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Abstract

Learning in neural networks critically hinges on the intricate geometry of the loss landscape
associated with a given task. Traditionally, most research has focused on finding specific
weight configurations that minimize the loss. In this work, born from the cross-fertilization
of machine learning and theoretical soft matter physics, we introduce a novel approach to
examine the weight space across all loss values. Employing the Wang-Landau enhanced
sampling algorithm, we explore the neural network density of states – the number of net-
work parameter configurations that produce a given loss value – and analyze how it depends
on specific features of the training set. Using both real-world and synthetic data, we quan-
titatively elucidate the relation between data structure and network density of states across
different sizes and depths of binary-state networks. This work presents and illustrates a
novel, informative analysis method that aims at paving the way for a better understanding
of the interplay between structured data and the networks that process, learn, and generate
them.

1 Introduction

The history of machine learning is deeply intertwined with that of modern statistical mechanics. Since
the early days of neural networks, both algorithm development and theoretical investigation have leveraged
concepts and tools derived from the equilibrium statistical physics of disordered systems.

A prominent example is Gardner’s pioneering work (Gardner & Derrida, 1988; Gardner, 1988), which framed
the problem of learning the weights of a perceptron — the simplest single-layer neural network — as that of an
equilibrium system in the presence of disorder induced by random inputs and outputs. Virtually everything
that followed, from optimization techniques for training a network to the understanding of its generalization
capabilities, has been addressed by the statistical physics community using the Gardner framework.
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This long-lasting approach has been highly successful in characterizing the ability of simple neural net-
work architectures to both memorize random input-output associations and generalize from previous exam-
ples (Gardner & Derrida, 1989; Seung et al., 1992; Watkin et al., 1993; Sompolinsky et al., 1990). Extensions
of the formalism used to study metastable states in complex systems (Franz & Parisi, 1995) can also connect
the local geometry of the loss landscape (particularly its flatness) to the generalization abilities of solutions
found by actual learning procedures (Baldassi et al., 2015; 2016b; 2021), even when the dynamics of such
algorithms does not necessarily satisfy detailed balance (Baldassi et al., 2016a).

The theoretical investigation of neural networks has greatly benefited from the mathematical toolbox devel-
oped in the context of spin glass theory (Mézard et al., 1987; Engel & Van den Broeck, 2001; Charbonneau
et al., 2023). These methods, however, classically relied on simplifying assumptions such as the thermo-
dynamic limit or well-defined, mathematically tractable input data, generated as independent, identically
distributed (i.i.d.) variables. Thanks to these simplifications, researchers obtained a plethora of exact or
approximate results that shed light on the inner workings of neural networks. A strong limitation, however,
is the fact that real data are typically finite-sized and structured, thus defying the founding assumptions
upon which those results are built.

More recently, novel approaches have been developed that explicitly incorporate data structure into the the-
ory of deep neural networks, e.g., by using the second-order moments of input data (Opper & Winther, 2001;
Shinzato & Kabashima, 2008; Ingrosso, 2021), or employing tasks involving effective Gaussian models and
mixtures of Gaussians (Gerace et al., 2024; Mignacco et al., 2020; Gerace et al., 2021; Loureiro et al., 2024a;b;
2023). Recent work has studied the importance of higher-order input statistics for feature learning in neural
networks (Ingrosso & Goldt, 2022), but the impact of such properties on the dynamics of gradient-based
learning, and more generally on network behavior, is only starting to be investigated systematically (Fischer
et al., 2022; Refinetti et al., 2023; Belrose et al., 2024).

The approaches mentioned thus far very often focus on the solvability of a learning problem, that is, the
identification of those configurations of network weights that minimize the loss function. Phrasing this task
in physical terms, one explores a weight configuration space equipped with a canonical probability measure,
and investigates the properties of the ground states by varying the number and features of the inputs and
controlling for their statistics.

In summary, a great deal of work has been carried out insofar that mainly assumes infinite, unstructured
input data and focuses on a tiny fraction of the weight configuration space – that is, the part that minimizes
the loss; in comparison, much less has been done to understand how finite-sized networks behave in the
presence of structured inputs. A large body of information might nonetheless be retrieved through the study
of such networks not only in terms of their solutions but also investigating the learning task globally in
configuration space, by analyzing how the entire loss spectrum, defined on all possible weight configurations,
is affected by a given task.

In this work, we address this problem by introducing a method to efficiently explore the entire density of
states (DoS) of the loss function of a neural network. We achieve this by leveraging the Wang-Landau (WL)
algorithm, a powerful enhanced sampling method used to compute the density of states of physical systems
and access exponentially suppressed regions of the configuration space (Wang & Landau, 2001a;b; Yin &
Landau, 2012; Vogel et al., 2014; Farris & Landau, 2021). By adaptively estimating the microcanonical
entropy of the loss (that is, the logarithm of the density of states), the WL approach allows us to uniformly
explore the loss spectrum, enabling a thermodynamic characterization of a neural network and its behavior
for a given training dataset.

