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ABSTRACT

This work introduces a new method designed for Bayesian deep learning called
scalable Bayesian Monte Carlo (SBMC). The method is comprised of a model and
an algorithm. The model interpolates between a point estimator and the posterior.
The algorithm is a parallel implementation of sequential Monte Carlo sampler
(SMC∥) or Markov chain Monte Carlo (MCMC∥). We collectively refer to these
consistent (asymptotically unbiased) algorithms as Bayesian Monte Carlo (BMC),
and any such algorithm can be used in our SBMC method. The utility of the method
is demonstrated on practical examples: MNIST, CIFAR, IMDb. A systematic
numerical study reveals that for a comparable wall-clock time to state-of-the-art
(SOTA) methods like deep ensembles (DE), SBMC achieves comparable or better
accuracy and substantially improved uncertainty quantification (UQ)–in particular,
epistemic UQ. The benefit is demonstrated on the downstream task of estimating
the confidence in predictions, which can be used for reliability assessment or
abstention decisions. Code is available in the supplementary material.

1 INTRODUCTION

Uncertainty quantification (UQ) in deep learning is critical for safe and reliable deployment, yet
remains a core challenge. The Bayesian formulation provides UQ in addition to Bayes optimal
accuracy, by averaging realizations from the posterior distribution, rather than relying on a single
point estimator. Fully Bayesian approaches like consistent Markov chain Monte Carlo (MCMC)
and sequential Monte Carlo (SMC) offer asymptotically unbiased posterior estimates, but at the cost
of prohibitive compute time compared to simple point estimators like the maximum a posteriori
(MAP). Bayesian deep learning (BDL) often rely on scalable approximations such as Monte Carlo
Dropout (Gal & Ghahramani, 2016), deep ensemble (DE) (Lakshminarayanan et al., 2017) 1, (KFAC-
)Laplace approximation (Daxberger et al., 2021; Eschenhagen et al., 2021), Stochastic Weight
Averaging (SWA) (Izmailov et al., 2018), SWA-Gaussian (SWAG) (Maddox et al., 2019; Wilson &
Izmailov, 2020), which are fast and provide strong empirical performance, but lack formal consistency
guarantees.

Given data D, the Bayesian posterior distribution over θ ∈ Θ ⊆ Rd is given by

π(θ) ∝ L(θ)π0(θ) , (1)

where L(θ) := L(θ;D) is the likelihood of the data D and π0(θ) is the prior. The Bayes estimator of
a quantity of interest φ : Θ→ R is E[φ|D] =

∫
Θ
φ(θ)π(θ)dθ. It minimizes the appropriate Bayes

risk at the population level and as such is Bayes optimal (MacKay, 1992; Neal, 2012; Andrieu et al.,
2003; Bishop, 2006).

Here we present a new approximate inference method called Scalable Bayesian Monte Carlo (SBMC),
which bridges the gap between fast but heuristic methods and principled yet expensive samplers.
It is a general method comprised of an approximate model and an algorithm to simulate from the
model. Our key insight is a model approximation πs (defined precisely in equation 3), featuring
a scalar interpolation parameter s ∈ (0, 1) that allows tuning between the MAP estimator (s = 0)
and the full Bayesian posterior (s = 1). For smaller s the target is easier to simulate from, albeit

1It is well-known that deep ensembles do not provide a consistent approximation of the posterior (Wild et al.,
2023), yet Bayes is arguably the best lens through which to view them (Wilson & Izmailov, 2021).
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Figure 1: Left panels: IMDb sentiment classification. (a) SBMC provides a good balance of accuracy and
UQ (quantified by epistemic entropy on OOD data), for a comparable cost to deep ensembles (every method
runs for 25 epochs except the Gold-Standard (GS) BMC solution, which runs for 8000 epochs). (c) Standard
implementation of HMC and HMC∥. BMC methods typically deliver high accuracy for high cost (GS) and low
accuracy for low cost. Right panels: SBMC approximate models, on a simple toy example. (b) The original
posterior (s = 1) and the approximations for a range of s. (d) The autocorrelation function (ACF: correlation
between samples separated by ‘Lag’ steps – this and integrated autocorrelation time (IACT) are defined in
Appendix D.2) of SBMC for very long NUTS Hoffman et al. (2014) chains for a few choices of s. As s decreases
the target becomes simpler and hence easier to explore, but the bias (with respect to the posterior) increases.

with a larger bias with respect to the posterior. See the right panels of Figure 1. By simulating from
this approximate target with parallel implementations of BMC algorithms, which we will denote by
S-SMC∥ and S-MCMC∥, SBMC delivers strong performance in accuracy and UQ at a comparable
cost to SOTA methods like DE (less than double). The prefix “S-" is for “scalable”, and the scalability
comes from the model approximation in tandem with the parallelism, denoted by the subscript ∥.
Without the model approximation, the required simulation time is prohibitive.

In general the posterior (target) distribution can only be evaluated up-to a constant of proportionality,
and the available consistent methods for inference (learning) are of Monte Carlo type: notably
Markov chain Monte Carlo (MCMC) (Metropolis et al., 1953; Hastings, 1970; Duane et al., 1987;
Gelfand & Smith, 1990; Geyer, 1992; Robert et al., 1999; Roberts & Tweedie, 1996) and sequential
Monte Carlo (SMC) samplers (Jarzynski, 1997; Berzuini & Gilks, 2001; Del Moral et al., 2006;
Dai et al., 2022; Chopin et al., 2020). The past several decades have seen enormous progress in
methodology as well as practical applications (Galison et al., 2022; Mohan & Scaife, 2024), however
standard implementations of these algorithms are still too expensive for practical BDL, and so BMC
algorithms are typically used only as a benchmark for cheaper approximations (Izmailov et al., 2021).
See e.g. (Angelino et al., 2016; Papamarkou et al., 2024) for recent reviews and further references.
The present work aims to address this computational intractability by (i) targeting an approximation
of equation 1, and (ii) distributing the BMC workload across many workers in parallel. We will show
that these two things together provide a practical and scalable method. The focus of the present
work is on demonstrating the value of the SBMC method itself, independently of the particular BMC
algorithm used, and so we mostly focus on standard implementations of HMC and SMC. But one of
the virtues of SBMC is its extensibility: stochastic gradient MCMC methods Welling & Teh (2011);
Chen et al. (2014) and/or other data-parallel techniques Angelino et al. (2016); Maclaurin & Adams
(2014); Rendell et al. (2020) and more sophisticated adaptive methods Hoffman et al. (2021) can be
swapped in later for additional gains.

1Autocorrelation function (ACF) and integrated autocorrelation time (IACT) are defined in Appendix D.2.
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The contributions of the present work are concisely summarized as follows:

• New SBMC method (e.g. S-SMC∥ and S-MCMC∥) targets a model which allows the
practitioner to interpolate between the MAP (or another point) estimator for s = 0 (0
additional simulation time) and the full posterior for s = 1 (long simulation time), thus
balancing their UQ demands against their budget.

• A thorough systematic empirical evaluation of SBMC on several benchmarks demonstrates
that it achieves excellent performance on both accuracy and UQ at a cost comparable to
DE, where traditional BMC methods fail severely, demonstrating its strong scalability and
robustness. See the top left panel of Figure 1.

• This benefit is illustrated on the downstream task of estimating prediction confidence, which
can be used to improve safety and reliability. To that end, a meta-classifier is built using
seven features of the SBMC posterior which characterize the epistemic uncertainty.

The paper is organized as follows. In Section 2, we introduce the SBMC method. In Section 3 we
discuss its UQ abilities and the downstream task of output confidence prediction, as motivation, and
present the main results. Section 4 discusses related literature. Section 5 presents the conclusion and
additional discussion.

2 SCALABLE BAYESIAN MONTE CARLO (SBMC) METHOD

Algorithm 1 SBMC method

Inputs: L, π0, s,N, P .
Compute θMAP, and create π0, π as in equa-
tion 2,equation 3.
for p = 1 to P (in parallel) do

Run Algorithm 2 (S-SMC) or 3 (S-MCMC).
Output: {θi,p}Ni=1 and ZN,p.

end for

Build φ̂SBMC =
∑P

p=1 ZN,p 1
N

∑N
i=1 φ(θi,p)∑P

p=1 ZN,p .

We define time cost as the required simulation
time per chain/particle, and we will measure
this by epochs, i.e. likelihood plus gradient eval-
uations, as a hardware-agnostic proxy for wall-
clock time. Parallel implementations of consis-
tent BMC algorithms like SMC∥ and HMC∥ im-
prove time cost with near linear speed-up (Liang
et al., 2025), but each process still needs to run
for a long time, as seen in Figure 1 (c). This sec-
tion introduces the model and algorithm choices
that define the SBMC method in Algorithm 1,
which delivers improved performance on met-
rics of interest for a comparable time cost to
deep ensembles.

The model. Assume the prior is π0 = N (0, V ) for simplicity and define the MAP estimator as
θMAP = argmaxθL(θ;D)π0(θ) ,

where L is the likelihood defined in equation equation 1. For a fixed tuning parameter s ∈ (0, 1),
we define 0 ≺ Σ(s) = Σ(s)T ∈ Rd×d and α(s) ∈ [0, 1], such that Σ(0) = 0 and Σ(1) = V , and
α(0) = 1 and α(1) = 0. Define the new prior as

π0(θ) = N (θ;α(s)θMAP,Σ(s)) . (2)
The SBMC method then targets the following distribution

π(θ) ∝ L(θ)π0(θ) , (3)
which we will refer to as the anchored posterior. We will refer to θMAP as the anchor.

For s → 0, we recover a Dirac measure concentrated on the MAP estimator, which means no
sampling is required. Conversely, as s→ 1, we recover the original posterior. Hence s is a scalar
interpolation parameter which allows us to tune between these limits. For simplicity we will typically
consider only the standard isotropic case V = vId and let α(s) = 1{s< 1

2}
and Σ = svId.

We show that this approximate model balances the complementary strengths of the two approaches
for small s, and enables BMC methods to deliver scalable gains over alternatives like deep ensembles
at a comparable cost. The method is relatively insensitive to the exact value of s and we recommend
a default value of s = 0.1. We will use the notation S-SMC∥ and S-MCMC∥ to distinguish the SBMC
method from standard implementations of the algorithms targeting equation 1. For example, S-SMC∥
means the SMC∥ algorithm is used to sample from equation 3.

3
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Algorithm 2 S-SMC sampler

Inputs: L, π0, N .
Init. θi0 ∼ π0 for i = 1, . . . , N . ZN = 1.
for j = 1 to J (in serial) do

(Optional) Select λj s.t. ESS= ρN, ρ < 1.
for i = 1 to N (in parallel) do

Define wi
j ∝ w̃i

j ≡ L(θij−1)
λj−λj−1 .

Selection: Iij ∼ {w1
j , . . . , w

N
j }.

Mutation: θij ∼Mj(θ
Ii
j

j−1, ·).
end for
Store ZN ← 1

N

∑N
i=1 w̃

i
j .

end for
Outputs: {θi = θiJ}Ni=1 and ZN .

The algorithm can be any BMC method. In the
present work we will focus on SMC sampler and
MCMC, but any alternative is admissible. For
example, SG-MCMC or other methods which
allow mini-batch gradients may be quite conve-
nient for managing the memory requirements of
very large problems.

SMC sampler. Define a sequence of interme-
diate targets πj(θ) ∝ L(θ)λjπ0(θ) , according
to a tempering schedule 0 = λ0, . . . , λJ = 1,
which will be chosen adaptively according to the
effective sample size (ESS), as described in C.1
in the Appendix. The SMC sampler (Del Moral,
2004) alternates between selection by impor-
tance re-sampling, and mutation according to
an appropriate intermediate MCMC transition
kernel Mj , such that (πjMj)(dθ) = πj(dθ)

(Geyer, 1992). This operation must sufficiently de-correlate the samples, and as such we typically
define the MCMC kernelsMj by several steps of some basic MCMC kernel, leading to Lj epochs
(likelihood/gradient evaluations). We will employ two standard MCMC kernels: preconditioned
Crank-Nicolson (pCN) (Bernardo et al., 1998; Cotter et al., 2013) and Hamiltonian Monte Carlo
(HMC) (Duane et al., 1987; Neal et al., 2011). In the latter case, there are also several leapfrog steps
for each HMC step contributing to Lj .

For a quantity of interest φ : Θ→ R, the S-SMC estimator from Algorithm 2 is given by

πN (φ) :=
1

N

N∑
i=1

φ(θi)
N→∞−→ Eπ[φ] ≈ Eπ[φ] = E[φ | D] . (4)

Algorithm 3 S-MCMC

Inputs: L, π0, N .

θi0 ∼ π
(i)
0 for i = 1, ..., N .

for i = 1 to N (in parallel) do
for j = 1 to J (in serial) do

Draw θij ∼MJ(θ
i
j−1, ·).

end for
end for
Outputs: {θiJ}Ni=1 and ZN ≡ 1.

S-SMC∥ refers to P parallel executions of Algorithm 2,
each with N particles, leading to a P times lower com-
munication and memory overhead than a single S-SMC
sampler with NP samples. This simplification is crucial
for massive problems such as BDL, which require dis-
tributed architectures. Synchronous Single Instruction,
Multiple Data (SIMD) resources can be used for the N
communicating particles (and model- and data-parallel
likelihood calculations), while all communication between
the P processes is eliminated. The S-SMC∥ ratio estimator
is defined for P i.i.d. realizations πN,p(φ) of equation 4
as

φ̂S-SMC∥ =

P∑
p=1

ωpπ
N,p(φ) , ωp =

ZN,p∑P
p′=1 Z

N,p′
. (5)

S-MCMC∥ refers to P parallel executions of Algorithm 3, which already features N parallel short
chains free from any communication. The purpose of formulating MCMC in this way is to match
SMC, which itself features N parallel chains that need to communicate intermittently at the selection
stage. The estimator is built exactly as equation 5, with {θi,p = θi,pJ }Ni=1 in equation 4 and ZN,p = 1.

3 MOTIVATION AND RESULTS

Here we introduce UQ to motivate SBMC. We experimentally validate the quality of the epistemic
UQ it delivers by using very long HMC runs as a ‘gold-standard’ (GS), and we show that it can be
used to directly predict model confidence. We also assess SBMC against SOTA competitor baselines
using epistemic and first order metrics on several challenging benchmark datasets. In subsection
3.1 we demonstrate how features derived from the epistemic uncertainty can be used to build a
meta-classifier for predicting model confidence and deciding whether to abstain or respond.

4
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UQ is a crucial pain-point for neural networks, and BDL is one of the leading contenders to deliver it.
Our primary UQ metric will be epistemic entropy, which is the difference between total and aleatoric
entropy, defined as follows (Hüllermeier & Waegeman, 2021; Depeweg et al., 2018)

Hep(x) = −
∑
y∈Y

E[p(y|x, θ)|D] logE[p(y|x, θ)|D]︸ ︷︷ ︸
Htot(x)

−E
[
−

∑
y∈Y

p(y|x, θ) log(p(y|x, θ))|D
]

︸ ︷︷ ︸
Hal(x)

. (6)

Aleatoric uncertainty is irreducible and can be thought of as label error (people may sometimes
disagree on the label of a given hand-written digit), whereas epistemic entropy quantifies uncertainty
which can be reduced with more data (Shaker & Hüllermeier, 2020; Krause & Hübotter, 2025).
Our focus is the latter, as it is only captured by Bayesian methods. It can be viewed as the mutual
information between parameter and predictive posterior random variables for input x, and as such is
0 by definition for point estimators that yield deterministic predictive estimators.

Figure 2: Average predictive total and epistemic
entropy (having seen only ID data) over four OOD
classes and correct and incorrect predictions ID for
MNIST7 (N = 10, P = 1).

To illustrate the properties of SBMC, we con-
duct an experiment. The dataset is a subset of
1200 MNIST (LeCun et al., 2010) data trained
on digits 0, . . . , 7 (MNIST7) with 8, 9 held out
as (similar but) out-of-domain (OOD). White
noise inputs and randomly selected in-domain
(ID) digits corrupted with white noise are con-
sidered as far OOD classes. The architecture
is described in Appendix D.3.1. The prior vari-
ance is v = 0.1. The average predictive total
and epistemic entropy for various categories of
OOD test data, as well as ID test data split into
correct and incorrect predictions, are presented

in Figure 2 (per-digit result is given in Appendix F.1). This quantity is clearly predictive of mis-
classifications, and this downstream task will be revisited below. A long HMC chain is included as
gold-standard (GS) for validation.

In Table 1 we compare several SOTA competitors, including the MAP (computed with SGD and
early stopping on validation data), DE, MC Dropout, KFAC-Laplace approximation, SWA, SWAG,
and DEI-MCMC, with (S-)HMC∥ (S-)SMC∥, and (S-)SGHMC∥. All methods are run with time
cost of ≈ 170 epochs, but SBMC methods require the MAP estimator(s), so their total time cost is
roughly double that of the methods which do not initialize with the MAP(s). In order to also consider
exactly equal cost, we ainclude runs of (S-)HMC∥ with half as many epochs, and runs of MAP and
DE with twice as many epochs. A single HMC run using 2e4− 2e5 epochs is also included as a GS
baseline. All methods can be further parallelized with model- and data-parallel techniques, but we do
not consider that here. Convergence for all methods is verified by running 5 chains with dispersed
initial conditions and measuring the standard error. Ensemble methods use P independent ensembles
of N = 10 particles, and all particles are used for estimating posterior expectations. A limited set of
metrics are presented in Table 1 because of limited space. More comprehensive results, including
Brier, ECE, and per-OOD-category Htot and Hep, are presented in the Appendix Table 17.

