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Abstract

Recently, sequence modeling methods have been applied to solve the problem of1

off-policy reinforcement learning. One notable example is the work on Decision2

Mamba, incorporating Mamba block into the Decision-Transformer-type neural3

network architecture. In this work, we begin our exploration with the latest sequen-4

tial decision-making model, leveraging its strengths as a foundation for further5

development. We propose a theoretical measure of alignment on the policy of the6

agent with the human expert, known as Expected Agent Alignment Error (EA2E).7

Furthermore, we provide a complete theoretical proof that reducing the Wasserstein-8

1 distance between distributions of the present model (agent) and the target model9

(agent) effectively aligns the agent’s policy with the potential expert’s. Building10

upon theoretical results, we propose Categorical Decision Mamba (CDMamba),11

which originates from Decision Mamba (DMamba). The core improvements of12

CDMamba involve utilizing histograms of categorical distributions as inputs to the13

Mamba model, minimizing the Wasserstein-1 distance between distributions, which14

ultimately yields a trained model with aligned policy and superior performance.15

1 Introduction16

Offline Reinforcement Learning [1, 2, 3, 4] has been a promising approach for training agents that17

does not necessitate online experience in an environment, which is advantageous when online ex-18

perience is expensive or when offline experience is abundant. In the past few years, Transformers19

[5] have shown impressive results across a number of problem domains in Natural Language Pro-20

cessing [6, 7, 8] and Computer Vision [9, 10]. Inspired by these recent successes, formulating offline21

reinforcement learning as a sequence modeling problem [1, 2, 3, 4, 11] has become a novel idea for22

solution, where the Transformer model predicts the next element in a sequence of states, actions,23

rewards, and then tackled the issue with techniques similar to those employed in large language24

models. The attention mechanism in Transformer does have produced several impressive results25

[1, 11]; however, investigating alternative mechanisms to further enhance model performance remains26

an open and intriguing research question [3].27

Recently, state space sequence models (SSMs) have gained popularity as efficient and effective28

building blocks for constructing deep networks, achieving great performance in analyzing continuous29

long-sequence data [12, 13]. In particular, structured state space sequence models (S4) have been30

effective in various applications [12, 14]. Mamba [15] enhances S4 [12] by incorporating a selective31

mechanism, allowing the model to selectively focus on input-dependent, relevant information. This32

improvement, combined with hardware-aware implementation, enables Mamba to outperform Trans-33

formers on dense modalities, such as language and genomics. Leveraging the numerous advantages34

of the Mamba architecture and significant success achieved in various domains [16, 17, 18, 19],35

Decision Mamba [3] investigate the integration of the Mamba framework as a new architectural36
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choice within the Decision Transformer. Empirical study in the work Ota [3] shows that Decision37

Mamba is competitive to existing DT-type models, suggesting the effectiveness of Mamba framework38

for RL tasks.39

In work [20], the exploration problem is reformulated as a State Marginal Matching (SMM) issue, in40

which a target state distribution is given, and a policy is learned to make the state marginal distribution41

match this target distribution. Inspired by such notion, Furuta et al. [2] proposed the Categorical42

Decision Transformer (CDT) [2], taking histograms of categorical distribution (i.e. discrete approxi-43

mations of feature distributions; B-dim vector) as the inputs of the transformer. With obtaining the44

desired information statistics for all trajectories, they are fed to the Categorical Decision Transformer45

during training/test time. While such approach is effective for reinforcement learning in multiple46

tasks, it is crucial to consider the limitations of training a black-box model. Specifically, for an agent47

generated by such large model, we cannot help but question: What about the alignment of the trained48

agent? Furthermore, does the reduction in Wasserstein-1 distance between distributions of existing49

model (agent) and target model (agent) effectively aligns the agent’s policy with the potential human50

expert’s?51

Inspired by the innovative frameworks in sequential decision-making, such as Decision-Mamba [3],52

we would like to reevaluating the role of SMM method in sequence-based decision-making. There-53

fore, in this paper, we propose Categorical Decision Mamba: further taking the histograms of54

categorical distribution as the input of Mamba, minimizing the distance between distributions55

and finally get a trained model with excellent and aligned policy.56

Figure 1: Categorical Decision Mamba (CDMamba) architecture
57

To summary, the contributions of this work are as follows:58

• We propose a theoretical measure of alignment towards the policy of an agent embedded in59

a large model within the background of state marginal matching.60

• We provide a theoretical proof that reducing Wasserstein-1 distance between distributions of61

existing and target models aligns the agent’s policy with the potential human expert’s.62