We show how the statistics and geometrical structure of realistic input data have a direct and measurable
impact on the density of states of the loss function; we then highlight how specific properties can be repro-
duced by simple synthetic datasets explicitly controlled by few intuitive parameters, and thereby rationalize
the relationship between data structure and loss density of states. In perspective, we propose that the ap-
proach here illustrated can be employed in a twofold manner, either to analyze large datasets of annotated
instances, or to design networks to perform better on particular problems.
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The paper is organized as follows. In the Methods section, we introduce the problem of learning in single-
and one-hidden-layer neural networks focusing on the case of discrete synaptic weights, and describe the
dataset used in our simulations; we then provide a brief introduction to Wang-Landau sampling. In the
ensuing Results section, we first use the WL technique on real datasets, and then introduce a number of
simpler synthetic classification problems. In the Discussion and Conclusions section, we discuss our findings
and highlight potential generalizations of the approach.

2 Methods

2.1 Neural Network Architectures

A single-layer binary neural network, also known as perceptron, operates by constructing a hyperplane within
the input space to achieve classification. Mathematically, it implements a mapping from an N -dimensional
input vector ξ ∈ RN to a binary output o using the function o(ξ; W ) = sgn(W · ξ), where W is a (synaptic)
weight vector.

In this work, we focus on networks with binary weights W ∈ {−1, 1}N . Given a set of P = αN patterns
{ξµ}P

1 and their corresponding labels σµ ∈ {−1, 1}N , the perceptron learning problem consists in finding an
appropriate weight vector Ŵ satisfying o(Ŵ , ξµ) = σµ for all µ, i.e. a perceptron that correctly classifies its
inputs according to the prescribed labels.

The first step in formulating a statistical mechanical theory for perceptron learning is to define an energy
function EW = E (W ) =

∑P
µ=1 Θ (−σµW · ξµ), where Θ(x) is the Heaviside step function, counting the

number of incorrect input-output associations produced by a perceptron with a given weight vector W .

Here, the term energy is borrowed from the analogy to physical spin systems, where each spin can be in
one of two states (up or down), analogous to binary weights Wi ∈ {−1, 1} in our neural network. The
energy in these systems represents the degree of misalignment among the spins. Similarly, in our model
the energy represents the number of misclassifications, and minimizing this energy corresponds to reducing
these classification errors. A perfect configuration - where all patterns are correctly classified - corresponds
to the “ground state” of the system, akin to achieving perfect alignment in a ferromagnetic spin system.
Furthermore, due to the binary nature of the weights and the use of the sign activation function, the energy
satisfies the relation E (W ) = P −E(W̃ ) for any set of weights W and its negation W̃ = −W . Consequently,
the amount of states for energy levels equidistant from the center of the spectrum will be identical by
construction.

The learning objective can be formalized as that of finding a ground state configuration, or solution, i.e.
a weight vector Ŵ such that the energy E(Ŵ ) is minimized. In a simplified scenario with random inputs
and outputs, the probability of finding a zero energy solution decreases as the number of input patterns
increases, i.e. the entropy of weight vectors with zero energy approaches zero as α = P/N grows up to a
critical capacity. In such a setting, the application of replica and cavity methods borrowed from the statistical
mechanics of spin glasses has been central in studying the storage capacity and generalization properties of
neural networks (Gardner & Derrida, 1988; Krauth & Mezard, 1987; Mézard et al., 1987; Engel & Van den
Broeck, 2001; Charbonneau et al., 2023).

Training a perceptron involves adjusting the weights to minimize classification errors. When constrained to
binary weights, the problem becomes significantly more challenging than the continuous-weights counterpart.
The use of cavity methods has been instrumental in developing powerful algorithms able to solve typical
problem instances (Braunstein & Zecchina, 2006; Baldassi et al., 2007) almost up to the critical perceptron
capacity.

Multi-layer architectures extend the capabilities of a perceptron to non-linear classification in input space
by stacking many of these simple units in consecutive layers. In this work, we will analyze one-hidden-
layer architectures, comprising an N -dimensional input layer, a hidden layer with Nh neurons, and an
No-dimensional output layer for generic multi-class classification. An input vector ξ is initially mapped to
a hidden layer via the weight matrix W 1 ∈ {−1, 1}Nh×N , yielding hk = sgn(

∑
i W 1

kiξi) for the k-th hidden
neuron’s activation. Subsequently, the hidden layer activations h = {hk}Nh

1 are linearly mapped to the
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output layer using W 2 ∈ {−1, 1}No×Nh . The final output o is computed by ϕ(W2h), where ϕ can be either
the sign (when No = 1) or the argmax function, respectively for binary or multi-class classification.

For a set of P = αN patterns {ξµ}P
µ=1 and their corresponding labels σµ, we define the energy associated with

weight matrices W 1 and W 2 as E
(
W 1, W 2)

=
∑P

µ=1
{

1 − δ
[
σµ, ϕ

(
W 2sgn

(
W 1ξµ

))]}
, with δ a Kronecker

delta function. Again, the learning task involves finding appropriate weight matrices Ŵ 1 and Ŵ 2 such that
the output matches the labels for all patterns, minimizing the energy E

(
Ŵ 1, Ŵ 2

)
to zero.

Symmetries also exist in the one-hidden-layer network, but binary and multi-class classifications must be
considered separately. For binary classification, the system displays a symmetry with respect to the middle
of the energetic spectrum, as it was the case for the perceptron: if both weight matrices W 1 and W 2

are simultaneously negated, the energy function remains unchanged, so that the configurations
(
W 1, W 2)

and
(
−W 1, −W 2)

produce the same energy value, E
(
W 1, W 2)

= E
(
−W 1, −W 2)

. In contrast, negating
only one matrix results in an energy value that is symmetric around the middle of the energetic spectrum:
E(−W 1, W 2) = E(W 1, −W 2) = P − E(W 1, W 2). This symmetry arises directly from the binary nature of
the sign output activation function, and it is lost when an argmax function is used in the case of multiple
labels.

