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Abstract001

Complex chart understanding tasks demand ad-002
vanced visual recognition and reasoning capa-003
bilities from multimodal large language mod-004
els (MLLMs). However, current research pro-005
vides limited coverage of complex chart scenar-006
ios and computation-intensive reasoning tasks007
prevalent in real-world applications. This study008
proposes an automated multi-stage code-driven009
pipeline for systematically generating visual010
reasoning datasets to address these limitations.011
The pipeline integrates retrieval-augmented012
generation (RAG) to retrieve professional chart013
templates and employs chain-of-thought (CoT)014
strategies to generate reasoning codes that sim-015
ulate real data distributions, thereby driving016
chart rendering and question-related statisti-017
cal computations. Through model-based eval-018
uation, the pipeline enhances chart diversity019
and data quality. Using this framework, we020
construct ChartM3, a multi-dimensional and021
multi-step dataset containing 38K charts and022
142K Q&A pairs for training, along with 2,871023
high-quality evaluation samples for enabling024
practical performance assessment. Supervised025
fine-tuning (SFT) and reinforcement learning026
(RL) experiments demonstrate that our dataset027
significantly improves reasoning capabilities028
and cross-domain generalization performance,029
enabling smaller models to achieve perfor-030
mance comparable to larger-scale models in031
complex chart comprehension.032

1 Introduction033

Advanced Multimodal Large Language Models034

(MLLMs) such as GPT-4o(Jaech et al., 2024),035

LLaVA(Liu et al., 2023b), Qwen-VL(Bai et al.,036

2025, 2023), and InternVL(Chen et al., 2024b) se-037

ries have continuously emerged, demonstrating re-038

markable capabilities in Visual Question Answer-039

ing (VQA) for natural images. However, these mod-040

els still struggle with text-rich images, particularly041

in chart comprehension. Unlike natural images,042

which primarily focus on perceptual understanding,043

charts are intricate visual systems that combine 044

multiple elements (titles, legends, axes, etc.) to 045

present structured data. Effectively understanding 046

charts requires processing visual information, ana- 047

lyzing the hierarchical relationships between these 048

elements, and interpreting the underlying design 049

intent. 050

Despite strong benchmark performance on 051

ChartQA(Masry et al., 2022) and PlotQA(Methani 052

et al., 2020), state-of-the-art MLLMs often deliver 053

unsatisfactory results in real-world applications. 054

This discrepancy arises from the complexity of 055

actual charts, which significantly exceeds that of 056

benchmark datasets. Current chart datasets(Xia 057

et al., 2024; Xu et al., 2023) exhibit several crit- 058

ical limitations: Limited Chart Type and Ele- 059

ment Complexity. Most existing datasets primar- 060

ily focus on compositionally simple charts, such 061

as line, bar, and pie charts, while neglecting data- 062

intensive formats like scatter plots and heatmaps, 063

or sophisticated derivatives such as box plots and 064

multi-axis composites. Low Question Complex- 065

ity. Current datasets emphasize basic perceptual 066

tasks rather than complex business analytics that 067

demand multi-step reasoning and multi-chart com- 068

prehension. Lack of Interpretability Support. 069

These datasets focus solely on question-answer 070

pairs without providing detailed stepwise reasoning 071

processes to enhance model understanding, limit- 072

ing data utility and model explainability in practical 073

applications. These limitations originate from in- 074

herent conflicts between data accuracy, complexity, 075

and construction costs in conventional data creation 076

approaches. 077

To address these challenges, we introduce 078

ChartM3, a comprehensive chart dataset that ex- 079

tends both chart variety and task complexity while 080

reflecting real-world analytics scenarios. Our au- 081

tomated pipeline employs code-driven generation 082

throughout the process. It begins by construct- 083

ing a diverse chart template database including 084
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Figure 1: Left: ChartM3 covers 9 major categories of chart types, totaling 62 subcategories. Right: Performance
comparison of representative MLLMs across ChartM3 task categories.