• We present an enhanced approach for Decision Mamba (DMamba) termed as Categorical63

Decision Mamba (CDMamba).64

2 Methodology65

2.1 Expected Agent Alignment Error (EA2E)66

Offline reinforcement learning (RL) [1, 2, 3, 4] has been a promising approach for training agents67

that does not necessitate online experience in an environment, which is advantageous when online68

experience is expensive or when offline experience is abundant. Notwithstanding, it also gives rise69
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to several other concerns. One notable issue is that the policy learned by an agent may deviate70

significantly from the underlying human strategy, yet still achieve a higher return, leading to the71

misconception that a good policy has been learned. To facilitate a comprehensive evaluation of the72

learned policy, it is essential to define a metric that explains the confidence of the model (agent) in its73

strategy. Similar to ECE [21], we define the Expected Agent Alignment Error (EA2E).74

Definition 2.1. Defining U = I [dis(π1,π2)≤ δ ], where I(·) is the the indicator function, U = 175

denotes that the distance between policy π1 and policy π2 is smaller than the threshold δ . Hence, for76

the model (agent), a perfect alignment (full confidence) can be expressed as:77

P(U = 1|ŝ = s) = s ∀s ∈ [0,1] (1)

Definition 2.2. Expected Agent Alignment Error (EA2E): Define the misalignment of the model78

(agent) by computing the expectation of alignment error over predicted confidence ŝ:79

EA2E = Eŝ [|P(U = 1|ŝ = s)− s|] (2)

2.2 Theoretical Analysis80

In this section, we theoretically delve deeper into the benefits of mitigating distribution discrepancies,81

demonstrating the superiority of our approach.82

Theorem 1. Suppose πθ1(a|s) and πθ2(a|s) are two policies of the model (agent), ρ
πθ1 (s,a) and83

ρ
πθ2 (s,a) are the state-action marginal distributions of two agents (models), then:84

EA2E(πθ1)−EA2E(πθ2)≤ E
[
4 ·TV(ρπθ1 (s,a),ρπθ2 (s,a)

]
(3)

, where TV(·) is the total variation distance.85

Proposition 1. Suppose π(a|s) is the potential policy of human expert , πθ (a|s) is the policy of86

model (agent), ρπ(s,a) is the state-action marginal distribution of potential human expert agent and87

ρπθ (s,a) is the state-action marginal distribution of current agent (model), then:88

EA2E(π)−EA2E(πθ )≤ E
[

4
dmin

·W1 (ρ
π(s,a),ρπθ (s,a))

]
(4)

, where W1 (ρ
π(s,a),ρπθ (s,a)) is the Wasserstein-1 distance between ρπ(s,a) and ρπθ (s,a); let89

ρπ(s,a) ∈ µ and ρπθ (s,a) ∈ ν , setting Ω = supp(µ)∪ supp(ν), dmin = inf
ρπ ̸=ρ

πθ ∈Ω

∥ρπ −ρπθ ∥.90

In Theorem 1, it is shown that the differences of EA2E is bounded by total variation distance of the91

policies. And in Proposition 1, we can observe that the deviation of EA2E between the potential92

human expert and the current model (agent) is bounded by Wasserstein-1 distance between the93

distribution of the expert agent and the current agent (model). Detailed proofs are available in94

Appendix A and Appendix B.95

2.3 Categorical Decision Mamba96

Recently, the Mamba framework have been introduced [15], known as an sequence modeling97

framework that leverages a selective structured state space model to achieve efficient and effective98

performance. Decision Mamba is a novel approach that replaces traditional self-attention with Mamba99

block. Empirical verification has shown that such modification can improve the model’s capacity of100

capturing complex dependencies in sequential decision-making tasks, thereby potentially enhancing101

its decision-making capabilities in diverse and challenging environments. Based on such preliminary,102

we construct categorical approximations of continuous distributions by leveraging the discretization103

of feature spaces as a substitute for return-to-go (RTG). The architecture of Categorical Decision104

Mamba (CDMamba) is shown in Figure 1. From the architecture, we can see that CDMamba takes105

binnings of distribution (rewards or state dimensions like xyz-velocities), states and actions as input106

and actions of future as output. And furthermore, we also evaluate the model with Wasserstein-1107

distance between categorical distributions of features, in order to demonstrate the effectiveness of108

state-feature distribution matching.109
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3 Experiments110

We conduct the experiments on the MuJoCo tasks (Halfcheetah, Hopper and Walker2d) from the111

widely-used D4RL [22] benchmarks. Firstly, we sort all the trajectories by their cumulative rewards.112