The results show that when directly targeting equation 1, SMC∥, HMC∥, and SGHMC∥, degrade
rapidly away from convergence, to the point of catastrophic failure in first order metrics at this
cost level. However, their UQ performance is still adequate–for example, some of the HMC∥ and
SGHMC∥ Hep estimators are within our tolerance of 50% of the GS solution (in bold). The MAP
and DE quickly deliver good accuracy, but do not accurately estimate Hep. These failure modes
are perfectly complementary. To achieve the “best of both worlds”, SBMC anchors to the MAP
estimator(s) to preserve accuracy, and then uses an ensemble of short parallel runs of BMC to augment
that with uncertainty. MC Dropout performs particularly well and is notably the only non-BMC
method which achieves an Hep estimator within our tolerance of 50% of the GS solution (in bold),
and for a low total cost.

To account for possible beneficial impact of initialization, we consider also short DE-initialized
chains (DEI-HMC) with the original target Sommer et al. (2024). Performance significantly improves
in comparison to the prior-initialized chains, however it is still not competitive with SBMC. All HMC
chains are tuned the same for a fair comparison. The details are given in Appendix E.
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Figure 3: Test Accuracy, NLL, Brier, and ECE, Hep on OOD, and confidence meta-classifier
abstention (Abst) metrics (all min-max scaled so 1 is best) for IMDb (left) and CIFAR10 (right).

Table 1: Comparison of methods on MNIST7 test data. SBMC methods are bold (N = 10). For
metrics, the best gold-standard (GS) value is bold, along with others within 1% for accuracy and
NLL, and 50% for entropies (entropy is harder to estimate, and also high precision is less critical).
SMC∥, HMC∥, and SGHMC∥ are highlighted in red as they are particularly bad for these very short
chains, and this is precisely the problem the approximate methods like SBMC address.

Time Cost Total Cost Hep Hep

Method P (epochs) ↓ (epochs) ↓ Accuracy ↑ NLL ↓ correct incorrect Hep OOD

MAP 1 160 160 92.3±0.366 0.253±0.012 0 0 0
MAP 1 320 320 92.1±0.264 0.260±0.010 0 0 0
SWA 1 160 160 92.3±0.387 0.27±0.017 0 0 0
SWAG 1 160 160 92.3±0.365 0.267±0.017 0.001±0.000 0.008±0.001 0.009±0.001
MC Drop 1 160 160 93.9±0.626 0.214±0.021 0.049±0.007 0.269±0.008 0.267±0.01
Laplace 1 160 160 88.2±0.235 0.539±0.022 0.504±0.036 0.901±0.038 1.22±0.033
Deep Ens 1 176 1760 92.4±0.150 0.245±0.004 0.011±0.000 0.057±0.001 0.123±0.011
Deep Ens 1 320 3200 92.2±0.157 0.252±0.005 0.007±0.000 0.041±0.003 0.104±0.013
Deep Ens 8 178 14,240 92.5±0.059 0.239±0.001 0.011±0.000 0.059±0.001 0.134±0.004
SMS-UBU∥ 8 160+160 25600 92.6±0.107 0.247±0.002 0.055±0.001 0.201±0.001 0.316±0.003
DEI-HMC 8 176+160 14560 91.6±0.000 0.308±0.001 0.038±0.000 0.114±0.001 0.230±0.006
SGHMC 1 160 1600 87.7±0.742 0.974±0.05 0.652±0.031 0.725±0.031 0.883±0.036
S-SGHMC 1 160 + 160 1760 90.3±0.758 0.409±0.014 0.342±0.015 0.687±0.027 0.836±0.039
S-SGHMC∥ 8 160 + 160 12,960 92.3±0.160 0.388±0.001 0.434±0.005 0.782±0.007 0.965±0.003
SMC 1 173 1730 79.7±2.71 0.623±0.091 0.013±0.002 0.033±0.009 0.045±0.011
S-SMC 1 170 + 160 1860 92.2±0.371 0.267±0.014 0.026±0.003 0.129±0.014 0.202±0.028
S-SMC∥ 8 178 + 160 14,400 93.3±0.160 0.226±0.004 0.059±0.001 0.272±0.003 0.378±0.03
HMC 1 160 1600 78.4±2.38 1.27±0.085 0.303±0.025 0.325±0.026 0.594±0.021
S-HMC 1 160 + 160 1760 93.0±0.166 0.232±0.002 0.056±0.001 0.264±0.002 0.463±0.009
S-HMC 1 80 + 80 1600 93.0±0.057 0.242±0.002 0.059±0.001 0.243±0.004 0.417±0.013
S-HMC(lin) 1 160 + 160 3200 92.9±0.140 0.239±0.003 0.059±0.001 0.249±0.002 0.450±0.011
S-HMC∥ 8 160 + 160 12,960 93.1±0.085 0.231±0.002 0.070±0.000 0.299±0.002 0.531±0.011
S-HMC∥ 8 80 + 80 12800 93.1±0.071 0.237±0.001 0.069±0.000 0.272±0.002 0.484±0.005
S-HMC∥(lin) 8 160 + 160 25600 93.1±0.069 0.240±0.002 0.073±0.000 0.284±0.002 0.518±0.011

HMC (GS) 1 20,000 20,000 93.6±0.415 0.222±0.009 0.096±0.004 0.410±0.013 0.768±0.084
HMC (GS) 1 200,000 200,000 94.8±0.211 0.194±0.004 0.120±0.004 0.493±0.008 1.04±0.122

For the next experiments, we look at the IMDb sentiment classification dataset (Maas et al., 2011) and
the CIFAR dataset (Krizhevsky et al., 2009). Results for these cases are comparable and summarized
in Figure 3 and Appendix F, along with further figures and tables. Further details on all model
architectures are given in Appendix D.3.

Small Language Model example proof of concept. The natural next step is to apply this
methodology to LLMs. Here we present some preliminary results on GPT-2, on consumer hardware
(an old MacBook Pro with an M2 processor and 16GB RAM). These are early results, just to further
emphasize scalability and potential utility in hallucination detection.
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Figure 4: Top: graphical schematic for meta-classifier pipeline. Prediction accuracy of the trained
model (TM, blue) is used to label a separate calibration dataset of in-domain and out-of-domain
(OOD) data. Predictive features are built from the trained model and used to train a binary meta-
classifier (MM, purple), which can then be used to measure model confidence and abstain from
responding to inputs with low model confidence, for example those which are noisy, ambiguous,
or OOD. Bottom: the richer Bayesian models (BM) estimate a distribution over probabilities on
the simplex, whereas deterministic models (DM) only deliver a point estimator p̂(x). The model-
dependent input features for the meta-classifier are built from both first order frequentist metrics that
depend only on p̂(x), such as Htot(x), and also ensemble-based metrics that depend on the epistemic
uncertainty delivered by the Bayesian solution, such as variances of frequentist metrics over the
simplex and Hep(x). (3-class marginals of the 10-simplex are presented for clarity).

Table 2: Test accuracy, NLL, and various entropy metrics for
next-token prediction with GPT2 on tiny Shakespeare.

Accuracy Htot Htot Hep Hep

Methods (%) NLL correct incorrect correct incorrect

MAP 38.66 3.166 1.554 3.605 0 0

S-HMC 39.36 3.083 1.571 3.612 0.047 0.077

The starting point is the pre-trained
GPT-2 model fine-tuned on Shake-
speare data 2. We then adopt a LoRA
approach (Hu et al., 2022) to fine-tune
an additive rank 50 adjustment with
≈ 2e5 parameters at the last layer
on tiny Shakespeare data 3 4. Top-1
token-level predictions for an ensem-
ble of 10 HMC runs are presented in
Table 2.

3.1 CONFIDENCE META-CLASSIFIER

One clear application of UQ is inferring confidence in model predictions, i.e. whether the output is
reliable or “hallucinated", to borrow the vernacular from modern LLMs (Ji et al., 2023; Guo et al.,
2025). This information can be used to decide whether the model should abstain from responding or
provided to the user so they can make their own decision about whether to trust the response. To that
end, we propose to build a confidence meta-classifier of incorrect/OOD data, as follows.

2https://huggingface.co/sadia72/gpt2-shakespeare
3https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
4We truncated to the 2500 most frequent tokens, which includes tokens that appeared 11 or more times.
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Table 3: Confidence meta-classifier results for MNIST7
on 2500 ID and 2500 OOD test data, including 500 un-
seen far-OOD CIFAR examples.

P Method Precision Recall F1 AUC-ROC

– MAP 0.771 0.891 0.826 0.864
– DE 0.823 0.904 0.861 0.926
1 S-SMC∥ 0.794 0.886 0.837 0.895
8 S-SMC∥ 0.848 0.903 0.875 0.940
1 S-HMC∥ 0.837 0.898 0.867 0.932
8 S-HMC∥ 0.844 0.909 0.875 0.942

First, we fit our model to 1000 training
data and 200 validation data for early stop
procedure in MAP and DE methods/prior
from MNIST7, and label incorrect pre-
dictions as z = 1 and correct predictions
as z = 0. Then, we generate 2000 ad-
ditional OOD meta-training data as de-
scribed above, all of which get label z =
1. Let pmax(x, θ) := maxy p(y|x, θ) =
p(y∗|x, θ) denote the maximum prob-
ability, and denote the difference be-
tween the top two as ∆max(x, θ) :=
pmax(x, θ) − maxy′∈Y\y∗ p(y|x, θ) . Let
pmax(x | D) = maxy E[p(y|x, θ) | D]. Consider as features: pmax(x | D), Htotal(x),
E[pmax(x, θ)|D], E[∆max(x, θ)|D], Hep(x), Var[pmax(x, θ)|D], Var[∆max(x, θ)|D]. Note that the
last 3 are identically 0 for the MAP estimator, as they capture the epistemic uncertainty in the data.
We build and standardize these features for each of our 4 models–MAP, DE, S-SMC∥, S-HMC∥– and
train the binary meta-classifier x 7→ z, using a single hidden layer MLP with 50 neurons.

Figure 5: 2-level estimator (using confidence meta-
classifier for abstention) accuracy on IMDb.

The results on 2500 ID unseen test data plus
2500 newly-generated OOD test data are pre-
sented in Table 3. The OOD data is comprised of
500 examples from each of the four classes used
for meta-training, as well as 500 unseen CIFAR
images, for a test of robustness (see Appendix
G.1.1 for category-specific results, and Table 13
for CIFAR specifically). Accuracy is the ratio
of true positives (not correct) and true negatives
(correct) to the total testing dataset size. All es-
timators do surprisingly well, and our SBMC
methods are the best. AUC-ROC is perhaps the
most useful metric, as it measures the ability of
the score pincorrect(x) to rank in-correctness of
the subsequent inference: the probability that
a randomly selected incorrect example from
the test set, xincorrect ∈ Dincorrect will have a

higher score than a randomly selected correct example, xcorrect ∈ Dcorrect: P[pincorrect(xincorrect) >
pincorrect(xcorrect)].

Table 4: Meta-classifier ablations. Area under the 2-level
estimator curve (as in Figure 5) for MNIST7.

All Epistemic
P Method features features pmax Hep

- MAP 0.717 0.501 0.701 0.501
- DE 0.795 0.790 0.734 0.789
1 S-SMC∥ 0.747 0.738 0.690 0.738
8 S-SMC∥ 0.820 0.820 0.718 0.818
1 S-HMC∥ 0.804 0.801 0.712 0.798
8 S-HMC∥ 0.822 0.822 0.716 0.819

Figure 5 shows the accuracy of a 2-level
estimator over thresholds for IMDb. See
Appendix G for further details. First
we infer with the meta-classifier whether
the model inference will be correct, un-
der the assumption that OOD inputs im-
plies incorrect inference. If yes, we in-
fer with the original model. If no, we
abstain from inference (abstentions are
counted as correct decisions when the
original model would be incorrect). Fig-
ure 3 presents summary metrics for IMDb
and CIFAR10.

3.2 ABLATIONS AND THEORY

Ablations for SBMC are considered by varying s and P . Small s improves mixing, as shown in
Figure 1 (d), but also introduces bias because π ̸= π (see equation 3, equation 1). In this short-
chain setting, smaller s typically increases accuracy and decreases Hep(OOD). Both algorithms
improve with P , but SMC∥ more so. Comprehensive results are given in Appendix H. We also
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consider ablations for the meta-classifier, in order to elucidate the role of the epistemic features on
the performance. Let us summarize the results of Figures like 5 as the area(s) under the 2-level
estimator curve (AU2LC). A score of roughly 1/2 corresponds to a 0−skill estimator and a score
of 1 would be perfect. Table 4 shows the AU2LC for the case of all features, only the epistemic
features, the classical pmax confidence score, and Hep. Observe that we perform much better than
pmax, Hep almost sufficiently encapsulates the epistemic features, and the latter are almost suitable in
comparison to the estimator built from all features.

Figure 6: Dual axis Accuracy and Hep(OOD) ablations
over s in column 1 and P in column 2 for MNIST7 (row
1), IMDb (row 2), and CIFAR10 (row 3).

Tuning. Firstly, we would like to empha-
size that the results are fairly insensitive
to s ∈ [0.05, 0.3], and we recommend se-
lecting s = 0.1 as a good default choice.
It is worth noting that v is an important
hyper-parameter a priori, at the level of
the original Bayesian model. 5 If desired,
one should first select v optimally for the
MAP/DE, and then select s. Both can be
done with CV. See Section 4 for further
discussion.

Theory sketch. We can understand the
SBMC model as an incremental incorpo-
ration of the data. Let σ2 = v/a and
consider the original problem with prior
N (0, σ2). Now split the log-likelihood into
(1− a)ℓ+ aℓ, and consider incorporating
only the aℓ part. It is easy to see that the
MAP estimator θ̂MAP for this problem is
equivalent to the MAP estimator associated
with the prior N (0, v). The Laplace ap-
proximation however, will differ, depend-
ing on which one we consider. Let us con-
sider the N (0, σ2) prior, and now it is time to incorporate the rest of the data (1− a)ℓ. The Hessian
of our Laplace approximation is

a∇2ℓ(θ̂MAP) +
1

2(v/a)
Id.

This could be carried through rigorously, but let’s swap out NtrainId for ∇2ℓ(θ̂MAP) =∑Ntrain

i=1 ∇2ℓi(θ̂MAP). To arrive at the SBMC prior we must equate the following

(2vNtrain + 1)/(2v/a) = 1/(2sv) ⇒ a = s−1/(2vNtrain + 1) .

Suppose v = 0.1 (common) and s = 0.1 (our recommendation). Then a = 10/(Ntrain/5 + 1)≪ 1,
for large datasets. Therefore, ℓ ≈ (1− a)ℓ, and we arrive at a reasonable approximation. Note this
is also typically a positive thing for the prior, which is effectively N (0, σ2 = v/a), since broader
priors and less inductive bias typically deliver better performance, and small variance priors are often
chosen more as a matter of convenience.

Hessian. Note the Hessian of the posterior π in equation 1 with N (0, v) prior is∇2ℓ(θ) + 1
v Id . If

we assume that the minimum eigenvalue of∇2ℓ(θ) is 0, and the maximum is λmax, then the condition
number of the Hessian of the posterior is λmaxv + 1. Meanwhile, the Hessian of the SBMC target
π in equation 3 with N (θMAP, vs) prior will have condition number λmaxvs+ 1. Therefore, the
parameter s < 1 allows us to “tune away" the ill-conditioning of the posterior.

4 DISCUSSION OF RELATED WORK

There has been a growing amount of work recently in many-short-chain MCMC, e.g. (Vehtari et al.,
2000; Wilkinson, 2006; Chen et al., 2016; Sommer et al., 2024; Margossian et al., 2024; Nguyen

5Prior tuning is relevant for all methods, Bayesian and Frequentist (weight decay), and is not particular to
SBMC. A good rule of thumb is enough but not too much, i.e. v as large as possible Izmailov et al. (2021).
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Figure 7: Left: SBMC for various s. Middle: Cold posterior for various T . Right: Autocorrelation
functions using NUTS sampler, showing that SBMC improves mixing, while CP hinders mixing.

et al., 2025; Sommer et al., 2025; Duffield et al., 2024). The island-SMC method Vergé et al. (2015)
considers interacting SMCs, which is necessary for consistency unless the estimator is carefully
constructed with appropriate weights Whiteley et al. (2016); Dai et al. (2022). See e.g. Liang et al.
(2025) for further discussion.

The idea of MAP-anchored priors is intuitive, and closely related to a number of successful methods.
In addition to augmenting data with adversarial perturbations of the inputs, as proposed in the original
DE paper, another intuitive idea to promote spread and generalization is to randomize the model itself.
Randomized maximum likelihood (RML) approaches do this by anchoring each ensemble member to
random draws from the prior and/or data (Gu & Oliver, 2007; Bardsley et al., 2014; Pearce et al.,
2020). SBMC can easily bootstrap DE or RML ideas by initializing each process from a different
MAP estimator. It is worth noting that MC Dropout Gal & Ghahramani (2016) could also do this.

The method most closely related to our work is Paulin et al. (2025), who anchor to the SWA estimator
by adding a Gaussian factor, and simulate an ensemble of ULAs. They also observed an extreme
speedup in mixing time. We experimented with a similar formulation with a factor of N (θMAP, sId),
s ∈ (0,∞), which also interpolates between the posterior and the MAP estimator and is arguably
more elegant and theoretically appealing. But, the effective prior centers on v

s+v θMAP (or SWA), and
in practice we found that this version did not perform as well as centering the prior on θMAP itself.
The former is shown in Table 1 as S-HMC∥(lin).

