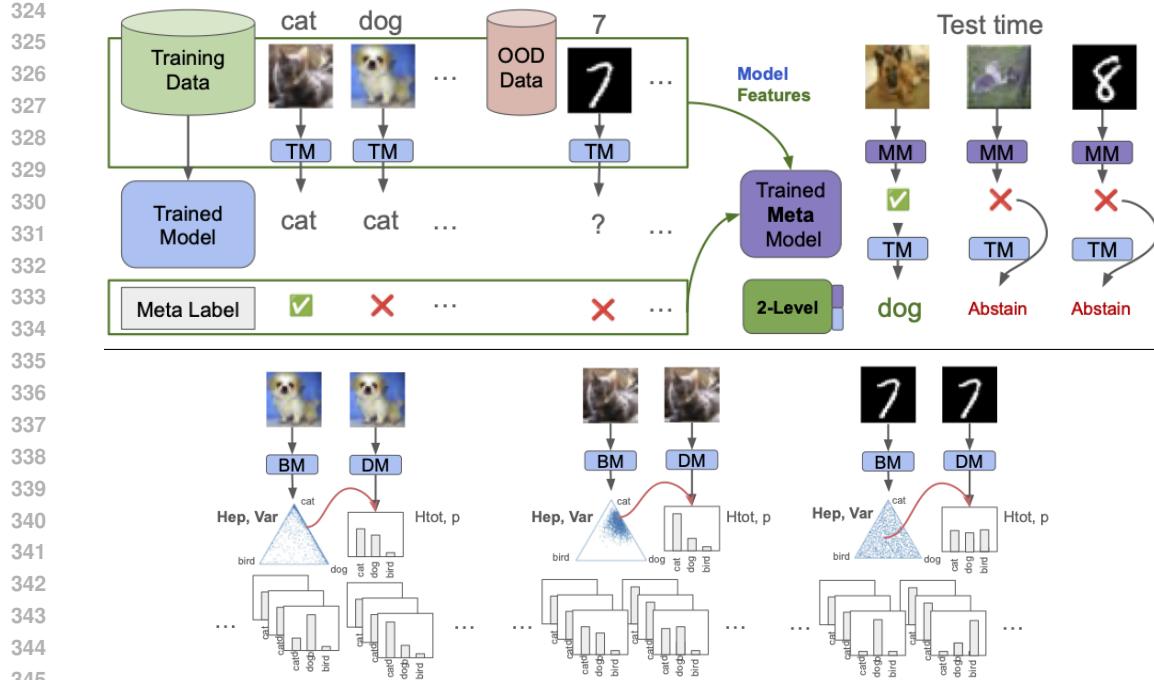


Figure 4: **Top:** graphical schematic for meta-classifier pipeline. Prediction accuracy of the trained model (TM, blue) is used to label a separate calibration dataset of in-domain and out-of-domain (OOD) data. Predictive features are built from the trained model and used to train a binary meta-classifier (MM, purple), which can then be used to measure model confidence and abstain from responding to inputs with low model confidence, for example those which are noisy, ambiguous, or OOD. **Bottom:** the richer Bayesian models (BM) estimate *a distribution over probabilities* on the simplex, whereas deterministic models (DM) *only deliver a point estimator* $\hat{p}(x)$. The model-dependent input features for the meta-classifier are built from both first order frequentist metrics that depend only on $\hat{p}(x)$, such as $H_{\text{tot}}(x)$, and also ensemble-based metrics that depend on the epistemic uncertainty delivered by the Bayesian solution, such as variances of frequentist metrics over the simplex and $H_{\text{ep}}(x)$. (3-class marginals of the 10-simplex are presented for clarity).

The starting point is the pre-trained GPT-2 model fine-tuned on Shakespeare data². We then adopt a LoRA approach (Hu et al., 2022) to fine-tune an additive rank 50 adjustment with $\approx 2e5$ parameters at the last layer on tiny Shakespeare data^{3 4}. Top-1 token-level predictions for an ensemble of 10 HMC runs are presented in Table 2.

Table 2: Test accuracy, NLL, and various entropy metrics for next-token prediction with GPT2 on tiny Shakespeare.

Methods	Accuracy (%)	NLL	H_{tot} correct	H_{tot} incorrect	H_{ep} correct	H_{ep} incorrect
MAP	38.66	3.166	1.554	3.605	0	0
S-HMC	39.36	3.083	1.571	3.612	0.047	0.077

3.1 CONFIDENCE META-CLASSIFIER

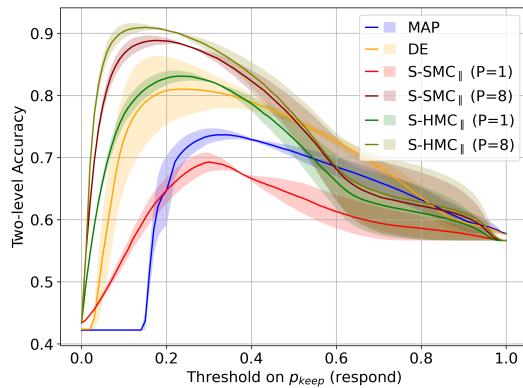
One clear application of UQ is inferring confidence in model predictions, i.e. whether the output is reliable or “hallucinated”, to borrow the vernacular from modern LLMs (Ji et al., 2023; Guo et al., 2025). This information can be used to decide whether the model should abstain from responding or provided to the user so they can make their own decision about whether to trust the response. To that end, we propose to build a *confidence meta-classifier* of incorrect/OOD data, as follows.

²<https://huggingface.co/sadia72/gpt2-shakespeare>

³<https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt>

⁴We truncated to the 2500 most frequent tokens, which includes tokens that appeared 11 or more times.

378 First, we fit our model to 1000 training
 379 data and 200 validation data for early stop
 380 procedure in MAP and DE methods/prior
 381 from MNIST7, and label incorrect pre-
 382 dictions as $z = 1$ and correct predictions
 383 as $z = 0$. Then, we generate 2000 ad-
 384 ditional OOD meta-training data as de-
 385 scribed above, all of which get label $z =$
 386 1. Let $p_{\max}(x, \theta) := \max_y p(y|x, \theta) =$
 387 $p(y^*|x, \theta)$ denote the maximum prob-
 388 ability, and denote the difference be-
 389 tween the top two as $\Delta_{\max}(x, \theta) :=$
 390 $p_{\max}(x, \theta) - \max_{y' \in \mathcal{Y} \setminus y^*} p(y|x, \theta)$. Let
 391 $p_{\max}(x | \mathcal{D}) = \max_y \mathbb{E}[p(y|x, \theta) | \mathcal{D}]$. Consider as features: $p_{\max}(x | \mathcal{D})$, $H_{\text{total}}(x)$,
 392 $\mathbb{E}[p_{\max}(x, \theta) | \mathcal{D}]$, $\mathbb{E}[\Delta_{\max}(x, \theta) | \mathcal{D}]$, $H_{\text{ep}}(x)$, $\text{Var}[p_{\max}(x, \theta) | \mathcal{D}]$, $\text{Var}[\Delta_{\max}(x, \theta) | \mathcal{D}]$. Note that the
 393 last 3 are identically 0 for the MAP estimator, as they capture the epistemic uncertainty in the data.
 394 We build and standardize these features for each of our 4 models—MAP, DE, S-SMC $_{\parallel}$, S-HMC $_{\parallel}$ —and
 395 train the binary meta-classifier $x \mapsto z$, using a single hidden layer MLP with 50 neurons.



409 Figure 5: 2-level estimator (using confidence meta-
 410 classifier for abstention) accuracy on IMDb.
 411 higher score than a randomly selected correct example, $x_{\text{correct}} \in \mathcal{D}_{\text{correct}}$: $\mathbb{P}[p_{\text{incorrect}}(x_{\text{incorrect}}) >$
 412 $p_{\text{incorrect}}(x_{\text{correct}})]$.

413 Figure 5 shows the accuracy of a 2-level
 414 estimator over thresholds for IMDb. See
 415 Appendix G for further details. First
 416 we infer with the meta-classifier whether
 417 the model inference will be correct, un-
 418 der the assumption that OOD inputs im-
 419 plies incorrect inference. If yes, we in-
 420 fer with the original model. If no, we
 421 abstain from inference (abstentions are
 422 counted as correct decisions when the
 423 original model would be incorrect). Fig-
 424 ure 3 presents summary metrics for IMDb
 425 and CIFAR10.

427 3.2 ABLATIONS AND THEORY

429 **Ablations** for SBMC are considered by varying s and P . Small s improves mixing, as shown in
 430 Figure 1 (d), but also introduces bias because $\bar{\pi} \neq \pi$ (see equation 3, equation 1). In this short-
 431 chain setting, smaller s typically increases accuracy and decreases $H_{\text{ep}}(\text{OOD})$. Both algorithms
 432 improve with P , but SMC $_{\parallel}$ more so. Comprehensive results are given in Appendix H. We also

Table 3: Confidence meta-classifier results for MNIST7 on 2500 ID and 2500 OOD test data, including 500 *unseen far-OOD CIFAR examples*.

P	Method	Precision	Recall	F1	AUC-ROC
-	MAP	0.771	0.891	0.826	0.864
-	DE	0.823	0.904	0.861	0.926
1	S-SMC $_{\parallel}$	0.794	0.886	0.837	0.895
8	S-SMC $_{\parallel}$	0.848	0.903	0.875	0.940
1	S-HMC $_{\parallel}$	0.837	0.898	0.867	0.932
8	S-HMC $_{\parallel}$	0.844	0.909	0.875	0.942

The results on 2500 ID unseen test data plus 2500 newly-generated OOD test data are presented in Table 3. The OOD data is comprised of 500 examples from each of the four classes used for meta-training, as well as 500 unseen CIFAR images, *for a test of robustness* (see Appendix G.1.1 for category-specific results, and Table 13 for CIFAR specifically). Accuracy is the ratio of true positives (not correct) and true negatives (correct) to the total testing dataset size. All estimators do surprisingly well, and our SBMC methods are the best. AUC-ROC is perhaps the most useful metric, as it measures the ability of the score $p_{\text{incorrect}}(x)$ to rank in-correctness of the subsequent inference: the probability that a randomly selected incorrect example from the test set, $x_{\text{incorrect}} \in \mathcal{D}_{\text{incorrect}}$ will have a higher score than a randomly selected correct example, $x_{\text{correct}} \in \mathcal{D}_{\text{correct}}$: $\mathbb{P}[p_{\text{incorrect}}(x_{\text{incorrect}}) > p_{\text{incorrect}}(x_{\text{correct}})]$.

Table 4: Meta-classifier ablations. Area under the 2-level estimator curve (as in Figure 5) for MNIST7.

P	Method	All features	Epistemic features	p_{\max}	H_{ep}
-	MAP	0.717	0.501	0.701	0.501
-	DE	0.795	0.790	0.734	0.789
1	S-SMC $_{\parallel}$	0.747	0.738	0.690	0.738
8	S-SMC $_{\parallel}$	0.820	0.820	0.718	0.818
1	S-HMC $_{\parallel}$	0.804	0.801	0.712	0.798
8	S-HMC $_{\parallel}$	0.822	0.822	0.716	0.819

432 consider ablations for the meta-classifier, in order to elucidate the role of the epistemic features on
 433 the performance. Let us summarize the results of Figures like 5 as the area(s) under the 2-level
 434 estimator curve (AU2LC). A score of roughly 1/2 corresponds to a 0-skill estimator and a score
 435 of 1 would be perfect. Table 4 shows the AU2LC for the case of all features, only the epistemic
 436 features, the classical p_{\max} confidence score, and H_{ep} . Observe that we perform much better than
 437 p_{\max} , H_{ep} almost sufficiently encapsulates the epistemic features, and the latter are almost suitable in
 438 comparison to the estimator built from all features.

439 **Tuning.** Firstly, we would like to emphasize that the results are fairly insensitive
 440 to $s \in [0.05, 0.3]$, and we recommend selecting $s = 0.1$ as a good default choice.
 441 It is worth noting that v is an important hyper-parameter *a priori*, at the level of
 442 the original Bayesian model.⁵ If desired, one should first select v optimally for the
 443 MAP/DE, and then select s . Both can be done with CV. See Section 4 for further
 444 discussion.

445 **Theory sketch.** We can understand the
 446 SBMC model as an incremental incorporation
 447 of the data. Let $\sigma^2 = v/a$ and
 448 consider the original problem with prior
 449 $\mathcal{N}(0, \sigma^2)$. Now split the log-likelihood into
 450 $(1 - a)\ell + a\ell$, and consider incorporating
 451 only the $a\ell$ part. It is easy to see that the
 452 MAP estimator $\hat{\theta}_{\text{MAP}}$ for this problem is
 453 equivalent to the MAP estimator associated
 454 with the prior $\mathcal{N}(0, v)$. The *Laplace ap-*
 455 *proximation* however, will differ, depending
 456 on which one we consider. Let us con-
 457 sider the $\mathcal{N}(0, \sigma^2)$ prior, and now it is time to incorporate the rest of the data $(1 - a)\ell$. The Hessian
 458 of our Laplace approximation is

$$463 \quad a\nabla^2\ell(\hat{\theta}_{\text{MAP}}) + \frac{1}{2(v/a)}\text{Id}. \\ 464$$

465 This could be carried through rigorously, but let's swap out $N_{\text{train}}\text{Id}$ for $\nabla^2\ell(\hat{\theta}_{\text{MAP}}) =$
 466 $\sum_{i=1}^{N_{\text{train}}} \nabla^2\ell_i(\hat{\theta}_{\text{MAP}})$. To arrive at the SBMC prior we must equate the following
 467 $(2vN_{\text{train}} + 1)/(2v/a) = 1/(2sv) \Rightarrow a = s^{-1}/(2vN_{\text{train}} + 1)$.

468 Suppose $v = 0.1$ (common) and $s = 0.1$ (our recommendation). Then $a = 10/(N_{\text{train}}/5 + 1) \ll 1$,
 469 for large datasets. Therefore, $\ell \approx (1 - a)\ell$, and we arrive at a reasonable approximation. Note this
 470 is also typically a positive thing for the prior, which is effectively $\mathcal{N}(0, \sigma^2 = v/a)$, since broader
 471 priors and less inductive bias typically deliver better performance, and small variance priors are often
 472 chosen more as a matter of convenience.

473 **Hessian.** Note the Hessian of the posterior π in equation 1 with $\mathcal{N}(0, v)$ prior is $\nabla^2\ell(\theta) + \frac{1}{v}\text{Id}$. If
 474 we assume that the minimum eigenvalue of $\nabla^2\ell(\theta)$ is 0, and the maximum is λ_{\max} , then the *condition*
 475 *number* of the Hessian of the posterior is $\lambda_{\max}v + 1$. Meanwhile, the Hessian of the SBMC target
 476 $\bar{\pi}$ in equation 3 with $\mathcal{N}(\theta_{\text{MAP}}, vs)$ prior will have condition number $\lambda_{\max}vs + 1$. Therefore, the
 477 parameter $s < 1$ allows us to “tune away” the ill-conditioning of the posterior.

4 DISCUSSION OF RELATED WORK

480 There has been a growing amount of work recently in many-short-chain MCMC, e.g. (Vehtari et al.,
 481 2000; Wilkinson, 2006; Chen et al., 2016; Sommer et al., 2024; Margossian et al., 2024; Nguyen
 482

483 ⁵Prior tuning is relevant for *all methods*, Bayesian and Frequentist (weight decay), and is not particular to
 484 SBMC. A good rule of thumb is *enough but not too much*, i.e. v as large as possible Izmailov et al. (2021).

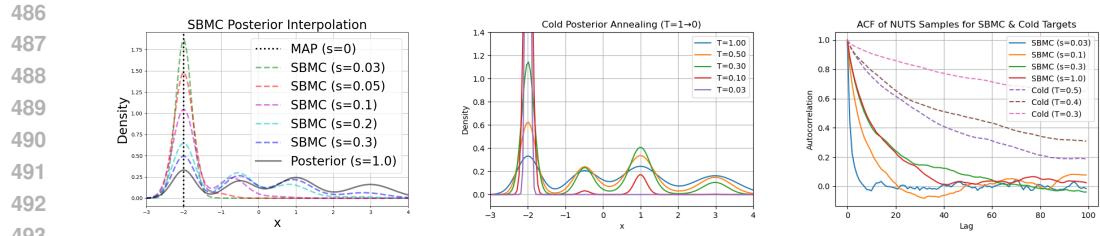


Figure 7: Left: SBMC for various s . Middle: Cold posterior for various T . Right: Autocorrelation functions using NUTS sampler, showing that SBMC *improves* mixing, while CP *hinders* mixing.

et al., 2025; Sommer et al., 2025; Duffield et al., 2024). The island-SMC method Vergé et al. (2015) considers interacting SMCs, which is necessary for consistency *unless the estimator is carefully constructed with appropriate weights* Whiteley et al. (2016); Dai et al. (2022). See e.g. Liang et al. (2025) for further discussion.

The idea of *MAP-anchored priors* is intuitive, and closely related to a number of successful methods. In addition to augmenting data with adversarial perturbations of the inputs, as proposed in the original DE paper, another intuitive idea to promote spread and generalization is to randomize the model itself. Randomized maximum likelihood (RML) approaches do this by anchoring each ensemble member to random draws from the prior and/or data (Gu & Oliver, 2007; Bardsley et al., 2014; Pearce et al., 2020). SBMC can easily bootstrap DE or RML ideas by initializing each process from a different MAP estimator. It is worth noting that MC Dropout Gal & Ghahramani (2016) could also do this.

The method most closely related to our work is Paulin et al. (2025), who anchor to the SWA estimator by adding a Gaussian factor, and simulate an ensemble of ULAs. They also observed an extreme speedup in mixing time. We experimented with a similar formulation with a factor of $\mathcal{N}(\theta_{\text{MAP}}, s\text{ld})$, $s \in (0, \infty)$, which also interpolates between the posterior and the MAP estimator and is arguably more elegant and theoretically appealing. But, the effective prior centers on $\frac{v}{s+v}\theta_{\text{MAP}}$ (or SWA), and in practice we found that this version did not perform as well as centering the prior on θ_{MAP} itself. The former is shown in Table 1 as S-HMC_{||}(lin).

Cold posteriors (Wenzel et al., 2020) also interpolate between $\delta_{\theta_{\text{MAP}}}$ and the posterior via *annealing* (or ‘tempering’) the posterior equation 1 with an inverse temperature $T < 1$, as $\tilde{\pi}_T(\theta) \propto \mathcal{L}(\theta; \mathcal{D})^{1/T} \pi_0^{1/T}$. This *sharpens* the posterior, as shown in Figure 7 (middle) which makes the target distribution *more difficult to simulate and slows down* MCMC mixing, as shown in Figure 7 (right).

The SBMC likelihood is *effectively flattened relative to the Gaussian prior* by the factor s , while the missing information is represented in the sharper prior, as shown in Figure 7 (left). In practice, this means that the nonlinear and irregular component of the gradients has a smaller relative magnitude, the total Hessian of the posterior is better conditioned, and the chains mix faster.

5 CONCLUSION

The SBMC method has been introduced and shown to be within reach of modern practical applications. It comprises a judicious **model** which uses a scalar parameter s to interpolate between $\delta_{\theta_{\text{MAP}}}$ ($s = 0$) and the posterior ($s = 1$), and is hence able to balance the benefits of each and achieve strong performance in accuracy and UQ metrics *at a cost comparable to SOTA approaches like DE*. Both MCMC_{||} and SMC_{||} are attractive **algorithm** options, which are consistent for the given target model⁶. Therefore we have a mechanism for controlling the approximation between two reasonable choices if convergence is ensured. However, since the method no longer targets the posterior for any $s < 1$, we would recommend adopting a heuristic approach to convergence as with other SOTA methods, rather than chasing more rigorous convergence guarantees. Any BMC algorithm can be used, and SG-MCMC methods are particularly attractive since they are amenable to mini-batching and close to SGD, for which ample deep learning tooling is readily available.

⁶SMC_{||} has stronger theoretical guarantees but MCMC_{||} is easier to implement and is amenable to SG-MCMC approaches.

540 REFERENCES
541

- 542 Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I Jordan. An introduction to
543 MCMC for machine learning. *Machine learning*, 50(1):5–43, 2003.
- 544 Elaine Angelino, Matthew James Johnson, Ryan P Adams, et al. Patterns of scalable Bayesian
545 inference. *Foundations and Trends® in Machine Learning*, 9(2-3):119–247, 2016.
- 546 Gabriel Y Arteaga, Thomas B Schön, and Nicolas Pielawski. Hallucination detection in LLMs: Fast
547 and memory-efficient finetuned models. *arXiv preprint arXiv:2409.02976*, 2024.
- 548 Rémi Bardenet, Arnaud Doucet, and Chris Holmes. On Markov chain Monte Carlo methods for tall
549 data. *Journal of Machine Learning Research*, 18(47):1–43, 2017.
- 550 Johnathan M Bardsley, Antti Solonen, Heikki Haario, and Marko Laine. Randomize-then-optimize:
551 A method for sampling from posterior distributions in nonlinear inverse problems. *SIAM Journal
552 on Scientific Computing*, 36(4):A1895–A1910, 2014.
- 553 J Bernardo, J Berger, APAFMS Dawid, A Smith, et al. Regression and classification using Gaussian
554 process priors. *Bayesian statistics*, 6:475, 1998.
- 555 Carlo Berzuini and Walter Gilks. Resample-move filtering with cross-model jumps. In *Sequential
556 Monte Carlo methods in practice*, pp. 117–138. Springer, 2001.
- 557 Christopher M Bishop. *Pattern recognition and machine learning*, volume 1. Springer, 2006.
- 558 Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding, Horace He,
559 Connor Leahy, Kyle McDonell, Jason Phang, et al. GPT-NeoX-20B: An open-source autoregressive
560 language model. *arXiv preprint arXiv:2204.06745*, 2022.
- 561 Bertrand Charpentier, Daniel Zügner, and Stephan Günnemann. Posterior network: Uncertainty
562 estimation without ood samples via density-based pseudo-counts. *Advances in neural information
563 processing systems*, 33:1356–1367, 2020.
- 564 Bertrand Charpentier, Oliver Borchert, Daniel Zügner, Simon Geisler, and Stephan Günnemann.
565 Natural posterior network: Deep bayesian predictive uncertainty for exponential family dis-
566 tributions. In *International Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=tV3N0DWxGg>.
- 567 Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic gradient Hamiltonian Monte Carlo. In
568 *International conference on machine learning*, pp. 1683–1691. PMLR, 2014.
- 569 Yuxin Chen, David Keyes, Kody JH Law, and Hatem Ltaief. Accelerated dimension-independent
570 adaptive Metropolis. *SIAM Journal on Scientific Computing*, 38(5):S539–S565, 2016.
- 571 Nicolas Chopin, Omiros Papaspiliopoulos, et al. *An introduction to sequential Monte Carlo*, volume 4.
572 Springer, 2020.
- 573 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
574 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. PaLM:
575 Scaling language modeling with pathways. volume 24, pp. 1–113, 2023.
- 576 Simon L Cotter, Gareth O Roberts, Andrew M Stuart, and David White. MCMC methods for
577 functions: Modifying old algorithms to make them faster. *Statistical Science*, pp. 424–446, 2013.
- 578 Chenguang Dai, Jeremy Heng, Pierre E Jacob, and Nick Whiteley. An invitation to sequential Monte
579 Carlo samplers. *Journal of the American Statistical Association*, 117(539):1587–1600, 2022.
- 580 Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
581 Philipp Hennig. Laplace redux-effortless Bayesian deep learning. volume 34, pp. 20089–20103,
582 2021.
- 583 Pierre Del Moral. *Feynman-kac formulae*. Springer, 2004.