62 chart types and generates high-quality ques-085

tions across 60 real-world scenarios. We utilize086

Retrieval-Augmented Generation (RAG) to select087

professional templates, and through LLM’s Long088

Chain-of-Thought (CoT) reasoning, generate both089

data generation code and visualization code. For090

Q&A pair generation, we employ MLLMs to for-091

mulate questions and synthesize analytical code for092

each question with its source data. Through code093

execution and output analysis, we produce accurate094

answers with reliable CoT reasoning. To ensure095

quality, we employ large and small language mod-096

els to filter out unsuitable charts and Q&A pairs.097

This Multi-stage, Multi-dimensional, and Multi-098

step (M3) approach guarantees data quality and099

diversity, resulting in a comprehensive dataset con-100

taining 38.4K diverse charts and 142K high-quality101

Q&A pairs, and a challenging benchmark of 2,871102

rigorously verified samples.103

We validate the effectiveness of ChartM3104

through comprehensive experiments, demonstrat-105

ing substantial improvements in business insight ex-106

traction and analytical reasoning capabilities. This107

dataset advances the development of practical chart108

understanding systems and helps bridge the gap109

between academic evaluation and real-world appli-110

cations.111

Our contributions can be summarized as follows:112

• We present a novel pipeline that leverages113

open-source LLMs to synthesize aligned114

chart data and visual reasoning Q&A pairs.115

Through RAG for template retrieval, code-116

driven generation, and model-based qual-117

ity control, our approach produces diverse,118

professional-quality synthetic chart data. 119

• We construct a comprehensive benchmark that 120

systematically identifies architectural limita- 121

tions in complex chart comprehension and 122

cross-chart reasoning capabilities. 123

• Comprehensive experiments demonstrate that 124

models trained on ChartM3 show substantial 125

improvements in visual perception and rea- 126

soning abilities, validating that our framework 127

provides a practical methodology for develop- 128

ing reasoning MLLMs. 129

2 Related Works 130

For chart comprehension and question-answering 131

datasets, early studies (such as FigureQA(Kahou 132

et al., 2017), DVQA(Kafle et al., 2018)) proposed 133

synthetic data generation pipelines to produce VQA 134

datasets for several chart types (typically 1-4 types 135

of charts). However, these approaches were con- 136

strained by the limitations of the synthetic data 137

pipelines at the time, resulting in issues such as 138

limited chart topics, templated task types, and fixed 139

answer formats. PlotQA (Methani et al., 2020) ex- 140

panded the range of chart topics by introducing 141

real-world data but focused only on bar charts, line 142

graphs, and scatter plots. Moreover, the program- 143

synthesized charts had relatively simple styles, with 144

visual designs and color schemes that could hardly 145

represent real-world standards. ChartQA (Masry 146

et al., 2022) further broadened the scope of ques- 147

tion forms and openness through human annota- 148

tion and machine generation, breaking free from 149
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Datasets
Chart Properties Q&A Properties

Data Source # Chart
Type

Textual
Data

# Task
Type

Template-Free
Question

Multi Chart
Q&A

Reasoning
Data

FigureQA Synthetic 5 - 15 ✗ ✗ ✗
DVQA Synthetic 1 - 3 ✗ ✗ ✗
PlotQA Real-world, Synthetic 4 Table 3 ✗ ✗ ✗
ChartQA Real-world, Synthetic 3 Table 4 ✓ ✗ ✗
ChartLLama Synthetic 10 Table 7 ✓ ✗ ✗
MMC-Instruction Real-world 6 Caption 9 ✓ ✓ ✓
ChartBench Real-world, Synthetic 42 Table 5 ✓ ✓ ✗
ChartX Synthetic 18 Code 7 ✓ ✗ ✗
OneChart Real-world, Synthetic 7 Table 1 ✗ ✗ ✗
CharXiv Real-world - - 23 ✗ ✓ ✗
MultiChartQA Real-world - - 4 ✓ ✓ ✗
ReachQA Synthetic 32 Code 3 ✓ ✓ ✓
ChartM3(Ours) Synthetic 62 Code 18 ✓ ✓ ✓

Table 1: Comparison of Several Datasets for Chart QA.