Cold posteriors (Wenzel et al., 2020) also interpolate between δθMAP
and the posterior via anneal-

ing (or ‘tempering’) the posterior equation 1 with an inverse temperature T < 1, as π̃T (θ) ∝
L(θ;D)1/Tπ1/T

0 . This sharpens the posterior, as shown in Figure 7 (middle) which makes the target
distribution more difficult to simulate and slows down MCMC mixing, as shown in Figure 7 (right).

The SBMC likelihood is effectively flattened relative to the Gaussian prior by the factor s, while the
missing information is represented in the sharper prior, as shown in Figure 7 (left). In practice, this
means that the nonlinear and irregular component of the gradients has a smaller relative magnitude,
the total Hessian of the posterior is better conditioned, and the chains mix faster.

5 CONCLUSION

The SBMC method has been introduced and shown to be within reach of modern practical applications.
It comprises a judicious model which uses a scalar parameter s to interpolate between δθMAP

(s = 0)
and the posterior (s = 1), and is hence able to balance the benefits of each and achieve strong
performance in accuracy and UQ metrics at a cost comparable to SOTA approaches like DE. Both
MCMC∥ and SMC∥ are attractive algorithm options, which are consistent for the given target model6
Therefore we have a mechanism for controlling the approximation between two reasonable choices if
convergence is ensured. However, since the method no longer targets the posterior for any s < 1,
we would recommend adopting a heuristic approach to convergence as with other SOTA methods,
rather than chasing more rigorous convergence guarantees. Any BMC algorithm can be used, and
SG-MCMC methods are particularly attractive since they are amenable to mini-batching and close to
SGD, for which ample deep learning tooling is readily available.

6SMC∥ has stronger theoretical guarantees but MCMC∥ is easier to implement and is amenable to SG-MCMC
approaches.
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A FUTURE DIRECTIONS

The most obvious next step is UQ for modern large language models (LLMs) (Guo et al., 2025),
where robustness and hallucination detection are crucial pain points (Vashurin et al., 2025). It has
been recently shown that high-quality entropy metrics are valuable for identifying untrustworthy
outputs there (Gustafsson et al., 2020; Arteaga et al., 2024; Farquhar et al., 2024). In the context
of LLMs, where the training itself is extremely computationally expensive, it becomes particularly
important to have add-on plug-in type methods that can be applied post-training, such as (Qiu et al.,
2019; Farquhar et al., 2024; Qiu & Miikkulainen, 2024). But those methods are constrained to
the uncertainty already encoded in the point estimator of model weights, which may already be
under-estimated. The work (Arteaga et al., 2024) has shown that batch ensembles of fine-tuned LLMs
can also work well for UQ hallucination detection, and also that epistemic uncertainty provides
valuable information for that task. Based on existing benchmarks against deep ensembles, we believe
our SBMC(s) approach will perform even better. Furthermore, an even simpler and cheaper version
is to learn the last layer only, so all the data can be pre-processed once and for all by the frozen
pre-trained LLM parameters, and then we simply run the last layer through SBMC. This can be
applied at the pre-training or post-training stage, although the value of the method on downstream
tasks will be most clear at post-training, while there would be some necessary design choices for how
to leverage a pre-trained ensemble, instead of a point estimator, during post-training.

A.1 OVERCOMING OTHER COMPUTATIONAL BOTTLENECKS

Our sampler relies only on forward/back-prop evaluations, so every mainstream hardware scheme
can be stacked on top of it: data-parallel all-reduce for moderate models(Goyal et al., 2017);
optimizer-state sharding (ZeRO/FSDP) when parameters no longer fit(Rajbhandari et al., 2020);
tensor model-parallelism for in-layer splits (Shoeybi et al., 2019) and pipeline model-parallelism for
depthwise splits (Huang et al., 2019); and, finally, the full hybrid of DP/sharding/tensor/pipeline that
is now routine in trillion-parameter language models (Chowdhery et al., 2023; Black et al., 2022).

A.2 FURTHER DIRECTIONS

Further directions at the methodological level include

• DE-SBMC: an obvious extension, would be to condition the HMC ensemble, or SMC
ensemble (P > 1) with the DE, in case there may be any gain to be had.

• One could condition SGLD/SGHMC with the MAP(s) from SGD (or DE). In this way, there
is an initial phase which aims to recover a good point estimator, and then a second phase of
essentially the same method, which aims to quantify the spread.

• P−parallelizing N−ensemble MCMC methods such as Gilks et al. (1994); Goodman &
Weare (2010); Vrugt et al. (2009); Hoffman & Sountsov (2022).

• Leveraging N−ensemble MCMC methods within SMC for better mutations (with the cost
of more communication).

• Parallel stochastic-gradient-MCMC methods like SGLD (Welling & Teh, 2011) and SG-
HMC (Chen et al., 2014), and ensemblized versions thereof.
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• Related to above, mini-batch gradients can be used in lieu of full gradients, which may
have some advantages in terms of scalability and convergence. For SMC samplers, we have
unbiased estimators ℓ̂w of log weights using mini-batches, and could use exp(ℓ̂w) for a non-
negative and biased estimator or Bernoulli/Poisson augmentation to achieve (non-negative)
unbiased weights (Gunawan et al., 2020; Bardenet et al., 2017).

• Evidential models explicitly model uncertainty parametrically with point estimators (Charp-
entier et al., 2020), but it has been observed that deep ensembles of such estimators perform
better Charpentier et al. (2022). It would be natural to build Bayesian evidential models and
simulate them with SBMC.

B MORE RELATED WORK

Empirical Bayes methods (Efron & Morris, 1973) fit higher level parameters in hierarchical models
through optimization of the marginal likelihood. An SBMC model could be built in principle with a
general prior πϕ(θ), for exampleN (θ;µ,Σ) for ϕ = (µ,Σ), and solved by EB. There is a significant
cost overhead for optimizing the marginal-likelihood, but that could be offset in principle with Laplace
approximation Bishop (2006) or other approaches. The particular SBMC(s) model considered here
could also utilize EB for selecting s and/or α, as an alternative to cross-validation. And even before
this, EB could be used to define the prior variance v, or a more general prior.

The work LogME You et al. (2021) use EB for fitting prior and likelihood variance in the context
of transfer learning for regression, and then they extended this idea for building estimators from
an ensemble of pre-trained models You et al. (2022). The latter could naturally be combined with
other ensemble approaches described above, and plugged into SBMC. The Laplace Redux work
of Daxberger et al. (2021) provides an off-the-shelf Laplace module with block diagonal Hessian
approximations to plug pre-trained models into for transfer learning. This could naturally augment
SBMC in a number of ways, from leveraging it in marginal likelihood calculations for EB, to using it
as a drop in alternative for the prior, or leveraging their Hessian approximation in various other ways.
It is worth momentarily digressing on an approach inspired by this observation. If the data is split
into Nα pre-training and N −Nα fine-tuning sets, or if the likelihood is split by α and 1− α scalar
fractions, then one could build a Laplace approximation (or another variational approximation) of
the original α posterior, and use that as a prior for the remaining likelihood fraction. This posterior
approximation may be closer to the original GS, and since each problem features an explicitly
tempered likelihood, they should both be easier solve. This may help with potentially overfitting,
although we did not observe much of an issue in that respect.

The recent work Li et al. (2025) points out that supervised OOD meta-classification involving OOD
calibration data suffers from an inevitable problem of meta-OOD data, and calls for the development
of fundamentally new approaches to OOD detection for this reason. This concern could be mitigated
with the Bayesian approach, since Bayesian methods directly deliver a reasonable abstention score in
Hep itself by design, as shown in Figure 2 and Table 4. In other words, we could either bypass the
meta-classifier altogether, or we build a Bayesian meta-classifier and then stop there. The latter may
be preferable, since the meta-classifier delivers improvement and is cheap to learn. The work Izmailov
et al. (2021) shows that BDL is more effective for the harder problem of identifying near-OOD data
and not as good as custom-designed OOD models for the easier problem of identifying far-OOD data,
so a 2-level approach may work best where we first filter out far OOD data using an approach like
Lee et al. (2018) and subsequently evaluate prediction confidence.

C TECHNIQUES FOR SMC∥ IN PRACTICE

Adaptive tempering. As mentioned, adaptive tempering is used to ensure a dense tempering regime
and provide stability(Syed et al., 2024).

Example C.1 (Adaptive tempering). In order to keep the sufficient diversity of sample population,
we let the effective sample size to be at least ESSmin = N/2 at each tempering λj−1 and use it
compute the next tempering λj . For jth tempering, we have weight samples {wk

j−1, θ
k
j−1}Nk=1, then
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the ESS is computed by

ESS =
1∑N

k=1(w
k
j−1)

2
,

where wk
j−1 = L(θkj−1)

λj−λj−1/
∑N

k=1 L(θkj−1)
λj−λj−1 . Let h = λj − λj−1, the effective sample

size can be presented as a function of h, ESS(h). Using suitable root finding method, one can find h∗

such that ESS(h∗) = ESSmin, then set the next tempering λj = λj−1 + h∗.

Note that the partition function estimator ZN is no longer unbiased once we introduce adaptation,
which means that in principle we should do short pilot runs and then keep everything fixed to preserve
the integrity of the theory, but we have found this does not make a difference in practice.

Adaptive number of mutation steps. The number of mutation steps M is chosen adaptively.
After resampling at a given tempering step, let θi,0 denote the i-th sample and θi,m its state after m
mutation steps. We monitor the mean displacement from the post-resampling state,

distm =
1

N

N∑
i=1

∥∥θi,m − θi,0
∥∥
2
,

and terminate the mutation update at the smallest M ≥ 2 for which the displacement has stabilized:

|distM − distM−1|
distM−1

≤ η,

with tolerance η > 0. This criterion automatically increases M when the tempering increment is
large or the target becomes tighter (requiring more mixing to decorrelate the resampled particles),
and conversely saves computation when the resampled state is already close to stationary at the new
tempering level.

Numerical stability: nested Log-sum-exp. When computing likelihoods in Sequential Monte Carlo
(SMC) algorithms, numerical underflow frequently arises because likelihood values can become
extremely small, often beyond computational precision. To address this, one standard practice is
to work with log-likelihoods rather than likelihoods directly. By operating in the log domain, the
computer can safely store and manipulate extremely small values without loss of precision.

Specifically, the standard log-sum-exp trick can be applied to stabilize computations. For instance,
consider a scenario with nested sums and products in parallel SMC. For each processor p = 1, . . . , P ,
we initially have:

ZN,p =

J∏
j=1

N∑
i=1

ωi,p
j .

To avoid numerical instability, each sum within the product is computed using the log-sum-exp trick:

N∑
i=1

ωi,p
j = exp

(
max

i
log(wi,p

j )
) N∑

i=1

exp
(
log(wi,p

j )−max
i

log(wi,p
j )

)
.

This procedure yields the decomposition:

ZN,p = KpẐp,

where

Kp =

J∏
j=1

exp
(
max

i
log(wi,p

j )
)
, and Ẑp =

J∏
j=1

N∑
i=1

exp
(
log(wi,p

j )−max
i

log(wi,p
j )

)
.

In parallel SMC, an additional stabilization step is applied across processors. The global normalization
constant across processors can also suffer from numerical instability. To address this, the log-sum-exp
trick is applied again at the processor level:

ZN,p = exp
(
log(Ẑp) + log(Kp)− log(K)

)
K,
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with
log(K) = max

p

(
log(Ẑp) + log(Kp)

)
.

Since the factor K cancels out when calculating the parallel SMC estimator, it suffices to compute
only:

exp
(
log(Ẑp) + log(Kp)− log(K)

)
,

which ensures numerical stability even when K itself is computationally very small.

Thus, by recursively applying the log-sum-exp trick at both the particle and processor levels, parallel
SMC estimators can robustly handle computations involving extremely small numbers without
numerical underflow.

D COMPLEMENTARY DESCRIPTION OF SIMULATIONS

D.1 COMPUTATION OF ERROR BARS

Assume running R times of experiments to get R square errors/loss between simulated estimator φ̂
and the ground truth, SE(φ̂)r for r = 1, ..., R. Take the MSE as an example, the MSE is the mean of
SE(φ̂)r over R realizations, and the standard error of MSE (s.e.) is computed by√

1
R

∑R
r=1(SE(φ̂)r −MSE)2

√
R

. (7)

D.2 INTEGRATED AUTOCORRELATION TIME

Integrated Autocorrelation Time (IACT) means the time until the chain is uncorrelated with its initial
condition. The precise mathematical definition is as follows.

Let θ0, . . . , θt, . . . denote the Markov chain, and let φ(θ) be a scalar function of the state. We first
define the autocovariance function (ACF) at lag s:

γs(φ) = E
[(
φ(θt+s)− E[φ(θ)]

)(
φ(θt)− E[φ(θ)]

)]
,

and the ACF at lag s as the normalized quantity

ρs(φ) =
γs(φ)

γ0(φ)
,

where γ0(φ) is the variance of φ(θ).

Then the integrated autocorrelation time (IACT) of φ is then defined in terms of the ACF by

IACT(φ) = 1 + 2

∞∑
s=1

ρs(φ).

D.3 DETAILS OF THE BAYESIAN NEURAL NETWORKS

Let weights be Ai ∈ Rni×ni−1 and biases be bi ∈ Rni for i ∈ {1, ..., D}, we denote θ :=
((A1, b1), ..., (AD, bD)). The layer is defined by

g1(x, θ) := A1x+ b1,

gd(x, θ) := Aiσni−1(gi−1(x)) + bi, i ∈ {2, ..., D − 1},
g(x, θ) := ADσnD−1

(gD−1(x)) + bD,

where σi(u) := (ν(u1), ..., ν(ui))
T with ReLU activation ν(u) = max{0, u}.

Consider the discrete data set in a classification problem, we have Y = {1, ...,K} and nD = K, then
we instead define the so-called softmax function as

hk(x, θ) =
exp(gk(x, θ))∑K
j=1 exp(gj(x, θ))

, k ∈ Y, (8)
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and define h(x, θ) = (h1(x, θ), ..., hK(x, θ)) as a categorical distribution on K outcomes based on
data x. Then we assume that yi ∼ h(xi) for i = {1, ...,m}.
Now we describe the various neural network architectures we use for the various datasets.

D.3.1 MNIST7 CLASSIFICATION EXAMPLE

The architecture is a simple CNN with (i) one hidden layer with 4 channels of 3× 3 kernels with unit
stride and padding, followed by (ii) ReLU activation and (iii) 2× 2 max pooling, (iv) a linear layer,
and (v) a softmax. The parameter prior and dataset is built as follows

• Training is conducted on a sub-dataset consisting of the first 1200 training samples with
labels 0 through 7. Evaluation is performed on first Nid in-domain test images with labels 0
through 7 and the on the four generated out-of-domain dataset (Nood total number of data).

• The OOD dataset is generated as follows: two of the datasets are the first Nood/4 out-of-
domain test images with labels 8 and 9, respectively. The third dataset, the white noise
image (wn), is a set of Nood/4 synthetic 28 × 28 “images” with pixels drawn uniformly
at random from [0, 1]. The fourth dataset, the perturbed image (per.), is a set of the first
Nood/4 MNIST test images of digits0–7, each pixel perturbed by Gaussian noise (standard
error as 0.5) while retaining its original label.

• MAP and DE are estimated using an initialization and regularization based on the prior
N(0, vId), where d = 6320 and v = 0.1. The tuning parameter in SBMC methods is s. The
batchsize is 64.

• The gold-standard is computed by the single HMC over 5 realizations, called HMC (GS),
with N = B, T = 1 and L = 1.

• SWA. Starting from the estimated MAP weights, we train with SGD (momentum 0.9, lr
10−3). After a 25-epoch warm-up, we update an AveragedModel each epoch (1 weight
sample per epoch) and use SWALR with swa_lr = 5 × 10−4. After training we use the
SWA weights for prediction. We run R=5 independent replicates.

• MC Dropout. We enable a 30% dropout in the (only) dropout layer after flattening (before
the FC). Starting from the MAP estimation, we train with Adam (lr 10−3). At test time, we
keep dropout on and average T=10 stochastic forward passes for predictive probabilities.
We run R=5 independent replicates.

• Laplace. We fit a Laplace approximation with a Kronecker-factored approximation of
the Hessian7Daxberger et al. (2021). The starting model is the estimated MAP model;
we estimate the posterior over the last layer and draw T=10 predictive weight samples
with pred_type=’nn’ (re-linearization) for MC predictive inference. We run R=5
independent replicates.

D.3.2 IMDB CLASSIFICATION EXAMPLE

Here we use SBERT embeddings Reimers & Gurevych (2019) based on the model all-mpnet-base-v2
Song et al. (2020) 8. In other words, frozen weights from all-mpnet-base-v2 until the 768 dimensional
[CLS] output. The NN model and parameter prior for IMDb9 are built as follows

• NN is followed by (i) no hidden layer, (ii) ReLU activation, (iii) a final linear layer, and (iv)
softmax output.

• Training is conducted on the whole train set (25000 data). Evaluation is performed on
the whole test images as the in-domain dataset (25000 data) and on the four generated
out-of-domain datasets (Nood total number of data).

• The OOD dataset is generated as follows: four of these datasets (each dataset has Nood/5
data) use textual data from the Appliances domain, which is distinct from the in-domain
IMDb movie review data. Specifically, four OOD datasets were constructed from Amazon

7https://github.com/aleximmer/Laplace
8https://huggingface.co/sentence-transformers/all-mpnet-base-v2
9https://huggingface.co/datasets/stanfordnlp/imdb
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Reviews 2023 Appliances data Hou et al. (2024) 10, containing customer reviews and product
metadata. Two datasets directly used the two JSON files, and two text-based OOD datasets
were generated as follows. From Appliances.jsonl, we extracted the review text,
representing natural language expressions of user opinions but unrelated to movies; from
meta_Appliances.jsonl, we constructed meta descriptions by concatenating each
product’s title and listed features. The last dataset, Lipsum, is a collection of 100 very short,
meaningless text strings, each consisting of between one and ten randomly selected words
drawn from the classic “Lorem ipsum” filler vocabulary.