2.2 Datasets

In this work, we address the learning problem for single and one-hidden-layer networks in different scenarios
involving both benchmark datasets and synthetically generated tasks.

The first scenario involves real-world datasets. The classification task is performed for various sizes of the
training set α = P/N , where α is gradually increased from 0.1 to 1.0 by randomly adding examples from
both classes. As a result, for a given total number of inputs P , there might be a discrepancy in the number
of examples between the two classes (P0 ̸= P1): this condition is commonly referred to as an “unbalanced”
dataset. By contrast, a “balanced” situation entails equally populated classes (P0 = P1). In the main text,
we show results obtained on the classic MNIST dataset (LeCun et al., 1998), focusing specifically on binary
classification problems involving only the first two classes (0 and 1). Additional classification problems on the
MNIST dataset are reported in the supporting material (see Supplementary Section V), along with results
obtained using Fashion-MNIST (Xiao et al., 2017).

In the second scenario, we use a series of approximations of an original real-world dataset that progressively
capture higher-order moments of each class. In particular, we construct Gaussian clones of the datasets, by
sampling inputs from a mixture of Gaussians each capturing the mean vector and covariance matrix of the
images in that class. We call this configuration GM (Gaussian mixture), where inputs possess the correct
mean and covariance per class but where all higher-order cumulants are zero. We also compare the results
on a simplified isotropic Gaussian mixture (2isoGM), where only the mean of each class has been preserved
and the pixel-wise variance of the two classes is equal to the geometric mean of the real variances.

Finally, the last two scenarios involve synthetic datasets. We gather hereafter some basic information on the
data-generating process; all technical details can be found in the supplementary material (see Supplementary
Section I). In the first case, each class represents an isotropic Gaussian distribution of points in N dimensions.
Two controlling parameters are employed: the inter-class separation, defined as the norm of the difference
between the mean vectors of the two classes, and the angle between these two mean vectors. In the second
case, we consider a perceptron learning problem with randomly generated data in a teacher-student setup.
Each input component ξµ

i is drawn i.i.d. at random with probability 1/2 in {−1, 1}, and the outputs σµ are
generated using a teacher vector WT as σµ = sgn(WT · ξµ), implying that data points are linearly separable
by construction as the solution WT always exists.

2.3 Wang Landau Algorithm

The estimation of the density of states Ω(E) =
∑

{W } δ(EW − E), namely the number of all internal
configurations of a network with energy E, poses a significant challenge. In an unbiased random walk, i.e.,
stochastically changing the states of the network and accepting all moves regardless of the energy values
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obtained, the histogram of the energies sampled along the simulation converges – up to a normalization
factor – to the density of states Ω(E) in the limit of a very long walk. However, achieving such an extensive
exploration over the whole energy spectrum is extremely difficult with our current computational resources,
given the extremely large number of weight configurations. For example, a perceptron with 100 inputs with
binary weights has 2100 ≃ 1.3 × 1030 possible configurations; by assuming a previously unvisited state is
sampled on average every nanosecond, it would take more than 1013 years to explore the entire configuration
space.

The sampling protocol proposed by Wang and Landau (WL) offers an efficient approach to estimating the
density of states of a system (Wang & Landau, 2001a;b; Shell et al., 2002; Barash et al., 2017). More
specifically, in WL sampling Ω(E) is self-consistently determined through a series of random walks in energy
space, in which the transition to a new configuration W with energy E is only accepted with a probability
that is proportional to the reciprocal of the density of states Ω(E). Critically, the system’s DoS is a priori
unknown; the power of the WL protocol resides in its ability to reconstruct Ω(E) via a sequence k = 0, ..., K
of non-equilibrium Monte Carlo (MC) simulations that provide increasingly accurate approximations to the
exact result.

Given the discrete spectrum of possible energy values E, the main ingredients of the WL iterative scheme
are, respectively: (i) the running MC estimate of the density of states Ω(E); (ii) the running histogram of
visited energy levels at iteration k, Hk(E); and (iii) the multiplicative modification factor fk governing the
overall convergence of the algorithm. For computational purposes, to fit large numbers into double precision
variables it is convenient to work with the entropy S(E) = ln[Ω(E)], further replacing the multiplicative
control parameter fk with an additive one Fk := ln(fk). Another key ingredient of WL simulations is the
proposal probability governing the way in which the space of weights is explored. In essence, this rule serves
as the mechanism employed by the algorithm to propose a new state starting from the current one. In this
work, we relied on a combination of global and local moves (see Supplementary Section II).

Let us now describe the first step (k = 0) of the self-consistent scheme, the following iterations being
simply repetitions of this process in which the modification factor F0 is replaced by its updated version Fk

as detailed below. As stated previously, at the beginning of the workflow Ω(E) is a priori unknown. A
commonly employed guess is to set Ω(E) = 1, or equivalently S(E) = 0, for all energies E. The histogram
is set to zero, H0(E) = 0, and the control parameter to 1, F0 = 1. Subsequently, a series of MC moves is
performed in which consecutive transitions between two network states W and W ′, respectively, with energy
E = EW and E′ = EW ′ , are proposed by flipping a subset of the weight vector components. Each of such
moves is accepted with probability:

A(W → W ′) = min
{

1,
Ω(E)
Ω(E′)

}
= min {1, exp [−(S(E′) − S(E))]} . (1)

Equation 1 implies that if Ω(E′) < Ω(E), the state W ′ with energy E′ is accepted; otherwise it is accepted
with a probability Ω(E)/Ω(E′). We note that if the exact density of states was employed in Equation 1,
the associated Markov chain would, after an initial transient, generate configurations distributed as 1/Ω(E),
hence resulting in a flat histogram H(E). Departures from this flat histogram condition are associated with
deviations of the running density of states from the true one.