- 594 Pierre Del Moral, Arnaud Doucet, and Ajay Jasra. Sequential Monte Carlo samplers. *Journal of the*
 595 *Royal Statistical Society Series B: Statistical Methodology*, 68(3):411–436, 2006.
 596
- 597 Stefan Depeweg, Jose-Miguel Hernandez-Lobato, Finale Doshi-Velez, and Steffen Udluft. Decom-
 598 position of uncertainty in Bayesian deep learning for efficient and risk-sensitive learning. In
 599 *International conference on machine learning*, pp. 1184–1193. PMLR, 2018.
- 600 Simon Duane, Anthony D Kennedy, Brian J Pendleton, and Duncan Roweth. Hybrid Monte Carlo.
 601 *Physics letters B*, 195(2):216–222, 1987.
 602
- 603 Samuel Duffield, Kaelan Donatella, Johnathan Chiu, Phoebe Klett, and Daniel Simpson. Scalable
 604 Bayesian Learning with posteriors. 2024.
- 605 Bradley Efron and Carl Morris. Stein’s estimation rule and its competitors—an empirical Bayes
 606 approach. *Journal of the American Statistical Association*, 68(341):117–130, 1973.
 607
- 608 Runa Eschenhagen, Erik Daxberger, Philipp Hennig, and Agustinus Kristiadi. Mixtures of Laplace ap-
 609 proximations for improved post-hoc uncertainty in deep learning. *arXiv preprint arXiv:2111.03577*,
 610 2021.
- 611 Sebastian Farquhar, Jannik Kossen, Lorenz Kuhn, and Yarin Gal. Detecting hallucinations in large
 612 language models using semantic entropy. *Nature*, 630(8017):625–630, 2024.
 613
- 614 Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model
 615 uncertainty in deep learning. In *international conference on machine learning*, pp. 1050–1059.
 616 PMLR, 2016.
- 617 Peter Galison, Kazunori Akiyama, Antxon Alberdi, Walter Alef, Juan Carlos Algaba, Richard
 618 Anantua, Keiichi Asada, Rebecca Azulay, Uwe Bach, Anne-Kathrin Bacsko, et al. First Sagittarius
 619 A event horizon telescope results. iii. imaging of the galactic center supermassive black hole.
 620 *Astrophysical journal. Letters*, 930(2):L14, 2022.
 621
- 622 Alan E Gelfand and Adrian FM Smith. Sampling-based approaches to calculating marginal densities.
 623 *Journal of the American statistical association*, 85(410):398–409, 1990.
- 624 Charles J Geyer. Practical Markov chain Monte Carlo. *Statistical science*, pp. 473–483, 1992.
 625
- 626 Walter R Gilks, Gareth O Roberts, and Edward I George. Adaptive direction sampling. *Journal of*
 627 *the Royal Statistical Society: Series D (The Statistician)*, 43(1):179–189, 1994.
 628
- 629 Jonathan Goodman and Jonathan Weare. Ensemble samplers with affine invariance. *Communications*
 630 *in applied mathematics and computational science*, 5(1):65–80, 2010.
- 631 Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
 632 Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: Training
 633 ImageNet in 1 hour. *arXiv preprint arXiv:1706.02677*, 2017.
- 634 Yaqing Gu and Dean S Oliver. An iterative ensemble Kalman filter for multiphase fluid flow data
 635 assimilation. *Spe Journal*, 12(04):438–446, 2007.
 636
- 637 David Gunawan, Khue-Dung Dang, Matias Quiroz, Robert Kohn, and Minh-Ngoc Tran. Subsampling
 638 sequential Monte Carlo for static Bayesian models. *Statistics and Computing*, 30(6):1741–1758,
 639 2020.
- 640 Daya Guo, Dejian Yang, Huawei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
 641 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
 642 via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
 643
- 644 Fredrik K Gustafsson, Martin Danelljan, and Thomas B Schon. Evaluating scalable Bayesian deep
 645 learning methods for robust computer vision. In *Proceedings of the IEEE/CVF conference on*
 646 *computer vision and pattern recognition workshops*, pp. 318–319, 2020.
 647
- W Keith Hastings. Monte Carlo sampling methods using Markov chains and their applications. 1970.

- 648 Matthew Hoffman, Alexey Radul, and Pavel Sountsov. An adaptive-MCMC scheme for setting tra-
 649 jectory lengths in Hamiltonian Monte Carlo. In *International Conference on Artificial Intelligence*
 650 and *Statistics*, pp. 3907–3915. PMLR, 2021.
- 651
- 652 Matthew D Hoffman and Pavel Sountsov. Tuning-free generalized Hamiltonian Monte Carlo. In
 653 *International conference on artificial intelligence and statistics*, pp. 7799–7813. PMLR, 2022.
- 654
- 655 Matthew D Hoffman, Andrew Gelman, et al. The No-U-Turn sampler: adaptively setting path lengths
 656 in Hamiltonian Monte Carlo. *J. Mach. Learn. Res.*, 15(1):1593–1623, 2014.
- 657
- 658 Yupeng Hou, Jiacheng Li, Zhankui He, An Yan, Xiusi Chen, and Julian McAuley. Bridging language
 659 and items for retrieval and recommendation. *arXiv preprint arXiv:2403.03952*, 2024.
- 660
- 661 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 662 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.
- 663
- 664 Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, HyoukJoong
 665 Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. GPipe: Efficient training of giant neural
 666 networks using pipeline parallelism. volume 32, 2019.
- 667
- 668 Eyke Hüllermeier and Willem Waegeman. Aleatoric and epistemic uncertainty in machine learning:
 669 An introduction to concepts and methods. *Machine learning*, 110(3):457–506, 2021.
- 670
- 671 Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson.
 672 Averaging weights leads to wider optima and better generalization. 2018.
- 673
- 674 Pavel Izmailov, Sharad Vikram, Matthew D Hoffman, and Andrew Gordon Gordon Wilson. What are
 675 Bayesian neural network posteriors really like? In *International conference on machine learning*,
 676 pp. 4629–4640. PMLR, 2021.
- 677
- 678 Christopher Jarzynski. Equilibrium free-energy differences from nonequilibrium measurements: A
 679 master-equation approach. *Physical Review E*, 56(5):5018, 1997.
- 680
- 681 Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye Jin Bang,
 682 Andrea Madotto, and Pascale Fung. Survey of hallucination in natural language generation. *ACM*
 683 *computing surveys*, 55(12):1–38, 2023.
- 684
- 685 Andreas Krause and Jonas Hübotter. Probabilistic Artificial Intelligence. *arXiv preprint*
 686 *arXiv:2502.05244*, 2025.
- 687
- 688 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
- 689
- 690 Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predictive
 691 uncertainty estimation using deep ensembles. *Advances in neural information processing systems*,
 692 30, 2017.
- 693
- 694 Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. *ATT Labs [Online]*.
 695 Available: <http://yann.lecun.com/exdb/mnist>, 2, 2010.
- 696
- 697 Kimin Lee, Kibok Lee, Honglak Lee, and Jinwoo Shin. A simple unified framework for detecting
 698 out-of-distribution samples and adversarial attacks. *Advances in neural information processing*
 699 *systems*, 31, 2018.
- 700
- 701 Yilun Li, Difan Lu, Polina Kirichenko, Siyuan Qiu, Tim G. Rudner, Christoph B. Bruss, and
 702 Andrew Gordon Wilson. Out-of-distribution detection methods answer the wrong questions. In
 703 *Proceedings of the 42nd International Conference on Machine Learning (ICML)*, 2025.
- 704
- 705 Xinzhu Liang, Joseph M Lukens, Sanjaya Lohani, Brian T Kirby, Thomas A Searles, Xin Qiu, and
 706 Kody JH Law. Comparison of parallel SMC and MCMC for Bayesian deep learning. *arXiv*
 707 *preprint arXiv:2402.06173*, 2025.
- 708
- 709 Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and Christopher Potts.
 710 Learning word vectors for sentiment analysis. In *Proceedings of the 49th annual meeting of the*
 711 *association for computational linguistics: Human language technologies*, pp. 142–150, 2011.

- 702 David JC MacKay. A practical Bayesian framework for backpropagation networks. *Neural computation*, 4(3):448–472, 1992.
 703
 704
- 705 Dougal Maclaurin and Ryan P Adams. Firefly Monte Carlo: Exact MCMC with subsets of data.
 706 *arXiv preprint arXiv:1403.5693*, 2014.
 707
 708
- 709 Wesley J Maddox, Pavel Izmailov, Timur Garipov, Dmitry P Vetrov, and Andrew Gordon Wilson.
 710 A simple baseline for Bayesian uncertainty in deep learning. *Advances in neural information
 711 processing systems*, 32, 2019.
 712
- 713 Charles C Margossian, Matthew D Hoffman, Pavel Sountsov, Lionel Riou-Durand, Aki Vehtari,
 714 and Andrew Gelman. Nested \hat{R} : assessing the convergence of Markov chain Monte Carlo when
 715 running many short chains. *Bayesian Analysis*, 1(1):1–28, 2024.
 716
- 717 Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and Edward
 718 Teller. Equation of state calculations by fast computing machines. *The journal of chemical physics*,
 719 21(6):1087–1092, 1953.
 720
- 721 Devina Mohan and Anna MM Scaife. Evaluating Bayesian deep learning for radio galaxy classifica-
 722 tion. *arXiv preprint arXiv:2405.18351*, 2024.
 723
- 724 Radford M Neal. *Bayesian learning for neural networks*, volume 118. Springer Science & Business
 725 Media, 2012.
 726
- 727 Radford M Neal et al. MCMC using Hamiltonian dynamics. *Handbook of markov chain monte carlo*,
 728 2(11):2, 2011.
 729
- 730 Hanson H Nguyen, Kody JH Law, and Joseph M Lukens. Unorthodox parallelization for bayesian
 731 quantum state estimation. *New Journal of Physics*, 27(5):054507, 2025.
 732
- 733 Theodore Papamarkou, Maria Skouliaridou, Konstantina Palla, Laurence Aitchison, Julyan Arbel,
 734 David Dunson, Maurizio Filippone, Vincent Fortuin, Philipp Hennig, José Miguel Hernández-
 735 Lobato, et al. Position: Bayesian deep learning is needed in the age of large-scale ai. In
 736 *International Conference on Machine Learning*, pp. 39556–39586. PMLR, 2024.
 737
- 738 Daniel Paulin, Peter A Whalley, Neil K Chada, and Benedict J Leimkuhler. Sampling from bayesian
 739 neural network posteriors with symmetric minibatch splitting langevin dynamics. In *International
 740 Conference on Artificial Intelligence and Statistics*, pp. 5014–5022. PMLR, 2025.
 741
- 742 Tim Pearce, Felix Leibfried, and Alexandra Brinstrup. Uncertainty in neural networks: Approximately
 743 Bayesian ensembling. In *International conference on artificial intelligence and statistics*, pp.
 744 234–244. PMLR, 2020.
 745
- 746 Xin Qiu and Risto Miikkulainen. Semantic density: Uncertainty quantification for large language
 747 models through confidence measurement in semantic space. *Advances in neural information
 748 processing systems*, 37:134507–134533, 2024.
 749
- 750 Xin Qiu, Elliot Meyerson, and Risto Miikkulainen. Quantifying point-prediction uncertainty in neural
 751 networks via residual estimation with an I/O kernel. *arXiv preprint arXiv:1906.00588*, 2019.
 752
- 753 Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. ZeRO: Memory optimizations
 754 toward training trillion parameter models. In *SC20: International Conference for High Performance
 755 Computing, Networking, Storage and Analysis*, pp. 1–16. IEEE, 2020.
 756
- 757 Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using siamese BERT-
 758 networks. *arXiv preprint arXiv:1908.10084*, 2019.
 759
- 760 Lewis J Rendell, Adam M Johansen, Anthony Lee, and Nick Whiteley. Global consensus Monte
 761 Carlo. *Journal of Computational and Graphical Statistics*, 30(2):249–259, 2020.
 762
- 763 Christian P Robert, George Casella, and George Casella. *Monte Carlo statistical methods*, volume 2.
 764 Springer, 1999.
 765

- 756 Gareth O Roberts and Richard L Tweedie. Exponential convergence of Langevin distributions and
 757 their discrete approximations. 1996.
- 758
- 759 Mohammad Hossein Shaker and Eyke Hüllermeier. Aleatoric and epistemic uncertainty with random
 760 forests. In *International Symposium on Intelligent Data Analysis*, pp. 444–456. Springer, 2020.
- 761 Mohammad Shoeybi, Mostafa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan Catan-
 762 zaro. Megatron-LM: Training multi-billion parameter language models using model parallelism.
 763 2019.
- 764
- 765 Emanuel Sommer, Lisa Wimmer, Theodore Papamarkou, Ludwig Bothmann, Bernd Bischl, and
 766 David Rügamer. Connecting the dots: Is mode-connectedness the key to feasible sample-based
 767 inference in bayesian neural networks? In *International Conference on Machine Learning*, pp.
 768 45988–46018. PMLR, 2024.
- 769
- 770 Emanuel Sommer, Jakob Robnik, Giorgi Nozadze, Uros Seljak, and David Rügamer. Microcanonical
 Langevin ensembles: advancing the sampling of Bayesian neural networks. 2025.
- 771
- 772 Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. Mpnet: Masked and permuted
 773 pre-training for language understanding. *Advances in neural information processing systems*, 33:
 16857–16867, 2020.
- 774
- 775 Saifuddin Syed, Alexandre Bouchard-Côté, Kevin Chern, and Arnaud Doucet. Optimised annealed
 776 Sequential Monte Carlo samplers. *arXiv preprint arXiv:2408.12057*, 2024.
- 777
- 778 Roman Vashurin, Ekaterina Fadeeva, Artem Vazhentsev, Lyudmila Rvanova, Daniil Vasilev, Akim
 779 Tsvigun, Sergey Petrakov, Rui Xing, Abdelrahman Sadallah, Kirill Grishchenkov, et al. Benchmark-
 780 ing uncertainty quantification methods for large language models with LM-polygraph. *Transactions
 of the Association for Computational Linguistics*, 13:220–248, 2025.
- 781
- 782 Aki Vehtari, Simo Särkkä, and Jouko Lampinen. On mcmc sampling in bayesian mlp neural networks.
 783 In *Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks.
 IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium*,
 784 volume 1, pp. 317–322. IEEE, 2000.
- 785
- 786 Christelle Vergé, Cyrille Dubarry, Pierre Del Moral, and Eric Moulines. On parallel implementation
 787 of sequential Monte Carlo methods: the island particle model. *Statistics and Computing*, 25(2):
 788 243–260, 2015.
- 789
- 790 Jasper A Vrugt, Cajo JF Ter Braak, Cees GH Diks, Bruce A Robinson, James M Hyman, and
 791 Dave Higdon. Accelerating Markov chain Monte Carlo simulation by differential evolution with
 792 self-adaptive randomized subspace sampling. *International journal of nonlinear sciences and
 numerical simulation*, 10(3):273–290, 2009.
- 793
- 794 Max Welling and Yee W Teh. Bayesian learning via stochastic gradient Langevin dynamics. In
 795 *Proceedings of the 28th international conference on machine learning (ICML-11)*, pp. 681–688,
 796 2011.
- 797
- 798 Florian Wenzel, Kevin Roth, Bastiaan S Veeling, Jakub Świątkowski, Linh Tran, Stephan Mandt,
 799 Jasper Snoek, Tim Salimans, Rodolphe Jenatton, and Sebastian Nowozin. How good is the Bayes
 posterior in deep neural networks really? 2020.
- 800
- 801 Nick Whiteley, Anthony Lee, and Kari Heine. On the role of interaction in sequential Monte Carlo
 802 algorithms. 2016.
- 803
- 804 Veronika D. Wild, Shariq Ghalebikesabi, Dino Sejdinovic, and Jeremias Knoblauch. A rigorous link
 805 between deep ensembles and (variational) Bayesian methods. In *Advances in Neural Information
 Processing Systems*, volume 36, pp. 39782–39811, 2023.
- 806
- 807 Darren J Wilkinson. Parallel Bayesian computation. *Statistics Textbooks and Monographs*, 184:477,
 808 2006.
- 809
- Andrew G Wilson and Pavel Izmailov. Bayesian deep learning and a probabilistic perspective of
 generalization. *Advances in neural information processing systems*, 33:4697–4708, 2020.

810 Andrew Gordon Wilson and Pavel Izmailov. Deep ensembles as approximate bayesian inference.
 811 Web page, Oct 2021. URL <https://cims.nyu.edu/~andrewgw/deepensembles/>.
 812 Accessed: 2025-11-25.

813
 814 Kaichao You, Yong Liu, Jianmin Wang, and Mingsheng Long. LogME: Practical assessment of
 815 pre-trained models for transfer learning. In *International Conference on Machine Learning*, pp.
 816 12133–12143. PMLR, 2021.

817 Kaichao You, Yong Liu, Ziyang Zhang, Jianmin Wang, Michael I Jordan, and Mingsheng Long.
 818 Ranking and tuning pre-trained models: A new paradigm for exploiting model hubs. *Journal of*
 819 *Machine Learning Research*, 23(209):1–47, 2022.

822 A FUTURE DIRECTIONS

823
 824 The most obvious next step is UQ for modern large language models (LLMs) (Guo et al., 2025),
 825 where robustness and hallucination detection are crucial pain points (Vashurin et al., 2025). It has
 826 been recently shown that high-quality entropy metrics are valuable for identifying untrustworthy
 827 outputs there (Gustafsson et al., 2020; Arteaga et al., 2024; Farquhar et al., 2024). In the context
 828 of LLMs, where the training itself is extremely computationally expensive, it becomes particularly
 829 important to have add-on plug-in type methods that can be applied post-training, such as (Qiu et al.,
 830 2019; Farquhar et al., 2024; Qiu & Miikkulainen, 2024). But those methods are constrained to
 831 the uncertainty already encoded in the point estimator of model weights, which may already be
 832 under-estimated. The work (Arteaga et al., 2024) has shown that batch ensembles of fine-tuned LLMs
 833 can also work well for UQ hallucination detection, and also that epistemic uncertainty provides
 834 valuable information for that task. Based on existing benchmarks against deep ensembles, we believe
 835 our SBMC(s) approach will perform even better. Furthermore, an even simpler and cheaper version
 836 is to *learn the last layer* only, so all the data can be pre-processed once and for all by the frozen
 837 pre-trained LLM parameters, and then we simply run the last layer through SBMC. This can be
 838 applied at the pre-training or post-training stage, although the value of the method on downstream
 839 tasks will be most clear at post-training, while there would be some necessary design choices for how
 840 to leverage a pre-trained ensemble, instead of a point estimator, during post-training.

841 A.1 OVERCOMING OTHER COMPUTATIONAL BOTTLENECKS

842 Our sampler relies only on forward/back-prop evaluations, so every mainstream hardware scheme
 843 can be stacked on top of it: data-parallel all-reduce for moderate models(Goyal et al., 2017);
 844 optimizer-state sharding (ZeRO/FSDP) when parameters no longer fit(Rajbhandari et al., 2020);
 845 tensor model-parallelism for in-layer splits (Shoeybi et al., 2019) and pipeline model-parallelism for
 846 depthwise splits (Huang et al., 2019); and, finally, the full hybrid of DP/sharding/tensor/pipeline that
 847 is now routine in trillion-parameter language models (Chowdhery et al., 2023; Black et al., 2022).

849 A.2 FURTHER DIRECTIONS

850 Further directions at the methodological level include

- 851 • DE-SBMC: an obvious extension, would be to condition the HMC ensemble, or SMC
 852 ensemble ($P > 1$) with the DE, in case there may be any gain to be had.
- 853 • One could condition SGLD/SGHMC with the MAP(s) from SGD (or DE). In this way, there
 854 is an initial phase which aims to recover a good point estimator, and then a second phase of
 855 essentially the same method, which aims to quantify the spread.
- 856 • P –parallelizing N –ensemble MCMC methods such as Gilks et al. (1994); Goodman &
 857 Weare (2010); Vrugt et al. (2009); Hoffman & Sountsov (2022).
- 858 • Leveraging N –ensemble MCMC methods within SMC for better mutations (with the cost
 859 of more communication).
- 860 • Parallel stochastic-gradient-MCMC methods like SGLD (Welling & Teh, 2011) and SG-
 861 HMC (Chen et al., 2014), and ensemblized versions thereof.

- 864 • Related to above, mini-batch gradients can be used in lieu of full gradients, which may
865 have some advantages in terms of scalability and convergence. For SMC samplers, we have
866 unbiased estimators $\widehat{\ell w}$ of log weights using mini-batches, and could use $\exp(\widehat{\ell w})$ for a non-
867 negative and biased estimator or Bernoulli/Poisson augmentation to achieve (non-negative)
868 unbiased weights (Gunawan et al., 2020; Bardenet et al., 2017).
- 870 • Evidential models explicitly model uncertainty parametrically with point estimators (Charp-
871 entier et al., 2020), but it has been observed that deep ensembles of such estimators perform
872 better Charpentier et al. (2022). It would be natural to build Bayesian evidential models and
873 simulate them with SBMC.

875 B MORE RELATED WORK

878 *Empirical Bayes* methods (Efron & Morris, 1973) fit higher level parameters in hierarchical models
879 through optimization of the marginal likelihood. An SBMC model could be built in principle with a
880 general prior $\pi_\phi(\theta)$, for example $\mathcal{N}(\theta; \mu, \Sigma)$ for $\phi = (\mu, \Sigma)$, and solved by EB. There is a significant
881 cost overhead for optimizing the marginal-likelihood, but that could be offset in principle with Laplace
882 approximation Bishop (2006) or other approaches. The particular SBMC(s) model considered here
883 could also utilize EB for selecting s and/or α , as an alternative to cross-validation. And even before
884 this, EB could be used to define the prior variance v , or a more general prior.