For comparison with CDT [2], we similarly hold out five best trajectories and five 50 percentile113

trajectories as a test set (10 trajectories in total), and use the rest as a train set. We report the results114

averaged over 20 rollouts every 3 random seeds in Table 1. We select DT [1], RvS [23], DS4 [24],115

DC [25] and DMamba [3] as our baselines. The results show that CDMamba is competitive to116

DMamba and existing DT-type models, suggesting an effectiveness of CDMamba architecture for117

RL tasks. Furthermore, we evaluate the Wasserstein-1 distance between categorical distributions of118

features in Table 2. The practical computation of Wasserstein-1 distance is conducted by package119

in [26]. Distance datas of DT and CDT are from work [8]. The results show that CDMamba120

matches approximate distribution much better than CDT and DT. For reproducibility, we provide the121

hyperparameter of experiments in Table 3 (Appendix D). And for intuitive understanding, we provide122

typical visualizations in Figure 2 (Appendix C).

Table 1: The offline results of CDMamba and baselines in MuJoCo domain. We abbreviate dataset
names as follows: ‘medium’ as ‘m’, ‘medium-replay’ as ‘m-r’, ‘medium-expert’ as ‘m-e’.

Dataset DT RvS DS4 DC DMamba CDMamba

halfcheetah-m 42.6 41.6 42.5 43.0 42.8±0.08 43.2±0.06
hopper-m 68.4 60.2 54.2 92.5 83.5±12.5 70.7±1.66

walker2d-m 75.5 71.7 78.0 79.2 78.2±0.6 79.2±0.12

halfcheetah-m-r 37.0 38.0 15.2 41.3 39.6±0.1 39.9±0.05
hopper-m-r 85.6 73.5 49.6 94.2 82.6±4.6 88.8±2.17

walker2d-m-r 71.2 60.6 69.0 76.6 70.9±4.3 78.2±2.88

halfcheetah-m-e 88.8 92.2 92.7 93.0 91.9±0.6 88.4±1.89
hopper-m-e 109.6 101.7 110.8 110.4 111.1±0.3 110.6±0.53

walker2d-m-e 109.3 106.0 105.7 109.6 108.3±0.5 108.6±0.39

123

Table 2: Quantitative evaluation of reward distribution matching via measuring Wasserstein-1 distance
between the rollout and target distributions.

Method
Halfcheetah Hopper Walker2d

m m-e m m-e m m-e

DT 1.039±1.548 0.846±1.134 0.091±0.035 0.159±0.111 0.626±0.495 0.341±0.452
CDT 1.002±1.458 0.838±1.054 0.064±0.017 0.111±0.077 0.114±0.037 0.105±0.030

CDMamba 0.166±0.044 0.469±0.229 0.081±0.025 0.134±0.026 0.215±0.014 0.028±0.019

4 Discussion124

In this work, we provide a novel perspective on the agent policy alignment: decreasing Wasserstein-1125

distance between distributions of existing and target models aligns the agent’s policy with that126

of potential human experts. Building upon the theoretical foundations, we introduce CDMamba,127

a novel approach that synergistically integrates the superior performance of Mamba in handling128

sequential problems with strengths of distributional matching for agent alignment. Hence, this work129

makes theoretical contributions to the field of agent alignment in reinforcement learning; and further130

validates the Mamba architecture’s robust representational capabilities in sequence model-based131

reinforcement learning tasks, offering valuable insights for future research in this area.132

In future work, we would like to further explore the agent policy alignment in reinforcement learning133

based on sequence models, foundation models and large language models; and further study practical134

methods of agent policy alignment. Moreover, we also would like to study additional implementations135

that better effectively leverage Mamba’s or other sequence modeling architectures’ advantages in the136

sequence model based reinforcement learning.137
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A Proof of Theorem 1199

Before the prove of the main theorem, let’s consider two lemmas.200

Lemma 2. Suppose a, b, c are three vectors, then we have:201

⟨|a−b|,2b⟩−⟨|a− c|,2c⟩ ≤ ⟨b+ c+ |a−b|+ |a− c| , |b− c|⟩

Proof. Consider the following inequation:202

⟨|a− c|,b− c−|b− c|⟩ ≤ ⟨|a−b|,c−b+ |c−b|⟩ (5)