template-based restrictions on questions. Neverthe-150

less, it still suffered from a limited variety of chart151

types. MMC-Instruction (Liu et al., 2023a), Chart-152

Bench (Xu et al., 2023), and CharXiv (Wang et al.,153

2024b) improved the diversity of chart and ques-154

tion types by collecting real-world chart data and155

combining them with manual annotations, but this156

also led to increased costs and limited scalability.157

In recent years, with the continuous advance-158

ment of large language models (LLM), researches159

have been utilizing LLMs for data synthesis have160

emerged. Compared to template-based data syn-161

thesis pipelines, these works have significantly162

improved chart topic richness and Q&A flexibil-163

ity. For example, ChartLlama (Han et al., 2023)164

and ChartInstruct (Masry et al., 2024a) generate165

data, plotting code, and Q&As through pipelines,166

but there is still room for improvement in fine-167

grained visual element analysis (e.g., layout, color168

style). Regarding evaluation tasks, ChartInsights169

(Wu et al., 2024) systematically defines structural170

parsing tasks for seven types of charts, revealing171

deficiencies in mainstream models like GPT-4V in172

low-level tasks such as axis recognition and legend173

matching (with an average accuracy below 60%).174

ChartX (Xia et al., 2024) further extends the eval-175

uation dimensions by supporting seven subtasks,176

including structure extraction and cross-modal gen-177

eration, with 48k quadruples (image-CSV-code-178

text). However, current chart datasets still face179

challenges in constructing complex scenario ques-180

tions and multi-step reasoning tasks, with evalu-181

ation pipelines that are not sufficiently objective.182

As a result, existing datasets still cannot accurately183

measure the true chart comprehension capabilities184

of MLLMs. In this article, we introduce ChartM3, 185

a novel chart dataset produced by an automatic 186

multi-stage data synthesis pipeline designed for 187

high-quality visual reasoning chart Q&A data. 188

3 ChartM3 189

Figure 2 illustrates the ChartM3 automated work- 190

flow. Our core approach combines RAG-based 191

chart template selection with a multi-stage, code- 192

driven generation process and model-based quality 193

verification. Beyond single-chart analysis, we also 194

incorporate cross-chart comparison tasks that re- 195

quire examining multiple images simultaneously. 196

The following sections detail each stage of imple- 197

mentation: template database construction (§ 3.1), 198

chart data and image generation (§ 3.2), instruc- 199

tional Q&A generation (§ 3.3), and data evaluation 200

(§ 3.4). Based on our dataset, we introduce a novel 201

reinforcement learning approach for chart compre- 202

hension tasks, as detailed in (§ 3.5). 203

3.1 Template Database Construction 204

We developed a comprehensive chart taxonomy 205

by analyzing major visualization frameworks such 206

as Matplotlib(Hunter, 2007), Vega(Satyanarayan 207

et al., 2017), EChart(Li et al., 2018), and 208

Seaborn(Waskom et al., 2017). Our analysis iden- 209

tified 62 scientifically rigorous chart types com- 210

monly used in real-world scenarios (shown in Fig- 211

ure 1). Each chart type is annotated with descriptive 212

tags covering definitions, usage scenarios, and data 213

characteristics. 214

For Database generation, we utilize Claude 3.5 215

to create structured data and code templates for 216

each chart type, incorporating comprehensive pa- 217

3
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North,95.0
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…
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Code Exec. Output

Median satisfaction 
scores by region:
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72.1……

RAG

MLLM

Model-Based Quality Verification 

Difficulty Indicator

Multi-Dimensional Template Database (Type, Scenario, Desc., Code)

• Bar Chart
• Market Analysis
• Smartphone brand shares across 

four major regions in 2023

• Area Chart
• Sales Analysis
• Quarterly sales trend by product 

categories over time

……

Key Topics (Questions)

In different regions, 
which areas have more 
outliers in customer 
satisfaction surveys ?

Multi-Stage Code-Driven Generation Muti-Step Visual Reasoning Data

[Calculation - Sorting]

Based on the median customer satisfaction scores for each 
region in 2022, sort the regions from highest to lowest.

<think> Step 1: Identify the Median Satisfaction Scores for 
Each Region. North: The median value is around 83.70… 
Step 2: Compare the Median Values. We need to order…
Step 3: Sort the Regions Based on Median Values - North: 
83.70\n- South: 71.25\n- West: 70.90\n- East: 56.85
Final Sorting\n From the comparison….</think> 
North, West, South, East

[Data Analysis - Correlation Analysis]

Is there a significant difference in customer satisfaction 
between the North and South regions based on the box plot?