885 The work LogME You et al. (2021) use EB for fitting prior and likelihood variance in the context
886 of transfer learning for regression, and then they extended this idea for building estimators from
887 an ensemble of pre-trained models You et al. (2022). The latter could naturally be combined with
888 other ensemble approaches described above, and plugged into SBMC. The *Laplace Redux* work
889 of Daxberger et al. (2021) provides an off-the-shelf Laplace module with block diagonal Hessian
890 approximations to plug pre-trained models into for transfer learning. This could naturally augment
891 SBMC in a number of ways, from leveraging it in marginal likelihood calculations for EB, to using it
892 as a drop in alternative for the prior, or leveraging their Hessian approximation in various other ways.
893 It is worth momentarily digressing on an approach inspired by this observation. If the data is split
894 into N_α pre-training and $N - N_\alpha$ fine-tuning sets, or if the likelihood is split by α and $1 - \alpha$ scalar
895 fractions, then one could build a Laplace approximation (or another variational approximation) of
896 the original α posterior, and use that as a prior for the remaining likelihood fraction. This posterior
897 approximation may be closer to the original GS, and since each problem features an explicitly
898 tempered likelihood, they should both be easier solve. This may help with potentially overfitting,
899 although we did not observe much of an issue in that respect.

900 The recent work Li et al. (2025) points out that supervised OOD meta-classification involving OOD
901 calibration data suffers from an inevitable problem of meta-OOD data, and calls for the development
902 of fundamentally new approaches to OOD detection for this reason. This concern could be mitigated
903 with the Bayesian approach, since Bayesian methods directly deliver a reasonable abstention score in
904 H_{ep} itself by design, as shown in Figure 2 and Table 4. In other words, we could either bypass the
905 meta-classifier altogether, or we build a Bayesian meta-classifier and then stop there. The latter may
906 be preferable, since the meta-classifier delivers improvement and is cheap to learn. The work Izmailov
907 et al. (2021) shows that BDL is more effective for the harder problem of identifying near-OOD data
908 and not as good as custom-designed OOD models for the easier problem of identifying far-OOD data,
909 so a 2-level approach may work best where we first filter out far OOD data using an approach like
910 Lee et al. (2018) and subsequently evaluate prediction confidence.

911 C TECHNIQUES FOR SMC_{\parallel} IN PRACTICE

913 **Adaptive tempering.** As mentioned, adaptive tempering is used to ensure a dense tempering regime
914 and provide stability (Syed et al., 2024).

916 **Example C.1** (Adaptive tempering). In order to keep the sufficient diversity of sample population,
917 we let the effective sample size to be at least $\text{ESS}_{\min} = N/2$ at each tempering λ_{j-1} and use it
918 to compute the next tempering λ_j . For j th tempering, we have weight samples $\{w_{j-1}^k, \theta_{j-1}^k\}_{k=1}^N$, then

918 the ESS is computed by

$$919 \quad \text{ESS} = \frac{1}{\sum_{k=1}^N (w_{j-1}^k)^2},$$

920 where $w_{j-1}^k = \mathcal{L}(\theta_{j-1}^k)^{\lambda_j - \lambda_{j-1}} / \sum_{k=1}^N \mathcal{L}(\theta_{j-1}^k)^{\lambda_j - \lambda_{j-1}}$. Let $h = \lambda_j - \lambda_{j-1}$, the effective sample
921 size can be presented as a function of h , $\text{ESS}(h)$. Using suitable root finding method, one can find h^*
922 such that $\text{ESS}(h^*) = \text{ESS}_{\min}$, then set the next tempering $\lambda_j = \lambda_{j-1} + h^*$.

923 Note that the partition function estimator Z^N is no longer unbiased once we introduce adaptation,
924 which means that in principle we should do short pilot runs and then keep everything fixed to preserve
925 the integrity of the theory, but we have found this does not make a difference in practice.

926 **Adaptive number of mutation steps.** The number of mutation steps M is chosen adaptively.
927 After resampling at a given tempering step, let $\theta^{i,0}$ denote the i -th sample and $\theta^{i,m}$ its state after m
928 mutation steps. We monitor the mean displacement from the post-resampling state,

$$929 \quad \text{dist}_m = \frac{1}{N} \sum_{i=1}^N \|\theta^{i,m} - \theta^{i,0}\|_2,$$

930 and terminate the mutation update at the smallest $M \geq 2$ for which the displacement has stabilized:

$$931 \quad \frac{|\text{dist}_M - \text{dist}_{M-1}|}{\text{dist}_{M-1}} \leq \eta,$$

932 with tolerance $\eta > 0$. This criterion automatically increases M when the tempering increment is
933 large or the target becomes tighter (requiring more mixing to decorrelate the resampled particles),
934 and conversely saves computation when the resampled state is already close to stationary at the new
935 tempering level.

936 **Numerical stability: nested Log-sum-exp.** When computing likelihoods in Sequential Monte Carlo
937 (SMC) algorithms, numerical underflow frequently arises because likelihood values can become
938 extremely small, often beyond computational precision. To address this, one standard practice is
939 to work with log-likelihoods rather than likelihoods directly. By operating in the log domain, the
940 computer can safely store and manipulate extremely small values without loss of precision.

941 Specifically, the standard *log-sum-exp* trick can be applied to stabilize computations. For instance,
942 consider a scenario with nested sums and products in parallel SMC. For each processor $p = 1, \dots, P$,
943 we initially have:

$$944 \quad Z^{N,p} = \prod_{j=1}^J \sum_{i=1}^N \omega_j^{i,p}.$$

945 To avoid numerical instability, each sum within the product is computed using the log-sum-exp trick:

$$946 \quad \sum_{i=1}^N \omega_j^{i,p} = \exp \left(\max_i \log(\omega_j^{i,p}) \right) \sum_{i=1}^N \exp \left(\log(\omega_j^{i,p}) - \max_i \log(\omega_j^{i,p}) \right).$$

947 This procedure yields the decomposition:

$$948 \quad Z^{N,p} = K^p \hat{Z}^p,$$

949 where

$$950 \quad K^p = \prod_{j=1}^J \exp \left(\max_i \log(\omega_j^{i,p}) \right), \quad \text{and} \quad \hat{Z}^p = \prod_{j=1}^J \sum_{i=1}^N \exp \left(\log(\omega_j^{i,p}) - \max_i \log(\omega_j^{i,p}) \right).$$

951 In parallel SMC, an additional stabilization step is applied across processors. The global normalization
952 constant across processors can also suffer from numerical instability. To address this, the log-sum-exp
953 trick is applied again at the processor level:

$$954 \quad Z^{N,p} = \exp \left(\log(\hat{Z}^p) + \log(K^p) - \log(K) \right) K,$$

972 with

973
$$974 \log(K) = \max_p \left(\log(\hat{Z}^p) + \log(K^p) \right).$$

975 Since the factor K cancels out when calculating the parallel SMC estimator, it suffices to compute
976 only:

977
$$978 \exp \left(\log(\hat{Z}^p) + \log(K^p) - \log(K) \right),$$

979 which ensures numerical stability even when K itself is computationally very small.980 Thus, by recursively applying the log-sum-exp trick at both the particle and processor levels, parallel
981 SMC estimators can robustly handle computations involving extremely small numbers without
982 numerical underflow.

984 D COMPLEMENTARY DESCRIPTION OF SIMULATIONS

985 D.1 COMPUTATION OF ERROR BARS

988 Assume running R times of experiments to get R square errors/loss between simulated estimator $\hat{\varphi}$
989 and the ground truth, $\text{SE}(\hat{\varphi})^r$ for $r = 1, \dots, R$. Take the MSE as an example, the MSE is the mean of
990 $\text{SE}(\hat{\varphi})^r$ over R realizations, and the standard error of MSE (s.e.) is computed by

991
$$992 \frac{\sqrt{\frac{1}{R} \sum_{r=1}^R (\text{SE}(\hat{\varphi})^r - \text{MSE})^2}}{\sqrt{R}}. \quad (7)$$

993

995 D.2 INTEGRATED AUTOCORRELATION TIME

997 Integrated Autocorrelation Time (IACT) means the time until the chain is uncorrelated with its initial
998 condition. The precise mathematical definition is as follows.999 Let $\theta_0, \dots, \theta_t, \dots$ denote the Markov chain, and let $\varphi(\theta)$ be a scalar function of the state. We first
1000 define the *autocovariance function* (ACF) at lag s :

1001
$$\gamma_s(\varphi) = \mathbb{E}[(\varphi(\theta_{t+s}) - \mathbb{E}[\varphi(\theta)]) (\varphi(\theta_t) - \mathbb{E}[\varphi(\theta)])],$$

1002

1003 and the ACF at lag s as the normalized quantity

1004
$$1005 \rho_s(\varphi) = \frac{\gamma_s(\varphi)}{\gamma_0(\varphi)},$$

1006

1007 where $\gamma_0(\varphi)$ is the variance of $\varphi(\theta)$.1008 Then the *integrated autocorrelation time* (IACT) of φ is then defined in terms of the ACF by

1009
$$1010 \text{IACT}(\varphi) = 1 + 2 \sum_{s=1}^{\infty} \rho_s(\varphi).$$

1011

1012 D.3 DETAILS OF THE BAYESIAN NEURAL NETWORKS

1015 Let weights be $A_i \in \mathbb{R}^{n_i \times n_{i-1}}$ and biases be $b_i \in \mathbb{R}^{n_i}$ for $i \in \{1, \dots, D\}$, we denote $\theta :=$
1016 $((A_1, b_1), \dots, (A_D, b_D))$. The layer is defined by

1017
$$1018 g_1(x, \theta) := A_1 x + b_1,$$

1019
$$g_d(x, \theta) := A_d \sigma_{n_{d-1}}(g_{d-1}(x)) + b_d, \quad i \in \{2, \dots, D-1\},$$

1020
$$g(x, \theta) := A_D \sigma_{n_{D-1}}(g_{D-1}(x)) + b_D,$$

1021 where $\sigma_i(u) := (\nu(u_1), \dots, \nu(u_i))^T$ with ReLU activation $\nu(u) = \max\{0, u\}$.1022 Consider the discrete data set in a classification problem, we have $\mathbb{Y} = \{1, \dots, K\}$ and $n_D = K$, then
1023 we instead define the so-called *softmax* function as

1024
$$1025 h_k(x, \theta) = \frac{\exp(g_k(x, \theta))}{\sum_{j=1}^K \exp(g_j(x, \theta))}, \quad k \in \mathbb{Y}, \quad (8)$$

1026 and define $h(x, \theta) = (h_1(x, \theta), \dots, h_K(x, \theta))$ as a categorical distribution on K outcomes based on
 1027 data x . Then we assume that $y_i \sim h(x_i)$ for $i = \{1, \dots, m\}$.

1028 Now we describe the various neural network architectures we use for the various datasets.

1030 1031 D.3.1 MNIST7 CLASSIFICATION EXAMPLE

1032 The architecture is a simple CNN with (i) one hidden layer with 4 channels of 3×3 kernels with unit
 1033 stride and padding, followed by (ii) ReLU activation and (iii) 2×2 max pooling, (iv) a linear layer,
 1034 and (v) a softmax. The parameter prior and dataset is built as follows

- 1036 1037 1038 • Training is conducted on a sub-dataset consisting of the first 1200 training samples with
 labels 0 through 7. Evaluation is performed on first N_{id} in-domain test images with labels 0
 through 7 and the on the four generated out-of-domain dataset (N_{ood} total number of data).
- 1039 1040 1041 1042 1043 1044 • The OOD dataset is generated as follows: two of the datasets are the first $N_{\text{ood}}/4$ out-of-
 domain test images with labels 8 and 9, respectively. The third dataset, the white noise
 image (wn), is a set of $N_{\text{ood}}/4$ synthetic 28×28 “images” with pixels drawn uniformly
 at random from $[0, 1]$. The fourth dataset, the perturbed image (per.), is a set of the first
 $N_{\text{ood}}/4$ MNIST test images of digits 0–7, each pixel perturbed by Gaussian noise (standard
 error as 0.5) while retaining its original label.
- 1045 1046 1047 1048 1049 • MAP and DE are estimated using an initialization and regularization based on the prior
 $N(0, v\mathbf{I}^d)$, where $d = 6320$ and $v = 0.1$. The tuning parameter in SBMC methods is s . The
 batchsize is 64.
- 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1078 1079 1079 • The gold-standard is computed by the single HMC over 5 realizations, called HMC (GS),
 with $N = B$, $T = 1$ and $L = 1$.
- 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1078 1079 1079 • SWA. Starting from the estimated MAP weights, we train with SGD (momentum 0.9, lr
 10^{-3}). After a 25-epoch warm-up, we update an AveragedModel each epoch (1 weight
 sample per epoch) and use SWALR with $\text{swa_lr} = 5 \times 10^{-4}$. After training we use the
 SWA weights for prediction. We run $R=5$ independent replicates.
- 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1078 1079 1079 • MC Dropout. We enable a 30% dropout in the (only) dropout layer after flattening (before
 the FC). Starting from the MAP estimation, we train with Adam (lr 10^{-3}). At test time, we
 keep dropout on and average $T=10$ stochastic forward passes for predictive probabilities.
 We run $R=5$ independent replicates.
- 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1078 1079 1079 • Laplace. We fit a Laplace approximation with a Kronecker-factored approximation of
 the Hessian⁷Daxberger et al. (2021). The starting model is the estimated MAP model;
 we estimate the posterior over the last layer and draw $T=10$ predictive weight samples
 with `pred_type='nn'` (re-linearization) for MC predictive inference. We run $R=5$
 independent replicates.

1064 1065 D.3.2 IMDB CLASSIFICATION EXAMPLE

1066 Here we use SBERT embeddings Reimers & Gurevych (2019) based on the model `all-mpnet-base-v2`
 1067 Song et al. (2020)⁸. In other words, frozen weights from `all-mpnet-base-v2` until the 768 dimensional
 1068 [CLS] output. The NN model and parameter prior for IMDb⁹ are built as follows

- 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1078 1079 1079 • NN is followed by (i) no hidden layer, (ii) ReLU activation, (iii) a final linear layer, and (iv)
 softmax output.
- 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1078 1079 1079 • Training is conducted on the whole train set (25000 data). Evaluation is performed on
 the whole test images as the in-domain dataset (25000 data) and on the four generated
 out-of-domain datasets (N_{ood} total number of data).
- 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1078 1079 1079 • The OOD dataset is generated as follows: four of these datasets (each dataset has $N_{\text{ood}}/5$
 data) use textual data from the Appliances domain, which is distinct from the in-domain
 IMDb movie review data. Specifically, four OOD datasets were constructed from Amazon

⁷<https://github.com/aleximmer/Laplace>

⁸<https://huggingface.co/sentence-transformers/all-mpnet-base-v2>

⁹<https://huggingface.co/datasets/stanfordnlp/imdb>

1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133

Reviews 2023 Appliances data Hou et al. (2024)¹⁰, containing customer reviews and product metadata. Two datasets directly used the two JSON files, and two text-based OOD datasets were generated as follows. From `Appliances.jsonl`, we extracted the review text, representing natural language expressions of user opinions but unrelated to movies; from `meta_Appliances.jsonl`, we constructed meta descriptions by concatenating each product’s title and listed features. The last dataset, Lipsum, is a collection of 100 very short, meaningless text strings, each consisting of between one and ten randomly selected words drawn from the classic “Lorem ipsum” filler vocabulary.

- MAP and DE are estimated using an initialization and regularization based on the prior $N(0, v\mathbf{I}d)$, where $d = 1538$. The tuning parameter in SBMC methods is s . The batchsize is 64.
- The gold-standard is computed by the single HMC over 5 realizations, called HMC (GS), with $N = B, T = 1$ and $L = 1$.

D.3.3 CIFAR-10 CLASSIFICATION EXAMPLE

Here, the architecture is ResNet-50 pre-trained from ImageNet with all parameters frozen until the final pooled 2048 dimensional features. The NN model and parameter prior for CIFAR10 are as follows.

- NN is followed by (i) no hidden layer, (ii) ReLU activations, (iii) a final linear layer, and (iv) softmax output.
- Training is conducted on the whole train set (50000 data). Evaluation is performed on the whole test images as the in-domain dataset (10000 data) and on the three generated out-of-domain datasets (N_{ood} total number of data).
- The OOD dataset is generated as follows:
 - Close OOD (CIFAR-100 “not in CIFAR-10”). Drawn $N_{\text{ood}}/3$ data from the 90 fine-grained CIFAR-100 classes that don’t overlap with the 10 classes inCIFAR-10. All images are 32×32 RGB natural photographs with nearly identical color distribution and textures to CIFAR-10.
 - Corrupt OOD (CIFAR-10-C). Select $N_{\text{ood}}/3$ CIFAR-10 test images and subject them to 15 types of realistic distortions—Gaussian/impulse noise (motion/defocus blur, frost, fog, brightness/contrast shifts, JPEG compression, pixelation, etc.) at five different severity levels. The pixel-level statistics are methodically disturbed, yet the original labels stay the same.
 - Far OOD (SVHN). Select $N_{\text{ood}}/3$ data from 26032 32x32 RGB test photos of house-number digits (0–9) that have been cut from Google Street View. The SVHN displays centred white numbers on colourful, frequently cluttered urban backgrounds, in contrast to CIFAR’s multi-object array of natural-scene photos.
- MAP and DE are estimated using an initialization and regularization based on the prior $N(0, v\mathbf{I}d)$, where $d = 20490$ and $v = 0.2$. The tuning parameter in SBMC methods is s . The batchsize is 128.
- The gold-standard is computed by the single HMC over 5 realizations, called HMC (GS), with $N = B, T = 1$ and $L = 1$.

D.4 HARDWARE DESCRIPTION

The main CPU cluster we access has nodes with 2×16 -core Intel Skylake Gold 6130 CPU @ 2.10GHz, 192GB RAM *without communication* in between, so it can only run $N/P = 32$ particles in parallel with one particle per core. There are also unconnected AMD “Genoa” compute nodes, with 2×84 -core AMD EPYC 9634 CPUs and 1.5TB RAM.

¹⁰<https://amazon-reviews-2023.github.io/>

E HYPER-PARAMETER TABLES

Table 5: Hyper-parameters for core methods (MAP, DE, S-HMC_{||} and S-SMC_{||}) on MNIST7, IMDb and CIFAR10. HMC, SMC, and their variants adopt the same hyper-parameters but run without a pre-trained model and directly target the full posterior distribution. Importantly, DEI-HMC is initialized using the Deep Ens rather than a random sample from the prior.

Method	Hyper-parameter	Was tuned	Experiments		
			MNIST7	IMDb	CIFAR-10
MAP	Prior variance v	✓	1e-1	2.5e-2	2e-1
	Optimizer (Learning rate)	✗	Adam (1e-3)	Adam (1e-3)	Adam (1e-3)
	Batch size	✓	64	64	128
	Early stopping (mov. avg., patience)*	✗	10, 5	10, 5	-
Deep Ens (P)	Pre-trained model	✓	MAP	MAP	MAP
	Prior variance v	✓	1e-1	2.5e-2	2e-1
	Optimizer (Learning rate)	✗	Adam (1e-3)	Adam (1e-3)	Adam (1e-3)
	Batch size	✓	64	64	128
	Early stopping (mov. avg., patience)	✗	10, 5	10, 5	-
	Ensemble size	✗	10 P	10 P	10 P
S-HMC (P)	Pre-trained model	✓	MAP	MAP	MAP
	MAP prior variance v	✓	1e-1	2.5e-2	2e-1
	Sampling prior scale s	✓	1e-1	1e-1	1e-1
	Sampling prior variance sv	✓	1e-2	2.5e-3	2e-2
	Step size ϵ (initial) [†]	✓	1e-2	1.8e-2	2e-3
	Leapfrog steps L	✗	1	1	1
	Burn-in particles	✓	160	25	200
	Num. particles per chain	✗	1	1	1
	Num. of chains	✗	10 P	10 P	10 P
	Total posterior particles	✗	10 P	10 P	10 P
S-SMC (P)	Pre-trained model	✓	MAP	MAP	MAP
	MAP prior variance v	✓	1e-1	2.5e-2	2e-1
	Sampling prior scale s	✓	1e-1	1e-1	1e-1
	Sampling prior variance sv	✓	1e-2	2.5e-3	2e-2
	Step size ϵ (initial) [†]	✓	3.5e-2	2.2e-2	7.0e-2
	ESS tempering threshold	✓	$N/2$	$N/2$	$N/2$
	Leapfrog steps L	✗	1	1	1
	HMC transitions per tempering step M	✓	10	1	4
	Num. tempering steps	✓	Adaptive	Adaptive	Adaptive
	Num. particles N	✗	10	10	10
	Num. of chains	✗	P	P	P
	Total posterior particles	✗	10 P	10 P	10 P

*Mov. avg. is a smoothed validation metric that reduces noise; patience is the number of steps allowed without improvement before early stopping.

[†]Step size is adapted during sampling based on the acceptance rate.

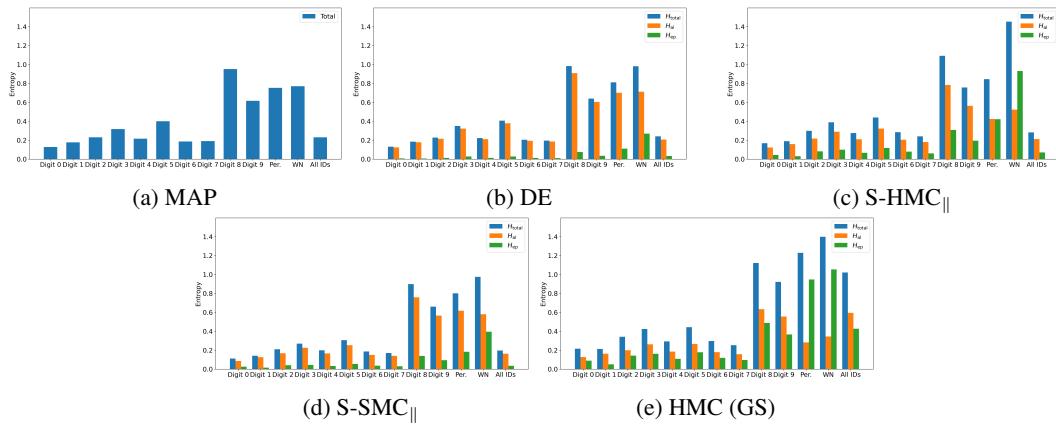
1188
1189 Table 6: Hyper-parameters for other baseline models on MNIST7. SGHMC adopts the same hyper-
1190 parameters but run without a pre-trained model and directly target the full posterior distribution.