If the move W → W ′ is accepted, the running histogram H0(E′) and entropy S(E′) are updated according
to

H0(E′) = H0(E′) + 1, (2)
S(E′) = S(E′) + F0. (3)

In case of rejection, replace E′ with E in the previous equations. By gradually increasing the entropy of the
energy states that were previously observed and as a consequence of Equation 1, it follows that, during its
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initial phases, the WL scheme tends to “push away” the sampling from already visited regions of the weight
space, thus significantly boosting its exploration compared to randomly drawing network configurations.
Critically, this initial random walk in energy space is continued until the histogram H0(E) becomes “flat”; at
this stage, the running density of states matches the true value with accuracy proportional to F0 = ln(f0) = 1.
Subsequently, iteratively, the modification factor is reduced following the rule Fk+1 = Fk/2 (fk+1 =

√
fk),

the histogram is reset to zero, Hk+1(E) = 0, and the next random walk in energy starts, the latter being
interrupted when the flatness of Hk+1 is achieved. This procedure is repeated for several steps until the
modification factor is smaller than a predefined final value Fend = ln fend.

The Wang-Landau (WL) scheme produces a density of states compliant with the true value – with an accuracy
lower-bounded by fend – up to an overall multiplicative constant Cg. In our specific application, given the
finite and predetermined boundaries of the energy range and the discrete nature of the system, it is possible to
determine the global constant through simulations that cover the entire energy spectrum. More specifically, it
is sufficient to ensure that the area under the DoS curve equals the number of possible configurations available
to the system. For a single-layer perceptron with N neurons, this is 2N ; for a one-hidden layer network with
N input neurons, Nh hidden neurons, and No output neurons, this is 2Nh×N+No×Nh . A validation of the
Wang-Landau sampling and a convergence time scaling analysis can be found in the supplementary material
(see Supplementary Section III).

3 Results

Deep learning researchers are usually interested in the minimizers of the loss function. In this work, we
broaden this perspective to the whole loss range, investigating how the number of parameter configurations
associated with each value of the loss – that is, the density of states – depends on the properties of the
network and its training set. Several interconnected factors, among which network architecture, activation
functions, and statistical structure of the input, play a critical role in shaping the loss DoS. Rationalizing
this interplay bears twofold consequences: on the one hand, it provides insight into the properties of the
dataset itself; on the other hand, it can help us in understanding the inner working of task-optimized neural
networks. In the following, we report the results of our work in one of these directions, our main goal being
to elucidate how data structure impacts the density of states.

In the first part of this section, we apply our method to a benchmark dataset commonly employed in
supervised learning. We examine both a perceptron and a one-hidden layer architecture solving classification
tasks. A drawback in the theoretical analysis of real-world datasets is that the probability distribution
underlying the input data is generally not known: to make sense of our results, we thus turn to analyze
synthetic datasets whose generative model is controllable with a small set of parameters, recovering the same
phenomenology observed in the case of realistic input data.

3.1 DoS analysis of benchmark tasks

We start off addressing the problem of computing the DoS for simple networks applied to both random and
structured input data. We analyze both a binary, single-layer (SL) perceptron and a network with one hidden
layer with varying size. The latter architecture is employed for binary classification as well as multi-class
labeling.

Figure 1 shows the DoS for the aforementioned architectures (panel (a)) and classification tasks, demon-
strating how various factors modify its properties. Panels (b) and (c) show the DoS in perceptron solving a
binary classification task on both random (Figure 1.b) and real data ((Figure 1.c). We also show the results
obtained in a one-hidden layer neural network with an increasing number of neurons Nh in the hidden layer,
for binary (Figure 1.d) and multi-class classification on the MNIST dataset (Figure 1.e)

Panels (b), (c), and (d) illustrate that, in the case of binary classification, the DoS curves are symmetric
with respect to the mid-energy value (E = 0.5) irrespective of the network architecture. As anticipated, the
symmetry is induced by the sign activation function in conjunction with the binary nature of the weights, i.e.
W = {−1, 1}N . Such symmetry is lost in the presence of multi-class classification with an argmax function
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Figure 1: Comparative analysis of the density of states (DoS) in classification tasks of random or structured
data across different network architectures and input dimensions. (a) Schematic representations of the net-
work architectures: single-layer perceptron (top), and one-hidden layer network for both binary classification
(middle) and multiple classifications (bottom), illustrating the input layer (N), hidden layer (Nh), and out-
put layer (No), along with their respective weight connections. (b) Density of states for binary classification
of random input data, in teacher-student setup, using a single-layer perceptron. (c) Density of states for
binary classification of the first two classes of the MNIST dataset with N = 784 input dimensions by single-
layer perceptron, illustrating results for different learning complexities (P/N = 1.0 and P/N = 0.1). (d)
Density of states for binary classification of the first two classes of the MNIST dataset with N = 100 input
dimensions, with a fixed data size of P = 140 and varying network architectures, including a single-layer (SL)
perceptron and one-hidden layer network with different numbers of hidden layer neurons (Nh). (e) Density
of states for multi-class classification of the MNIST dataset with N = 100 input dimensions, showing results
for varying numbers of hidden neurons (Nh) in the one-hidden layer network.
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(see Figure 1.e), where instead the DoS peaks at a value of the energy corresponding to the typical error
1 − 1/C obtained when guessing C possible classes with uniform probability.