<think> Step 1: Analyze the median values - North region 
median is significantly higher than South region median.
Step 2: Examine the interquartile range (IQR) ... 
Conclusion: There is a significant difference in customer 
satisfaction between the North and South regions.</think> 
Yes

Figure 2: The ChartM3 data generation pipeline follows a progressive automated workflow that begins by generating
key questions and utilizing RAG to select appropriate templates from a diverse chart database. The process then
advances through multiple code-driven stages: creating structured data, producing rendering code, and generating
Q&A pairs with multi-step visual reasoning reasoning synthesizing analytical code. Finally the pipeline conducts
model-based comprehensive assessments of data quality and difficulty levels.

rameters for standardized rendering. To enhance218

visualization diversity, we incorporate domain-219

specific styles from various professional fields and220

manually refine details to better align with real-221

world charts. Additionally, we collected real-world222

charts from various sectors including finance and223

scientific research. These charts are recreated using224

Claude 3.5 to generate style-matching code tem-225

plates, which are then categorized by chart type.226

Each chart template is labeled with multiple at-227

tributes, including industry domain, theme, and228

visualization purpose, all constructed based on vi-229

sual characteristics and type descriptions.230

3.2 Chart Image Generation231

Instead of direct data generation, we divided this232

building process into multiple sub-stages with a233

code-driven method to avoid distributional conver-234

gence in LLM-generated content. We curated 60235

domains commonly associated with data visualiza-236

tion and created key questions that require analyti-237

cal reasoning rather than generating random titles.238

This approach reflects real-world charts’ purpose-239

driven nature, typically designed to address specific240

problems or analyze trends. Using the domain and241

questions as input, we leverage RAG to select the242

most suitable templates from the template database.243

LLMs then transform these key questions into244

realistic contextual narratives and develop corre-245

sponding structured data and metadata (including246

titles and descriptions). To prevent distributional247

monotony and errors in large-scale data genera-248

tion, we require LLMs to output data generation 249

code rather than direct data. LLMs are prompted 250

to incorporate data distribution trends, stochastic 251

functions, and controlled noise into their code. 252

During the generation of visualization code, we 253

use a step-by-step reasoning approach to enhance 254

code usability and visual quality. The process be- 255

gins by guiding LLMs through visualization re- 256

quirement analysis, which includes evaluating data 257

and industry background and developing a detailed 258

solution of visual elements. To increase visual 259

diversity, we randomly integrate style-enhancing 260

prompts during this phase. Using the generated 261

visualization solution and selected template code 262

as few-shot demonstrations, we produce and exe- 263

cute visualization code to generate chart images. 264

If code execution fails, we feed the code and error 265

messages back to LLMs for iterative refinement. 266

3.3 Instruction Q&A Generation 267

We developed 18 specialized Q&A categories 268

across four primary dimensions based on percep- 269

tion and reasoning levels: visual element recogni- 270

tion, data extraction, calculation, and data analysis. 271

These tasks incorporate diverse formats, including 272

Multiple-choice, True/False, Fill-in-the-blank, and 273

Short-answer. Using visualization code, data, task 274

specifications, and Q&A templates as inputs, we 275

guide LLMs to systematically analyze task objec- 276

tives and context to generate questions that require 277

in-depth thinking and multi-step reasoning. 278

Our approach revealed two key challenges in 279
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LLM-synthesized Q&A data: 1) Complex charts280