Method	Hyper-parameter	Was tuned	MNIST7
MC Dropout	Prior variance v	✓	1e-1
	Optimizer (learning rate)	✗	Adam (1e-3)
	Dropout rate	✓	3e-1
	Training iterations	✓	160
	Num. particles	✗	10
SWA	Prior variance v	✓	1e-1
	Optimizer (learning rate)	✗	SGD (1e-3)
	SWA start iteration	✓	25
	Total iterations	✓	160
	SWA learning rate	✗	5e-4
SWAG	Momentum	✗	9e-1
	Prior variance v	✓	1e-1
	Optimizer (learning rate)	✗	SGD (1e-3)
	SWAG burn-in iterations	✓	25
	Snapshot frequency	✓	2
Laplace	Max snapshots	✓	20
	Sampling scale	✗	1.0
	Use low-rank covariance	✗	True
	Num. particles	✗	10
	Prior variance v	✓	1e-1
S-SGHMC (P)	Subset of weights	✗	Last layer
	Hessian structure	✓	Kronecker
	Num. particles	✗	10
	Pre-trained model	✓	MAP
SMS-UBU (P)	MAP prior variance v	✓	1e-1
	Sampling prior scale s	✓	1e-1
	Sampling prior variance sv	✓	1e-2
	Optimizer (learning rate)	✗	Adam (1e-3)
	Step size ϵ	✓	6e-3
	SGHMC friction	✓	2e-1
	Burn-in particles	✓	160
	Num. particles per chain	✗	1
	Num. of chains	✗	10 P
	Total posterior particles	✗	10 P
FURTHER RESULTS FOR UQ	Pre-trained model	✓	MAP
	prior variance v	✓	1e-1
	Localization strength	✓	1e-2
	Step size	✓	2.5e-5
	Momentum friction	✓	$\sqrt{50}$
	Number of forward sweeps	✓	80
	Number of backward sweeps	✓	80
	Burn-in sweeps	✓	160
	Num. particles per chain	✗	1
	Num. of chains	✗	10 P
	Total posterior particles	✗	10 P

1233
1234
1235
1236 F FURTHER RESULTS FOR UQ
1237
1238
12391240 Results in this section further support the statement mentioned in the main text, that is, (i) SBMC sig-
1241 nificantly outperforms the MAP estimator, as well as a DE of MAP estimators, (ii) DE systematically
underestimates H_{ep} for the same ensemble size as SBMC.

1242 F.1 MNIST7
1243

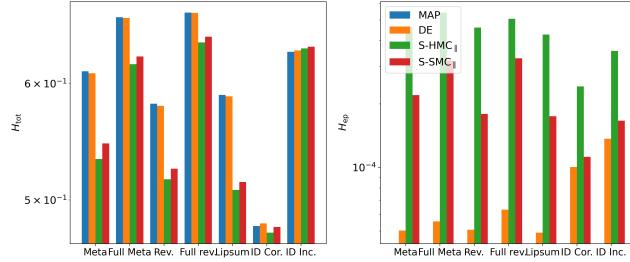
1244 In the MNIST7 case, the full setting is described in Appendix D.3.1, where we let $N_{\text{id}} = 7000$ and
1245 $N_{\text{ood}} = 2000$, where each dataset has 500 data. Selected results appear in the main text in Figure 2,
1246 where the full data table is given in Table 25. Additional detailed results of the per-digit analysis are
1247 provided below, see Figure 8, and the full data table in Table 21.
1248



1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265 Figure 8: Comparison of entropy across groups for MNIST7. S-SMC_{||} ($P = 1$ chain with $N = 10$),
1266 S-HMC_{||} (NP chains), HMC (GS) ($2e4$ samples), DE (N models) and MAP, with fixed number of
1267 leapfrog $L = 1$, $v = 0.1$ and $s = 0.1$ (5 realizations).
1268
1269
1270
1271 F.2 IMDB
1272

1273 In the IMDb case, the full setting is described in Appendix D.3.2, where we let $N_{\text{ood}} = 500$, and
1274 each dataset has 100 data.
1275
1276

1277 **Experiments with $v = \frac{1}{40}$.** Results of entropy comparison among MAP, DE and SBMCs are given
1278 in Figure 9, showing comparison in the OOD datasets and the correct/incorrect predictions in the ID
1279 domain. Additional detailed results of the per-digit analysis are provided below, see Figure 10, and
1280 the full data table in Table 22.
1281



1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292 Figure 9: Comparison of average total and epistemic entropy over four out-of-domain classes and
1293 correct/incorrect predictions in-domain for IMDb. S-SMC_{||} ($P = 1$ chain with $N = 10$), S-HMC_{||}
1294 (NP chains), DE (N models) and MAP, with fixed number of leapfrog $L = 1$, $B = 25$, $M = 1$,
1295 $v = 0.025$ and $s = 0.1$ (5 realizations).
1296

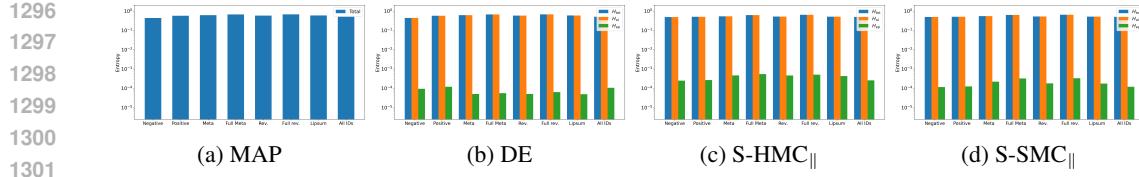


Figure 10: Comparison of entropy across groups for IMDb. $S\text{-SMC}_{\parallel}$ ($P = 1$ chain with $N = 10$), $S\text{-HMC}_{\parallel}$ (NP chains), DE (N models) and MAP, with fixed number of leapfrog $L = 1$, $B = 25$, $M = 1$, $v = 0.025$ and $s = 0.1$ (5 realizations).

Experiments with $v = 1$. Results of entropy comparison among MAP, DE and SBMCs are given in Figure 11, showing comparison in the OOD datasets and the correct/incorrect predictions in the ID domain. Additional detailed results of the per-digit analysis are provided below, see Figure 12, and the full data table in Table 23.

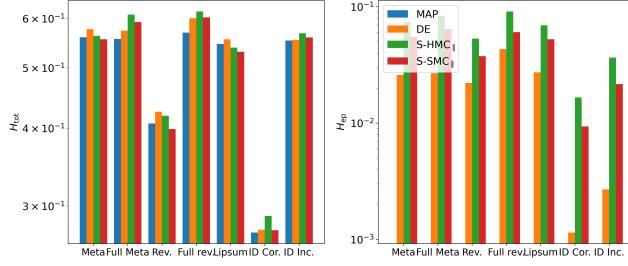


Figure 11: Comparison of average total and epistemic entropy over four out-of-domain classes and correct/incorrect predictions in-domain for IMDb. $S\text{-SMC}_{\parallel}$ ($P = 8$ chain with $N = 10$), $S\text{-HMC}_{\parallel}$ (NP chains), DE (N models) and MAP, with fixed number of leapfrog $L = 1$, $B = 26$, $M = 2$, $v = 1$ and $s = 0.35$ (5 realizations).

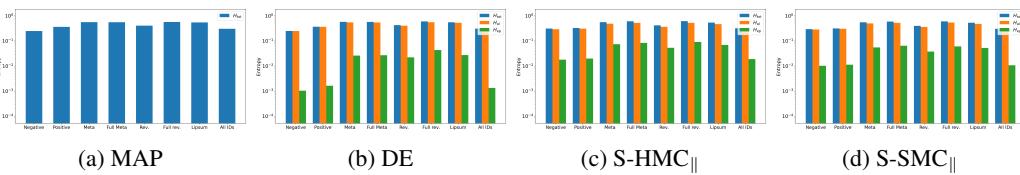


Figure 12: Comparison of entropy across groups for IMDb. $S\text{-SMC}_{\parallel}$ ($P = 8$ chain with $N = 10$), $S\text{-HMC}_{\parallel}$ (NP chains), DE (N models) and MAP, with fixed number of leapfrog $L = 1$, $B = 26$, $M = 2$, $v = 1$ and $s = 0.35$ (5 realizations).

F.3 CIFAR10

In the CIFAR10 case, the full setting is described in Appendix D.3.3, where we let $N_{\text{id}} = 10000$ and $N_{\text{ood}} = 300$, and each dataset has 100 data points. Results of entropy comparison among MAP, DE and SBMCs are given in Figure 13, showing comparison in the OOD datasets and the correct/incorrect prediction in the ID domain.

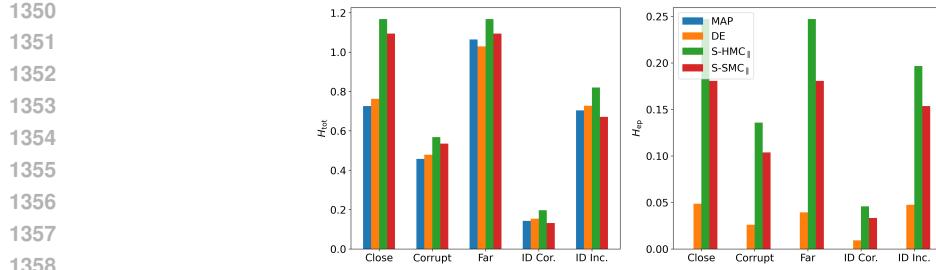


Figure 13: Comparison of average total and epistemic entropy over three out-of-domain classes and correctly/incorrectly predicted ID for CIFAR10. S-SMC_{||} ($P = 8$ chains with $N = 10$), S-HMC_{||} (NP chains), DE (\bar{N}) and MAP, with fixed number of leapfrog $L = 1$, $B = 200$, $M = 4$, $v = 0.2$ and $s = 0.05$ (5 realizations).

G FURTHER RESULTS OF OOD INFERENCE

Establishment of the meta-classifier of incorrect/OOD data is given in the main text under Out-of-domain inference. Here, the OOD detection is performed in the default and optimal F_1 decision rule, respectively.

The default decision rule treats the output probability of "abstain" (out-of-domain or likely misclassified) in the meta-classifier as a binary decision with a fixed cut-off at 0.5. That is, if the model predicts that there is at least a 50% probability of the data being OOD or incorrectly predicted, it abstains; otherwise, it classifies the data as correctly predicted ID. This rule requires no adjustment beyond the choice of 0.5. Its behaviour is totally dependent on whether the model's confidence in abstention exceeds the halfway level.

The optimal F_1 decision rule adapts the abstention threshold to maximize the F_1 score on a held-out set. In practice, the meta-classifier's probabilities are assessed over a grid of potential thresholds ranging from 0 to 1, the F_1 score are calculated for each threshold, and the threshold with the highest F_1 score is chosen as the optimal F_1 threshold. This customised threshold balances false positives and false negatives in the most effective way for the given data distribution, at the cost of requiring a representative validation set. It often outperforms the default decision rule when class proportions or costs of errors are skewed.

G.1 MNIST7

In the MNIST7 case, the full setting is described in Appendix D.3.1, where we let $N_{\text{id}} = 2000$ and $N_{\text{ood}} = 2000$, where each dataset has 500 data. Metrics of Precision, Recall, F_1 and AUC-ROC metrics are given in Table 7, the normalized confusion rate matrices to show how the OOD domain has been detected from the ID domain are given in Figure 14. Plots for ROC curve and 2-level estimator accuracy are given in Figure 15.

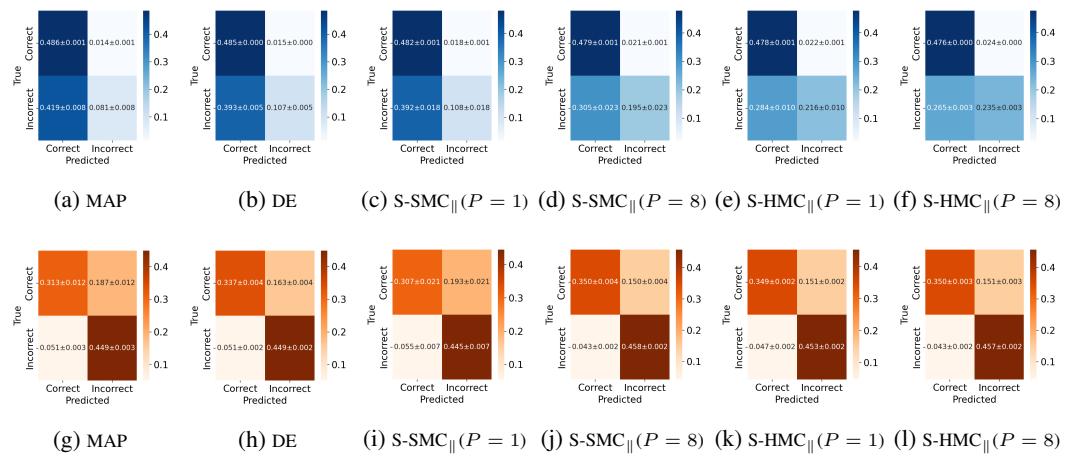
Table 7: Evaluation Metrics using thresholds. S-SMC_{||} ($P = 1, 8$ chains with $N = 10$) and S-HMC_{||} (NP chains), with fixed number of leapfrog $L = 1$, $B = 160$, $M = 10$, $v = 0.1$ and $s = 0.1$, on MNIST (5 realizations, \pm s.e. in metrics and bold the first 30% data in mean).

(a) Default decision threshold (0.5).

P	Method	Precision	Recall	F_1	AUC-ROC
-	MAP	0.846 \pm 0.014	0.162 \pm 0.016	0.271 \pm 0.024	0.828 \pm 0.013
-	DE	0.876 \pm 0.007	0.213 \pm 0.011	0.342 \pm 0.015	0.855 \pm 0.003
1	S-SMC	0.845 \pm 0.020	0.216 \pm 0.037	0.338 \pm 0.049	0.824 \pm 0.017
8	S-SMC	0.894 \pm 0.015	0.389 \pm 0.046	0.537 \pm 0.052	0.884 \pm 0.006
1	S-HMC	0.906\pm0.004	0.432\pm0.020	0.584\pm0.020	0.885\pm0.002
8	S-HMC	0.907 \pm 0.001	0.470 \pm 0.007	0.619 \pm 0.006	0.892 \pm 0.001

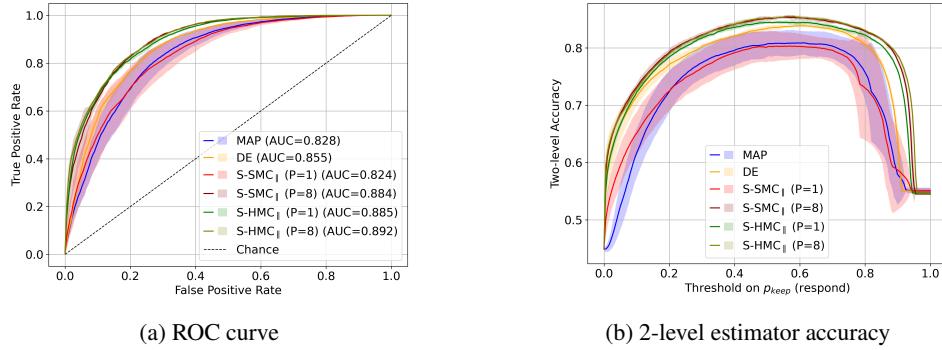
(b) Optimal F_1 decision threshold.

P	Method	Precision	Recall	F_1	AUC-ROC
-	MAP	0.707 \pm 0.013	0.898 \pm 0.006	0.791 \pm 0.009	0.828 \pm 0.013
-	DE	0.734 \pm 0.004	0.897 \pm 0.003	0.807 \pm 0.002	0.855 \pm 0.003
1	S-SMC	0.701 \pm 0.021	0.890 \pm 0.015	0.783 \pm 0.010	0.824 \pm 0.017
8	S-SMC	0.753\pm0.004	0.915\pm0.004	0.826\pm0.001	0.884 \pm 0.006
1	S-HMC	0.750 \pm 0.003	0.906 \pm 0.004	0.820 \pm 0.002	0.885\pm0.002
8	S-HMC	0.752 \pm 0.003	0.913\pm0.004	0.825\pm0.001	0.892 \pm 0.001



1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441

Figure 14: Averaged confusion rate matrices for OOD prediction on MNIST7, with default decision threshold (top) and optimal F_1 decision threshold (bottom). S-SMC_{||} ($P = 1, 8$ chains with $N = 10$) and S-HMC_{||} (NP chains), with fixed number of leapfrog $L = 1$, $B = 160$, $M = 10$, $v = 0.1$ and $s = 0.1$, on MNIST (5 realizations and \pm s.e. in metrics).



1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Figure 15: Averaged curve plots for OOD detection on MNIST7. S-SMC_{||} ($P = 1, 8$ chains with $N = 10$) and S-HMC_{||} (NP chains), with fixed number of leapfrog $L = 1$, $B = 160$, $M = 10$, $v = 0.1$ and $s = 0.1$, on MNIST (5 realizations and \pm s.e. in metrics).

G.1.1 UNSEEN FAR OOD DETECTION

The meta-classifier is trained following the same procedure used for the MNIST7 before. Evaluation is applied on disjoint test sets constructed for each OOD category. We consider five test configurations, each comprising 1,000 images obtained by pairing the same 500 ID test images with 500 OOD examples of a specific type (digit 8, digit 9, perturbed ID, white noise, or CIFAR-10). For each configuration, we report the area under the corresponding two-level estimator curve (AU2LC) in Table 8 and additionally present the confidence (the optimal F_1 decision rule) meta-classifier results in Tables 9, 10, 11, 12, 13.

1458 Table 8: Meta-classifier different OOD sets. Area under the 2-level estimator curve. S-SMC_{||}
 1459 ($P = 1, 8$ chains with $N = 10$) and S-HMC_{||} (NP chains), with fixed number of leapfrog $L = 1$,
 1460 $B = 160, M = 10, v = 0.1$ and $s = 0.1$, on MNIST (5 realizations, \pm s.e. in metrics).

1461

P	Method	Near OOD			Far OOD	
		Digit 8	Digit 9	Pert.	White noise	CIFAR10
-	MAP	0.754	0.660	0.701	0.746	0.705
-	DE	0.792	0.646	0.785	0.867	0.847
1	S-SMC	0.723	0.654	0.730	0.809	0.801
8	S-SMC	0.781	0.685	0.845	0.882	0.881
1	S-HMC	0.774	0.660	0.812	0.878	0.873
8	S-HMC	0.790	0.672	0.852	0.880	0.879

1470

1471

1472 Table 9: **Digit 8 OOD set.** Confidence meta-classifier results (optimal F_1 decision threshold,
 1473 MNIST7) for Digit 8 OOD set. S-SMC_{||} ($P = 1, 8$ chains with $N = 10$) and S-HMC_{||} (NP chains),
 1474 with fixed number of leapfrog $L = 1, B = 160, M = 10, v = 0.1$ and $s = 0.1$ (5 realizations, \pm s.e.
 1475 in metrics).

1476

P	Method	Precision	Recall	F1	AUC-ROC
-	MAP	0.815 \pm 0.008	0.896 \pm 0.009	0.854 \pm 0.005	0.899 \pm 0.007
-	DE	0.822 \pm 0.010	0.925 \pm 0.011	0.870 \pm 0.003	0.921 \pm 0.006
1	S-SMC	0.787 \pm 0.022	0.899 \pm 0.016	0.838 \pm 0.010	0.878 \pm 0.015
8	S-SMC	0.827 \pm 0.008	0.903 \pm 0.006	0.863 \pm 0.002	0.912 \pm 0.004
1	S-HMC	0.823 \pm 0.012	0.902 \pm 0.016	0.860 \pm 0.005	0.914 \pm 0.006
8	S-HMC	0.829 \pm 0.007	0.916 \pm 0.009	0.870 \pm 0.002	0.916 \pm 0.001

1485

1486

1487 Table 10: **Digit 9 OOD set.** Confidence meta-classifier results (optimal F_1 decision threshold,
 1488 MNIST7) for Digit 9 OOD set. S-SMC_{||} ($P = 1, 8$ chains with $N = 10$) and S-HMC_{||} (NP chains),
 1489 with fixed number of leapfrog $L = 1, B = 160, M = 10, v = 0.1$ and $s = 0.1$ (5 realizations, \pm s.e.
 1490 in metrics).

1491

P	Method	Precision	Recall	F1	AUC-ROC
-	MAP	0.716 \pm 0.010	0.917 \pm 0.008	0.804 \pm 0.006	0.809 \pm 0.008
-	DE	0.719 \pm 0.006	0.937 \pm 0.010	0.814 \pm 0.001	0.807 \pm 0.004
1	S-SMC	0.728 \pm 0.008	0.908 \pm 0.011	0.808 \pm 0.004	0.816 \pm 0.007
8	S-SMC	0.726 \pm 0.008	0.930 \pm 0.008	0.815 \pm 0.004	0.831 \pm 0.003
1	S-HMC	0.714 \pm 0.005	0.938 \pm 0.003	0.811 \pm 0.003	0.814 \pm 0.003
8	S-HMC	0.720 \pm 0.004	0.934 \pm 0.008	0.813 \pm 0.001	0.816 \pm 0.003

1498

1499

1500 Table 11: **Perturbed OOD set.** Confidence meta-classifier results (optimal F_1 decision threshold,
 1501 MNIST7) for Perturbed OOD set. S-SMC_{||} ($P = 1, 8$ chains with $N = 10$) and S-HMC_{||} (NP
 1502 chains), with fixed number of leapfrog $L = 1, B = 160, M = 10, v = 0.1$ and $s = 0.1$ (5
 1503 realizations, \pm s.e. in metrics).

1504

P	Method	Precision	Recall	F1	AUC-ROC
-	MAP	0.759 \pm 0.015	0.866 \pm 0.004	0.808 \pm 0.008	0.840 \pm 0.011
-	DE	0.805 \pm 0.007	0.907 \pm 0.008	0.853 \pm 0.004	0.914 \pm 0.008
1	S-SMC	0.782 \pm 0.023	0.882 \pm 0.013	0.827 \pm 0.008	0.875 \pm 0.012
8	S-SMC	0.879 \pm 0.010	0.920 \pm 0.005	0.899 \pm 0.006	0.963 \pm 0.004
1	S-HMC	0.839 \pm 0.011	0.911 \pm 0.007	0.873 \pm 0.005	0.941 \pm 0.005
8	S-HMC	0.913 \pm 0.015	0.901 \pm 0.012	0.906 \pm 0.004	0.968 \pm 0.002

1512 Table 12: **White noise OOD set.** Confidence meta-classifier results (optimal F_1 decision threshold,
 1513 MNIST7) for white noise OOD set. S-SMC $_{\parallel}$ ($P = 1, 8$ chains with $N = 10$) and S-HMC $_{\parallel}$ (NP
 1514 chains), with fixed number of leapfrog $L = 1$, $B = 160$, $M = 10$, $v = 0.1$ and $s = 0.1$ (5
 1515 realizations, \pm s.e. in metrics).