We now compare the characteristics of the DoS curves for binary classification via a perceptron in two
distinct scenarios: i.i.d. data labeled by a teacher network (Figure 1.b) and structured data, exemplified
by the classification of the first two MNIST classes (Figure 1.c). Both curves exhibit a maximum at the
central energy value (E = 0.5), indicating that most network configurations incorrectly label half of the
input data. However, the shape of the distribution is markedly affected by the type of data used in the
binary classification. For i.i.d. data, the density of states follows a Gaussian distribution centered at 0.5 (see
Supplementary Section IV). For structured data, the DoS decreases almost linearly away from the center of
the energy range.

The non-Gaussian shape of the DoS is maintained even when the network architecture is modified by adding
a hidden layer (Figure 1.c). Specifically, we used a one-hidden layer network with varying inner layer sizes to
perform binary classification of the first two MNIST classes (reshaped into N = 100 dimensions, i.e., 10 × 10
instead of the original 28 × 28). We note that the general properties of the curve, symmetries and shape, are
preserved. The DoS obtained with a perceptron, taken as a reference, is different from the one obtained with
a dataset of larger-sized images; in particular, this curve has a sharper central peak, from which a slower
decrease is observed while moving towards lower and higher energy values. This notwithstanding, as the
number of hidden layers is increased, the DoS curve gradually converges to a shape qualitatively much more
similar to the one observed in the case of Figure 1.b (SL perceptron, MINST dataset with images of size
28 × 28).

Taken together, these findings suggest that the shape of the DoS is influenced by the architecture of the
network as well as by the structure of the input data, in a nontrivial interplay between the two. In order
to better understand the origin of specific properties of the DoS, we thus modulated some features of the
underlying data and investigated the relationship these bear with the shape of the resulting curve.

Firstly, we studied the effect of class imbalance on MNIST dataset, i.e. the discrepancy between the number
of data points {P0, P1} in the two classes, while keeping the total number of points P = P1 + P0 fixed.
To assess the impact of class imbalance on the dataset, the DoS curves of the binary classification were
computed for different values of P1, thus including scenarios where class 1 was either predominant (P1 > P0)
or in the minority (P1 < P0). Figure 2.b shows that as class imbalance is increased, the DoS peak shifts
away from the center of the spectrum.

Irrespective of which class is predominant, we observe the appearance of two peaks that shift from the center
as the imbalance increases, due to the symmetry of the DoS curve. When P1 is significantly greater than
P0 (green curves), the DoS shows pronounced peaks away from the center, indicating a higher concentration
of states at low/high energy values. As P1 approaches P/2 (red curve) from above, the DoS curves become
more centralized, indicating a more balanced distribution of states across the energy spectrum. When P1
is less than P/2 (and thus less than P0, blue curves), a pattern similar, albeit mirrored, to the first case
emerges, with the peaks moving away from the center as P1 is decreased.

This behavior can be understood by noting that the two symmetrical peaks in the DoS correspond to distinct
sets of solutions arising from the class imbalance. The low-energy peak represents configurations where the
decision boundary optimally classifies the majority class, while the minority class contributes most of the
errors (and vice versa for the high-energy peak). This duality is a natural consequence of the binary weights
of the perceptron and the definition of energy, which symmetrically measures the misclassifications of the
two classes.

The shifting of the peaks described above is clearly reflected in a scatter plot (Figure 2.c) that correlates
the position of the low-energy maximum of the DoS curve with the degree of unbalancing, computed as by
|0.5 − P1/P |. The plot shows results for two distinct values of dataset size, α = 0.1 (squares) and α = 1
(diamonds). As the degree of imbalance increases, the peak energy shifts proportionally, thereby providing
a quantifiable measure of the impact of class distribution on the density of states.

These results show how class imbalance plays a crucial role in shaping the DoS, in a way that is further
dependent on the structure of the input data; most importantly, class imbalance does not change the location
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Figure 2: Density of states analysis for binary classification of MNIST digits (0 and 1) under various class
imbalances. (a) Schematic representation of class imbalance. In the top section of the panel, P1 > P0, there
are more elements in class 1 (orange) than in class 0 (blue). In the middle section, P1 = P0, the classes are
balanced. In the bottom section, P1 < P0, there are fewer elements in class 1 than in class 0. The total
number of points P1 +P0 = P is fixed. (b) Density of states at a fixed learning complexity of P/N = 78/784
resulting in MNIST binary classification for different class imbalances. The legend indicates the number of
elements in class 1 (P1). Perfect class balance is achieved when P1 = P0 = P/2 = 39 (red curve).
Larger deviations from this value indicate greater class imbalance. Blue curves represent a predominance
of class 0, while green curves represent a predominance of class 1; the lighter the color the greater the
class imbalance. (c) Peak energy values plotted against the absolute difference |0.5 − P1/P |, showing the
correlation between peak energy and class imbalance. This correlation does not depend on which class is
predominant: blue points indicate class 0 is predominant, and green points indicate class 1 is predominant.
Results are shown for two values of learning complexity: P/N = 0.1 (squares) and P/N = 1.0 (diamonds).

of the DoS peak for randomly distributed input: we observe such behavior only in the presence of structured
data. This conclusion is supported by further analyzes we carried out on the MNIST and Fashion-MNIST
datasets (see Supplementary Figure 4).