• MAP and DE are estimated using an initialization and regularization based on the prior
N(0, vId), where d = 1538. The tuning parameter in SBMC methods is s. The batchsize is
64.

• The gold-standard is computed by the single HMC over 5 realizations, called HMC (GS),
with N = B, T = 1 and L = 1.

D.3.3 CIFAR-10 CLASSIFICATION EXAMPLE

Here, the architecture is ResNet-50 pre-trained from ImageNet with all parameters frozen until the
final pooled 2048 dimensional features. The NN model and parameter prior for CIFAR10 are as
follows.

• NN is followed by (i) no hidden layer, (ii) ReLU activations, (iii) a final linear layer, and (iv)
softmax output.

• Training is conducted on the whole train set (50000 data). Evaluation is performed on
the whole test images as the in-domain dataset (10000 data) and on the three generated
out-of-domain datasets (Nood total number of data).

• The OOD dataset is generated as follows:

– Close OOD (CIFAR-100 “not in CIFAR-10”). Drawn Nood/3 data from the 90 fine-
grained CIFAR-100 classes that don’t overlap with the 10 classes inCIFAR-10. All
images are 32× 32 RGB natural photographs with nearly identical color distribution
and textures to CIFAR-10.

– Corrupt OOD (CIFAR-10-C). Select Nood/3 CIFAR-10 test images and subject them
to 15 types of realistic distortions—Gaussian/impulse noise (motion/defocus blur, frost,
fog, brightness/contrast shifts, JPEG compression, pixelation, etc.) at five different
severity levels. The pixel-level statistics are methodically disturbed, yet the original
labels stay the same.

– Far OOD (SVHN). Select Nood/3 data from 26032 32x32 RGB test photos of house-
number digits (0–9) that have been cut from Google Street View. The SVHN displays
centred white numbers on colourful, frequently cluttered urban backgrounds, in contrast
to CIFAR’s multi-object array of natural-scene photos.

• MAP and DE are estimated using an initialization and regularization based on the prior
N(0, vId), where d = 20490 and v = 0.2. The tuning parameter in SBMC methods is s.
The batchsize is 128.

• The gold-standard is computed by the single HMC over 5 realizations, called HMC (GS),
with N = B, T = 1 and L = 1.

D.4 HARDWARE DESCRIPTION

The main CPU cluster we access has nodes with 2 × 16-core Intel Skylake Gold 6130 CPU @
2.10GHz, 192GB RAM without communication in between, so it can only run N/P = 32 particles
in parallel with one particle per core. There are also unconnected AMD “Genoa” compute nodes,
with 2 × 84-core AMD EPYC 9634 CPUs and 1.5TB RAM.

10https://amazon-reviews-2023.github.io/
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E HYPER-PARAMETER TABLES

Table 5: Hyper-parameters for core methods (MAP, DE, S-HMC∥ and S-SMC∥) on MNIST7, IMDb
and CIFAR10. HMC, SMC, and their variants adopt the same hyper-parameters but run without
a pre-trained model and directly target the full posterior distribution. Importantly, DEI-HMC is
initialized using the Deep Ens rather than a random sample from the prior.

Experiments

Method Hyper-parameter Was tuned MNIST7 IMDb CIFAR-10

MAP

Prior variance v ✓ 1e-1 2.5e-2 2e-1
Optimizer (Learning rate) × Adam (1e-3) Adam (1e-3) Adam (1e-3)
Batch size ✓ 64 64 128
Early stopping (mov. avg., patience)⋆ × 10, 5 10, 5 -

Deep Ens (P )

Pre-trained model ✓ MAP MAP MAP
Prior variance v ✓ 1e-1 2.5e-2 2e-1
Optimizer (Learning rate) × Adam (1e-3) Adam (1e-3) Adam (1e-3)
Batch size ✓ 64 64 128
Early stopping (mov. avg., patience) × 10, 5 10, 5 -
Ensemble size × 10P 10P 10P

S-HMC∥ (P )

Pre-trained model ✓ MAP MAP MAP
MAP prior variance v ✓ 1e-1 2.5e-2 2e-1
Sampling prior scale s ✓ 1e-1 1e-1 1e-1
Sampling prior variance sv ✓ 1e-2 2.5e-3 2e-2
Step size ϵ (initial)† ✓ 1e-2 1.8e-2 2e-3
Leapfrog steps L × 1 1 1
Burn-in particles ✓ 160 25 200
Num. particles per chain × 1 1 1
Num. of chains × 10P 10P 10P
Total posterior particles × 10P 10P 10P

S-SMC∥ (P )

Pre-trained model ✓ MAP MAP MAP
MAP prior variance v ✓ 1e-1 2.5e-2 2e-1
Sampling prior scale s ✓ 1e-1 1e-1 1e-1
Sampling prior variance sv ✓ 1e-2 2.5e-3 2e-2
Step size ϵ (initial)† ✓ 3.5e-2 2.2e-2 7.0e-2
ESS tempering threshold ✓ N/2 N/2 N/2
Leapfrog steps L × 1 1 1
HMC transitions per tempering step M ✓ 10 1 4
Num. tempering steps ✓ Adaptive Adaptive Adaptive
Num. particles N × 10 10 10
Num. of chains × P P P
Total posterior particles × 10P 10P 10P

⋆Mov. avg. is a smoothed validation metric that reduces noise; patience is the number of steps allowed without
improvement before early stopping.

†Step size is adapted during sampling based on the acceptance rate.
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Table 6: Hyper-parameters for other baseline models on MNIST7. SGHMC adopts the same hyper-
parameters but run without a pre-trained model and directly target the full posterior distribution.

Method Hyper-parameter Was tuned MNIST7

MC Dropout

Prior variance v ✓ 1e-1
Optimizer (learning rate) × Adam (1e-3)
Dropout rate ✓ 3e-1
Training iterations ✓ 160
Num. particles × 10

SWA

Prior variance v ✓ 1e-1
Optimizer (learning rate) × SGD (1e-3)
SWA start iteration ✓ 25
Total iterations ✓ 160
SWA learning rate × 5e-4
Momentum × 9e-1

SWAG

Prior variance v ✓ 1e-1
Optimizer (learning rate) × SGD (1e-3)
SWAG burn-in iterations ✓ 25
Snapshot frequency ✓ 2
Max snapshots ✓ 20
Sampling scale × 1.0
Use low-rank covariance × True
Num. particles × 10

Laplace

Prior variance v ✓ 1e-1
Subset of weights × Last layer
Hessian structure ✓ Kronecker
Num. particles × 10

S-SGHMC∥ (P )

Pre-trained model ✓ MAP
MAP prior variance v ✓ 1e-1
Sampling prior scale s ✓ 1e-1
Sampling prior variance sv ✓ 1e-2
Optimizer (learning rate) × Adam (1e-3)
Step size ϵ ✓ 6e-3
SGHMC friction ✓ 2e-1
Burn-in particles ✓ 160
Num. particles per chain × 1
Num. of chains × 10P
Total posterior particles × 10P

SMS-UBU∥ (P )

Pre-trained model ✓ MAP
prior variance v ✓ 1e-1
Localization strength ✓ 1e-2
Step size ✓ 2.5e-5
Momentum friction ✓

√
50

Number of forward sweeps ✓ 80
Number of backward sweeps ✓ 80
Burn-in sweeps ✓ 160
Num. particles per chain × 1
Num. of chains × 10P
Total posterior particles × 10P

F FURTHER RESULTS FOR UQ

Results in this section further support the statement mentioned in the main text, that is, (i) SBMC sig-
nificantly outperforms the MAP estimator, as well as a DE of MAP estimators, (ii) DE systematically
underestimates Hep for the same ensemble size as SBMC.
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F.1 MNIST7

In the MNIST7 case, the full setting is described in Appendix D.3.1, where we let Nid = 7000 and
Nood = 2000, where each dataset has 500 data. Selected results appear in the main text in Figure 2,
where the full data table is given in Table 25. Additional detailed results of the per-digit analysis are
provided below, see Figure 8, and the full data table in Table 21.

(a) MAP (b) DE (c) S-HMC∥

(d) S-SMC∥ (e) HMC (GS)

Figure 8: Comparison of entropy across groups for MNIST7. S-SMC∥ (P = 1 chain with N = 10),
S-HMC∥ (NP chains), HMC (GS) (2e4 samples), DE (N models) and MAP, with fixed number of
leapfrog L = 1, v = 0.1 and s = 0.1 (5 realizations).

F.2 IMDB

In the IMDb case, the full setting is described in Appendix D.3.2, where we let Nood = 500, and
each dataset has 100 data.

Experiments with v = 1
40 . Results of entropy comparison among MAP, DE and SBMCs are given

in Figure 9, showing comparison in the OOD datasets and the correct/incorrect predictions in the ID
domain. Additional detailed results of the per-digit analysis are provided below, see Figure 10, and
the full data table in Table 22.

Figure 9: Comparison of average total and epistemic entropy over four out-of-domain classes and
correct/incorrect predictions in-domain for IMDb. S-SMC∥ (P = 1 chain with N = 10), S-HMC∥
(NP chains), DE (N models) and MAP, with fixed number of leapfrog L = 1, B = 25, M = 1,
v = 0.025 and s = 0.1 (5 realizations).
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(a) MAP (b) DE (c) S-HMC∥ (d) S-SMC∥

Figure 10: Comparison of entropy across groups for IMDb. S-SMC∥ (P = 1 chain with N = 10),
S-HMC∥ (NP chains), DE (N models) and MAP, with fixed number of leapfrog L = 1, B = 25,
M = 1, v = 0.025 and s = 0.1 (5 realizations).

Experiments with v = 1. Results of entropy comparison among MAP, DE and SBMCs are given
in Figure 11, showing comparison in the OOD datasets and the correct/incorrect predictions in the ID
domain. Additional detailed results of the per-digit analysis are provided below, see Figure 12, and
the full data table in Table 23.

Figure 11: Comparison of average total and epistemic entropy over four out-of-domain classes and
correct/incorrect predictions in-domain for IMDb. S-SMC∥ (P = 8 chain with N = 10), S-HMC∥
(NP chains), DE (N models) and MAP, with fixed number of leapfrog L = 1, B = 26, M = 2,
v = 1 and s = 0.35 (5 realizations).

(a) MAP (b) DE (c) S-HMC∥ (d) S-SMC∥

Figure 12: Comparison of entropy across groups for IMDb. S-SMC∥ (P = 8 chain with N = 10),
S-HMC∥ (NP chains), DE (N models) and MAP, with fixed number of leapfrog L = 1, B = 26,
M = 2, v = 1 and s = 0.35 (5 realizations).

F.3 CIFAR10

In the CIFAR10 case, the full setting is described in Appendix D.3.3, where we let Nid = 10000 and
Nood = 300, and each dataset has 100 data points. Results of entropy comparison among MAP, DE
and SBMCs are given in Figure 13, showing comparison in the OOD datasets and the correct/incorrect
prediction in the ID domain.
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Figure 13: Comparison of average total and epistemic entropy over three out-of-domain classes and
correctly/incorrectly predicted ID for CIFAR10. S-SMC∥ (P = 8 chains with N = 10), S-HMC∥
(NP chains), DE (N ) and MAP, with fixed number of leapfrog L = 1, B = 200, M = 4, v = 0.2
and s = 0.05 (5 realizations).

G FURTHER RESULTS OF OOD INFERENCE

Establishment of the meta-classifier of incorrect/OOD data is given in the main text under Out-of-
domain inference. Here, the OOD detection is performed in the default and optimal F1 decision rule,
respectively.

The default decision rule treats the output probability of "abstain" (out-of-domain or likely
misclassified) in the meta-classifier as a binary decision with a fixed cut-off at 0.5. That is, if the
model predicts that there is at least a 50% probability of the data being OOD or incorrectly predicted,
it abstains; otherwise, it classifies the data as correctly predicted ID. This rule requires no adjustment
beyond the choice of 0.5. Its behaviour is totally dependent on whether the model’s confidence in
abstention exceeds the halfway level.

The optimal F1 decision rule adapts the abstention threshold to maximize the F1 score on a
held-out set. In practices, the meta-classifier’s probabilities are assessed over a grid of potential
thresholds ranging from 0 to 1, the F1 score are calculated for each threshold, and the threshold with
the highest F1 score is chosen as the optimal F1 threshold. This customised threshold balances false
positives and false negatives in the most effective way for the given data distribution, at the cost of
requiring a representative validation set. It often outperforms the default decision rule when class
proportions or costs of errors are skewed.

G.1 MNIST7

In the MNIST7 case, the full setting is described in Appendix D.3.1, where we let Nid = 2000 and
Nood = 2000, where each dataset has 500 data. Metrics of Precision, Recall, F1 and AUC-ROC
metrics are given in Table 7, the normalized confusion rate matrices to show how the OOD domain
has been detected from the ID domain are given in Figure 14. Plots for ROC curve and 2-level
estimator accuracy are given in Figure 15.

Table 7: Evaluation Metrics using thresholds. S-SMC∥ (P = 1, 8 chains with N = 10) and S-HMC∥
(NP chains), with fixed number of leapfrog L = 1, B = 160, M = 10, v = 0.1 and s = 0.1, on
MNIST (5 realizations, ± s.e. in metrics and bold the first 30% data in mean).

(a) Default decision threshold (0.5).

P Method Precision Recall F1 AUC-ROC

– MAP 0.846±0.014 0.162±0.016 0.271±0.024 0.828±0.013
– DE 0.876±0.007 0.213±0.011 0.342±0.015 0.855±0.003
1 S-SMC∥ 0.845±0.020 0.216±0.037 0.338±0.049 0.824±0.017
8 S-SMC∥ 0.894±0.015 0.389±0.046 0.537±0.052 0.884±0.006
1 S-HMC∥ 0.906±0.004 0.432±0.020 0.584±0.020 0.885±0.002
8 S-HMC∥ 0.907±0.001 0.470±0.007 0.619±0.006 0.892±0.001

(b) Optimal F1 decision threshold.

P Method Precision Recall F1 AUC-ROC

– MAP 0.707±0.013 0.898±0.006 0.791±0.009 0.828±0.013
– DE 0.734±0.004 0.897±0.003 0.807±0.002 0.855±0.003
1 S-SMC∥ 0.701±0.021 0.890±0.015 0.783±0.010 0.824±0.017
8 S-SMC∥ 0.753±0.004 0.915±0.004 0.826±0.001 0.884±0.006
1 S-HMC∥ 0.750±0.003 0.906±0.004 0.820±0.002 0.885±0.002
8 S-HMC∥ 0.752±0.003 0.913±0.004 0.825±0.001 0.892±0.001
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(a) MAP (b) DE (c) S-SMC∥(P = 1) (d) S-SMC∥(P = 8) (e) S-HMC∥(P = 1) (f) S-HMC∥(P = 8)

(g) MAP (h) DE (i) S-SMC∥(P = 1) (j) S-SMC∥(P = 8) (k) S-HMC∥(P = 1) (l) S-HMC∥(P = 8)

Figure 14: Averaged confusion rate matrices for OOD prediction on MNIST7, with default decision
threshold (top) and optimal F1 decision threshold (bottom). S-SMC∥ (P = 1, 8 chains with N = 10)
and S-HMC∥ (NP chains), with fixed number of leapfrog L = 1, B = 160, M = 10, v = 0.1 and
s = 0.1, on MNIST (5 realizations and ± s.e. in metrics).

(a) ROC curve (b) 2-level estimator accuracy

Figure 15: Averaged curve plots for OOD detection on MNIST7. S-SMC∥ (P = 1, 8 chains with
N = 10) and S-HMC∥ (NP chains), with fixed number of leapfrog L = 1, B = 160, M = 10,
v = 0.1 and s = 0.1, on MNIST (5 realizations and ± s.e. in metrics).

G.1.1 UNSEEN FAR OOD DETECTION

The meta-classifier is trained following the same procedure used for the MNIST7 before. Evaluation
is applied on disjoint test sets constructed for each OOD category. We consider five test configurations,
each comprising 1,000 images obtained by pairing the same 500 ID test images with 500 OOD
examples of a specific type (digit 8, digit 9, perturbed ID, white noise, or CIFAR-10). For each
configuration, we report the area under the corresponding two-level estimator curve (AU2LC) in
Table 8 and additionally present the confidence (the optimal F1 decision rule) meta-classifier results
in Tables 9,10, 11,12,13.
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Table 8: Meta-classifier different OOD sets. Area under the 2-level estimator curve. S-SMC∥
(P = 1, 8 chains with N = 10) and S-HMC∥ (NP chains), with fixed number of leapfrog L = 1,
B = 160, M = 10, v = 0.1 and s = 0.1, on MNIST (5 realizations, ± s.e. in metrics).

Near OOD Far OOD

P Method Digit 8 Digit 9 Pert. White noise CIFAR10

- MAP 0.754 0.660 0.701 0.746 0.705
- DE 0.792 0.646 0.785 0.867 0.847
1 S-SMC∥ 0.723 0.654 0.730 0.809 0.801
8 S-SMC∥ 0.781 0.685 0.845 0.882 0.881
1 S-HMC∥ 0.774 0.660 0.812 0.878 0.873
8 S-HMC∥ 0.790 0.672 0.852 0.880 0.879

Table 9: Digit 8 OOD set. Confidence meta-classifier results (optimal F1 decision threshold,
MNIST7) for Digit 8 OOD set. S-SMC∥ (P = 1, 8 chains with N = 10) and S-HMC∥ (NP chains),
with fixed number of leapfrog L = 1, B = 160, M = 10, v = 0.1 and s = 0.1 (5 realizations, ± s.e.
in metrics).