1516

P	Method	Precision	Recall	F_1	AUC-ROC
–	MAP	0.809 \pm 0.029	0.957 \pm 0.009	0.876 \pm 0.019	0.889 \pm 0.029
–	DE	0.960 \pm 0.022	0.940 \pm 0.010	0.949 \pm 0.007	0.987 \pm 0.004
1	S-SMC $_{\parallel}$	0.880 \pm 0.047	0.932 \pm 0.005	0.902 \pm 0.025	0.950 \pm 0.024
8	S-SMC $_{\parallel}$	0.987 \pm 0.006	0.941 \pm 0.004	0.963 \pm 0.001	0.992 \pm 0.000
1	S-HMC $_{\parallel}$	0.988 \pm 0.006	0.932 \pm 0.006	0.959 \pm 0.001	0.991 \pm 0.001
8	S-HMC $_{\parallel}$	0.997 \pm 0.001	0.927 \pm 0.003	0.961 \pm 0.001	0.991 \pm 0.000

1524

1525

1526

1527

1528 Table 13: **CIFAR OOD set: meta-OOD wrt meta-train.** Confidence meta-classifier results (optimal
 1529 F_1 decision threshold, MNIST7) for CIFAR10 OOD set. S-SMC $_{\parallel}$ ($P = 1, 8$ chains with $N = 10$)
 1530 and S-HMC $_{\parallel}$ (NP chains), with fixed number of leapfrog $L = 1$, $B = 160$, $M = 10$, $v = 0.1$ and
 1531 $s = 0.1$ (5 realizations, \pm s.e. in metrics).

1532

P	Method	Precision	Recall	F_1	AUC-ROC
–	MAP	0.743 \pm 0.044	0.906 \pm 0.020	0.812 \pm 0.026	0.835 \pm 0.042
–	DE	0.922 \pm 0.032	0.918 \pm 0.010	0.919 \pm 0.016	0.970 \pm 0.012
1	S-SMC $_{\parallel}$	0.882 \pm 0.033	0.885 \pm 0.033	0.883 \pm 0.032	0.934 \pm 0.035
8	S-SMC $_{\parallel}$	0.979 \pm 0.007	0.938 \pm 0.005	0.958 \pm 0.001	0.991 \pm 0.000
1	S-HMC $_{\parallel}$	0.970 \pm 0.007	0.924 \pm 0.006	0.946 \pm 0.003	0.988 \pm 0.001
8	S-HMC $_{\parallel}$	0.990 \pm 0.004	0.923 \pm 0.003	0.955 \pm 0.001	0.990 \pm 0.000

1540

1541

1542

1543 G.2 IMDB

1544

1545 In the IMDb case, the full setting is described in Appendix D.3.2, where we let $N_{\text{ood}} = 25000$, and
 1546 each dataset has 5000 data points.

1547

1548

1549 **Experiment with $v = \frac{1}{40}$** Metrics of Precision, Recall, F1 and AUC-ROC metrics are given in
 1550 Table 14, the normalized confusion rate matrices to show how the OOD domain has been detected
 1551 from ID domain are given in Figure 16. Plots for ROC curve and 2-level estimator accuracy are given
 1552 in Figure 17.

1553

1554

1555 Table 14: Performance at the optimal F_1 decision threshold. S-SMC $_{\parallel}$ ($P = 1$ chain with $N = 10$),
 1556 S-HMC $_{\parallel}$ (NP chains), DE (N models) and MAP, with fixed number of leapfrog $L = 1$, B , M ,
 1557 $v = 0.025$ and $s = 0.1$ (5 realizations, \pm s.e. in metrics and bold the first 30% data in mean).

1558

P	Method	Precision	Recall	F_1	AUC-ROC
–	MAP	0.707 \pm 0.003	0.953 \pm 0.001	0.811 \pm 0.001	0.768 \pm 0.005
–	DE	0.856 \pm 0.041	0.890 \pm 0.017	0.869 \pm 0.016	0.896 \pm 0.025
1	S-SMC $_{\parallel}$	0.673 \pm 0.005	0.919 \pm 0.002	0.777 \pm 0.004	0.777 \pm 0.002
8	S-SMC $_{\parallel}$	0.935 \pm 0.003	0.876 \pm 0.002	0.905 \pm 0.000	0.935 \pm 0.002
1	S-HMC $_{\parallel}$	0.844 \pm 0.002	0.876 \pm 0.004	0.859 \pm 0.001	0.905 \pm 0.001
8	S-HMC $_{\parallel}$	0.970 \pm 0.003	0.879 \pm 0.003	0.922 \pm 0.000	0.944 \pm 0.002

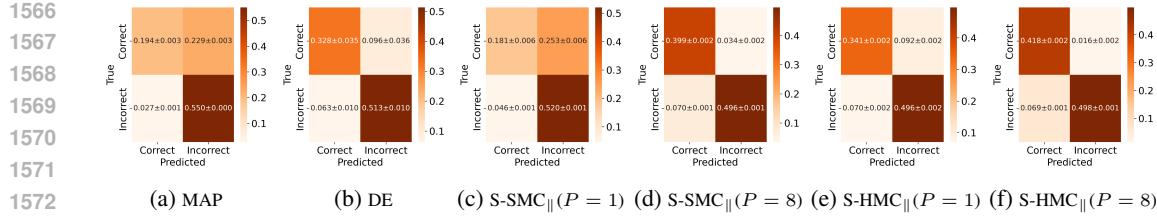


Figure 16: Averaged confusion rate matrices for OOD prediction on IMDb, with optimal F_1 decision threshold. $S\text{-SMC}_{\parallel}(P=1, 8)$ chain with $N = 10$, $S\text{-HMC}_{\parallel}(NP$ chains), DE (N models) and MAP, with fixed number of leapfrog $L = 1$, $B = 25$, $M = 1$, $v = 0.025$ and $s = 0.1$ (5 realizations and \pm s.e. in metrics).

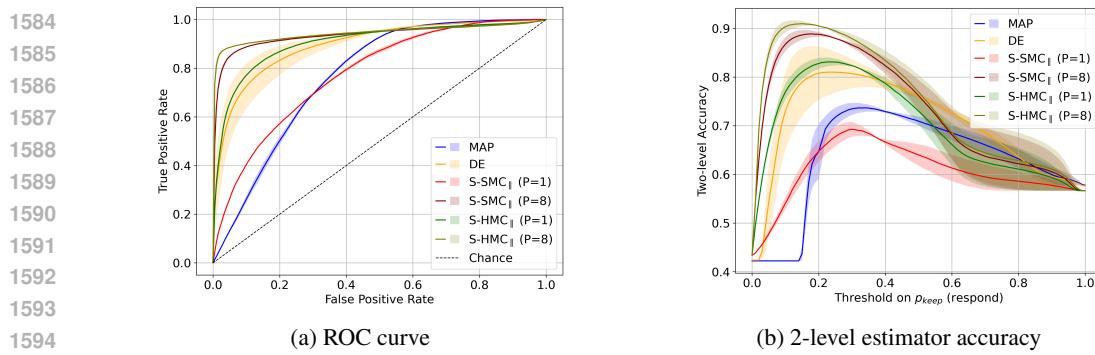


Figure 17: Averaged curve plots for OOD detection in IMDb. $S\text{-SMC}_{\parallel}(P=1, 8)$ chain with $N = 10$, $S\text{-HMC}_{\parallel}(NP$ chains), DE (N models) and MAP, with fixed number of leapfrog $L = 1$, $B = 25$, $M = 1$, $v = 0.025$ and $s = 0.1$ (5 realizations and \pm s.e. in metrics).

Experiment with $v = 1$. Metrics of Precision, Recall, F1 and AUC-ROC metrics are given in Table 15, the normalized confusion rate matrices to show how the OOD domain has been detected from the ID domain are given in Figure 18. The plots for the ROC curve and 2-level estimator accuracy are given in Figure 19.

Table 15: Performance at the optimal F_1 decision threshold. $S\text{-SMC}_{\parallel}(P=1$ chain with $N = 10$), $S\text{-HMC}_{\parallel}(NP$ chains), DE (N models) and MAP, with fixed number of leapfrog $L = 1$, B , M , $v = 1$ and $s = 0.35$ (5 realizations, \pm s.e. in metrics and bold the first 30% data in mean).

P	Method	Precision	Recall	F1	AUC-ROC
–	MAP	0.733 ± 0.004	0.897 ± 0.003	0.807 ± 0.002	0.809 ± 0.006
–	DE	0.968 ± 0.004	0.880 ± 0.004	0.922 ± 0.001	0.959 ± 0.003
1	$S\text{-SMC}_{\parallel}$	0.791 ± 0.000	0.871 ± 0.003	0.829 ± 0.001	0.889 ± 0.001
8	$S\text{-SMC}_{\parallel}$	0.947 ± 0.003	0.878 ± 0.003	0.911 ± 0.000	0.944 ± 0.002
1	$S\text{-HMC}_{\parallel}$	0.923 ± 0.002	0.885 ± 0.001	0.904 ± 0.001	0.943 ± 0.002
8	$S\text{-HMC}_{\parallel}$	0.965 ± 0.004	0.880 ± 0.003	0.920 ± 0.000	0.948 ± 0.002

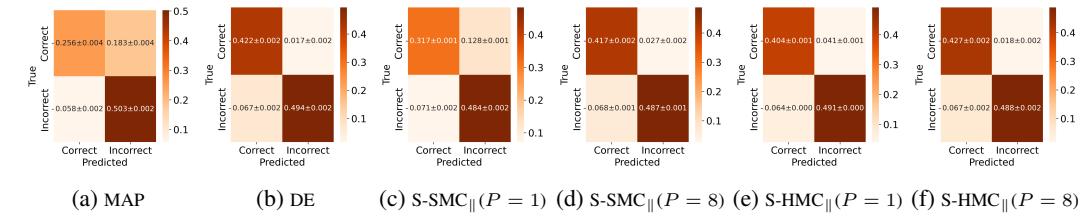


Figure 18: Averaged confusion rate matrices for OOD prediction on IMDb, with optimal F_1 decision threshold. S-SMC $_{\parallel}$ ($P = 1, 8$ chain with $N = 10$), S-HMC $_{\parallel}$ (NP chains), DE (N models) and MAP, with fixed number of leapfrog $L = 1$, $B = 26$, $M = 2$, $v = 1$ and $s = 0.35$ (5 realizations and \pm s.e. in metrics).

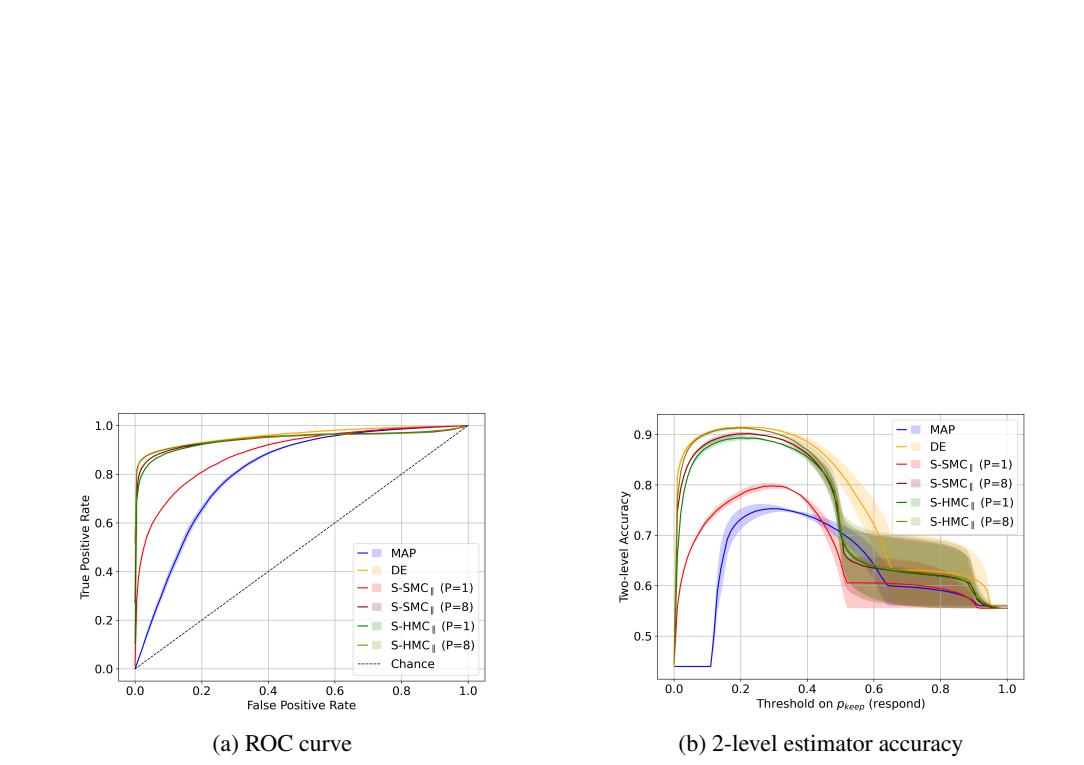


Figure 19: Averaged curve plots for OOD detection in IMDb. S-SMC $_{\parallel}$ ($P = 1, 8$ chain with $N = 10$), S-HMC $_{\parallel}$ (NP chains), DE (N models) and MAP, with fixed number of leapfrog $L = 1$, $B = 26$, $M = 2$, $v = 1$ and $s = 0.35$ (5 realizations and \pm s.e. in metrics).

G.3 CIFAR10

In the CIFAR10 case, the full setting is described in Appendix D.3.3, where we let $N_{\text{id}} = 9000$ and $N_{\text{ood}} = 9000$, and each dataset has 3000 data points. Metrics of Precision, Recall, F1 and AUC-ROC metrics are given in Table 16, the normalized confusion rate matrices to show how the OOD domain has been detected from the ID domain are given in Figure 20. Plots for ROC curve and 2-level estimator accuracy are given in Figure 21.

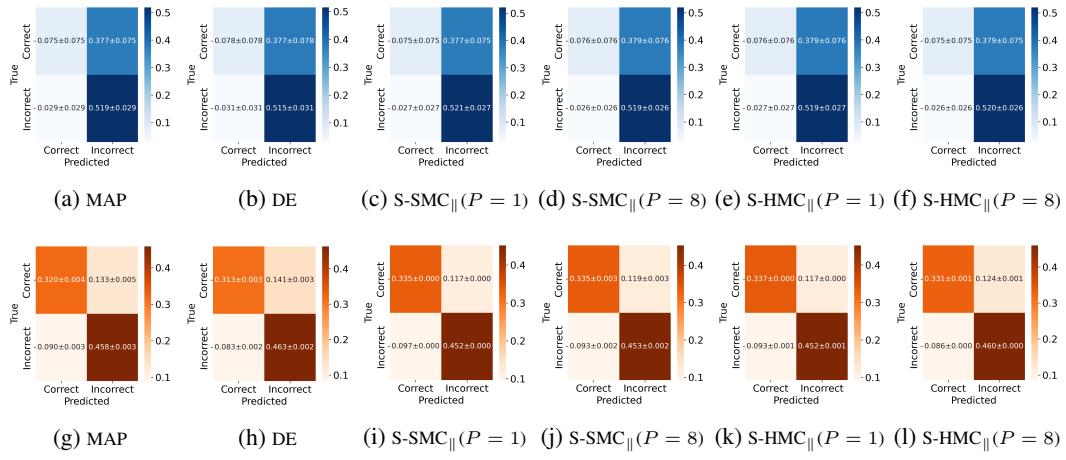


Figure 20: Averaged confusion rate matrices for OOD prediction on CIFAR10, with default decision threshold (top) and optimal F_1 decision threshold (bottom). S-SMC $_{\parallel}$ ($P = 1, 8$ chains with $N = 10$), S-HMC $_{\parallel}$ (NP chains), DE (N) and MAP, with fixed number of leapfrog $L = 1$, $B = 200$, $M = 4$, $v = 0.2$ and $s = 0.05$ (5 realizations and \pm s.e. in metrics).

Table 16: Evaluation Metrics using thresholds. S-SMC $_{\parallel}$ ($P = 1, 8$ chains with $N = 10$), S-HMC $_{\parallel}$ (NP chains), DE (N) and MAP, with fixed number of leapfrog $L = 1$, $B = 200$, $M = 4$, $v = 0.2$ and $s = 0.05$ (5 realizations, \pm s.e. in metrics and bold the first 30% data in mean).

		(a) Default decision threshold (0.5).					(b) Optimal F_1 decision threshold.				
P	Method	Precision	Recall	F1	AUC-ROC	P	Method	Precision	Recall	F1	AUC-ROC
–	MAP	0.606±0.058	0.947±0.053	0.723±0.015	0.856±0.001	–	MAP	0.776±0.005	0.836±0.006	0.805±0.001	0.856±0.001
–	DE	0.608±0.062	0.943±0.057	0.721±0.015	0.858±0.002	–	DE	0.767±0.003	0.848±0.003	0.805±0.001	0.858±0.002
1	S-SMC $_{\parallel}$	0.607±0.059	0.951±0.049	0.726±0.018	0.861±0.001	1	S-SMC $_{\parallel}$	0.794±0.000	0.824±0.001	0.809±0.000	0.861±0.001
8	S-SMC $_{\parallel}$	0.606±0.060	0.952±0.048	0.725±0.019	0.864±0.000	8	S-SMC $_{\parallel}$	0.792±0.003	0.830±0.003	0.811±0.000	0.864±0.000
1	S-HMC $_{\parallel}$	0.606±0.060	0.951±0.049	0.724±0.019	0.864±0.000	1	S-HMC $_{\parallel}$	0.794±0.000	0.829±0.001	0.811±0.000	0.864±0.000
8	S-HMC $_{\parallel}$	0.605±0.060	0.953±0.047	0.725±0.019	0.867±0.000	8	S-HMC $_{\parallel}$	0.788±0.001	0.842±0.001	0.814±0.000	0.867±0.000

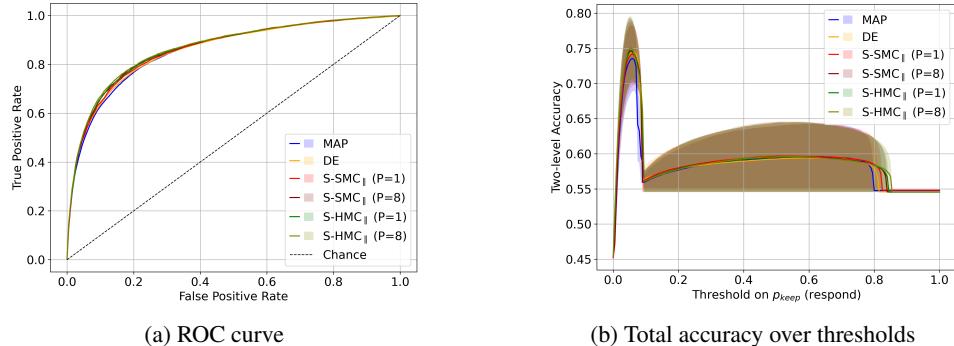


Figure 21: Averaged curve plots for OOD detection in CIFAR10. S-SMC $_{\parallel}$ ($P = 1, 8$ chains with $N = 10$), S-HMC $_{\parallel}$ (NP chains), DE (N) and MAP, with fixed number of leapfrog $L = 1$, $B = 200$, $M = 4$, $v = 0.2$ and $s = 0.05$ (5 realizations and \pm s.e. in metrics).

H FURTHER RESULTS OF ABLATIONS IN PRACTICAL SBMC($s < \frac{1}{2}$)

H.1 MNIST7

Experiments in this section are tested on the (filtered) MNIST7 dataset with the model setting stated in Appendix D.3.1.

Table 17 shows the performance as the tuning parameter s varies. Figure 22 and 23 show the trend of the SBMC_{\parallel} in different values of the tuning parameter s as P increases. Table 24 and 25 give the corresponding full data results of the below figures.