3.2 DoS analysis of synthetic tasks

To further elucidate the factors impacting the density of states, we studied simple classification problems on
synthetic datasets, designed in such a way that a systematic study can be carried out over a small number
of control parameters.

3.2.1 DoS in a classification problem with data from a mixture of isotropic Gaussians

Here, we focus on the DoS obtained from input data sampled from Gaussian probability densities and study
its changes as we modify specific parameters of these distributions. We construct a binary classification task
where the different classes consist of isotropic clouds of points in a high-dimensional space (we set N = 41).
The distributions for each class are Gaussians with zero mean and unit variance (further details can be
found in supplementary material Section I). We systematically vary the inter-class distance ∆µ, defined as
the distance between the mean points of the distributions, as well as the angle θ between the mean vectors.

Figure 3.b shows the DoS curves obtained by varying the value of ∆µ, in the simple case of θ = 180◦. We
expect that a large value of ∆µ is associated to rather trivial classification tasks, since the two groups of
points are neatly distinct and, consequently, a great number of planes in input space can successfully separate
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them. In contrast, a ∆µ close to zero corresponds to overlapping clouds: in this latter case, no plane likely
exists that allows a distinction between them.

This expectation is indeed confirmed by the behaviour of the density of states: the latter is bell-shaped,
with a peak at the center of the spectrum when ∆µ is small, implying that the vast majority of network
parameter configurations wrongly classify the inputs 50% of the times. As ∆µ increases, the DoS broadens
significantly: for sufficiently high values of ∆µ the DoS develops two distinct peaks at the lowest and highest
energy values, implying that most parameter sets correspond to classification planes that correctly label the
data (or, alternatively, that make the wrong labeling all the times, which is equivalent to perfect labeling up
to a sign).

In Figure 3.c we show the position of the DoS peaks as a function of ∆µ (θ = 180◦). The orange curve
represents the balanced case (P1 = P0), while the grey points correspond to scenarios with class imbalance
(P1 ̸= P0). In this context, class imbalance does not affect the location of the DoS peaks: the trend is indeed
consistent for both balanced and unbalanced scenarios.

We then extend our analysis to a synthetic dataset where both the angle and inter-class distance are varied
systematically; we focus in particular on the two different regimes of small and large inter-class distances.
Results are summarized in Figure 3.d,e. For large inter-class distances (e.g. ∆µ = 2) and low angles (e.g.
θ = 18◦), the DoS curves exhibit several properties observed in real datasets (Figure 2.b): the curves lose
their typical bell shape, with the location of the maximum density being controlled by class imbalance.
When P1 = P/2 = 30, the density of states (red curve) displays a single peak at the center of the energy
spectrum. As P1 deviates from P/2, with larger values marked in green and smaller values in blue, the peak
shifts away from the center. The peak location approaches the tail of the spectrum as P1 deviates further
from the balanced case.

The location of the maximum density of states reveals two distinct regimes based on the angle between the
mean vectors: θ > 90◦ and θ < 90◦. In the first regime, class imbalance does not affect the peak location of
the DoS curve. In contrast, for smaller angles, it plays a crucial role in determining the position of the peak,
which shifts systematically towards the edges as the imbalance increases. The influence of class imbalance
on the peak location is diminished when the inter-class separation is small. For small ∆µ, the maximum of
the DoS remains centered in the energy spectrum, regardless of the angle between the mean vectors.

The results discussed thus far demonstrate that synthetic datasets have considerable power in replicating the
behavior observed in real-world cases. This provides valuable insights in the way neural networks carry out
classification tasks: particularly, in the context of binary labeling involving MNIST data, we observe that
the angle between the inter-class mean vectors generally falls below 90◦ (see Supplementary Figure 5.a); such
observation aligns with the results obtained on synthetic data, where class imbalance significantly influences
the location of the peak of the DoS curves only for small angles, as it is the case for MNIST data.

3.2.2 DoS of a classification problem with mislabeled data

Label noise can affect the training performance and robustness of neural networks. Here we investigate how
the DoS is affected by the presence of mislabeling, i.e., the attribution of a given data point to the wrong
class, which we can easily model in a synthetic dataset by switching the label of subsets of points generated
from a mixture of Gaussians.

Specifically, we analyze a setup where some input patterns in the dataset are mislabeled. Each class is
an isotropic Gaussian cloud of points, with the two mean vectors identifying the classes as antiparallel
(θ = 180◦); one cloud has a mean vector m and is labeled as +1, while the other cloud has a mean vector
−m and is labeled as −1. We vary both the inter-class separation ∆µ and the number of mislabeled elements
L. To achieve the latter, a set of elements L is chosen at random, and their labels are reversed so that points
from the cloud with mean m are labeled as −1, and/or points from the cloud with mean −m are labeled
as +1. The parameter L ranges from 0, indicating all points are correctly labeled, to P/2, representing the
maximum degree of disorder where half of the points are mislabeled.