P Method Precision Recall F1 AUC-ROC

– MAP 0.815±0.008 0.896±0.009 0.854±0.005 0.899±0.007
– DE 0.822±0.010 0.925±0.011 0.870±0.003 0.921±0.006
1 S-SMC∥ 0.787±0.022 0.899±0.016 0.838±0.010 0.878±0.015
8 S-SMC∥ 0.827±0.008 0.903±0.006 0.863±0.002 0.912±0.004
1 S-HMC∥ 0.823±0.012 0.902±0.016 0.860±0.005 0.914±0.006
8 S-HMC∥ 0.829±0.007 0.916±0.009 0.870±0.002 0.916±0.001

Table 10: Digit 9 OOD set. Confidence meta-classifier results (optimal F1 decision threshold,
MNIST7) for Digit 9 OOD set. S-SMC∥ (P = 1, 8 chains with N = 10) and S-HMC∥ (NP chains),
with fixed number of leapfrog L = 1, B = 160, M = 10, v = 0.1 and s = 0.1 (5 realizations, ± s.e.
in metrics).

P Method Precision Recall F1 AUC-ROC

– MAP 0.716±0.010 0.917±0.008 0.804±0.006 0.809±0.008
– DE 0.719±0.006 0.937±0.010 0.814±0.001 0.807±0.004
1 S-SMC∥ 0.728±0.008 0.908±0.011 0.808±0.004 0.816±0.007
8 S-SMC∥ 0.726±0.008 0.930±0.008 0.815±0.004 0.831±0.003
1 S-HMC∥ 0.714±0.005 0.938±0.003 0.811±0.003 0.814±0.003
8 S-HMC∥ 0.720±0.004 0.934±0.008 0.813±0.001 0.816±0.003

Table 11: Perturbed OOD set. Confidence meta-classifier results (optimal F1 decision threshold,
MNIST7) for Perturbed OOD set. S-SMC∥ (P = 1, 8 chains with N = 10) and S-HMC∥ (NP
chains), with fixed number of leapfrog L = 1, B = 160, M = 10, v = 0.1 and s = 0.1 (5
realizations, ± s.e. in metrics).

P Method Precision Recall F1 AUC-ROC

– MAP 0.759±0.015 0.866±0.004 0.808±0.008 0.840±0.011
– DE 0.805±0.007 0.907±0.008 0.853±0.004 0.914±0.008
1 S-SMC∥ 0.782±0.023 0.882±0.013 0.827±0.008 0.875±0.012
8 S-SMC∥ 0.879±0.010 0.920±0.005 0.899±0.006 0.963±0.004
1 S-HMC∥ 0.839±0.011 0.911±0.007 0.873±0.005 0.941±0.005
8 S-HMC∥ 0.913±0.015 0.901±0.012 0.906±0.004 0.968±0.002
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Table 12: White noise OOD set. Confidence meta-classifier results (optimal F1 decision threshold,
MNIST7) for white noise OOD set. S-SMC∥ (P = 1, 8 chains with N = 10) and S-HMC∥ (NP
chains), with fixed number of leapfrog L = 1, B = 160, M = 10, v = 0.1 and s = 0.1 (5
realizations, ± s.e. in metrics).

P Method Precision Recall F1 AUC-ROC

– MAP 0.809±0.029 0.957±0.009 0.876±0.019 0.889±0.029
– DE 0.960±0.022 0.940±0.010 0.949±0.007 0.987±0.004
1 S-SMC∥ 0.880±0.047 0.932±0.005 0.902±0.025 0.950±0.024
8 S-SMC∥ 0.987±0.006 0.941±0.004 0.963±0.001 0.992±0.000
1 S-HMC∥ 0.988±0.006 0.932±0.006 0.959±0.001 0.991±0.001
8 S-HMC∥ 0.997±0.001 0.927±0.003 0.961±0.001 0.991±0.000

Table 13: CIFAR OOD set: meta-OOD wrt meta-train. Confidence meta-classifier results (optimal
F1 decision threshold, MNIST7) for CIFAR10 OOD set. S-SMC∥ (P = 1, 8 chains with N = 10)
and S-HMC∥ (NP chains), with fixed number of leapfrog L = 1, B = 160, M = 10, v = 0.1 and
s = 0.1 (5 realizations, ± s.e. in metrics).

P Method Precision Recall F1 AUC-ROC

– MAP 0.743±0.044 0.906±0.020 0.812±0.026 0.835±0.042
– DE 0.922±0.032 0.918±0.010 0.919±0.016 0.970±0.012
1 S-SMC∥ 0.882±0.033 0.885±0.033 0.883±0.032 0.934±0.035
8 S-SMC∥ 0.979±0.007 0.938±0.005 0.958±0.001 0.991±0.000
1 S-HMC∥ 0.970±0.007 0.924±0.006 0.946±0.003 0.988±0.001
8 S-HMC∥ 0.990±0.004 0.923±0.003 0.955±0.001 0.990±0.000

G.2 IMDB

In the IMDb case, the full setting is described in Appendix D.3.2, where we let Nood = 25000, and
each dataset has 5000 data points.

Experiment with v = 1
40 Metrics of Precision, Recall, F1 and AUC-ROC metrics are given in

Table 14, the normalized confusion rate matrices to show how the OOD domain has been detected
from ID domain are given in Figure 16. Plots for ROC curve and 2-level estimator accuracy are given
in Figure 17.

Table 14: Performance at the optimal F1 decision threshold. S-SMC∥ (P = 1 chain with N = 10),
S-HMC∥ (NP chains), DE (N models) and MAP, with fixed number of leapfrog L = 1, B, M ,
v = 0.025 and s = 0.1 (5 realizations, ± s.e. in metrics and bold the first 30% data in mean).

P Method Precision Recall F1 AUC-ROC

– MAP 0.707 ± 0.003 0.953 ± 0.001 0.811 ± 0.001 0.768 ± 0.005
– DE 0.856 ± 0.041 0.890 ± 0.017 0.869 ± 0.016 0.896 ± 0.025
1 S-SMC∥ 0.673 ± 0.005 0.919 ± 0.002 0.777 ± 0.004 0.777 ± 0.002
8 S-SMC∥ 0.935 ± 0.003 0.876 ± 0.002 0.905 ± 0.000 0.935 ± 0.002
1 S-HMC∥ 0.844 ± 0.002 0.876 ± 0.004 0.859 ± 0.001 0.905 ± 0.001
8 S-HMC∥ 0.970 ± 0.003 0.879 ± 0.003 0.922 ± 0.000 0.944 ± 0.002
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(a) MAP (b) DE (c) S-SMC∥(P = 1) (d) S-SMC∥(P = 8) (e) S-HMC∥(P = 1) (f) S-HMC∥(P = 8)

Figure 16: Averaged confusion rate matrices for OOD prediction on IMDb, with optimal F1 decision
threshold. S-SMC∥ (P = 1, 8 chain with N = 10), S-HMC∥ (NP chains), DE (N models) and
MAP, with fixed number of leapfrog L = 1, B = 25, M = 1, v = 0.025 and s = 0.1 (5 realizations
and ± s.e. in metrics).

(a) ROC curve (b) 2-level estimator accuracy

Figure 17: Averaged curve plots for OOD detection in IMDb. S-SMC∥ (P = 1, 8 chain with N = 10),
S-HMC∥ (NP chains), DE (N models) and MAP, with fixed number of leapfrog L = 1, B = 25,
M = 1, v = 0.025 and s = 0.1 (5 realizations and ± s.e. in metrics).

Experiment with v = 1. Metrics of Precision, Recall, F1 and AUC-ROC metrics are given in Table
15, the normalized confusion rate matrices to show how the OOD domain has been detected from the
ID domain are given in Figure 18. The plots for the ROC curve and 2-level estimator accuracy are
given in Figure 19.

Table 15: Performance at the optimal F1 decision threshold. S-SMC∥ (P = 1 chain with N = 10),
S-HMC∥ (NP chains), DE (N models) and MAP, with fixed number of leapfrog L = 1, B, M ,
v = 1 and s = 0.35 (5 realizations, ± s.e. in metrics and bold the first 30% data in mean).

P Method Precision Recall F1 AUC-ROC

– MAP 0.733±0.004 0.897±0.003 0.807±0.002 0.809±0.006
– DE 0.968±0.004 0.880±0.004 0.922±0.001 0.959±0.003
1 S-SMC∥ 0.791±0.000 0.871±0.003 0.829±0.001 0.889±0.001
8 S-SMC∥ 0.947±0.003 0.878±0.003 0.911±0.000 0.944±0.002
1 S-HMC∥ 0.923±0.002 0.885±0.001 0.904±0.001 0.943±0.002
8 S-HMC∥ 0.965±0.004 0.880±0.003 0.920±0.000 0.948±0.002
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(a) MAP (b) DE (c) S-SMC∥(P = 1) (d) S-SMC∥(P = 8) (e) S-HMC∥(P = 1) (f) S-HMC∥(P = 8)

Figure 18: Averaged confusion rate matrices for OOD prediction on IMDb, with optimal F1 decision
threshold. S-SMC∥ (P = 1, 8 chain with N = 10), S-HMC∥ (NP chains), DE (N models) and
MAP, with fixed number of leapfrog L = 1, B = 26, M = 2, v = 1 and s = 0.35 (5 realizations
and ± s.e. in metrics).

(a) ROC curve (b) 2-level estimator accuracy

Figure 19: Averaged curve plots for OOD detection in IMDb. S-SMC∥ (P = 1, 8 chain with N = 10),
S-HMC∥ (NP chains), DE (N models) and MAP, with fixed number of leapfrog L = 1, B = 26,
M = 2, v = 1 and s = 0.35 (5 realizations and ± s.e. in metrics).

G.3 CIFAR10

In the CIFAR10 case, the full setting is described in Appendix D.3.3, where we let Nid = 9000 and
Nood = 9000, and each dataset has 3000 data points. Metrics of Precision, Recall, F1 and AUC-ROC
metrics are given in Table 16, the normalized confusion rate matrices to show how the OOD domain
has been detected from the ID domain are given in Figure 20. Plots for ROC curve and 2-level
estimator accuracy are given in Figure 21.
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(a) MAP (b) DE (c) S-SMC∥(P = 1) (d) S-SMC∥(P = 8) (e) S-HMC∥(P = 1) (f) S-HMC∥(P = 8)

(g) MAP (h) DE (i) S-SMC∥(P = 1) (j) S-SMC∥(P = 8) (k) S-HMC∥(P = 1) (l) S-HMC∥(P = 8)

Figure 20: Averaged confusion rate matrices for OOD prediction on CIFAR10, with default decision
threshold (top) and optimal F1 decision threshold (bottom). S-SMC∥ (P = 1, 8 chains with N = 10),
S-HMC∥ (NP chains), DE (N ) and MAP, with fixed number of leapfrog L = 1, B = 200, M = 4,
v = 0.2 and s = 0.05 (5 realizations and ± s.e. in metrics).

Table 16: Evaluation Metrics using thresholds. S-SMC∥ (P = 1, 8 chains with N = 10), S-HMC∥
(NP chains), DE (N ) and MAP, with fixed number of leapfrog L = 1, B = 200, M = 4, v = 0.2
and s = 0.05 (5 realizations, ± s.e. in metrics and bold the first 30% data in mean).

(a) Default decision threshold (0.5).

P Method Precision Recall F1 AUC-ROC

– MAP 0.606±0.058 0.947±0.053 0.723±0.015 0.856±0.001
– DE 0.608±0.062 0.943±0.057 0.721±0.015 0.858±0.002
1 S-SMC∥ 0.607±0.059 0.951±0.049 0.726±0.018 0.861±0.001
8 S-SMC∥ 0.606±0.060 0.952±0.048 0.725±0.019 0.864±0.000
1 S-HMC∥ 0.606±0.060 0.951±0.049 0.724±0.019 0.864±0.000
8 S-HMC∥ 0.605±0.060 0.953±0.047 0.725±0.019 0.867±0.000

(b) Optimal F1 decision threshold.

P Method Precision Recall F1 AUC-ROC

– MAP 0.776±0.005 0.836±0.006 0.805±0.001 0.856±0.001
– DE 0.767±0.003 0.848±0.003 0.805±0.001 0.858±0.002
1 S-SMC∥ 0.794±0.000 0.824±0.001 0.809±0.000 0.861±0.001
8 S-SMC∥ 0.792±0.003 0.830±0.003 0.811±0.000 0.864±0.000
1 S-HMC∥ 0.794±0.000 0.829±0.001 0.811±0.000 0.864±0.000
8 S-HMC∥ 0.788±0.001 0.842±0.001 0.814±0.000 0.867±0.000

(a) ROC curve (b) Total accuracy over thresholds

Figure 21: Averaged curve plots for OOD detection in CIFAR10. S-SMC∥ (P = 1, 8 chains with
N = 10), S-HMC∥ (NP chains), DE (N ) and MAP, with fixed number of leapfrog L = 1, B = 200,
M = 4, v = 0.2 and s = 0.05 (5 realizations and ± s.e. in metrics).

H FURTHER RESULTS OF ABLATIONS IN PRACTICAL SBMC(s < 1
2
)

H.1 MNIST7

Experiments in this section are tested on the (filtered) MNIST7 dataset with the model setting stated
in Appendix D.3.1.
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Table 17 shows the performance as the tuning parameter s varies. Figure 22 and 23 show the trend of
the SBMC∥ in different values of the tuning parameter s as P increases. Table 24 and 25 give the
corresponding full data results of the below figures.

Table 17: Comparison of different s of (S-)SMC∥ (P = 1, 8 chain with N = 10), (S-)HMC∥ (NP
chains), MAP and DE (NP models), with fixed number of leapfrog L = 1 and v = 0.1, on MNIST7
(5 realizations and ± s.e. in accuracy).

s Method Epochs Accuracy NLL Brier Hep

ID OD
cor. inc. 8 9 wn per.

1
HMC (GS) 2e4 93.61±0.41 2.224e-1 1.015e-1 9.621e-2 4.097e-1 4.614e-1 3.119e-1 1.126e+0 7.919e-1
HMC (GS) 2e5 94.77±0.21 1.942e-1 8.700e-2 1.204e-1 4.928e-1 5.635e-1 4.067e-1 1.602e+0 1.031e+0
HMC (GS) 1.8e6 95.13±0.02 1.882e-1 8.345e-2 1.281e-1 5.185e-1 5.856e-1 4.244e-1 1.682e+0 1.112e+0

1
SMC∥ 173.0 79.74±2.71 6.230e-1 2.920e-1 1.337e-2 3.339e-2 3.321e-2 2.775e-2 6.482e-2 5.512e-2
HMC∥ 160 78.41±2.39 1.273e+0 5.799e-1 3.026e-1 3.247e-1 3.173e-1 2.988e-1 6.626e-1 1.099e+0

0.5
S-SMC∥ 161.0 84.18±0.64 4.827e-1 2.304e-1 1.556e-2 4.082e-2 4.000e-2 3.234e-2 1.238e-1 6.418e-2
S-HMC∥ 160 85.26±1.06 8.234e-1 3.672e-1 2.993e-1 3.704e-1 3.627e-1 3.271e-1 8.832e-1 8.030e-1

0.25

S-SMC∥ 166.6 90.35±0.26 3.300e-1 1.441e-1 2.257e-2 1.094e-1 1.146e-1 7.791e-2 3.888e-1 1.996e-1
P = 8 161.5 93.00±0.11 2.366e-1 1.096e-1 8.828e-2 3.717e-1 2.984e-1 2.089e-1 7.488e-1 4.585e-1

S-HMC∥ 160 92.79±0.19 2.571e-1 1.156e-1 1.133e-1 4.232e-1 4.985e-1 3.225e-1 1.289e+0 6.280e-1
P = 8 160 93.15±0.05 2.490e-1 1.127e-1 1.384e-1 4.788e-1 5.572e-1 3.678e-1 1.349e+0 7.311e-1

0.1

S-SMC∥ 170.0 92.17±0.37 2.671e-1 1.186e-1 2.642e-2 1.288e-1 1.384e-1 9.406e-2 3.943e-1 1.832e-1
P = 8 178.0 93.26±0.16 2.259e-1 1.025e-1 5.871e-2 2.725e-1 2.440e-1 1.637e-1 7.238e-1 3.823e-1

S-HMC∥ 160 92.96±0.17 2.326e-1 1.071e-1 5.624e-2 2.645e-1 3.072e-1 1.941e-1 9.304e-1 4.216e-1
P = 8 160 93.12±0.08 2.310e-1 1.072e-1 6.982e-2 2.993e-1 3.524e-1 2.258e-1 1.067e+0 4.780e-1

0.01
S-SMC∥ 183.6 92.57±0.37 2.439e-1 1.121e-1 1.149e-2 5.904e-2 6.445e-2 4.602e-2 2.187e-1 1.008e-1
S-HMC∥ 162 92.95±0.10 2.289e-1 1.069e-1 1.912e-2 1.015e-1 1.238e-1 7.814e-2 4.678e-1 1.945e-1

0
MAP 160.2 92.32±0.37 2.527e-1 1.163e-1 0 0 0 0 0 0

DE (N ) 176.5 92.40±0.15 2.455e-1 1.148e-1 1.059e-2 5.646e-2 7.433e-2 3.468e-2 2.690e-1 1.1056e-1
DE (8N ) 178.38 92.54±0.06 2.393e-1 1.124e-1 1.111e-2 5.980e-2 7.846e-2 4.016e-2 2.935e-1 1.188e-1

s Method Htot

ID OD

cor. inc. 8 9 wn per.