Table 17: Comparison of different s of (S-)SMC $_{\parallel}$ ($P = 1, 8$ chain with $N = 10$), (S-)HMC $_{\parallel}$ (NP chains), MAP and DE (NP models), with fixed number of leapfrog $L = 1$ and $v = 0.1$, on MNIST (5 realizations and \pm s.e. in accuracy).

s	Method	Epochs	Accuracy	NLL	Brier	H_{ep}					
						ID		OD			
						cor.	inc.	8	9	wn	per.
1	HMC (GS)	2e4	93.61 \pm 0.41	2.224e-1	1.015e-1	9.621e-2	4.097e-1	4.614e-1	3.119e-1	1.126e+0	7.919e-1
	HMC (GS)	2e5	94.77 \pm 0.21	1.942e-1	8.700e-2	1.204e-1	4.928e-1	5.635e-1	4.067e-1	1.602e+0	1.031e+0
	HMC (GS)	1.8e6	95.13 \pm 0.02	1.882e-1	8.345e-2	1.281e-1	5.185e-1	5.856e-1	4.244e-1	1.682e+0	1.112e+0
1	SMC $_{\parallel}$	173.0	79.74 \pm 2.71	6.230e-1	2.920e-1	1.337e-2	3.339e-2	3.321e-2	2.775e-2	6.482e-2	5.512e-2
	HMC $_{\parallel}$	160	78.41 \pm 2.39	1.273e+0	5.799e-1	3.026e-1	3.247e-1	3.173e-1	2.988e-1	6.626e-1	1.099e+0
0.5	S-SMC $_{\parallel}$	161.0	84.18 \pm 0.64	4.827e-1	2.304e-1	1.556e-2	4.082e-2	4.000e-2	3.234e-2	1.238e-1	6.418e-2
	S-HMC $_{\parallel}$	160	85.26 \pm 1.06	8.234e-1	3.672e-1	2.993e-1	3.704e-1	3.627e-1	3.271e-1	8.832e-1	8.030e-1
0.25	S-SMC $_{\parallel}$	166.6	90.35 \pm 0.26	3.300e-1	1.441e-1	2.257e-2	1.094e-1	1.146e-1	7.791e-2	3.888e-1	1.996e-1
	$P = 8$	161.5	93.00 \pm 0.11	2.366e-1	1.096e-1	8.828e-2	3.717e-1	2.984e-1	2.089e-1	7.488e-1	4.585e-1
	S-HMC $_{\parallel}$	160	92.79 \pm 0.19	2.571e-1	1.156e-1	1.133e-1	4.232e-1	4.985e-1	3.225e-1	1.289e+0	6.280e-1
	$P = 8$	160	93.15 \pm 0.05	2.490e-1	1.127e-1	1.384e-1	4.788e-1	5.572e-1	3.678e-1	1.349e+0	7.311e-1
0.1	S-SMC $_{\parallel}$	170.0	92.17 \pm 0.37	2.671e-1	1.186e-1	2.642e-2	1.288e-1	1.384e-1	9.406e-2	3.943e-1	1.832e-1
	$P = 8$	178.0	93.26 \pm 0.16	2.259e-1	1.025e-1	5.871e-2	2.725e-1	2.440e-1	1.637e-1	7.238e-1	3.823e-1
	S-HMC $_{\parallel}$	160	92.96 \pm 0.17	2.326e-1	1.071e-1	5.624e-2	2.645e-1	3.072e-1	1.941e-1	9.304e-1	4.216e-1
	$P = 8$	160	93.12 \pm 0.08	2.310e-1	1.072e-1	6.982e-2	2.993e-1	3.524e-1	2.258e-1	1.067e+0	4.780e-1
0.01	S-SMC $_{\parallel}$	183.6	92.57 \pm 0.37	2.439e-1	1.121e-1	1.149e-2	5.904e-2	6.445e-2	4.602e-2	2.187e-1	1.008e-1
	S-HMC $_{\parallel}$	162	92.95 \pm 0.10	2.289e-1	1.069e-1	1.912e-2	1.015e-1	1.238e-1	7.814e-2	4.678e-1	1.945e-1
0	MAP	160.2	92.32 \pm 0.37	2.527e-1	1.163e-1	0	0	0	0	0	0
	DE (N)	176.5	92.40 \pm 0.15	2.455e-1	1.148e-1	1.059e-2	5.646e-2	7.433e-2	3.468e-2	2.690e-1	1.1056e-1
	DE ($8N$)	178.38	92.54 \pm 0.06	2.393e-1	1.124e-1	1.111e-2	5.980e-2	7.846e-2	4.016e-2	2.935e-1	1.188e-1
s		Method		H_{tot}							
				ID		OD					
				cor.	inc.	8	9	wn	per.		
1	HMC (GS)	2.621e-1	9.652e-1	1.110e+0	8.198e-1	1.492e+0	1.081e+0				
	HMC (GS)	2.852e-1	1.033e+0	1.204e+0	9.322e-1	1.915e+0	1.296e+0				
	HMC (GS)	2.948e-1	1.057e+0	1.223e+0	9.532e-1	2.012e+0	1.384e+0				
1	SMC $_{\parallel}$	5.506e-1	1.078e+0	1.138e+0	9.851e-1	6.426e-1	9.171e-1				
	HMC $_{\parallel}$	1.854e+0	1.962e+0	1.988e+0	1.927e+0	1.965e+0	1.844e+0				
0.5	S-SMC $_{\parallel}$	4.363e-1	1.019e+0	1.127e+0	9.294e-1	8.128e-1	8.712e-1				
	S-HMC $_{\parallel}$	1.427e+0	1.752e+0	1.837e+0	1.667e+0	1.857e+0	1.694e+0				
0.25	S-SMC $_{\parallel}$	1.508e-1	6.679e-1	8.384e-1	5.945e-1	8.495e-1	7.445e-1				
	$P = 8$	1.247e-1	6.641e-1	1.000e+0	7.354e-1	1.177e+0	9.931e-1				
	S-HMC $_{\parallel}$	3.149e-1	1.026e+0	1.220e+0	8.606e-1	1.624e+0	1.019e+0				
	$P = 8$	3.456e-1	1.070e+0	1.267e+0	9.025e-1	1.714e+0	1.111e+0				
0.1	S-SMC $_{\parallel}$	1.536e-1	7.042e-1	8.975e-1	6.591e-1	9.743e-1	8.001e-1				
	$P = 8$	1.374e-1	7.075e-1	1.001e+0	7.307e-1	1.216e+0	9.805e-1				
	S-HMC $_{\parallel}$	2.343e-1	9.132e-1	1.091e+0	7.567e-1	1.452e+0	8.443e-1				
	$P = 8$	2.553e-1	9.380e-1	1.127e+0	7.893e-1	1.543e+0	8.937e-1				
0.01	S-SMC $_{\parallel}$	1.737e-1	7.571e-1	9.632e-1	6.607e-1	9.254e-1	8.511e-1				
	S-HMC $_{\parallel}$	1.995e-1	8.232e-1	1.003e+0	6.991e-1	1.234e+0	6.726e-1				
0	MAP	1.833e-1	7.645e-1	9.507e-1	6.157e-1	7.682e-1	7.839e-1				
	DE (N)	1.919e-1	7.899e-1	9.821e-1	6.393e-1	9.806e-1	8.112e-1				
	DE ($8N$)	1.938e-1	7.988e-1	1.001e+0	6.532e-1	1.067e+0	8.133e-1				

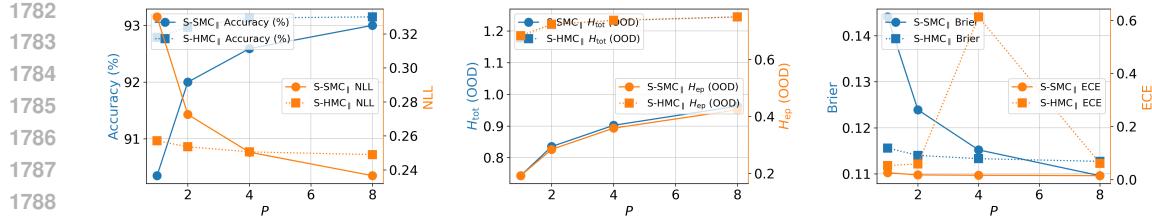


Figure 22: Comparison of S-SMC_{||} (P chains with N = 10) and S-HMC_{||} (NP chains), with fixed number of leapfrog L = 1, B = 160, M = 7, v = 0.1 and s = 0.25, on MNIST7 (5 realizations).

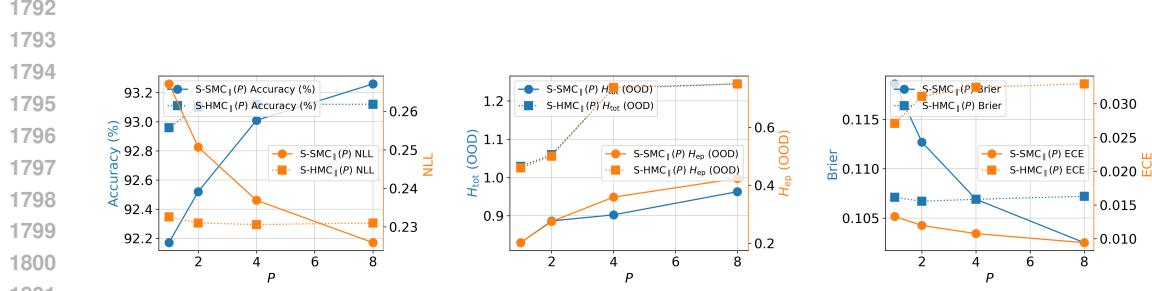


Figure 23: Comparison of S-SMC_{||} (P chains with N = 10) and S-HMC_{||} (NP chains), with fixed number of leapfrog L = 1, B = 160, M = 10, v = 0.1, and s = 0.1, on MNIST7 (5 realizations).

H.2 IMDB

The experiments in this section are tested on the IMDb dataset with the model setting stated in Appendix D.3.2.

Experiment with (v = $\frac{1}{40}$). Summary metrics of IMDb dataset with $v = 0.025$ and $s = 0.1$ is shown in the left spider-plot in Figure 3. Table 18 shows the performance as the tuning parameter s varies. Figure 24 shows the trend for the SBMC methods as P increases, where the full data can be found in Table 26.

Table 18: Comparison of S-SMC_{||} (N = 10), S-HMC_{||} (N chains), DE (N models) and MAP, with fixed number of leapfrog L = 1, B = 25, M = 1 and v = 0.025, on IMDb (5 realizations and \pm s.e. in accuracy).

s	Method	Ep.	Acc.	NLL	H _{ep}								
					ID				OD				
					cor.	inc.	reviews	meta	lipsum	full reviews	full meta		
0.1	S-SMC P = 8	18.60	86.70 \pm 0.03	3.655e-1	1.122e-4	1.664e-4	1.792e-4	2.200e-4	1.749e-4	3.285e-4	3.212e-4		
		19.15	86.69 \pm 0.01	3.653e-1	2.531e-4	3.697e-4	4.744e-4	4.971e-4	4.862e-4	5.876e-4	6.105e-4		
	S-HMC P = 8	25	86.70 \pm 0.01	3.634e-1	2.418e-4	3.565e-4	4.598e-4	4.633e-4	4.260e-4	5.057e-4	5.410e-4		
		25	86.72 \pm 0.00	3.633e-1	2.766e-4	4.022e-4	5.694e-4	6.062e-4	5.637e-4	7.438e-4	7.051e-4		
0	MAP	25.00	84.47 \pm 0.09	3.911e-1	0	0	0	0	0	0	0		
	DE (N)	25.86	84.76 \pm 0.08	3.888e-1	1.005e-04	1.366e-04	5.064e-5	5.026e-5	4.909e-5	6.302e-5	5.548e-5		
H _{tot}													
s	Method	Brier	ECE	ID				OD					
				cor.	inc.	reviews	meta	lipsum	full reviews	full meta			
				1.093e-1	3.699e-1	4.792e-1	6.357e-1	5.251e-1	5.463e-1	5.142e-1	6.457e-1	6.261e-1	
0.1	S-SMC P = 8	1.092e-1	3.698e-1	4.788e-1	6.355e-1	5.213e-1	5.406e-1	5.115e-1	6.430e-1	6.236e-1			
		1.086e-1	3.694e-1	4.750e-1	6.340e-1	5.165e-1	5.331e-1	5.079e-1	6.400e-1	6.186e-1			
0	MAP	1.204e-1	4.389e-1	4.800e-1	6.306e-1	5.814e-1	6.117e-1	5.894e-1	6.705e-1	6.658e-1			
	DE (N)	1.193e-1	4.340e-1	4.819e-1	6.319e-1	5.793e-1	6.098e-1	5.882e-1	6.702e-1	6.649e-1			

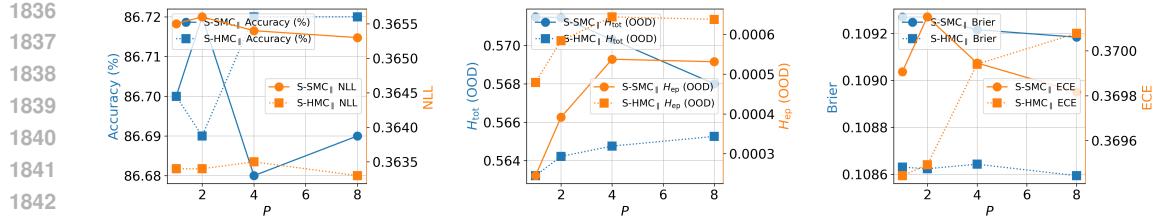


Figure 24: Comparison of S-SMC_{||} (P chains with $N = 10$) and S-HMC_{||} (NP chains), with fixed $L = 1$, $B = 25$, $M = 1$, $v = 0.025$, $s = 0.1$, on IMDb (5 realizations)

Experiments with $v = 1$. Summary metrics of IMDb dataset with $v = 15$ and $s = 0.35$ are shown in the spider-plot in Figure 25. Table 19 shows the performance as the tuning parameter s vary. Figure 26, 27 and 28 give the full convergence of SBMC_{||} with increasing P . The corresponding full data results are given in the Table 27, 28 and 29.

Table 19: Comparison of different s of S-SMC_{||} ($N = 10$) and S-HMC_{||} (N chains), with fixed number of leapfrog $L = 1$ and $v = 1$, on IMDb (5 realizations and \pm s.e. in accuracy).

s	Method	Ep.	Acc.	NLL	H _{ep}								
					ID		OD						
					cor.	inc.	reviews	meta	lipsum	full reviews	full meta		
0.35	S-SMC $P = 8$	27.40	88.27 \pm 0.07	2.803e-1	6.177e-4	1.460e-3	1.581e-3	2.495e-3	2.187e-3	2.279e-3	2.504e-3		
		27.63	88.88 \pm 0.03	2.714e-1	9.342e-3	2.164e-2	3.756e-2	5.515e-2	5.260e-2	6.049e-2	6.435e-2		
	S-HMC $P = 8$	26	88.81 \pm 0.01	2.750e-1	1.565e-3	3.463e-2	5.414e-2	7.021e-2	6.872e-2	8.407e-2	7.930e-2		
		26	88.93 \pm 0.02	2.737e-1	1.662e-2	3.651e-2	5.315e-2	7.391e-2	6.917e-2	9.098e-2	8.360e-2		
0.25	S-SMC $P = 8$	29.6	88.27 \pm 0.10	2.807e-1	2.512e-4	6.069e-4	4.733e-4	7.166e-4	8.590e-4	9.313e-4	9.520e-4		
		28.5	88.87 \pm 0.03	2.720e-1	8.124e-3	1.872e-2	3.066e-2	5.057e-2	4.691e-2	6.403e-2	5.777e-2		
	S-HMC $P = 8$	26	88.83 \pm 0.02	2.745e-1	1.269e-2	2.830e-2	4.522e-2	5.927e-2	5.886e-2	7.342e-2	6.803e-2		
		26	88.92 \pm 0.02	2.734e-1	1.337e-2	2.964e-2	4.442e-2	6.215e-2	5.863e-2	7.869e-2	7.108e-2		
0.1	S-SMC $P = 8$	24	88.54 \pm 0.11	2.762e-1	1.820e-4	4.315e-4	4.819e-4	5.915e-4	6.766e-4	7.711e-4	6.500e-4		
		23.7	88.92 \pm 0.01	2.711e-1	4.207e-3	9.768e-3	2.182e-2	3.140e-2	2.700e-2	3.352e-2	3.540e-2		
	S-HMC $P = 8$	26	88.86 \pm 0.02	2.726e-1	5.753e-3	1.319e-2	2.712e-2	3.551e-2	3.561e-2	5.110e-2	4.289e-2		
		26	88.93 \pm 0.01	2.721e-1	6.065e-3	1.386e-2	2.792e-2	3.888e-2	3.653e-2	5.408e-2	4.638e-2		
0	MAP	52	87.97 \pm 0.04	2.854e-1	—	0	0	0	0	0	0		
	DE (N)	26.52	87.75 \pm 0.02	2.921e-1	3.144e-3	7.055e-3	4.514e-2	5.054e-2	5.386e-2	7.963e-2	5.318e-2		
	DE ($8N$)	25.86	87.70 \pm 0.01	2.925e-1	3.469e-3	7.608e-3	4.394e-2	5.622e-2	5.089e-2	7.435e-2	6.198e-2		
s	Method	Brier	ECE	H _{tot}									
				ID		OD							
				cor.	inc.	reviews	meta	lipsum	full reviews	full meta			
0.35	S-SMC $P = 8$	8.547e-2	3.832e-1	2.643e-1	5.482e-1	3.802e-1	5.116e-1	5.172e-1	5.581e-1	5.286e-1			
		8.206e-2	3.899e-1	2.744e-1	5.596e-1	3.987e-1	5.555e-1	5.304e-1	6.025e-1	5.920e-1			
	S-HMC $P = 8$	8.298e-2	3.889e-1	2.890e-1	5.681e-1	4.289e-1	5.583e-1	5.556e-1	6.133e-1	6.120e-1			
		8.254e-2	3.904e-1	2.893e-1	5.683e-1	4.188e-1	5.626e-1	5.386e-1	6.156e-1	6.088e-1			
0.25	S-SMC $P = 8$	8.548e-2	3.825e-1	2.673e-1	5.500e-1	3.562e-1	4.872e-1	4.727e-1	5.548e-1	5.609e-1			
		8.220e-2	3.901e-1	2.772e-1	5.609e-1	3.891e-1	5.447e-1	5.340e-1	6.036e-1	5.874e-1			
	S-HMC $P = 8$	8.286e-2	3.896e-1	2.873e-1	5.667e-1	4.239e-1	5.585e-1	5.533e-1	6.117e-1	6.076e-1			
		8.249e-2	3.904e-1	2.871e-1	5.665e-1	4.138e-1	5.595e-1	5.338e-1	6.135e-1	6.047e-1			
0.1	S-SMC $P = 8$	8.387e-2	3.869e-1	2.721e-1	5.544e-1	3.970e-1	5.202e-1	5.063e-1	5.686e-1	5.684e-1			
		8.190e-2	3.906e-1	2.752e-1	5.588e-1	3.920e-1	5.407e-1	5.143e-1	5.959e-1	5.865e-1			
	S-HMC $P = 8$	8.232e-2	3.898e-1	2.802e-1	5.618e-1	4.088e-1	5.505e-1	5.384e-1	6.066e-1	5.975e-1			
		8.217e-2	3.906e-1	2.801e-1	5.613e-1	4.028e-1	5.510e-1	5.231e-1	6.081e-1	5.961e-1			
0	MAP	8.714e-2	4.350e-1	2.721e-1	5.531e-1	4.071e-1	5.598e-1	5.462e-1	5.695e-1	5.561e-1			
	DE (N)	8.928e-2	4.343e-1	2.850e-1	5.580e-1	4.497e-1	5.808e-1	5.609e-1	6.185e-1	6.032e-1			
	DE ($8N$)	8.941e-2	4.354e-1	2.859e-1	5.588e-1	4.533e-1	5.888e-1	5.708e-1	6.187e-1	6.068e-1			

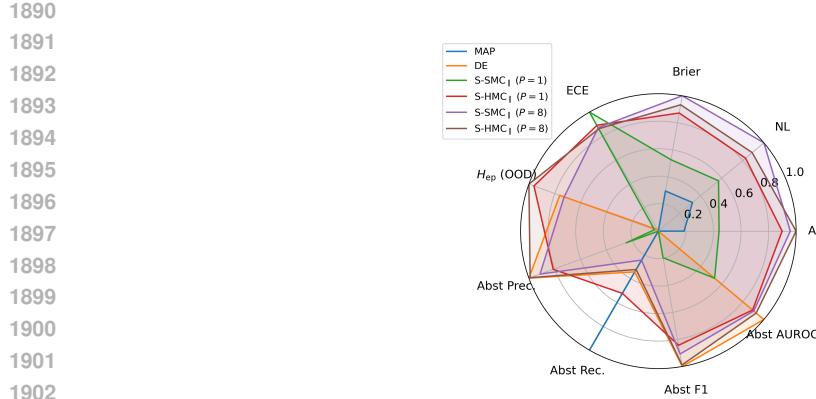


Figure 25: Summary metrics for IMDb in all methods. $S\text{-SMC}_{\parallel}$ ($P = 1$ chain with $N = 10$), $S\text{-HMC}_{\parallel}$ (NP chains), DE (N models) and MAP, with fixed number of leapfrog $L = 1$, $B = 26$, $M = 2$, $v = 1$ and $s = 0.35$ (5 realizations).

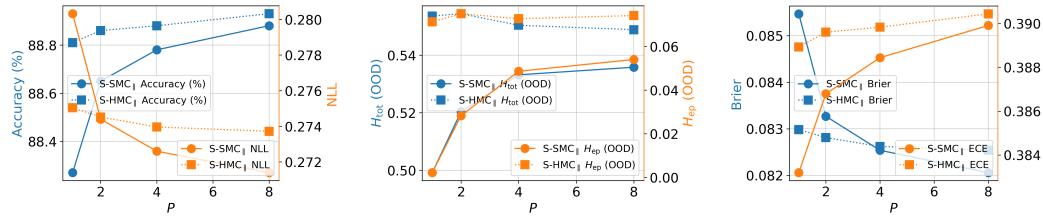


Figure 26: Comparison of $S\text{-SMC}_{\parallel}$ (P chains with $N = 10$) and $S\text{-HMC}_{\parallel}$ (NP chains), with fixed number of leapfrog $L = 1$, $B = 26$, $M = 1$, $v = 1$ and $s = 0.35$, on IMDb (5 realizations and \pm s.e. in accuracy).

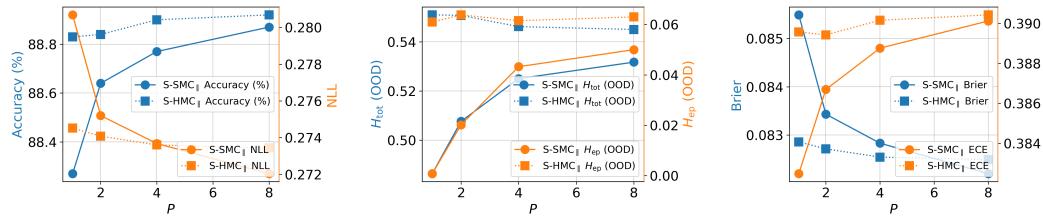


Figure 27: Comparison of $S\text{-SMC}_{\parallel}$ (P chains with $N = 10$) and $S\text{-HMC}_{\parallel}$ (NP chains), with fixed number of leapfrog $L = 1$, $B = 26$, $M = 2$, $v = 1$ and $s = 0.25$, on IMDb (5 realizations and \pm s.e. in accuracy).

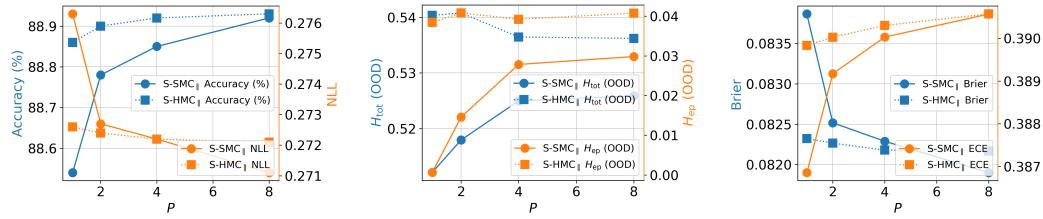


Figure 28: Comparison of $S\text{-SMC}_{\parallel}$ (P chains with $N = 10$) and $S\text{-HMC}_{\parallel}$ (NP chains), with fixed number of leapfrog $L = 1$, $B = 26$, $M = 2$, $v = 1$ and $s = 0.1$, on IMDb (5 realizations).

1944
1945

H.3 CIFAR10

1946
1947
1948

Experiments in this section are tested on the CIFAR10 dataset with the model setting stated in Appendix D.3.3.

1949
1950
1951

The summary metrics on CIFAR10 are shown in a spider-plot in Figure 3. Table 20 shows the performance as the tuning parameter s vary. Figure 29, 30 and 31 give the full convergence of $\text{S-}\text{SMC}_{\parallel}$ with increasing P . The corresponding full data results are given in Table 30, 31 and 32.