Figure 4 shows that, as in previous scenarios, the peak of the DoS remains centrally located for any L value
when the classes are close to each other (∆µ < 1). However, as the inter-class separation increases, the
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Figure 3: Density of states analysis for binary classification of synthetic datasets studying the impact
of inter-class separation (∆µ) and inter-class mean angle (θ). The angle between the two mean vectors
uniformly ranges from 180◦ to 18◦. (a) Pictorial representations of inter-class separation (∆µ) at the top
and inter-class angle (θ) at the bottom. (b) Density of States at a fixed learning complexity of P/N = 60/41
obtained in the binary classification for multiple inter-class separations ∆µ and fixed inter-class angle
(θ = 180◦) for balanced classes. The legend indicates that lighter colors correspond to larger inter-class
distances. (c) Peak energy values plotted against the inter-class distance ∆µ at θ = 180◦ for balanced classes
(orange) and imbalanced classes (gray). The plotted values represent the average from 20 independent
replicas of the system in the same configuration, with associated statistical deviations. (d) DoS at a fixed
learning complexity of P/N = 60/41 obtained in the binary classification for large inter-class separations
(∆µ = 2.0) and small inter-class mean angle (θ = 18◦) for different class imbalances. The legend indicates the
number of elements in class 1 (P1). Perfect class balance is achieved when P1 = P0 = P/2 = 30 (red curve).
Larger deviations from this value indicate greater class imbalance. Blue curves represent a predominance of
class 0, while green curves represent a predominance of class 1; lighter colors indicate greater class imbalance.
(e) Peak energy values plotted against the inter-class distance (∆µ) for different values of class imbalance
as reported in the legend. Red points denote balanced classes. Blue and green points indicate unbalanced
classes with a predominance of class 0 and 1, respectively; lighter colors indicate greater imbalance. The
two panels differ by the value of the inter-class mean angle, with θ < 90◦ on the left and θ > 90◦ on the right.
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Figure 4: Density of states analysis for binary classification of synthetic datasets examining the impact of
mislabeled elements at different inter-class separations ∆µ. (a) Pictorial representation of feature mislabeling
for different numbers of mislabeled elements L. Each class is represented by an isotropic cloud of points, with
one class having a mean vector m labeled as +1 (blue) and the other class with mean vector −m labeled
as -1 (orange). The total number of points remains constant across different values of L. In the absence of
feature noise (i.e., L = 0), there are an equal number of points in each class. Mislabeling is introduced by
randomly selecting L elements and flipping their labels. For L = 0, all points are correctly labeled, while
for increasing L (e.g., L = 5 and L = P/2), a portion of points from the cloud labeled +1 are relabeled
as -1, and and a portion of points from the cloud labeled -1 are relabeled as +1, leading to label noise.
(b) Density of states at a fixed learning complexity P/N = 60/41 and inter-class separation (∆µ = 1.3),
obtained in the binary classification for various numbers of mislabeled elements (L). The legend indicates
that lighter colors correspond to a higher number of mislabeled elements (greater L). (c) Peak energy values
plotted against the inter-class distance for different numbers of misclassified elements. The plotted values
in the range ∆µ ∈ [0.8, 1.3] represent the average from 10 independent replicas of the system in the same
configuration, with associated statistical deviations.

introduction of mislabeled elements causes the peaks to shift. Notably, in the absence of mislabeling, the
peaks typically appear at the tails of the spectrum for configurations with large ∆µ and θ = 180◦.

As the level of mislabeling L increases, the peaks move progressively toward the center of the spectrum,
converging to an energy of approximately 0.5. This behavior reflects the increasing randomness of the
classification task: with more mislabeled data, the network encounters a loss landscape where a large fraction
of weight configurations yield similar levels of classification error, tending towards the limit of random
classification. In this scenario, the density of states becomes dominated by configurations that provide no
clear decision boundary between the classes. This transition aligns with the expectation that a heavily
mislabeled dataset effectively loses its structure, rendering classification equivalent to chance.

This shift in peak position due to mislabeling mirrors the behavior observed with class imbalance at low
values of the angles between mean vectors (Figure 3.d), highlighting the complex interplay between data
characteristics and the resulting density of states. The progression of the DoS toward a central energy point
emphasizes the sensitivity of neural network performance to label noise and underscores the importance of
ensuring dataset quality in real-world applications (Refinetti et al., 2023; Belrose et al., 2024).
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Figure 5: Density of states analysis for binary classification of Gaussian clones of MNIST data, investigating
the impact of high-order statistics on DoS properties. (a) Angle between the mean vector of class 1 and the
mean vectors of other classes in the MNIST dataset, as indicated on the x-axis. (b) Peak location of the
DoS plotted against the inter-class separation distance ∆µ for different values of class imbalance, as shown
in the legend. Results are obtained from 9 different binary classification problems, comparing MNIST class
1 against each of the other MNIST classes. Red points indicate balanced classes, while blue and green points
represent unbalanced classes, with lighter colors corresponding to greater imbalance. The two panels differ
in the approximation used for the covariance matrix: Gaussian mixture (GM, left) and isotropic Gaussian
mixture (2isoGM, right) clones.

3.2.3 DoS in a classification problem with data from Gaussian clones of real-world datasets

An interesting technique to understand the relevance of input structure on learning is the construction of a
hierarchy of clones that only retain some statistical properties of the original real-world data.