1
HMC (GS) 2.621e-1 9.652e-1 1.110e+0 8.198e-1 1.492e+0 1.081e+0
HMC (GS) 2.852e-1 1.033e+0 1.204e+0 9.322e-1 1.915e+0 1.296e+0
HMC (GS) 2.948e-1 1.057e+0 1.223e+0 9.532e-1 2.012e+0 1.384e+0

1
SMC∥ 5.506e-1 1.078e+0 1.138e+0 9.851e-1 6.426e-1 9.171e-1
HMC∥ 1.854e+0 1.962e+0 1.988e+0 1.927e+0 1.965e+0 1.844e+0

0.5
S-SMC∥ 4.363e-1 1.019e+0 1.127e+0 9.294e-1 8.128e-1 8.712e-1
S-HMC∥ 1.427e+0 1.752e+0 1.837e+0 1.667e+0 1.857e+0 1.694e+0

0.25

S-SMC∥ 1.508e-1 6.679e-1 8.384e-1 5.945e-1 8.495e-1 7.445e-1
P = 8 1.247e-1 6.641e-1 1.000e+0 7.354e-1 1.177e+0 9.931e-1

S-HMC∥ 3.149e-1 1.026e+0 1.220e+0 8.606e-1 1.624e+0 1.019e+0
P = 8 3.456e-1 1.070e+0 1.267e+0 9.025e-1 1.714e+0 1.111e+0

0.1

S-SMC∥ 1.536e-1 7.042e-1 8.975e-1 6.591e-1 9.743e-1 8.001e-1
P = 8 1.374e-1 7.075e-1 1.001e+0 7.307e-1 1.216e+0 9.805e-1

S-HMC∥ 2.343e-1 9.132e-1 1.091e+0 7.567e-1 1.452e+0 8.443e-1
P = 8 2.553e-1 9.380e-1 1.127e+0 7.893e-1 1.543e+0 8.937e-1

0.01
S-SMC∥ 1.737e-1 7.571e-1 9.632e-1 6.607e-1 9.254e-1 8.511e-1
S-HMC∥ 1.995e-1 8.232e-1 1.003e+0 6.991e-1 1.234e+0 6.726e-1

0
MAP 1.833e-1 7.645e-1 9.507e-1 6.157e-1 7.682e-1 7.839e-1

DE (N ) 1.919e-1 7.899e-1 9.821e-1 6.393e-1 9.806e-1 8.112e-1
DE (8N ) 1.938e-1 7.988e-1 1.001e+0 6.532e-1 1.067e+0 8.133e-1
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Figure 22: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 160, M = 7, v = 0.1 and s = 0.25, on MNIST7 (5 realizations).

Figure 23: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 160, M = 10, v = 0.1 and s = 0.1, on MNIST7 (5 realizations).

H.2 IMDB

The experiments in this section are tested on the IMDb dataset with the model setting stated in
Appendix D.3.2.

Experiment with (v = 1
40 ). Summary metrics of IMDb dataset with v = 0.025 and s = 0.1 is

shown in the left spider-plot in Figure 3. Table 18 shows the performance as the tuning parameter s
varies. Figure 24 shows the trend for the SBMC methods as P increases, where the full data can be
found in Table 26.

Table 18: Comparison of S-SMC∥ (N = 10), S-HMC∥ (N chains), DE (N models) and MAP, with
fixed number of leapfrog L = 1, B = 25, M = 1 and v = 0.025, on IMDb (5 realizations and ± s.e.
in accuracy).

s Method Ep. Acc. NLL Hep

ID OD

cor. inc. reviews meta lipsum full reviews full meta

0.1

S-SMC∥ 18.60 86.70±0.03 3.655e-1 1.122e-4 1.664e-4 1.792e-4 2.200e-4 1.749e-4 3.285e-4 3.212e-4
P = 8 19.15 86.69±0.01 3.653e-1 2.531e-4 3.697e-4 4.744e-4 4.971e-4 4.862e-4 5.876e-4 6.105e-4
S-HMC∥ 25 86.70±0.01 3.634e-1 2.418e-4 3.565e-4 4.598e-4 4.633e-4 4.260e-4 5.057e-4 5.410e-4
P = 8 25 86.72±0.00 3.633e-1 2.766e-4 4.022e-4 5.694e-4 6.062e-4 5.637e-4 7.438e-4 7.051e-4

0
MAP 25.00 84.47±0.09 3.911e-1 0 0 0 0 0 0 0
DE (N ) 25.86 84.76±0.08 3.888e-1 1.005e-04 1.366e-04 5.064e-5 5.026e-5 4.909e-5 6.302e-5 5.548e-5

s Method Brier ECE Htot

ID OD

cor. inc. reviews meta lipsum full reviews full meta

0.1

S-SMC∥ 1.093e-1 3.699e-1 4.792e-1 6.357e-1 5.251e-1 5.463e-1 5.142e-1 6.457e-1 6.261e-1
P = 8 1.092e-1 3.698e-1 4.788e-1 6.355e-1 5.213e-1 5.406e-1 5.115e-1 6.430e-1 6.236e-1
S-HMC∥ 1.086e-1 3.694e-1 4.750e-1 6.340e-1 5.165e-1 5.331e-1 5.079e-1 6.400e-1 6.186e-1
P = 8 1.086e-1 3.701e-1 4.752e-1 6.341e-1 5.184e-1 5.359e-1 5.085e-1 6.426e-1 6.209e-1

0
MAP 1.204e-1 4.389e-1 4.800e-1 6.306e-1 5.814e-1 6.117e-1 5.894e-1 6.705e-1 6.658e-1
DE (N ) 1.193e-1 4.340e-1 4.819e-1 6.319e-1 5.793e-1 6.098e-1 5.882e-1 6.702e-1 6.649e-1
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Figure 24: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
L = 1, B = 25, M = 1, v = 0.025, s = 0.1, on IMDb (5 realizations)

Experiments with v = 1. Summary metrics of IMDb dataset with v = 15 and s = 0.35 are
shown in the spider-plot in Figure 25. Table 19 shows the performance as the tuning parameter s vary.
Figure 26, 27 and 28 give the full convergence of SBMC∥ with increasing P . The corresponding full
data results are given in the Table 27 , 28 and 29.

Table 19: Comparison of different s of S-SMC∥ (N = 10) and S-HMC∥ (N chains), with fixed
number of leapfrog L = 1 and v = 1, on IMDb (5 realizations and ± s.e. in accuracy).

s Method Ep. Acc. NLL Hep

ID OD

cor. inc. reviews meta lipsum full reviews full meta

0.35
S-SMC∥ 27.40 88.27±0.07 2.803e-1 6.177e-4 1.460e-3 1.581e-3 2.495e-3 2.187e-3 2.279e-3 2.504e-3
P = 8 27.63 88.88±0.03 2.714e-1 9.342e-3 2.164e-2 3.756e-2 5.515e-2 5.260e-2 6.049e-2 6.435e-2

S-HMC∥ 26 88.81±0.01 2.750e-1 1.565e-2 3.463e-2 5.414e-2 7.021e-2 6.872e-2 8.407e-2 7.930e-2
P = 8 26 88.93±0.02 2.737e-1 1.662e-2 3.651e-2 5.315e-2 7.391e-2 6.917e-2 9.098e-2 8.360e-2

0.25
S-SMC∥ 29.6 88.27±0.10 2.807e-1 2.512e-4 6.069e-4 4.733e-4 7.166e-4 8.590e-4 9.313e-4 9.520e-4
P = 8 28.5 88.87±0.03 2.720e-1 8.124e-3 1.872e-2 3.066e-2 5.057e-2 4.691e-2 6.403e-2 5.777e-2

S-HMC∥ 26 88.83±0.02 2.745e-1 1.269e-2 2.830e-2 4.522e-2 5.927e-2 5.886e-2 7.342e-2 6.803e-2
P = 8 26 88.92±0.02 2.734e-1 1.337e-2 2.964e-2 4.442e-2 6.215e-2 5.863e-2 7.869e-2 7.108e-2

0.1
S-SMC∥ 24 88.54±0.11 2.762e-1 1.820e-4 4.315e-4 4.819e-4 5.915e-4 6.766e-4 7.711e-4 6.500e-4
P = 8 23.7 88.92±0.01 2.711e-1 4.207e-3 9.768e-3 2.182e-2 3.140e-2 2.700e-2 3.352e-2 3.540e-2

S-HMC∥ 26 88.86±0.02 2.726e-1 5.753e-3 1.319e-2 2.712e-2 3.551e-2 3.561e-2 5.110e-2 4.289e-2
P = 8 26 88.93±0.01 2.721e-1 6.065e-3 1.386e-2 2.792e-2 3.888e-2 3.653e-2 5.408e-2 4.638e-2

0
MAP 52 87.97±0.04 2.854e-1 – 0 0 0 0 0 0

DE (N ) 26.52 87.75±0.02 2.921e-1 3.144e-3 7.055e-3 4.514e-2 5.054e-2 5.386e-2 7.963e-2 5.318e-2
DE (8N ) 25.86 87.70 ±0.01 2.925e-1 3.469e-3 7.608e-3 4.394e-2 5.622e-2 5.089e-2 7.435e-2 6.198e-2

s Method Brier ECE Htot

ID OD

cor. inc. reviews meta lipsum full reviews full meta

0.35
S-SMC∥ 8.547e-2 3.832e-1 2.643e-1 5.482e-1 3.802e-1 5.116e-1 5.172e-1 5.581e-1 5.286e-1
P = 8 8.206e-2 3.899e-1 2.744e-1 5.596e-1 3.987e-1 5.555e-1 5.304e-1 6.025e-1 5.920e-1

S-HMC∥ 8.298e-2 3.889e-1 2.890e-1 5.681e-1 4.289e-1 5.583e-1 5.556e-1 6.133e-1 6.120e-1
P = 8 8.254e-2 3.904e-1 2.893e-1 5.683e-1 4.188e-1 5.626e-1 5.386e-1 6.156e-1 6.088e-1

0.25
S-SMC∥ 8.548e-2 3.825e-1 2.673e-1 5.500e-1 3.562e-1 4.872e-1 4.727e-1 5.548e-1 5.609e-1
P = 8 8.220e-2 3.901e-1 2.772e-1 5.609e-1 3.891e-1 5.447e-1 5.340e-1 6.036e-1 5.874e-1

S-HMC∥ 8.286e-2 3.896e-1 2.873e-1 5.667e-1 4.239e-1 5.585e-1 5.533e-1 6.117e-1 6.076e-1
P = 8 8.249e-2 3.904e-1 2.871e-1 5.665e-1 4.138e-1 5.595e-1 5.338e-1 6.135e-1 6.047e-1

0.1
S-SMC∥ 8.387e-2 3.869e-1 2.721e-1 5.544e-1 3.970e-1 5.202e-1 5.063e-1 5.686e-1 5.684e-1
P = 8 8.190e-2 3.906e-1 2.752e-1 5.588e-1 3.920e-1 5.407e-1 5.143e-1 5.959e-1 5.865e-1

S-HMC∥ 8.232e-2 3.898e-1 2.802e-1 5.618e-1 4.088e-1 5.505e-1 5.384e-1 6.066e-1 5.975e-1
P = 8 8.217e-2 3.906e-1 2.801e-1 5.613e-1 4.028e-1 5.510e-1 5.231e-1 6.081e-1 5.961e-1

0
MAP 8.714e-2 4.350e-1 2.721e-1 5.531e-1 4.071e-1 5.598e-1 5.462e-1 5.695e-1 5.561e-1

DE (N ) 8.928e-2 4.343e-1 2.850e-1 5.580e-1 4.497e-1 5.808e-1 5.609e-1 6.185e-1 6.032e-1
DE (8N ) 8.941e-2 4.354e-1 2.859e-1 5.588e-1 4.533e-1 5.888e-1 5.708e-1 6.187e-1 6.068e-1
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Figure 25: Summary metrics for IMDb in all methods. S-SMC∥ (P = 1 chain with N = 10),
S-HMC∥ (NP chains), DE (N models) and MAP, with fixed number of leapfrog L = 1, B = 26,
M = 2, v = 1 and s = 0.35 (5 realizations).

Figure 26: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 26, M = 1, v = 1 and s = 0.35, on IMDb (5 realizations and ±s.e.
in accuracy ).

Figure 27: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 26, M = 2, v = 1 and s = 0.25, on IMDb (5 realizations and ± s.e.
in accuracy).

Figure 28: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 26, M = 2, v = 1 and s = 0.1, on IMDb (5 realizations).
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H.3 CIFAR10

Experiments in this section are tested on the CIFAR10 dataset with the model setting stated in
Appendix D.3.3.

The summary metrics on CIFAR10 are shown in a spider-plot in Figure 3. Table 20 shows the
performance as the tuning parameter s vary. Figure 29, 30 and 31 give the full convergence of
SBMC∥ with increasing P . The corresponding full data results are given in Table 30 , 31 and 32.

Figure 29: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 200, M = 4, v = 0.2 and s = 0.05, on CIFAR10 (5 realizations).

Table 20: Comparison of S-SMC∥ (N = 10), S-HMC∥ (N chains), DE (N ) and MAP, with fixed
number of leapfrog L = 1, B = 200, M = 4 and v = 0.2, on CIFAR10 (5 realizations and ± s.e. in
accuracy).

s Method Ep. Acc. NLL Brier ECE

0.2
S-SMC∥ 289.6 86.99 ± 0.08 4.710e-1 2.007e-1 6.462e-2
P = 8 289.3 90.30 ± 0.03 3.217e-1 1.445e-1 1.180e-2

S-HMC∥ 200 90.23 ± 0.08 2.990e-1 1.466e-1 2.518e-2
P = 8 200 90.82 ± 0.03 2.810e-1 1.395e-1 3.481e-2

0.1
S-SMC∥ 229.6 88.26 ± 0.07 3.855e-1 1.770e-1 4.593e-2
P = 8 225.3 90.45 ± 0.06 2.980e-1 1.400e-1 7.737e-3

S-HMC∥ 200 90.57 ± 0.04 2.823e-1 1.398e-1 1.073e-2
P = 8 200 90.83 ± 0.03 2.701e-1 1.353e-1 1.517e-2

0.05
S-SMC∥ 168.8 89.26 ± 0.07 3.408e-1 1.580e-1 3.470e-2
P = 8 174.3 90.63 ± 0.05 2.881e-1 1.371e-1 9.720e-3

S-HMC∥ 200 90.67 ± 0.03 2.749e-1 1.366e-1 6.598e-3
P = 8 200 90.84 ± 0.03 2.677e-1 1.340e-1 6.601e-3

0
MAP 200 90.39±0.07 2.913e-1 1.420e-1 2.502e-2

DE (N ) 200 90.81±0.03 2.741e-1 1.355e-1 1.770e-2

s Method Hep Htot

ID OOD ID OOD

cor. inc. close corrupt far cor. inc. close corrupt far

0.2
S-SMC∥ 3.682e-4 1.947e-3 2.063e-3 1.092e-3 1.629e-3 1.136e-1 5.613e-1 5.440e-1 3.630e-1 7.756e-1
P = 8 8.362e-2 3.326e-1 4.244e-1 2.361e-1 4.065e-1 1.071e-1 5.954e-1 9.675e-1 6.080e-1 1.160e+0

S-HMC∥ 1.159e-1 4.091e-1 5.195e-1 2.993e-1 5.333e-1 2.676e-1 9.231e-1 1.059e+0 6.768e-1 1.297e+0
P = 8 1.405e-1 4.604e-1 6.042e-1 3.476e-1 6.129e-1 2.945e-1 9.687e-1 1.146e+0 7.256e-1 1.364e+0

0.1
S-SMC∥ 2.948e-4 1.507e-3 1.603e-3 8.256e-4 1.450e-3 1.309e-1 6.364e-1 6.121e-1 4.027e-1 9.110e-1
P = 8 5.539e-2 2.369e-1 3.054e-1 1.636e-1 2.937e-1 1.217e-1 6.453e-1 9.184e-1 5.690e-1 1.156e+0

S-HMC∥ 7.055e-2 2.795e-1 3.591e-1 1.972e-1 3.581e-1 2.241e-1 8.596e-1 9.703e-1 6.102e-1 1.219e+0
P = 8 1.035e-1 3.121e-1 4.095e-1 2.244e-1 4.031e-1 2.367e-1 8.884e-1 1.023e+0 6.371e-1 1.257e+0

0.05
S-SMC∥ 4.258e-4 2.273e-3 2.515e-3 1.297e-3 2.185e-3 1.351e-1 6.620e-1 6.639e-1 4.300e-1 9.008e-1
P = 8 3.507e-2 1.584e-1 2.027e-1 1.058e-1 1.961e-1 1.311e-1 6.684e-1 8.643e-1 5.368e-1 1.111e+0

S-HMC∥ 4.060e-2 1.804e-1 2.308e-1 1.228e-1 2.243e-1 1.917e-1 8.073e-1 8.900e-1 5.558e-1 1.154e+0
P = 8 4.579e-2 1.966e-1 2.564e-1 1.358e-1 2.472e-1 1.971e-1 8.203e-1 9.173e-1 5.684e-1 1.168e+0

0
MAP 0 0 0 0 0 1.423e-1 7.037e-1 7.258e-1 4.577e-1 1.065e+0

DE (N ) 9.291e-3 4.753e-2 4.861e-2 2.603e-2 3.930e-2 1.541e-1 7.275e-1 7.629e-1 4.786e-1 1.029e+0

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Figure 30: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 200, M = 4, v = 0.2 and s = 0.1, on CIFAR10 (5 realizations).

Figure 31: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 200, M = 4, v = 0.2 and s = 0.2, on CIFAR10 (5 realizations).