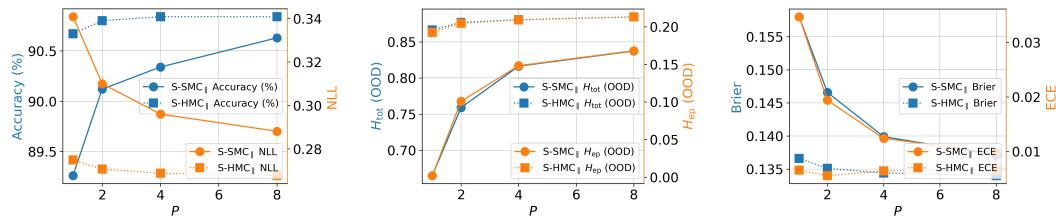
1952
19531954
1955
1956
1957
1958
1959
1960

Figure 29: Comparison of S-SMC_{||} (P chains with $N = 10$) and S-HMC_{||} (NP chains), with fixed number of leapfrog $L = 1$, $B = 200$, $M = 4$, $v = 0.2$ and $s = 0.05$, on CIFAR10 (5 realizations).

1961
1962
1963

Table 20: Comparison of S-SMC_{||} ($N = 10$), S-HMC_{||} (N chains), DE (N) and MAP, with fixed number of leapfrog $L = 1$, $B = 200$, $M = 4$ and $v = 0.2$, on CIFAR10 (5 realizations and \pm s.e. in accuracy).

1964

1965

1966

1967

s	Method	Ep.	Acc.	NLL	Brier	ECE
0.2	S-SMC	289.6	86.99 ± 0.08	4.710e-1	2.007e-1	6.462e-2
	$P = 8$	289.3	90.30 ± 0.03	3.217e-1	1.445e-1	1.180e-2
	S-HMC	200	90.23 ± 0.08	2.990e-1	1.466e-1	2.518e-2
	$P = 8$	200	90.82 ± 0.03	2.810e-1	1.395e-1	3.481e-2
0.1	S-SMC	229.6	88.26 ± 0.07	3.855e-1	1.770e-1	4.593e-2
	$P = 8$	225.3	90.45 ± 0.06	2.980e-1	1.400e-1	7.737e-3
	S-HMC	200	90.57 ± 0.04	2.823e-1	1.398e-1	1.073e-2
	$P = 8$	200	90.83 ± 0.03	2.701e-1	1.353e-1	1.517e-2
0.05	S-SMC	168.8	89.26 ± 0.07	3.408e-1	1.580e-1	3.470e-2
	$P = 8$	174.3	90.63 ± 0.05	2.881e-1	1.371e-1	9.720e-3
	S-HMC	200	90.67 ± 0.03	2.749e-1	1.366e-1	6.598e-3
	$P = 8$	200	90.84 ± 0.03	2.677e-1	1.340e-1	6.601e-3
0	MAP	200	90.39 ± 0.07	2.913e-1	1.420e-1	2.502e-2
	DE (N)	200	90.81 ± 0.03	2.741e-1	1.355e-1	1.770e-2

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

s	Method	H_{ep}				H_{tot}					
		ID		OOD		ID		OOD			
		cor.	inc.	close	corrupt	far	cor.	inc.	close		
0.2	S-SMC	3.682e-4	1.947e-3	2.063e-3	1.092e-3	1.629e-3	1.136e-1	5.613e-1	5.440e-1	3.630e-1	7.756e-1
	$P = 8$	8.362e-2	3.326e-1	4.244e-1	2.361e-1	4.065e-1	1.071e-1	5.954e-1	9.675e-1	6.080e-1	1.160e+0
	S-HMC	1.159e-1	4.091e-1	5.195e-1	2.993e-1	5.333e-1	2.676e-1	9.231e-1	1.059e+0	6.768e-1	1.297e+0
	$P = 8$	1.405e-1	4.604e-1	6.042e-1	3.476e-1	6.129e-1	2.945e-1	9.687e-1	1.146e+0	7.256e-1	1.364e+0
0.1	S-SMC	2.948e-4	1.507e-3	1.603e-3	8.256e-4	1.450e-3	1.309e-1	6.364e-1	6.121e-1	4.027e-1	9.110e-1
	$P = 8$	5.539e-2	2.369e-1	3.054e-1	1.636e-1	2.937e-1	1.217e-1	6.453e-1	9.184e-1	5.690e-1	1.156e+0
	S-HMC	7.055e-2	2.795e-1	3.591e-1	1.972e-1	3.581e-1	2.241e-1	8.596e-1	9.703e-1	6.102e-1	1.219e+0
	$P = 8$	1.035e-1	3.121e-1	4.095e-1	2.244e-1	4.031e-1	2.367e-1	8.884e-1	1.023e+0	6.371e-1	1.257e+0
0.05	S-SMC	4.258e-4	2.273e-3	2.515e-3	1.297e-3	2.185e-3	1.351e-1	6.620e-1	6.639e-1	4.300e-1	9.008e-1
	$P = 8$	3.507e-2	1.584e-1	2.027e-1	1.058e-1	1.961e-1	1.311e-1	6.684e-1	8.643e-1	5.368e-1	1.111e+0
	S-HMC	4.060e-2	1.804e-1	2.308e-1	1.228e-1	2.243e-1	1.917e-1	8.073e-1	8.900e-1	5.558e-1	1.154e+0
	$P = 8$	4.579e-2	1.966e-1	2.564e-1	1.358e-1	2.472e-1	1.971e-1	8.203e-1	9.173e-1	5.684e-1	1.168e+0
0	MAP	0	0	0	0	0	1.423e-1	7.037e-1	7.258e-1	4.577e-1	1.065e+0
	DE (N)	9.291e-3	4.753e-2	4.861e-2	2.603e-2	3.930e-2	1.541e-1	7.275e-1	7.629e-1	4.786e-1	1.029e+0



Figure 31: Comparison of S-SMC_{||} (P chains with N = 10) and S-HMC_{||} (NP chains), with fixed number of leapfrog L = 1, B = 200, M = 4, v = 0.2 and s = 0.2, on CIFAR10 (5 realizations).

I ALL-INCLUSIVE DATA TABLES

Table 21: Comparison in all domains among S-SMC_{||} (P = 1 chain with N = 10), S-HMC_{||} (NP chains), HMC (GS) (2e4 samples), DE (N models) and MAP, with fixed number of leapfrog L = 1, v = 0.1 and s = 0.1, on MNIST7 (5 realizations and \pm s.e. in entropy).

Group	MAP			DE			S-HMC (s = 0.1)			S-SMC (s = 0.1)			HMC (GS) (s = 1)			
	H _{tot}	H _{tot}	H _{al}	H _{tot}	H _{al}	H _{ep}	H _{tot}	H _{al}	H _{ep}	H _{tot}	H _{al}	H _{ep}	H _{tot}	H _{al}	H _{ep}	
Digit 0	1.276e-1	1.307e-1	1.237e-1	7.076e-3	1.671e-1	1.228e-1	4.427e-2	1.110e-1	8.528e-2	2.574e-2	2.157e-1	1.268e-1	8.893e-2			
Digit 1	1.768e-1	1.840e-1	1.781e-1	5.823e-3	1.889e-1	1.585e-1	3.038e-2	1.408e-1	1.255e-1	1.535e-2	2.124e-1	1.621e-1	5.025e-2			
Digit 2	2.294e-1	2.266e-1	2.142e-1	1.236e-2	2.980e-1	2.168e-1	8.122e-2	2.090e-1	1.679e-1	4.118e-2	3.410e-1	1.988e-1	1.423e-1			
Digit 3	3.168e-1	3.493e-1	3.222e-1	2.711e-2	3.883e-1	2.896e-1	9.873e-2	2.686e-1	2.245e-1	4.404e-2	4.229e-1	2.616e-1	1.613e-1			
Digit 4	2.158e-1	2.221e-1	2.103e-1	1.182e-2	2.753e-1	2.095e-1	6.583e-2	1.981e-1	1.654e-1	3.272e-2	2.925e-1	1.847e-1	1.078e-1			
Digit 5	3.993e-1	4.058e-1	3.787e-1	2.712e-2	4.395e-1	3.224e-1	1.171e-1	3.056e-1	2.520e-1	5.366e-2	4.428e-1	2.655e-1	1.773e-1			
Digit 6	1.856e-1	2.045e-1	1.927e-1	1.180e-2	2.836e-1	2.047e-1	7.891e-2	1.856e-1	1.495e-1	3.605e-2	2.968e-1	1.785e-1	1.182e-1			
Digit 7	1.897e-1	1.957e-1	1.859e-1	9.730e-3	2.403e-1	1.802e-1	6.008e-2	1.693e-1	1.396e-1	2.967e-2	2.528e-1	1.569e-1	9.589e-2			
Digit 8	9.507e-1	9.821e-1	9.078e-1	7.433e-2	1.091e+0	7.836e-1	3.072e-1	8.975e-1	7.591e-1	1.384e-1	1.121e+0	6.333e-1	4.873e-1			
Digit 9	6.157e-1	6.393e-1	6.046e-1	3.468e-2	7.567e-1	5.626e-1	1.941e-1	6.591e-1	5.651e-1	9.406e-2	9.210e-1	5.554e-1	3.657e-1			
Perturbed	7.528e-1	8.112e-1	7.006e-1	1.106e-1	8.443e-1	4.227e-1	4.216e-1	8.001e-1	6.169e-1	1.832e-1	1.228e+0	2.819e-1	9.466e-1			
White Noise	7.703e-1	9.806e-1	7.117e-1	2.690e-1	1.453e+0	5.221e-1	9.304e-1	9.744e-1	5.800e-1	3.944e-1	1.398e+0	3.444e-1	1.053e+0			
All ID	2.301e-1	2.398e-1	2.069e-1	3.291e-2	2.821e-1	2.111e-1	7.090e-2	1.966e-1	1.623e-1	3.429e-2	1.021e+0	5.943e-1	4.265e-1			

Table 22: Comparison in all domains among S-SMC $_{\parallel}$ ($P = 1$ chain with $N = 10$), S-HMC $_{\parallel}$ (NP chains), DE (N models) and MAP, with fixed number of leapfrog $L = 1$, $B = 25$, $M = 1$, $v = 0.025$ and $s = 0.1$, on IMDb (5 realizations).

Group	MAP		DE				S-HMC $_{\parallel}$			S-SMC $_{\parallel}$		
	H_{tot}	H_{tot}	H_{al}	H_{ep}	H_{tot}	H_{al}	H_{ep}	H_{tot}	H_{al}	H_{ep}		
Negative	4.352e-1	4.407e-1	4.406e-1	9.314e-5	4.892e-1	4.889e-1	2.482e-4	4.929e-1	4.927e-1	1.148e-4		
Positive	5.716e-1	5.688e-1	5.687e-1	1.188e-4	5.031e-1	5.029e-1	2.659e-4	5.072e-1	5.071e-1	1.240e-4		
Meta	6.117e-1	6.098e-1	6.097e-1	5.026e-5	5.331e-1	5.326e-1	4.633e-4	5.463e-1	5.461e-1	2.200e-4		
Full Meta	6.658e-1	6.649e-1	6.649e-1	5.548e-5	6.185e-1	6.180e-1	5.410e-4	6.260e-1	6.257e-1	3.212e-4		
Reviews	5.814e-1	5.793e-1	5.793e-1	5.064e-5	5.165e-1	5.160e-1	4.598e-4	5.251e-1	5.249e-1	1.792e-4		
Full reviews	6.705e-1	6.702e-1	6.701e-1	6.302e-5	6.400e-1	6.395e-1	5.057e-4	6.457e-1	6.454e-1	3.285e-4		
Lipsum	5.894e-1	5.882e-1	5.881e-1	4.909e-5	5.079e-1	5.074e-1	4.260e-4	5.142e-1	5.140e-1	1.749e-4		
All ID	5.034e-1	5.048e-1	5.046e-1	1.060e-4	4.962e-1	4.959e-1	2.570e-4	5.000e-1	4.999e-1	1.194e-4		

Table 23: Comparison in all domains among S-SMC $_{\parallel}$ ($P = 8$ chain with $N = 10$), S-HMC $_{\parallel}$ (NP chains), DE (N models) and MAP, with fixed number of leapfrog $L = 1$, $B = 26$, $M = 2$, $v = 1$ and $s = 0.35$, on IMDb (5 realizations).

Group	MAP		DE				S-HMC $_{\parallel}$			S-SMC $_{\parallel}$		
	H_{tot}	H_{tot}	H_{al}	H_{ep}	H_{tot}	H_{al}	H_{ep}	H_{tot}	H_{al}	H_{ep}		
Negative	2.489e-1	2.494e-1	2.483e-1	1.033e-3	3.107e-1	2.928e-1	1.794e-2	2.962e-1	2.860e-1	1.016e-2		
Positive	3.629e-1	3.675e-1	3.659e-1	1.631e-3	3.296e-1	3.099e-1	1.971e-2	3.160e-1	3.048e-1	1.126e-2		
Meta	5.598e-1	5.767e-1	5.507e-1	2.594e-2	5.626e-1	4.887e-1	7.391e-2	5.555e-1	5.004e-1	5.514e-2		
Full Meta	5.561e-1	5.737e-1	5.469e-1	2.683e-2	6.088e-1	5.251e-1	8.360e-2	5.920e-1	5.277e-1	6.435e-2		
Reviews	4.071e-1	4.251e-1	4.030e-1	2.212e-2	4.188e-1	3.657e-1	5.315e-2	3.987e-1	3.611e-1	3.756e-2		
Full reviews	5.695e-1	6.007e-1	5.574e-1	4.331e-2	6.156e-1	5.246e-1	9.098e-2	6.025e-1	5.420e-1	6.049e-2		
Lipsum	5.462e-1	5.556e-1	5.283e-1	2.733e-2	5.386e-1	4.695e-1	6.917e-2	5.304e-1	4.778e-1	5.260e-2		
All ID	3.059e-1	3.084e-1	3.071e-1	1.332e-3	3.202e-1	3.013e-1	1.883e-2	3.061e-1	2.954e-1	1.071e-2		

Table 26: Comparison of S-SMC $_{\parallel}$ (P chains with $N = 10$) and S-HMC $_{\parallel}$ (NP chains), with fixed $L = 1$, $B = 25$, $M = 1$, $v = 0.025$, $s = 0.1$, on IMDb (5 realizations and \pm s.e. in accuracy).

P	Method	Ep.	Acc.	NLL	H_{ep}							
					ID				OOD			
					cor.	inc.	reviews	meta	lipsum	full reviews	full meta	
1	S-SMC $_{\parallel}$	18.60	86.70 \pm 0.03	3.655e-1	1.122e-4	1.664e-4	1.792e-4	2.200e-4	1.749e-4	3.285e-4	3.212e-4	
	S-HMC $_{\parallel}$	25	86.70 \pm 0.01	3.634e-1	2.418e-4	3.565e-4	4.598e-4	4.633e-4	4.260e-4	5.057e-4	5.410e-4	
2	S-SMC $_{\parallel}$	18.70	86.72 \pm 0.03	3.656e-1	1.936e-4	2.798e-4	3.061e-4	3.358e-4	4.211e-4	4.491e-4	4.465e-4	
	S-HMC $_{\parallel}$	25	86.69 \pm 0.01	3.634e-1	2.697e-4	3.955e-4	5.604e-4	5.852e-4	4.916e-4	6.022e-4	6.819e-4	
4	S-SMC $_{\parallel}$	19.10	86.68 \pm 0.02	3.654e-1	2.370e-4	3.452e-4	4.433e-4	4.874e-4	5.515e-4	5.848e-4	6.201e-4	
	S-HMC $_{\parallel}$	25	86.72 \pm 0.01	3.635e-1	2.776e-4	4.042e-4	5.940e-4	6.264e-4	5.629e-4	7.074e-4	7.288e-4	
8	S-SMC $_{\parallel}$	19.15	86.69 \pm 0.01	3.653e-1	2.531e-4	3.697e-4	4.744e-4	4.971e-4	4.862e-4	5.876e-4	6.105e-4	
	S-HMC $_{\parallel}$	25	86.72 \pm 0.00	3.633e-1	2.766e-4	4.022e-4	5.694e-4	6.062e-4	5.637e-4	7.438e-4	7.051e-4	
P	Method	Brier	ECE	H_{tot}								
				ID				OOD				
				cor.	inc.	reviews	meta	lipsum	full reviews	full meta		
1	S-SMC $_{\parallel}$	1.093e-1	3.699e-1	4.792e-1	6.357e-1	5.251e-1	5.463e-1	5.142e-1	6.457e-1	6.261e-1		
	S-HMC $_{\parallel}$	1.086e-1	3.694e-1	4.750e-1	6.340e-1	5.165e-1	5.331e-1	5.079e-1	6.400e-1	6.186e-1		
2	S-SMC $_{\parallel}$	1.093e-1	3.702e-1	4.793e-1	6.356e-1	5.243e-1	5.466e-1	5.131e-1	6.462e-1	6.270e-1		
	S-HMC $_{\parallel}$	1.086e-1	3.695e-1	4.752e-1	6.342e-1	5.172e-1	5.342e-1	5.092e-1	6.409e-1	6.196e-1		
4	S-SMC $_{\parallel}$	1.092e-1	3.699e-1	4.787e-1	6.355e-1	5.230e-1	5.440e-1	5.127e-1	6.459e-1	6.259e-1		
	S-HMC $_{\parallel}$	1.086e-1	3.699e-1	4.754e-1	6.342e-1	5.180e-1	5.351e-1	5.085e-1	6.419e-1	6.203e-1		
8	S-SMC $_{\parallel}$	1.092e-1	3.698e-1	4.788e-1	6.355e-1	5.213e-1	5.406e-1	5.115e-1	6.430e-1	6.236e-1		
	S-HMC $_{\parallel}$	1.086e-1	3.701e-1	4.752e-1	6.341e-1	5.184e-1	5.359e-1	5.085e-1	6.426e-1	6.209e-1		

2106

2107

2108 Table 24: Comparison of S-SMC_{||} (P chains with $N = 10$) and S-HMC_{||} (NP chains), with fixed
2109 number of leapfrog $L = 1$, $B = 160$, $M = 7$, $v = 0.1$ and $s = 0.25$, on MNIST7 (5 realizations and
2110 \pm s.e. in accuracy).

2111

P	Method	Ep.	Acc.	NLL	Brier
1	S-SMC	166.6	90.35 \pm 0.26	3.300e-1	1.441e-1
1	S-HMC	160	92.79 \pm 0.19	2.571e-1	1.156e-1
2	S-SMC	160.3	92.00 \pm 0.24	2.726e-1	1.239e-1
2	S-HMC	160	92.97 \pm 0.14	2.536e-1	1.140e-1
4	S-SMC	164.5	92.59 \pm 0.15	2.504e-1	1.152e-1
4	S-HMC	160	93.13 \pm 0.07	2.506e-1	1.133e-1
8	S-SMC	161.5	93.00 \pm 0.11	2.366e-1	1.096e-1
8	S-HMC	160	93.15 \pm 0.05	2.490e-1	1.127e-1
HMC (GS)		2e4	92.87 \pm 0.48	2.376e-1	1.079e-1

P	Method	H_{ep}				H_{tot}							
		ID		OOD		ID		OOD					
		cor.	inc.	8	9	wn	per.	cor.	inc.	8	9	wn	per.
1	S-SMC	2.257e-2	1.094e-1	1.146e-1	7.791e-2	3.847e-1	1.914e-1	1.508e-1	6.679e-1	8.384e-1	5.945e-1	8.290e-1	7.110e-1
	S-HMC	1.133e-1	4.232e-1	4.985e-1	3.225e-1	1.281e+0	6.314e-1	3.149e-1	1.026e+0	1.220e+0	8.606e-1	1.614e+0	1.019e+0
2	S-SMC	5.445e-2	2.442e-1	1.975e-1	1.402e-1	5.073e-1	2.923e-1	1.371e-1	6.768e-1	9.108e-1	6.629e-1	9.559e-1	8.111e-1
	HMC	1.298e-1	4.568e-1	5.380e-1	3.638e-1	1.321e+0	6.720e-1	3.358e-1	1.050e+0	1.250e+0	8.975e-1	1.680e+0	1.050e+0
4	S-SMC	7.492e-2	3.240e-1	2.544e-1	1.797e-1	6.264e-1	3.749e-1	1.287e-1	6.669e-1	9.591e-1	7.064e-1	1.051e+0	8.923e-1
	HMC	1.356e-1	4.718e-1	5.508e-1	3.634e-1	1.327e+0	7.084e-1	3.443e-1	1.065e+0	1.261e+0	9.031e-1	1.689e+0	1.078e+0
8	S-SMC	8.828e-2	3.717e-1	2.984e-1	2.089e-1	7.384e-1	4.475e-1	1.247e-1	6.641e-1	1.001e+0	7.354e-1	1.152e+0	9.627e-1
	S-HMC	1.384e-1	4.788e-1	5.572e-1	3.678e-1	1.349e+0	7.235e-1	3.456e-1	1.070e+0	1.267e+0	9.025e-1	1.715e+0	1.094e+0
HMC (GS)		7.199e-2	3.432e-1	3.887e-1	2.748e-1	1.169e+0	5.579e-1	2.045e-1	8.566e-1	9.984e-1	7.425e-1	1.574e+0	8.725e-1

2131

2132

2133

2134

2135

2136 Table 25: Comparison of S-SMC_{||} (P chains with $N = 10$) and S-HMC_{||} (NP chains), with fixed
2137 number of leapfrog $L = 1$, $B = 160$, $M = 10$, $v = 0.1$ and $s = 0.1$, on MNIST7 (5 realizations and
2138 \pm s.e. in accuracy).