According to the nature of the absolute value, it is obvious that b− c−|b− c| ≤ 0 and that c−b+203

|c−b| ≥ 0, which shows the constancy of (5) is obvious.204

Transform (5), we can get:205

⟨|a− c|,b⟩+ ⟨|a−b|,b−|b− c|⟩ ≤ ⟨|a− c|,c+ |b− c|⟩+ ⟨c, |a−b|⟩
Based on the absolute value inequality, we can get:206

|a−b|− |b− c| ≤ |a− c|; |a− c|+ |b− c| ≥ |a−b|
Hence:207

⟨|a−b|− |b− c|,b⟩+ ⟨|a−b|,b−|b− c|⟩ ≤ ⟨|a− c|,b⟩+ ⟨|a−b|,b−|b− c|⟩
≤ ⟨|a− c|,c+ |b− c|⟩+ ⟨c, |a−b|⟩
≤ ⟨|a− c|,c+ |b− c|⟩+ ⟨c, |a− c|+ |b− c|⟩

Combine some items of the same kind:208

⟨|a−b|− |b− c|,b⟩+ ⟨|a−b|,b−|b− c|⟩ ≤ ⟨|a− c|+ |b− c|,c⟩+ ⟨|a− c|,c+ |b− c|⟩
Thus,209

2⟨|a−b|,b⟩−2⟨|a− c|,c⟩ ≤ ⟨b, |b− c|⟩+ ⟨c, |b− c|⟩+ ⟨|a−b|, |b− c|⟩+ ⟨|a− c|, |b− c|⟩

Then,210

⟨|a−b|,2b⟩−⟨|a− c|,2c⟩ ≤ ⟨b+ c+ |a−b|+ |a− c| , |b− c|⟩
, which completes the proof.211

Remark A.1. Suppose a, b, c are three vectors, then we have:212

⟨|a−b|,b⟩−⟨|a− c|,c⟩ ≤
〈

b+ c+ |a−b|+ |a− c|
2

, |b− c|
〉

Lemma 3 (Holder’s inequation). Set p> 1,1/p+1/q= 1, if a1,a2...an and b1,b2...bn is nonnegative,213

then we have:214

n

∑
i=1

aibi ≤

(
∑
i=1

ap
i

) 1
p
(

∑
i=1

bq
i

) 1
q

Remark A.2. a and b are two vectors, and each of their terms is nonnegative. Then, we can get:215

⟨a,b⟩ ≤ ⟨∥a∥1,∥b∥∞⟩
, where ∥a∥1 represents the L1-norm of vector a and ∥b∥∞ represents the L∞-norm of vector b.216

Proof. Setting p as ∞ and q as 1, then according to:217

n

∑
i=1

aibi ≤

(
∑
i=1

bp
i

) 1
p
(

∑
i=1

aq
i

) 1
q

We can have:218
n

∑
i=1

aibi ≤ ∥b∥∞ · ∥a∥1

Thus,219

⟨a,b⟩ ≤ ⟨∥a∥1,∥b∥∞⟩
, which completes the proof220
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Now, let’s start considering the proof of Theorem 1 as follows:221

Proof. For any state-action marginal distribution, we set that ŝ = ρπθ (s,a). We know that ρπθ (s,a)222

= ρπθ (s) ·πθ (a|s), and given policy π , the action is sampled with the policy πθ (a|s). Hence, we can223

get:224

EA2E(πθ ) =EA
[
Eŝ|A [|P(U = 1|ŝ = s,A = a)− s|]

]
=EA

[
Eρ

πθ (s,a) [|P(U = 1|ŝ = ρ
πθ (s,a),A = a)−ρ

πθ (s,a)|]
]

=EA
[
∑ρ

πθ (s,a) · |P(U = 1|ŝ = ρ
πθ (s,a),A = a)−ρ

πθ (s,a)|
]

Setting ρπ be the conditional distribution P(U = 1|ŝ = ρπθ (s,a),A = a). Thus,225

EA2E(πθ ) = EA [⟨|ρπ −ρ
πθ (s,a)| ,ρπθ (s,a)⟩]

,where |ρπ −ρπθ (s,a)| and ρπθ (s,a) are vectors and ⟨|ρπ −ρπθ (s,a)|,ρπθ (s,a)⟩ represents the inner226

product of |ρπ −ρπθ (s,a)| and ρπθ (s,a). Further, let’s compare the EA2E of two models (agents)227

θ1,θ2 ∈ Θ:228

EA2E(πθ1)−EA2E(πθ2) = EA
[〈∣∣ρπ −ρ

πθ1 (s,a)
∣∣ ,ρπθ1 (s,a)

〉
−
〈∣∣ρπ −ρ

πθ2 (s,a)
∣∣ ,ρπθ2 (s,a)