I ALL-INCLUSIVE DATA TABLES

Table 21: Comparison in all domains among S-SMC∥ (P = 1 chain with N = 10), S-HMC∥ (NP
chains), HMC (GS) (2e4 samples), DE (N models) and MAP, with fixed number of leapfrog L = 1,
v = 0.1 and s = 0.1, on MNIST7 (5 realizations and ± s.e. in entropy).

Group MAP DE S-HMC (s = 0.1) S-SMC (s = 0.1) HMC (GS) (s = 1)

Htot Htot Hal Hep Htot Hal Hep Htot Hal Hep Htot Hal Hep

Digit 0 1.276e-1 1.307e-1 1.237e-1 7.076e-3 1.671e-1 1.228e-1 4.427e-2 1.110e-1 8.528e-2 2.574e-2 2.157e-1 1.268e-1 8.893e-2

Digit 1 1.768e-1 1.840e-1 1.781e-1 5.823e-3 1.889e-1 1.585e-1 3.038e-2 1.408e-1 1.255e-1 1.535e-2 2.124e-1 1.621e-1 5.025e-2

Digit 2 2.294e-1 2.266e-1 2.142e-1 1.236e-2 2.980e-1 2.168e-1 8.122e-2 2.090e-1 1.679e-1 4.118e-2 3.410e-1 1.988e-1 1.423e-1

Digit 3 3.168e-1 3.493e-1 3.222e-1 2.711e-2 3.883e-1 2.896e-1 9.873e-2 2.686e-1 2.245e-1 4.404e-2 4.229e-1 2.616e-1 1.613e-1

Digit 4 2.158e-1 2.221e-1 2.103e-1 1.182e-2 2.753e-1 2.095e-1 6.583e-2 1.981e-1 1.654e-1 3.272e-2 2.925e-1 1.847e-1 1.078e-1

Digit 5 3.993e-1 4.058e-1 3.787e-1 2.712e-2 4.395e-1 3.224e-1 1.171e-1 3.056e-1 2.520e-1 5.366e-2 4.428e-1 2.655e-1 1.773e-1

Digit 6 1.856e-1 2.045e-1 1.927e-1 1.180e-2 2.836e-1 2.047e-1 7.891e-2 1.856e-1 1.495e-1 3.605e-2 2.968e-1 1.785e-1 1.182e-1

Digit 7 1.897e-1 1.957e-1 1.859e-1 9.730e-3 2.403e-1 1.802e-1 6.008e-2 1.693e-1 1.396e-1 2.967e-2 2.528e-1 1.569e-1 9.589e-2

Digit 8 9.507e-1 9.821e-1 9.078e-1 7.433e-2 1.091e+0 7.836e-1 3.072e-1 8.975e-1 7.591e-1 1.384e-1 1.121e+0 6.333e-1 4.873e-1

Digit 9 6.157e-1 6.393e-1 6.046e-1 3.468e-2 7.567e-1 5.626e-1 1.941e-1 6.591e-1 5.651e-1 9.406e-2 9.210e-1 5.554e-1 3.657e-1

Perturbed 7.528e-1 8.112e-1 7.006e-1 1.106e-1 8.443e-1 4.227e-1 4.216e-1 8.001e-1 6.169e-1 1.832e-1 1.228e+0 2.819e-1 9.466e-1

White Noise 7.703e-1 9.806e-1 7.117e-1 2.690e-1 1.453e+0 5.221e-1 9.304e-1 9.744e-1 5.800e-1 3.944e-1 1.398e+0 3.444e-1 1.053e+0

All ID 2.301e-1 2.398e-1 2.069e-1 3.291e-2 2.821e-1 2.111e-1 7.090e-2 1.966e-1 1.623e-1 3.429e-2 1.021e+0 5.943e-1 4.265e-1
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Table 22: Comparison in all domains among S-SMC∥ (P = 1 chain with N = 10), S-HMC∥ (NP
chains), DE (N models) and MAP, with fixed number of leapfrog L = 1, B = 25, M = 1, v = 0.025
and s = 0.1, on IMDb (5 realizations).

Group MAP DE S-HMC∥ S-SMC∥

Htot Htot Hal Hep Htot Hal Hep Htot Hal Hep

Negative 4.352e-1 4.407e-1 4.406e-1 9.314e-5 4.892e-1 4.889e-1 2.482e-4 4.929e-1 4.927e-1 1.148e-4

Positive 5.716e-1 5.688e-1 5.687e-1 1.188e-4 5.031e-1 5.029e-1 2.659e-4 5.072e-1 5.071e-1 1.240e-4

Meta 6.117e-1 6.098e-1 6.097e-1 5.026e-5 5.331e-1 5.326e-1 4.633e-4 5.463e-1 5.461e-1 2.200e-4

Full Meta 6.658e-1 6.649e-1 6.649e-1 5.548e-5 6.185e-1 6.180e-1 5.410e-4 6.260e-1 6.257e-1 3.212e-4

Reviews 5.814e-1 5.793e-1 5.793e-1 5.064e-5 5.165e-1 5.160e-1 4.598e-4 5.251e-1 5.249e-1 1.792e-4

Full reviews 6.705e-1 6.702e-1 6.701e-1 6.302e-5 6.400e-1 6.395e-1 5.057e-4 6.457e-1 6.454e-1 3.285e-4

Lipsum 5.894e-1 5.882e-1 5.881e-1 4.909e-5 5.079e-1 5.074e-1 4.260e-4 5.142e-1 5.140e-1 1.749e-4

All ID 5.034e-1 5.048e-1 5.046e-1 1.060e-4 4.962e-1 4.959e-1 2.570e-4 5.000e-1 4.999e-1 1.194e-4

Table 23: Comparison in all domains among S-SMC∥ (P = 8 chain with N = 10), S-HMC∥ (NP
chains), DE (N models) and MAP, with fixed number of leapfrog L = 1, B = 26, M = 2, v = 1
and s = 0.35, on IMDb (5 realizations).

Group MAP DE S-HMC∥ S-SMC∥

Htot Htot Hal Hep Htot Hal Hep Htot Hal Hep

Negative 2.489e-1 2.494e-1 2.483e-1 1.033e-3 3.107e-1 2.928e-1 1.794e-2 2.962e-1 2.860e-1 1.016e-2

Positive 3.629e-1 3.675e-1 3.659e-1 1.631e-3 3.296e-1 3.099e-1 1.971e-2 3.160e-1 3.048e-1 1.126e-2

Meta 5.598e-1 5.767e-1 5.507e-1 2.594e-2 5.626e-1 4.887e-1 7.391e-2 5.555e-1 5.004e-1 5.514e-2

Full Meta 5.561e-1 5.737e-1 5.469e-1 2.683e-2 6.088e-1 5.251e-1 8.360e-2 5.920e-1 5.277e-1 6.435e-2

Reviews 4.071e-1 4.251e-1 4.030e-1 2.212e-2 4.188e-1 3.657e-1 5.315e-2 3.987e-1 3.611e-1 3.756e-2

Full reviews 5.695e-1 6.007e-1 5.574e-1 4.331e-2 6.156e-1 5.246e-1 9.098e-2 6.025e-1 5.420e-1 6.049e-2

Lipsum 5.462e-1 5.556e-1 5.283e-1 2.733e-2 5.386e-1 4.695e-1 6.917e-2 5.304e-1 4.778e-1 5.260e-2

All ID 3.059e-1 3.084e-1 3.071e-1 1.332e-3 3.202e-1 3.013e-1 1.883e-2 3.061e-1 2.954e-1 1.071e-2

Table 26: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
L = 1, B = 25, M = 1, v = 0.025, s = 0.1, on IMDb (5 realizations and ± s.e. in accuracy).

P Method Ep. Acc. NLL Hep

ID OOD

cor. inc. reviews meta lipsum full reviews full meta

1 S-SMC∥ 18.60 86.70±0.03 3.655e-1 1.122e-4 1.664e-4 1.792e-4 2.200e-4 1.749e-4 3.285e-4 3.212e-4
1 S-HMC∥ 25 86.70±0.01 3.634e-1 2.418e-4 3.565e-4 4.598e-4 4.633e-4 4.260e-4 5.057e-4 5.410e-4

2 S-SMC∥ 18.70 86.72±0.03 3.656e-1 1.936e-4 2.798e-4 3.061e-4 3.358e-4 4.211e-4 4.491e-4 4.465e-4
2 S-HMC∥ 25 86.69±0.01 3.634e-1 2.697e-4 3.955e-4 5.604e-4 5.852e-4 4.916e-4 6.022e-4 6.819e-4

4 S-SMC∥ 19.10 86.68±0.02 3.654e-1 2.370e-4 3.452e-4 4.433e-4 4.874e-4 5.515e-4 5.848e-4 6.201e-4
4 S-HMC∥ 25 86.72±0.01 3.635e-1 2.776e-4 4.042e-4 5.940e-4 6.264e-4 5.629e-4 7.074e-4 7.288e-4

8 S-SMC∥ 19.15 86.69±0.01 3.653e-1 2.531e-4 3.697e-4 4.744e-4 4.971e-4 4.862e-4 5.876e-4 6.105e-4
8 S-HMC∥ 25 86.72±0.00 3.633e-1 2.766e-4 4.022e-4 5.694e-4 6.062e-4 5.637e-4 7.438e-4 7.051e-4

P Method Brier ECE Htot

ID OOD

cor. inc. reviews meta lipsum full reviews full meta

1 S-SMC∥ 1.093e-1 3.699e-1 4.792e-1 6.357e-1 5.251e-1 5.463e-1 5.142e-1 6.457e-1 6.261e-1
1 S-HMC∥ 1.086e-1 3.694e-1 4.750e-1 6.340e-1 5.165e-1 5.331e-1 5.079e-1 6.400e-1 6.186e-1

2 S-SMC∥ 1.093e-1 3.702e-1 4.793e-1 6.356e-1 5.243e-1 5.466e-1 5.131e-1 6.462e-1 6.270e-1
2 S-HMC∥ 1.086e-1 3.695e-1 4.752e-1 6.342e-1 5.172e-1 5.342e-1 5.092e-1 6.409e-1 6.196e-1

4 S-SMC∥ 1.092e-1 3.699e-1 4.787e-1 6.355e-1 5.230e-1 5.440e-1 5.127e-1 6.459e-1 6.259e-1
4 S-HMC∥ 1.086e-1 3.699e-1 4.754e-1 6.342e-1 5.180e-1 5.351e-1 5.085e-1 6.419e-1 6.203e-1

8 S-SMC∥ 1.092e-1 3.698e-1 4.788e-1 6.355e-1 5.213e-1 5.406e-1 5.115e-1 6.430e-1 6.236e-1
8 S-HMC∥ 1.086e-1 3.701e-1 4.752e-1 6.341e-1 5.184e-1 5.359e-1 5.085e-1 6.426e-1 6.209e-1
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Table 24: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 160, M = 7, v = 0.1 and s = 0.25, on MNIST7 (5 realizations and
± s.e. in accuracy).

P Method Ep. Acc. NLL Brier

1 S-SMC∥ 166.6 90.35±0.26 3.300e-1 1.441e-1
1 S-HMC∥ 160 92.79±0.19 2.571e-1 1.156e-1

2 S-SMC∥ 160.3 92.00±0.24 2.726e-1 1.239e-1
2 S-HMC∥ 160 92.97±0.14 2.536e-1 1.140e-1

4 S-SMC∥ 164.5 92.59±0.15 2.504e-1 1.152e-1
4 S-HMC∥ 160 93.13±0.07 2.506e-1 1.133e-1

8 S-SMC∥ 161.5 93.00±0.11 2.366e-1 1.096e-1
8 S-HMC∥ 160 93.15±0.05 2.490e-1 1.127e-1

HMC (GS) 2e4 92.87±0.48 2.376e-1 1.079e-1

P Method Hep Htot

ID OOD ID OOD

cor. inc. 8 9 wn per. cor. inc. 8 9 wn per.

1 S-SMC∥ 2.257e-2 1.094e-1 1.146e-1 7.791e-2 3.847e-1 1.914e-1 1.508e-1 6.679e-1 8.384e-1 5.945e-1 8.290e-1 7.110e-1
1 S-HMC∥ 1.133e-1 4.232e-1 4.985e-1 3.225e-1 1.281e+0 6.314e-1 3.149e-1 1.026e+0 1.220e+0 8.606e-1 1.614e+0 1.019e+0

2 S-SMC∥ 5.445e-2 2.442e-1 1.975e-1 1.402e-1 5.073e-1 2.923e-1 1.371e-1 6.768e-1 9.108e-1 6.629e-1 9.559e-1 8.111e-1
2 HMC∥ 1.298e-1 4.568e-1 5.380e-1 3.638e-1 1.321e+0 6.720e-1 3.358e-1 1.050e+0 1.250e+0 8.975e-1 1.680e+0 1.050e+0

4 S-SMC∥ 7.492e-2 3.240e-1 2.544e-1 1.797e-1 6.264e-1 3.749e-1 1.287e-1 6.669e-1 9.591e-1 7.064e-1 1.051e+0 8.923e-1
4 HMC∥ 1.356e-1 4.718e-1 5.508e-1 3.634e-1 1.327e+0 7.084e-1 3.443e-1 1.065e+0 1.261e+0 9.031e-1 1.689e+0 1.078e+0

8 S-SMC∥ 8.828e-2 3.717e-1 2.984e-1 2.089e-1 7.384e-1 4.475e-1 1.247e-1 6.641e-1 1.001e+0 7.354e-1 1.152e+0 9.627e-1
8 S-HMC∥ 1.384e-1 4.788e-1 5.572e-1 3.678e-1 1.349e+0 7.235e-1 3.456e-1 1.070e+0 1.267e+0 9.025e-1 1.715e+0 1.094e+0

HMC (GS) 7.199e-2 3.432e-1 3.887e-1 2.748e-1 1.169e+0 5.579e-1 2.045e-1 8.566e-1 9.984e-1 7.425e-1 1.574e+0 8.725e-1

Table 25: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 160, M = 10, v = 0.1 and s = 0.1, on MNIST7 (5 realizations and
± s.e. in accuracy).

P Method Ep. Acc. NLL Brier

1 S-SMC∥ 170.0 92.17±0.37 2.671e-1 1.186e-1
1 S-HMC∥ 160 92.96±0.17 2.326e-1 1.071e-1

2 S-SMC∥ 179.0 92.52±0.30 2.507e-1 1.127e-1
2 S-HMC∥ 160 93.10±0.12 2.310e-1 1.067e-1

4 S-SMC∥ 180.5 93.01±0.29 2.369e-1 1.069e-1
4 HMC∥ 160 93.12±0.09 2.306e-1 1.069e-1

8 S-SMC∥ 178.0 93.26±0.16 2.259e-1 1.025e-1
8 S-HMC∥ 160 93.12±0.09 2.310e-1 1.072e-1

HMC (GS) 2e4 92.92±0.41 2.366e-1 1.084e-1

P Method Hep Htot

ID OOD ID OOD

cor. inc. 8 9 wn per. cor. inc. 8 9 wn per.

1 S-SMC∥ 2.642e-2 1.288e-1 1.384e-1 9.406e-2 3.972e-1 1.776e-1 1.536e-1 7.042e-1 8.975e-1 6.591e-1 9.753e-1 7.859e-1
1 S-HMC∥ 5.624e-2 2.645e-1 3.072e-1 1.941e-1 9.259e-1 4.100e-1 2.343e-1 9.132e-1 1.091e+0 7.567e-1 1.443e+0 8.248e-1

2 S-SMC∥ 4.233e-2 2.042e-1 1.836e-1 1.227e-1 5.306e-1 2.620e-1 1.449e-1 7.053e-1 9.422e-1 6.870e-1 1.058e+0 8.577e-1
2 S-HMC∥ 6.494e-2 2.844e-1 3.395e-1 2.198e-1 9.977e-1 4.432e-1 2.472e-1 9.223e-1 1.112e+0 7.769e-1 1.506e+0 8.436e-1

4 S-SMC∥ 5.315e-2 2.471e-1 2.200e-1 1.465e-1 6.363e-1 3.288e-1 1.403e-1 7.019e-1 9.791e-1 7.130e-1 1.126e+0 9.159e-1
4 S-HMC∥ 6.733e-2 2.924e-1 3.479e-1 2.179e-1 1.010e+0 4.740e-1 2.520e-1 9.300e-1 1.119e+0 7.823e-1 1.493e+0 8.866e-1

8 S-SMC∥ 5.872e-2 2.725e-1 2.440e-1 1.637e-1 7.309e-1 3.750e-1 1.374e-1 7.075e-1 1.001e+0 7.307e-1 1.220e+0 9.649e-1
8 S-HMC∥ 6.982e-2 2.993e-1 3.524e-1 2.258e-1 1.066e+0 4.817e-1 2.553e-1 9.380e-1 1.127e+0 7.893e-1 1.539e+0 8.946e-1

HMC (GS) 5.034e-2 2.417e-1 2.713e-1 1.900e-1 9.303e-1 3.683e-1 2.076e-1 8.477e-1 1.001e+0 7.264e-1 1.430e+0 7.518e-1
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Table 27: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 26, M = 1, v = 1 and s = 0.35, on IMDb (5 realizations and ±s.e.
in accuracy ).