2139

P	Method	Ep.	Acc.	NLL	Brier
1	S-SMC	170.0	92.17 \pm 0.37	2.671e-1	1.186e-1
1	S-HMC	160	92.96 \pm 0.17	2.326e-1	1.071e-1
2	S-SMC	179.0	92.52 \pm 0.30	2.507e-1	1.127e-1
2	S-HMC	160	93.10 \pm 0.12	2.310e-1	1.067e-1
4	S-SMC	180.5	93.01 \pm 0.29	2.369e-1	1.069e-1
4	HMC	160	93.12 \pm 0.09	2.306e-1	1.069e-1
8	S-SMC	178.0	93.26 \pm 0.16	2.259e-1	1.025e-1
8	S-HMC	160	93.12 \pm 0.09	2.310e-1	1.072e-1
HMC (GS)		2e4	92.92 \pm 0.41	2.366e-1	1.084e-1

2149

P	Method	H_{ep}				H_{tot}							
		ID		OOD		ID		OOD					
		cor.	inc.	8	9	wn	per.	cor.	inc.	8	9	wn	per.
1	S-SMC	2.642e-2	1.288e-1	1.384e-1	9.406e-2	3.972e-1	1.776e-1	1.536e-1	7.042e-1	8.975e-1	6.591e-1	9.753e-1	7.859e-1
	S-HMC	5.624e-2	2.645e-1	3.072e-1	1.941e-1	9.259e-1	4.100e-1	2.343e-1	9.132e-1	1.091e+0	7.567e-1	1.443e+0	8.248e-1
2	S-SMC	4.233e-2	2.042e-1	1.836e-1	1.227e-1	5.306e-1	2.620e-1	1.449e-1	7.053e-1	9.422e-1	6.870e-1	1.058e+0	8.577e-1
	S-HMC	6.494e-2	2.844e-1	3.395e-1	2.198e-1	9.977e-1	4.432e-1	2.472e-1	9.223e-1	1.112e+0	7.769e-1	1.506e+0	8.436e-1
4	S-SMC	5.315e-2	2.471e-1	2.200e-1	1.465e-1	6.363e-1	3.288e-1	1.403e-1	7.019e-1	9.791e-1	7.130e-1	1.126e+0	9.159e-1
	S-HMC	6.733e-2	2.924e-1	3.479e-1	2.179e-1	1.010e+0	4.740e-1	2.520e-1	9.300e-1	1.119e+0	7.823e-1	1.493e+0	8.866e-1
8	S-SMC	5.872e-2	2.725e-1	2.440e-1	1.637e-1	7.309e-1	3.750e-1	1.374e-1	7.075e-1	1.001e+0	7.307e-1	1.220e+0	9.649e-1
	S-HMC	6.982e-2	2.993e-1	3.524e-1	2.258e-1	1.066e+0	4.817e-1	2.553e-1	9.380e-1	1.127e+0	7.893e-1	1.539e+0	8.946e-1
HMC (GS)		5.034e-2	2.417e-1	2.713e-1	1.900e-1	9.303e-1	3.683e-1	2.076e-1	8.477e-1	1.001e+0	7.264e-1	1.430e+0	7.518e-1

2159

2160
2161 Table 27: Comparison of S-SMC $_{\parallel}$ (P chains with $N = 10$) and S-HMC $_{\parallel}$ (NP chains), with fixed
2162 number of leapfrog $L = 1$, $B = 26$, $M = 1$, $v = 1$ and $s = 0.35$, on IMDb (5 realizations and \pm s.e.
2163 in accuracy).

P	Method	Ep.	Acc.	NLL	H_{ep}						
					ID		OOD				
					cor.	inc.	reviews	meta	lipsum	full reviews	full meta
1	S-SMC $_{\parallel}$	27.40	88.27 \pm 0.07	2.803e-1	6.177e-4	1.460e-3	1.581e-3	2.495e-3	2.187e-3	2.279e-3	2.504e-3
	S-HMC $_{\parallel}$	26.00	88.81 \pm 0.01	2.750e-1	1.565e-2	3.463e-2	5.414e-2	7.021e-2	6.872e-2	8.407e-2	7.930e-2
2	S-SMC $_{\parallel}$	27.70	88.65 \pm 0.04	2.744e-1	5.513e-3	1.323e-2	2.132e-2	3.443e-2	2.751e-2	2.232e-2	3.585e-2
	S-HMC $_{\parallel}$	26.00	88.86 \pm 0.03	2.745e-1	1.620e-2	3.584e-2	5.510e-2	7.622e-2	7.118e-2	8.766e-2	8.490e-2
4	S-SMC $_{\parallel}$	28.55	88.78 \pm 0.03	2.726e-1	8.040e-3	1.881e-2	3.057e-2	4.854e-2	5.097e-2	5.547e-2	5.766e-2
	S-HMC $_{\parallel}$	26.00	88.88 \pm 0.01	2.740e-1	1.640e-2	3.610e-2	5.388e-2	7.488e-2	6.705e-2	8.588e-2	8.184e-2
8	S-SMC $_{\parallel}$	27.63	88.88 \pm 0.03	2.714e-1	9.342e-3	2.164e-2	3.756e-2	5.515e-2	5.260e-2	6.049e-2	6.435e-2
	S-HMC $_{\parallel}$	26.00	88.93 \pm 0.02	2.737e-1	1.662e-2	3.651e-2	5.315e-2	7.391e-2	6.917e-2	9.098e-2	8.360e-2

P	Method	Brier	ECE		H_{tot}						
					ID		OOD				
					cor.	inc.	reviews	meta	lipsum	full reviews	full meta
1	S-SMC $_{\parallel}$	8.547e-2	3.832e-1	2.643e-1	5.482e-1	3.802e-1	5.116e-1	5.172e-1	5.581e-1	5.286e-1	
	S-HMC $_{\parallel}$	8.298e-2	3.889e-1	2.890e-1	5.681e-1	4.289e-1	5.583e-1	5.556e-1	6.133e-1	6.120e-1	
2	S-SMC $_{\parallel}$	8.327e-2	3.868e-1	2.694e-1	5.548e-1	3.937e-1	5.456e-1	5.091e-1	5.790e-1	5.742e-1	
	S-HMC $_{\parallel}$	8.281e-2	3.896e-1	2.891e-1	5.681e-1	4.285e-1	5.684e-1	5.521e-1	6.125e-1	6.107e-1	
4	S-SMC $_{\parallel}$	8.254e-2	3.884e-1	2.720e-1	5.576e-1	3.985e-1	5.601e-1	5.295e-1	5.963e-1	5.815e-1	
	S-HMC $_{\parallel}$	8.262e-2	3.898e-1	2.891e-1	5.684e-1	4.232e-1	5.673e-1	5.377e-1	6.139e-1	6.100e-1	
8	S-SMC $_{\parallel}$	8.206e-2	3.899e-1	2.744e-1	5.596e-1	3.987e-1	5.555e-1	5.304e-1	6.025e-1	5.920e-1	
	S-HMC $_{\parallel}$	8.254e-2	3.904e-1	2.893e-1	5.683e-1	4.188e-1	5.626e-1	5.386e-1	6.156e-1	6.088e-1	

2188 Table 28: Comparison of S-SMC $_{\parallel}$ (P chains with $N = 10$) and S-HMC $_{\parallel}$ (NP chains), with fixed
2189 number of leapfrog $L = 1$, $B = 26$, $M = 2$, $v = 1$ and $s = 0.25$, on IMDb (5 realizations and \pm s.e.
2190 in accuracy).

P	Method	Ep.	Acc.	NLL	H_{ep}						
					ID		OOD				
					cor.	inc.	reviews	meta	lipsum	full reviews	full meta
1	S-SMC $_{\parallel}$	29.6	88.27 \pm 0.10	2.807e-1	2.512e-4	6.069e-4	4.733e-4	7.166e-4	8.590e-4	9.313e-4	9.520e-4
	S-HMC $_{\parallel}$	26	88.83 \pm 0.02	2.745e-1	1.269e-2	2.830e-2	4.522e-2	5.927e-2	5.886e-2	7.342e-2	6.803e-2
2	S-SMC $_{\parallel}$	27.2	88.64 \pm 0.05	2.752e-1	4.948e-3	1.174e-2	1.344e-2	2.120e-2	1.410e-2	2.411e-2	2.792e-2
	S-HMC $_{\parallel}$	26	88.84 \pm 0.03	2.741e-1	1.304e-2	2.918e-2	4.586e-2	6.400e-2	6.096e-2	7.596e-2	7.216e-2
4	S-SMC $_{\parallel}$	28.3	88.77 \pm 0.04	2.737e-1	7.211e-3	1.662e-2	2.329e-2	4.029e-2	4.913e-2	5.544e-2	4.798e-2
	S-HMC $_{\parallel}$	26	88.90 \pm 0.1	2.736e-1	1.321e-2	2.932e-2	4.487e-2	6.264e-2	5.689e-2	7.369e-2	6.930e-2
8	S-SMC $_{\parallel}$	28.5	88.87 \pm 0.03	2.720e-1	8.124e-3	1.872e-2	3.066e-2	5.057e-2	4.691e-2	6.403e-2	5.777e-2
	S-HMC $_{\parallel}$	26	88.92 \pm 0.02	2.734e-1	1.337e-2	2.964e-2	4.442e-2	6.215e-2	5.863e-2	7.869e-2	7.108e-2

P	Method	Brier	ECE		H_{tot}						
					ID		OOD				
					cor.	inc.	reviews	meta	lipsum	full reviews	full meta
1	S-SMC $_{\parallel}$	8.548e-2	3.825e-1	2.673e-1	5.500e-1	3.562e-1	4.872e-1	4.727e-1	5.548e-1	5.609e-1	
	S-HMC $_{\parallel}$	8.286e-2	3.896e-1	2.873e-1	5.667e-1	4.239e-1	5.585e-1	5.533e-1	6.117e-1	6.076e-1	
2	S-SMC $_{\parallel}$	8.343e-2	3.867e-1	2.723e-1	5.560e-1	3.696e-1	5.182e-1	4.861e-1	5.794e-1	5.849e-1	
	S-HMC $_{\parallel}$	8.271e-2	3.894e-1	2.870e-1	5.668e-1	4.228e-1	5.661e-1	5.478e-1	6.112e-1	6.061e-1	
4	S-SMC $_{\parallel}$	8.283e-2	3.888e-1	2.758e-1	5.589e-1	3.823e-1	5.388e-1	5.321e-1	5.920e-1	5.801e-1	
	S-HMC $_{\parallel}$	8.254e-2	3.902e-1	2.870e-1	5.665e-1	4.174e-1	5.633e-1	5.328e-1	6.118e-1	6.058e-1	
8	S-SMC $_{\parallel}$	8.220e-2	3.901e-1	2.772e-1	5.609e-1	3.891e-1	5.447e-1	5.340e-1	6.036e-1	5.874e-1	
	S-HMC $_{\parallel}$	8.249e-2	3.904e-1	2.871e-1	5.665e-1	4.138e-1	5.595e-1	5.338e-1	6.135e-1	6.047e-1	

2214

2215

2216 Table 29: Comparison of S-SMC $_{\parallel}$ (P chains with $N = 10$) and S-HMC $_{\parallel}$ (NP chains), with fixed
2217 number of leapfrog $L = 1$, $B = 26$, $M = 2$, $v = 1$ and $s = 0.1$, on IMDb (5 realizations and \pm s.e.
2218 in accuracy).

2219

P	Method	Ep.	Acc.	NLL	H_{ep}								
					ID				OOD				
					cor.	inc.	reviews	meta	lipsum	full reviews	full meta		
1	S-SMC $_{\parallel}$	24	88.54 \pm 0.11	2.763e-1	1.820e-4	4.315e-4	4.819e-4	5.915e-4	6.766e-4	7.711e-4	6.500e-4		
1	S-HMC $_{\parallel}$	26	88.86 \pm 0.02	2.726e-1	5.753e-3	1.319e-2	2.712e-2	3.551e-2	3.561e-2	5.110e-2	4.289e-2		
2	S-SMC $_{\parallel}$	23.2	88.78 \pm 0.08	2.727e-1	2.476e-3	5.724e-3	1.160e-2	1.973e-2	9.401e-3	1.314e-2	1.894e-2		
2	S-HMC $_{\parallel}$	26	88.90 \pm 0.02	2.724e-1	5.934e-3	1.365e-2	2.817e-2	3.918e-2	3.793e-2	5.296e-2	4.581e-2		
4	S-SMC $_{\parallel}$	23.5	88.85 \pm 0.05	2.722e-1	3.730e-3	8.583e-3	1.937e-2	2.851e-2	2.377e-2	3.216e-2	3.538e-2		
4	S-HMC $_{\parallel}$	26	88.92 \pm 0.01	2.722e-1	5.992e-3	1.368e-2	2.753e-2	3.839e-2	3.531e-2	5.049e-2	4.444e-2		
8	S-SMC $_{\parallel}$	23.7	88.92 \pm 0.01	2.711e-1	4.207e-3	9.768e-3	2.182e-2	3.140e-2	2.700e-2	3.352e-2	3.540e-2		
8	S-HMC $_{\parallel}$	26	88.93 \pm 0.01	2.721e-1	6.065e-3	1.386e-2	2.792e-2	3.888e-2	3.653e-2	5.408e-2	4.638e-2		

P	Method	Brier	ECE	H_{tot}							
				ID				OOD			
				cor.	inc.	reviews	meta	lipsum	full reviews	full meta	
1	S-SMC $_{\parallel}$	8.387e-2	3.869e-1	2.721e-1	5.544e-1	3.970e-1	5.202e-1	5.063e-1	5.686e-1	5.684e-1	
1	S-HMC $_{\parallel}$	8.232e-2	3.898e-1	2.802e-1	5.618e-1	4.088e-1	5.505e-1	5.384e-1	6.066e-1	5.975e-1	
2	S-SMC $_{\parallel}$	8.252e-2	3.892e-1	2.734e-1	5.571e-1	3.939e-1	5.263e-1	5.028e-1	5.812e-1	5.855e-1	
2	S-HMC $_{\parallel}$	8.227e-2	3.900e-1	2.801e-1	5.614e-1	4.092e-1	5.567e-1	5.347e-1	6.068e-1	5.966e-1	
4	S-SMC $_{\parallel}$	8.229e-2	3.900e-1	2.750e-1	5.583e-1	3.944e-1	5.389e-1	5.114e-1	5.948e-1	5.854e-1	
4	S-HMC $_{\parallel}$	8.218e-2	3.903e-1	2.800e-1	5.612e-1	4.041e-1	5.526e-1	5.222e-1	6.068e-1	5.967e-1	
8	S-SMC $_{\parallel}$	8.190e-2	3.906e-1	2.752e-1	5.588e-1	3.920e-1	5.407e-1	5.143e-1	5.959e-1	5.865e-1	
8	S-HMC $_{\parallel}$	8.217e-2	3.906e-1	2.801e-1	5.613e-1	4.028e-1	5.510e-1	5.231e-1	6.081e-1	5.961e-1	

2241

2242

2243

2244 Table 30: Comparison of S-SMC $_{\parallel}$ (P chains with $N = 10$) and S-HMC $_{\parallel}$ (NP chains), with fixed
2245 number of leapfrog $L = 1$, $B = 200$, $M = 4$, $v = 0.2$ and $s = 0.05$, on CIFAR10 (5 realizations
2246 and \pm s.e. in accuracy).

2247

P	Method	Ep.	Acc.	NLL	Brier		ECE				
					ID		OOD		ID		
					cor.	inc.	close	corrupt	far	cor.	inc.
1	S-SMC $_{\parallel}$	168.8	89.26 \pm 0.07	3.408e-1	1.580e-1	3.470e-2					
1	S-HMC $_{\parallel}$	200	90.67 \pm 0.03	2.749e-1	1.366e-1	6.598e-3					
2	S-SMC $_{\parallel}$	172.0	90.12 \pm 0.06	3.100e-1	1.466e-1	1.942e-2					
2	S-HMC $_{\parallel}$	200	90.80 \pm 0.02	2.707e-1	1.351e-1	5.574e-3					
4	S-SMC $_{\parallel}$	173.4	90.34 \pm 0.04	2.960e-1	1.399e-1	1.242e-2					
4	S-HMC $_{\parallel}$	200	90.84 \pm 0.04	2.688e-1	1.344e-1	6.442e-3					
8	S-SMC $_{\parallel}$	174.3	90.63 \pm 0.05	2.881e-1	1.371e-1	9.720e-3					
8	S-HMC $_{\parallel}$	200	90.84 \pm 0.03	2.677e-1	1.340e-1	6.601e-3					

P	Method	H_{ep}				H_{tot}					
		ID		OOD		ID		OOD			
		cor.	inc.	close	corrupt	far	cor.	inc.	close	corrupt	far
1	S-SMC $_{\parallel}$	4.258e-4	2.273e-3	2.515e-3	1.297e-3	2.185e-3	1.351e-1	6.620e-1	6.639e-1	4.300e-1	9.008e-1
1	S-HMC $_{\parallel}$	4.060e-2	1.804e-1	2.308e-1	1.228e-1	2.243e-1	1.917e-1	8.073e-1	8.900e-1	5.558e-1	1.154e+0
2	S-SMC $_{\parallel}$	1.796e-2	9.094e-2	1.115e-1	5.702e-2	1.340e-1	1.321e-1	6.646e-1	7.737e-1	4.864e-1	1.017e+0
2	S-HMC $_{\parallel}$	4.376e-2	1.896e-1	2.454e-1	1.300e-1	2.387e-1	1.956e-1	8.144e-1	9.064e-1	5.626e-1	1.162e+0
4	S-SMC $_{\parallel}$	2.855e-2	1.356e-1	1.700e-1	8.859e-2	1.862e-1	1.304e-1	6.700e-1	8.293e-1	5.188e-1	1.101e+0
4	S-HMC $_{\parallel}$	4.523e-2	1.937e-1	2.520e-1	1.337e-1	2.417e-1	1.970e-1	8.161e-1	9.129e-1	5.660e-1	1.163e+0
8	S-SMC $_{\parallel}$	3.507e-2	1.584e-1	2.027e-1	1.058e-1	1.961e-1	1.311e-1	6.684e-1	8.643e-1	5.368e-1	1.111e+0
8	S-HMC $_{\parallel}$	4.579e-2	1.966e-1	2.564e-1	1.358e-1	2.472e-1	1.971e-1	8.203e-1	9.173e-1	5.684e-1	1.168e+0

2267

2268

2269

2270 Table 31: Comparison of S-SMC_{||} (P chains with $N = 10$) and S-HMC_{||} (NP chains), with fixed
2271 number of leapfrog $L = 1$, $B = 200$, $M = 4$, $v = 0.2$ and $s = 0.1$, on CIFAR10 (5 realizations and
2272 \pm s.e. in accuracy).

2273

P	Method	Ep.	Acc.	NLL	Brier	ECE
1	S-SMC	229.6	88.26 ± 0.07	3.855e-1	1.770e-1	4.593e-2
1	S-HMC	200	90.57 ± 0.04	2.823e-1	1.398e-1	1.073e-2
2	S-SMC	226.0	89.62 ± 0.09	3.336e-1	1.553e-1	1.983e-2
2	S-HMC	200	90.76 ± 0.04	2.753e-1	1.372e-1	1.356e-2
4	S-SMC	224.8e	90.20 ± 0.08	3.100e-1	1.453e-1	9.413e-3
4	S-HMC	200	90.84 ± 0.04	2.722e-1	1.360e-1	1.517e-2
8	S-SMC	225.3	90.45 ± 0.06	2.980e-1	1.400e-1	7.737e-3
8	S-HMC	200	90.83 ± 0.03	2.701e-1	1.353e-1	1.517e-2

2282

P	Method	H_{ep}						H_{tot}					
		ID			OOD			ID			OOD		
		cor.	inc.	close	corrupt	far	cor.	inc.	close	corrupt	far	cor.	inc.
1	S-SMC	2.948e-4	1.507e-3	1.603e-3	8.256e-4	1.450e-3	1.309e-1	6.364e-1	6.121e-1	4.027e-1	9.110e-1		
1	S-HMC	7.055e-2	2.795e-1	3.591e-1	1.972e-1	3.581e-1	2.241e-1	8.596e-1	9.703e-1	6.102e-1	1.219e+0		
2	S-SMC	2.733e-2	1.343e-1	1.594e-1	8.581e-2	1.677e-1	1.256e-1	6.382e-1	7.735e-1	4.910e-1	1.037e+0		
2	S-HMC	9.734e-2	2.968e-1	3.862e-1	2.112e-1	3.821e-1	2.316e-1	8.732e-1	9.990e-1	6.238e-1	1.235e+0		
4	S-SMC	4.484e-2	2.002e-1	2.495e-1	1.365e-1	2.536e-1	1.235e-1	6.432e-1	8.577e-1	5.408e-1	1.135e+0		
4	S-HMC	1.018e-1	3.072e-1	4.011e-1	2.200e-1	3.936e-1	2.360e-1	8.822e-1	1.014e+0	6.323e-1	1.247e+0		
8	S-SMC	5.539e-2	2.369e-1	3.054e-1	1.636e-1	2.937e-1	1.217e-1	6.453e-1	9.184e-1	5.690e-1	1.156e+0		
8	S-HMC	1.035e-1	3.121e-1	4.095e-1	2.244e-1	4.031e-1	2.367e-1	8.884e-1	1.023e+0	6.371e-1	1.257e+0		

2293

2294

2295

2296

2297

2298 Table 32: Comparison of S-SMC_{||} (P chains with $N = 10$) and S-HMC_{||} (NP chains), with fixed
2299 number of leapfrog $L = 1$, $B = 200$, $M = 4$, $v = 0.2$ and $s = 0.2$, on CIFAR10 (5 realizations and
2300 \pm s.e. in accuracy).

2300

P	Method	Ep.	Acc.	NLL	Brier	ECE
1	S-SMC	289.6	86.99 ± 0.08	4.710e-1	2.007e-1	6.462e-2
1	S-HMC	200	90.23 ± 0.08	2.990e-1	1.466e-1	2.518e-2
2	S-SMC	289.6	88.77 ± 0.07	3.854e-1	1.699e-1	2.554e-2
2	S-HMC	200	90.53 ± 0.04	2.890e-1	1.426e-1	3.096e-2
4	S-SMC	289.4	89.82 ± 0.04	3.441e-1	1.536e-1	1.193e-2
4	S-HMC	200	90.73 ± 0.02	2.840e-1	1.406e-1	3.368e-2
8	S-SMC	289.3	90.30 ± 0.03	3.217e-1	1.445e-1	1.180e-2
8	S-HMC	200	90.82 ± 0.03	2.810e-1	1.395e-1	3.481e-2

2310

P	Method	H_{ep}						H_{tot}					
		ID			OOD			ID			OOD		
		cor.	inc.	close	corrupt	far	cor.	inc.	close	corrupt	far	cor.	inc.
1	S-SMC	3.682e-4	1.947e-3	2.063e-3	1.092e-3	1.629e-3	1.136e-1	5.613e-1	5.440e-1	3.630e-1	7.756e-1		
1	S-HMC	1.159e-1	4.091e-1	5.195e-1	2.993e-1	5.333e-1	2.676e-1	9.231e-1	1.059e+0	6.768e-1	1.297e+0		
2	S-SMC	3.863e-2	1.856e-1	2.117e-1	1.180e-1	2.030e-1	1.108e-1	5.822e-1	7.557e-1	4.901e-1	9.434e-1		
2	S-HMC	1.300e-1	4.377e-1	5.681e-1	3.260e-1	5.774e-1	2.836e-1	9.479e-1	1.109e+0	7.039e-1	1.331e+0		
4	S-SMC	6.722e-2	2.780e-1	3.470e-1	1.916e-1	3.332e-1	1.089e-1	5.885e-1	8.861e-1	5.634e-1	1.087e+0		
4	S-HMC	1.368e-1	4.524e-1	5.899e-1	3.392e-1	5.947e-1	2.909e-1	9.611e-1	1.132e+0	7.169e-1	1.346e+0		
8	S-SMC	8.362e-2	3.326e-1	4.244e-1	2.361e-1	4.065e-1	1.071e-1	5.954e-1	9.675e-1	6.080e-1	1.160e+0		
8	S-HMC	1.405e-1	4.604e-1	6.042e-1	3.476e-1	6.129e-1	2.945e-1	9.687e-1	1.146e+0	7.256e-1	1.364e+0		

2320

2321