In the light of this, we constructed a synthetic dataset where each class is a Gaussian clone of the original
MNIST data, but where we can adjust the inter-class distances (see Supplementary Section I for further
details). By doing so, we can reproduce the behavior observed in the previous sections. This is true whether
we employ the real correlation matrix (GM clone) or a diagonal covariance matrix (2ISOgm). In both cases,
the DoS curves show properties that closely mirror those observed with the synthetic datasets discussed in
Section 3.2.1, particularly how the peak location is influenced by class imbalance for small angles between
the mean vectors (see Figure 5). The specific structure of the covariance matrices does not seem to play a
role in determining the peak location, which is mostly influenced by the difference in the mean vectors.

4 Discussion and conclusions

In this work, we introduced a general approach to measure the density of states in a neural network learning
problem. Albeit a common practice in the field of statistical mechanics and soft matter physics (Kim et al.,
2006; Stelter & Keyes, 2019; Kim et al., 2012; Tsai et al., 2007; Menichetti et al., 2021), the use of enhanced
sampling techniques is only recently starting to be discovered in the context of machine learning in general,
and neural networks in particular (Liu et al., 2023).

Here, for the first time to the best of our knowledge, we make use of one of these methods to thoroughly
characterize the loss spectrum of simple neural architectures in a variety of learning tasks. It is crucial to
note that such method, at variance with classic average-case analytical methods, can be profitably employed
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on finite-size single instances, thus representing a complementary and promising approach to a novel class
of problems and questions. Specifically, we used the Wang-Landau algorithm to elucidate the impact of
several factors on the DoS, focusing on the differential effects of input statistics, linear separability, and class
imbalance. The last point is particularly interesting also in view of an increasing interest in the effect of class
imbalance on learning and implicit biases in deep neural networks (Francazi et al., 2024; 2023). Specifically,
we addressed the effect of class imbalance on the entire spectrum of the training loss.

In this first application of our methodology we concentrated our efforts on the analysis of fully connected,
one-(hidden)-layer networks; the natural generalization steps will be the study of more complex, multilayered
structures, which would shed light on the impact on the DoS of weight sharing (e.g. in convolutional layers),
recurrent computation (e.g. sequence-to-sequence tasks in recurrent neural networks), and multiplicative
interactions (attention layers in transformer architectures). While a generalization of our technique to deeper
networks is conceptually straightforward, a key issue in the usage of this protocol is, however, its scalability
(see Figure 2 of the Supplementary Material for a benchmark of the convergence time): in our context, this
means that its application to deep overparametrized neural networks would entail a high computational cost,
deriving from the exploration of a large configuration space that grows exponentially with network size. We
note that, in this work, we relied on the original, “plain vanilla” implementation of the WL algorithm due
to its simplicity and suitability as a proof of concept of our approach (Wang & Landau, 2001a;b); the price
to pay for algorithmic clarity and simplicity, though, is efficiency, especially on deep overparametrized tasks.
This notwithstanding, the scalability challenge can be addressed through multiple strategies. Among them,
we mention the parallelization across both training patterns and energy windows utilizing GPU resources
(Yin & Landau, 2012; Vogel et al., 2014; Farris & Landau, 2021), as well as more advanced implementations
of the basic WL algorithm making use, for example, of multi-level sampling (Vogel et al., 2013), replica
exchange (Vogel et al., 2014), and energy-biasing (Valentim et al., 2015), which in the realm of soft and
condensed matter physics have been shown to significantly enhance the method’s sampling efficiency and
scalability. In addition, (Liu et al., 2023) demonstrates the merits of using optimized WL implementations
in the context of neural networks: in this work, in fact, the authors employ the method to explore the input
space of a network, and they manage to improve efficiency and scalability by leveraging approximations such
as entropy interpolation and gradient discretization. Appropriate optimizations of the WL algorithm can
thus offer promising strategies to enhance the scope of our approach and its application to larger and deeper
network architectures, which is the subject of further ongoing work.

Furthermore, in this work we focused on networks with discrete synaptic weights: nonetheless, in the context
of soft and condensed matter physics, WL techniques have been shown to be applicable to problems in
continuous space—see for instance their use in molecular simulations (Shell et al., 2002; Zhou et al., 2006;
Yan & de Pablo, 2003). The extension of the WL algorithm to continuous-weight neural networks does
not modify the overall conceptual framework, except that smarter techniques are needed to generate the
proposal moves one employs to navigate the weight space. On the other hand, in contrast to the discrete
case, such moves can rely on the differentiable nature of the loss landscape, so that strategies akin to, e.g.,
stochastic gradient descent, can be employed to generate new weight configurations. Further significant help
in this endeavor can come from enhanced sampling techniques that are commonly employed in the field of
molecular simulations (Hénin et al., 2022).

Overall, the improvements and extensions of our methodology discussed insofar open a window towards
its real-world application in modern neural network models. Our method could in fact e.g. contribute to
explore the mapping between the weight space and function space descriptions, in line with recent advances
on linearized models in Bayesian networks (Roy et al., 2024): this could facilitate a deeper understanding
of how weight configurations relate to functional outputs, complementing the insights gained from density
of states analyses. Furthermore, the WL approach could provide valuable insights into selecting the best
network architecture for a given problem by analyzing the DoS and the dynamics of learning algorithms as
weights traverse configurations of different entropy. It is indeed well known that gradient-based algorithms
do not sample the loss landscape uniformly but rather possess inductive biases (Farnia et al., 2020; Nakkiran
et al., 2019; Rahaman et al., 2019) that can also affect the entire learning dynamics (Refinetti et al., 2023;
Belrose et al., 2024): analyzing the dynamics of optimization algorithms from the perspective of loss density
is thus an interesting avenue for future work.
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