P Method Ep. Acc. NLL Hep

ID OOD

cor. inc. reviews meta lipsum full reviews full meta

1 S-SMC∥ 27.40 88.27±0.07 2.803e-1 6.177e-4 1.460e-3 1.581e-3 2.495e-3 2.187e-3 2.279e-3 2.504e-3
1 S-HMC∥ 26.00 88.81±0.01 2.750e-1 1.565e-2 3.463e-2 5.414e-2 7.021e-2 6.872e-2 8.407e-2 7.930e-2

2 S-SMC∥ 27.70 88.65±0.04 2.744e-1 5.513e-3 1.323e-2 2.132e-2 3.443e-2 2.751e-2 2.232e-2 3.585e-2
2 S-HMC∥ 26.00 88.86±0.03 2.745e-1 1.620e-2 3.584e-2 5.510e-2 7.622e-2 7.118e-2 8.766e-2 8.490e-2

4 S-SMC∥ 28.55 88.78±0.03 2.726e-1 8.040e-3 1.881e-2 3.057e-2 4.854e-2 5.097e-2 5.547e-2 5.766e-2
4 S-HMC∥ 26.00 88.88±0.01 2.740e-1 1.640e-2 3.610e-2 5.388e-2 7.488e-2 6.705e-2 8.588e-2 8.184e-2

8 S-SMC∥ 27.63 88.88±0.03 2.714e-1 9.342e-3 2.164e-2 3.756e-2 5.515e-2 5.260e-2 6.049e-2 6.435e-2
8 S-HMC∥ 26.00 88.93±0.02 2.737e-1 1.662e-2 3.651e-2 5.315e-2 7.391e-2 6.917e-2 9.098e-2 8.360e-2

P Method Brier ECE Htot

ID OOD

cor. inc. reviews meta lipsum full reviews full meta

1 S-SMC∥ 8.547e-2 3.832e-1 2.643e-1 5.482e-1 3.802e-1 5.116e-1 5.172e-1 5.581e-1 5.286e-1
1 S-HMC∥ 8.298e-2 3.889e-1 2.890e-1 5.681e-1 4.289e-1 5.583e-1 5.556e-1 6.133e-1 6.120e-1

2 S-SMC∥ 8.327e-2 3.868e-1 2.694e-1 5.548e-1 3.937e-1 5.456e-1 5.091e-1 5.790e-1 5.742e-1
2 S-HMC∥ 8.281e-2 3.896e-1 2.891e-1 5.681e-1 4.285e-1 5.684e-1 5.521e-1 6.125e-1 6.107e-1

4 S-SMC∥ 8.254e-2 3.884e-1 2.720e-1 5.576e-1 3.985e-1 5.601e-1 5.295e-1 5.963e-1 5.815e-1
4 S-HMC∥ 8.262e-2 3.898e-1 2.891e-1 5.684e-1 4.232e-1 5.673e-1 5.377e-1 6.139e-1 6.100e-1

8 S-SMC∥ 8.206e-2 3.899e-1 2.744e-1 5.596e-1 3.987e-1 5.555e-1 5.304e-1 6.025e-1 5.920e-1
8 S-HMC∥ 8.254e-2 3.904e-1 2.893e-1 5.683e-1 4.188e-1 5.626e-1 5.386e-1 6.156e-1 6.088e-1

Table 28: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 26, M = 2, v = 1 and s = 0.25, on IMDb (5 realizations and ± s.e.
in accuracy).

P Method Ep. Acc. NLL Hep

ID OOD

cor. inc. reviews meta lipsum full reviews full meta

1 S-SMC∥ 29.6 88.27±0.10 2.807e-1 2.512e-4 6.069e-4 4.733e-4 7.166e-4 8.590e-4 9.313e-4 9.520e-4
1 S-HMC∥ 26 88.83±0.02 2.745e-1 1.269e-2 2.830e-2 4.522e-2 5.927e-2 5.886e-2 7.342e-2 6.803e-2

2 S-SMC∥ 27.2 88.64±0.05 2.752e-1 4.948e-3 1.174e-2 1.344e-2 2.120e-2 1.410e-2 2.411e-2 2.792e-2
2 S-HMC∥ 26 88.84±0.03 2.741e-1 1.304e-2 2.918e-2 4.586e-2 6.400e-2 6.096e-2 7.596e-2 7.216e-2

4 S-SMC∥ 28.3 88.77±0.04 2.737e-1 7.211e-3 1.662e-2 2.329e-2 4.029e-2 4.913e-2 5.544e-2 4.798e-2
4 S-HMC∥ 26 88.90±0.1 2.736e-1 1.321e-2 2.932e-2 4.487e-2 6.264e-2 5.689e-2 7.369e-2 6.930e-2

8 S-SMC∥ 28.5 88.87±0.03 2.720e-1 8.124e-3 1.872e-2 3.066e-2 5.057e-2 4.691e-2 6.403e-2 5.777e-2
8 S-HMC∥ 26 88.92±0.02 2.734e-1 1.337e-2 2.964e-2 4.442e-2 6.215e-2 5.863e-2 7.869e-2 7.108e-2

P Method Brier ECE Htot

ID OOD

cor. inc. reviews meta lipsum full reviews full meta

1 S-SMC∥ 8.548e-2 3.825e-1 2.673e-1 5.500e-1 3.562e-1 4.872e-1 4.727e-1 5.548e-1 5.609e-1
1 S-HMC∥ 8.286e-2 3.896e-1 2.873e-1 5.667e-1 4.239e-1 5.585e-1 5.533e-1 6.117e-1 6.076e-1

2 S-SMC∥ 8.343e-2 3.867e-1 2.723e-1 5.560e-1 3.696e-1 5.182e-1 4.861e-1 5.794e-1 5.849e-1
2 S-HMC∥ 8.271e-2 3.894e-1 2.870e-1 5.668e-1 4.228e-1 5.661e-1 5.478e-1 6.112e-1 6.061e-1

4 S-SMC∥ 8.283e-2 3.888e-1 2.758e-1 5.589e-1 3.823e-1 5.388e-1 5.321e-1 5.920e-1 5.801e-1
4 S-HMC∥ 8.254e-2 3.902e-1 2.870e-1 5.665e-1 4.174e-1 5.633e-1 5.328e-1 6.118e-1 6.058e-1

8 S-SMC∥ 8.220e-2 3.901e-1 2.772e-1 5.609e-1 3.891e-1 5.447e-1 5.340e-1 6.036e-1 5.874e-1
8 S-HMC∥ 8.249e-2 3.904e-1 2.871e-1 5.665e-1 4.138e-1 5.595e-1 5.338e-1 6.135e-1 6.047e-1
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Table 29: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 26, M = 2, v = 1 and s = 0.1, on IMDb (5 realizations and ± s.e.
in accuracy).

P Method Ep. Acc. NLL Hep

ID OOD

cor. inc. reviews meta lipsum full reviews full meta

1 S-SMC∥ 24 88.54±0.11 2.763e-1 1.820e-4 4.315e-4 4.819e-4 5.915e-4 6.766e-4 7.711e-4 6.500e-4
1 S-HMC∥ 26 88.86±0.02 2.726e-1 5.753e-3 1.319e-2 2.712e-2 3.551e-2 3.561e-2 5.110e-2 4.289e-2

2 S-SMC∥ 23.2 88.78±0.08 2.727e-1 2.476e-3 5.724e-3 1.160e-2 1.973e-2 9.401e-3 1.314e-2 1.894e-2
2 S-HMC∥ 26 88.90±0.02 2.724e-1 5.934e-3 1.365e-2 2.817e-2 3.918e-2 3.793e-2 5.296e-2 4.581e-2

4 S-SMC∥ 23.5 88.85±0.05 2.722e-1 3.730e-3 8.583e-3 1.937e-2 2.851e-2 2.377e-2 3.216e-2 3.538e-2
4 S-HMC∥ 26 88.92±0.01 2.722e-1 5.992e-3 1.368e-2 2.753e-2 3.839e-2 3.531e-2 5.049e-2 4.444e-2

8 S-SMC∥ 23.7 88.92±0.01 2.711e-1 4.207e-3 9.768e-3 2.182e-2 3.140e-2 2.700e-2 3.352e-2 3.540e-2
8 S-HMC∥ 26 88.93±0.01 2.721e-1 6.065e-3 1.386e-2 2.792e-2 3.888e-2 3.653e-2 5.408e-2 4.638e-2

P Method Brier ECE Htot

ID OOD

cor. inc. reviews meta lipsum full reviews full meta

1 S-SMC∥ 8.387e-2 3.869e-1 2.721e-1 5.544e-1 3.970e-1 5.202e-1 5.063e-1 5.686e-1 5.684e-1
1 S-HMC∥ 8.232e-2 3.898e-1 2.802e-1 5.618e-1 4.088e-1 5.505e-1 5.384e-1 6.066e-1 5.975e-1

2 S-SMC∥ 8.252e-2 3.892e-1 2.734e-1 5.571e-1 3.939e-1 5.263e-1 5.028e-1 5.812e-1 5.855e-1
2 S-HMC∥ 8.227e-2 3.900e-1 2.801e-1 5.614e-1 4.092e-1 5.567e-1 5.347e-1 6.068e-1 5.966e-1

4 S-SMC∥ 8.229e-2 3.900e-1 2.750e-1 5.583e-1 3.944e-1 5.389e-1 5.114e-1 5.948e-1 5.854e-1
4 S-HMC∥ 8.218e-2 3.903e-1 2.800e-1 5.612e-1 4.041e-1 5.526e-1 5.222e-1 6.068e-1 5.967e-1

8 S-SMC∥ 8.190e-2 3.906e-1 2.752e-1 5.588e-1 3.920e-1 5.407e-1 5.143e-1 5.959e-1 5.865e-1
8 S-HMC∥ 8.217e-2 3.906e-1 2.801e-1 5.613e-1 4.028e-1 5.510e-1 5.231e-1 6.081e-1 5.961e-1

Table 30: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 200, M = 4, v = 0.2 and s = 0.05, on CIFAR10 (5 realizations
and ±s.e. in accuracy).

P Method Ep. Acc. NLL Brier ECE

1 S-SMC∥ 168.8 89.26 ± 0.07 3.408e-1 1.580e-1 3.470e-2
1 S-HMC∥ 200 90.67 ± 0.03 2.749e-1 1.366e-1 6.598e-3

2 S-SMC∥ 172.0 90.12 ± 0.06 3.100e-1 1.466e-1 1.942e-2
2 S-HMC∥ 200 90.80 ± 0.02 2.707e-1 1.351e-1 5.574e-3

4 S-SMC∥ 173.4 90.34 ± 0.04 2.960e-1 1.399e-1 1.242e-2
4 S-HMC∥ 200 90.84 ± 0.04 2.688e-1 1.344e-1 6.442e-3

8 S-SMC∥ 174.3 90.63 ± 0.05 2.881e-1 1.371e-1 9.720e-3
8 S-HMC∥ 200 90.84 ± 0.03 2.677e-1 1.340e-1 6.601e-3

P Method Hep Htot

ID OOD ID OOD

cor. inc. close corrupt far cor. inc. close corrupt far

1 S-SMC∥ 4.258e-4 2.273e-3 2.515e-3 1.297e-3 2.185e-3 1.351e-1 6.620e-1 6.639e-1 4.300e-1 9.008e-1
1 S-HMC∥ 4.060e-2 1.804e-1 2.308e-1 1.228e-1 2.243e-1 1.917e-1 8.073e-1 8.900e-1 5.558e-1 1.154e+0

2 S-SMC∥ 1.796e-2 9.094e-2 1.115e-1 5.702e-2 1.340e-1 1.321e-1 6.646e-1 7.737e-1 4.864e-1 1.017e+0
2 S-HMC∥ 4.376e-2 1.896e-1 2.454e-1 1.300e-1 2.387e-1 1.956e-1 8.144e-1 9.064e-1 5.626e-1 1.162e+0

4 S-SMC∥ 2.855e-2 1.356e-1 1.700e-1 8.859e-2 1.862e-1 1.304e-1 6.700e-1 8.293e-1 5.188e-1 1.101e+0
4 S-HMC∥ 4.523e-2 1.937e-1 2.520e-1 1.337e-1 2.417e-1 1.970e-1 8.161e-1 9.129e-1 5.660e-1 1.163e+0

8 S-SMC∥ 3.507e-2 1.584e-1 2.027e-1 1.058e-1 1.961e-1 1.311e-1 6.684e-1 8.643e-1 5.368e-1 1.111e+0
8 S-HMC∥ 4.579e-2 1.966e-1 2.564e-1 1.358e-1 2.472e-1 1.971e-1 8.203e-1 9.173e-1 5.684e-1 1.168e+0
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Table 31: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 200, M = 4, v = 0.2 and s = 0.1, on CIFAR10 (5 realizations and
±s.e. in accuracy).

P Method Ep. Acc. NLL Brier ECE

1 S-SMC∥ 229.6 88.26 ± 0.07 3.855e-1 1.770e-1 4.593e-2
1 S-HMC∥ 200 90.57 ± 0.04 2.823e-1 1.398e-1 1.073e-2

2 S-SMC∥ 226.0 89.62 ± 0.09 3.336e-1 1.553e-1 1.983e-2
2 S-HMC∥ 200 90.76 ± 0.04 2.753e-1 1.372e-1 1.356e-2

4 S-SMC∥ 224.8e 90.20 ± 0.08 3.100e-1 1.453e-1 9.413e-3
4 S-HMC∥ 200 90.84 ± 0.04 2.722e-1 1.360e-1 1.517e-2

8 S-SMC∥ 225.3 90.45 ± 0.06 2.980e-1 1.400e-1 7.737e-3
8 S-HMC∥ 200 90.83 ± 0.03 2.701e-1 1.353e-1 1.517e-2

P Method Hep Htot

ID OOD ID OOD

cor. inc. close corrupt far cor. inc. close corrupt far

1 S-SMC∥ 2.948e-4 1.507e-3 1.603e-3 8.256e-4 1.450e-3 1.309e-1 6.364e-1 6.121e-1 4.027e-1 9.110e-1
1 S-HMC∥ 7.055e-2 2.795e-1 3.591e-1 1.972e-1 3.581e-1 2.241e-1 8.596e-1 9.703e-1 6.102e-1 1.219e+0

2 S-SMC∥ 2.733e-2 1.343e-1 1.594e-1 8.581e-2 1.677e-1 1.256e-1 6.382e-1 7.735e-1 4.910e-1 1.037e+0
2 S-HMC∥ 9.734e-2 2.968e-1 3.862e-1 2.112e-1 3.821e-1 2.316e-1 8.732e-1 9.990e-1 6.238e-1 1.235e+0

4 S-SMC∥ 4.484e-2 2.002e-1 2.495e-1 1.365e-1 2.536e-1 1.235e-1 6.432e-1 8.577e-1 5.408e-1 1.135e+0
4 S-HMC∥ 1.018e-1 3.072e-1 4.011e-1 2.200e-1 3.936e-1 2.360e-1 8.822e-1 1.014e+0 6.323e-1 1.247e+0

8 S-SMC∥ 5.539e-2 2.369e-1 3.054e-1 1.636e-1 2.937e-1 1.217e-1 6.453e-1 9.184e-1 5.690e-1 1.156e+0
8 S-HMC∥ 1.035e-1 3.121e-1 4.095e-1 2.244e-1 4.031e-1 2.367e-1 8.884e-1 1.023e+0 6.371e-1 1.257e+0

Table 32: Comparison of S-SMC∥ (P chains with N = 10) and S-HMC∥ (NP chains), with fixed
number of leapfrog L = 1, B = 200, M = 4, v = 0.2 and s = 0.2, on CIFAR10 (5 realizations and
±s.e. in accuracy).

P Method Ep. Acc. NLL Brier ECE

1 S-SMC∥ 289.6 86.99 ± 0.08 4.710e-1 2.007e-1 6.462e-2
1 S-HMC∥ 200 90.23 ± 0.08 2.990e-1 1.466e-1 2.518e-2

2 S-SMC∥ 289.6 88.77 ± 0.07 3.854e-1 1.699e-1 2.554e-2
2 S-HMC∥ 200 90.53 ± 0.04 2.890e-1 1.426e-1 3.096e-2

4 S-SMC∥ 289.4 89.82 ± 0.04 3.441e-1 1.536e-1 1.193e-2
4 S-HMC∥ 200 90.73 ± 0.02 2.840e-1 1.406e-1 3.368e-2

8 S-SMC∥ 289.3 90.30 ± 0.03 3.217e-1 1.445e-1 1.180e-2
8 S-HMC∥ 200 90.82 ± 0.03 2.810e-1 1.395e-1 3.481e-2

P Method Hep Htot

ID OOD ID OOD

cor. inc. close corrupt far cor. inc. close corrupt far

1 S-SMC∥ 3.682e-4 1.947e-3 2.063e-3 1.092e-3 1.629e-3 1.136e-1 5.613e-1 5.440e-1 3.630e-1 7.756e-1
1 S-HMC∥ 1.159e-1 4.091e-1 5.195e-1 2.993e-1 5.333e-1 2.676e-1 9.231e-1 1.059e+0 6.768e-1 1.297e+0

2 S-SMC∥ 3.863e-2 1.856e-1 2.117e-1 1.180e-1 2.030e-1 1.108e-1 5.822e-1 7.557e-1 4.901e-1 9.434e-1
2 S-HMC∥ 1.300e-1 4.377e-1 5.681e-1 3.260e-1 5.774e-1 2.836e-1 9.479e-1 1.109e+0 7.039e-1 1.331e+0

4 S-SMC∥ 6.722e-2 2.780e-1 3.470e-1 1.916e-1 3.332e-1 1.089e-1 5.885e-1 8.861e-1 5.634e-1 1.087e+0
4 S-HMC∥ 1.368e-1 4.524e-1 5.899e-1 3.392e-1 5.947e-1 2.909e-1 9.611e-1 1.132e+0 7.169e-1 1.346e+0

8 S-SMC∥ 8.362e-2 3.326e-1 4.244e-1 2.361e-1 4.065e-1 1.071e-1 5.954e-1 9.675e-1 6.080e-1 1.160e+0
8 S-HMC∥ 1.405e-1 4.604e-1 6.042e-1 3.476e-1 6.129e-1 2.945e-1 9.687e-1 1.146e+0 7.256e-1 1.364e+0
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