〉]
According to the Lemma 2, we can get:229

EA2E(πθ1)−EA2E(πθ2) = EA
[〈∣∣ρπ −ρ

πθ1 (s,a)
∣∣ ,ρπθ1 (s,a)

〉
−
〈∣∣ρπ −ρ

πθ2 (s,a)
∣∣ ,ρπθ2 (s,a)

〉]
≤ EA

[〈
ρ

πθ1 (s,a)+ρ
πθ2 (s,a)+

∣∣ρπ −ρ
πθ1 (s,a)

∣∣+ ∣∣ρπ −ρ
πθ2 (s,a)

∣∣
2

, |ρπθ1 (s,a)−ρ
πθ2 (s,a)|

〉]

According to Lemma 3(Holder’s inequality), we have that:230

EA2E(πθ1)−EA2E(πθ2)≤ EA

[〈
ρ

πθ1 +ρ
πθ2 +

∣∣ρπ −ρ
πθ1
∣∣+ ∣∣ρπ −ρ

πθ2
∣∣

2
, |ρπθ1 −ρ

πθ2 |

〉]

≤ EA

[∥∥ρ
πθ1 −ρ

πθ2
∥∥

1 ·

∥∥∥∥∥ρ
πθ1 +ρ

πθ2 +
∣∣ρπ −ρ

πθ1
∣∣+ ∣∣ρπ −ρ

πθ2
∣∣

2

∥∥∥∥∥
∞

]

Setting231

m(πθ1 ,πθ2 ,π) =

∥∥∥∥∥ρ
πθ1 +ρ

πθ2 +
∣∣ρπ −ρ

πθ1
∣∣+ ∣∣ρπ −ρ

πθ2
∣∣

2

∥∥∥∥∥
∞

For the sake that each term of the distributions ρ
πθ1 ,ρπθ2 and ρπ are bounded in [0,1], hence it is232

evident that m(πθ1 ,πθ2 ,π)≤ 2. Therefore, we can get:233

EA2E(πθ1)−EA2E(πθ2)≤ EA
[
2 ·
∥∥ρ

πθ1 (s,a),ρπθ2 (s,a)
∥∥

1

]
= E

[
4 ·TV

(
ρ

πθ1 (s,a),ρπθ2 (s,a)
)]

, which completes the prove.234

235

B Proof of Proposition 1236

According to Theorem 1, we have that:237

EA2E(πθ1)−EA2E(πθ2)≤ E
[
4 ·TV(ρπθ1 (s,a),ρπθ2 (s,a)

]
In work [27], the following conclusion has been given:238

8



Lemma 4. Setting X, Y are finitely discrete random variables, and they are bounded; X ∈ µ and239

Y ∈ ν , Ω = supp(µ)∪ supp(ν); dmin = inf
x ̸=y∈Ω

∥x− y∥ , then we have :240

TV(X ,Y )≤ 1
dmin

·W1(X ,Y )

Hence, let’s consider the proof of Proposition 1.241

Proof. According to Theorem 1, we have:242

EA2E(π)−EA2E(πθ )≤ E [4 ·TV(ρπ(s,a),ρπθ (s,a)]

According to Lemma 4, setting ρπ(s,a) ∈ µ , ρπθ (s,a) ∈ ν , Ω = supp(µ) ∪ supp(ν), dmin =243

inf
ρπ ̸=ρ

πθ ∈Ω

∥ρπ −ρπθ ∥, we can derive that:244

EA2E(π)−EA2E(πθ )≤ E [4 ·TV(ρπ(s,a),ρπθ (s,a)]

≤ E
[

4
dmin

·W1 (ρ
π(s,a),ρπθ (s,a))

]
,which completes the proof.245

C Visualizations246

Halfcheetah Medium Halfcheetah Medium-Expert Halfcheetah Medium-Replay

Hopper Medium Hopper Medium-Expert Hopper Medium-Replay

Walker2d Medium Walker2d Medium-Expert Walker2d Medium-Replay

Figure 2: Visualizations of the distributional matching results on offline datasets.
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D Experimental Hyperparameters247

Table 3: Hyperparameters of CDMamba on the D4RL datasets.

Hyperparameter Value

Number of Layers 3
Batch Size 64

Context Length K 20
Embedding Dimension 128
Distribution Dimension 30

Number of bins for categorical distribution 31
Learning Rate 1×10−4

Learning Rate Decay Linear warmup for first 100k training steps
Grad Norm Clip 0.25
Weight Decay 1×10−4
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