may exhibit information misalignment between281

plotting code/data and rendered images, poten-282

tially creating unanswerable questions when re-283

lying solely on LLM-generated content. 2) Open-284

source models show high error rates in numerical285

comparison and complex computation tasks, risk-286

ing hallucination during model fine-tuning.287

To address these challenges, we executed288

Qwen2.5-VL-72B, currently the most capable289

open-source MLLM, to focus exclusively on vi-290

sual information during question generation. We291

adopted an agent-inspired approach for computa-292

tionally demanding tasks, where LLMs generate ex-293

ecutable code snippets for problem-solving. Then,294

we used the execution outputs and intermediate295

steps to summarize the reasoning process and an-296

swer comprehensively.297

3.4 Data Evaluation298

Since we heavily depend on LLM synthesis299

throughout the process, we implement several qual-300

ity control modules beyond the basic filtering of301

abnormal outputs and code execution failures:302

Chart Quality Verification. Our experiments re-303

vealed that even MLLMs with up to 72B parame-304

ters struggle to reliably evaluate chart quality, often305

missing issues like data occlusion or suboptimal306

layout arrangements. Using MLLMs pre-labeling307

as a starting point, we corrected erroneous results308

to create a chart quality classification dataset com-309

prising 700 positive and 500 negative samples. We310

then trained a classifier based on Qwen2-VL-2B,311

which achieved a higher F1 score on the validation312

set compared to Qwen2.5-VL-72B.313

Instruction Verification. We implemented a multi-314

modal verification step to prevent QA data from ref-315

erencing non-visualized data and to address other316

accuracy issues. This process involves feeding im-317

ages, QA pairs, and reasoning chains into MLLMs318

to evaluate three key dimensions: chart relevance,319

data accuracy, and logical consistency.320

Difficulty Rating. We perform 10 random sam-321

pling iterations using small MLLMs at high tem-322

peratures to establish clear difficulty levels based323

on chart complexity and task reasoning difficulty.324

Question difficulty was quantified by the number of325

incorrect answers generated during these sampling326

runs, and overly simple questions are filtered out.327

For data intended for reinforcement learning, we328

further refine the selection to retain only "challeng-329

ing but learnable" examples(DeepSeek-AI, 2025),330

Statistic Train Test

Total Questions 132,955 / 8,845 2,271 / 600
Chart Nums 31,772 / 6,650 1,221 / 333

Category
- Visual Recognition 56,651 / 0 681 / 0
- Data Extraction 23,680 / 2,963 501 / 200
- Calculation 21,614 / 2,861 593 / 200
- Data Analysis 19,609 / 3,021 496 / 200
- Chart2Markdown 11,401 / 0 0 / 0

Tokens
- Avg Question 27.44 / 37.81 32.60 / 35.88
- Avg Reasoning 202.40 / 266.43 236.03 / 274.88
- Avg Answer 15.91 / 4.33 6.99 / 7.80

Table 2: ChartM3 dataset statistics with single-chart /
multi-chart. The tokens of questions and answers are
measured using Qwen2.5 tokenizer.

ensuring optimal training effectiveness. 331

Benchmark Refinement. For the evaluation 332

benchmark, we implemented enhanced quality re- 333

quirements beyond our standard pipeline. This 334

included adjusting question difficulty distribution, 335

conducting manual verification, and correcting. To 336

ensure the benchmark effectively assesses models’ 337

genuine chart understanding capabilities, we use 338

LLM as a judge to evaluate alignment between 339

model predictions and answers. We also optimize 340

judge prompts and eliminate questions that produce 341

inconsistent evaluation results. 342

Table 2 summarizes the statistics related to the 343

final ChartM3 dataset. 344

3.5 Chart RL with Verifiable Reward 345

Studies involving DeepSeek-R1 (DeepSeek-AI, 346

2025) and Kimi-1.5 (Team et al., 2025) have 347

provided empirical evidence for the effectiveness 348

of reinforcement learning with verifiable reward 349

(RLVR) in improving the reasoning abilities of 350

LLMs. Similarly, VLM-R1 (Shen et al., 2025) and 351

R1-Omni (Zhao et al., 2025) have extended this 352

success to visual reasoning tasks. A key factor con- 353

tributing to RLVR is the availability of large-scale 354

data with verifiable answer formats, which enables 355

effective reward modeling. Despite the promising 356

results of RLVR in various domains, its application 357

to chart understanding tasks remains unexplored 358

mainly, with a notable scarcity of suitable datasets. 359

ChartM3 offers an extensive collection of chart- 360

text Q&A pairs that naturally align with RLVR 361

requirements. Leveraging this dataset, we propose 362

a hybrid reward mechanism to adapt RLVR for 363

chart understanding tasks. Following the Group 364
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Relative Policy Optimization (GRPO) (Shao et al.,365

2024) and reward modeling in DeepSeek-R1, our366

approach decomposes the reward signal into two367

components: accuracy reward Racc and format368

reward(Rformat, which are combined to form the369

total reward R.370

The format reward Rformat evaluates371

whether the model’s output adheres to the372

required output format: “<think>{thinking373

process}</think><answer>{final answer}374

</answer>”, assigning a binary score (1 for com-375

pliance, 0 otherwise). The accuracy reward Racc376

incorporates both rule-based and model-based377

evaluation mechanisms:378

• Rule-based reward: For multiple-choice and379

true/false questions, we employ strict match-380

ing between the model predict and ground381

truth, yielding a binary reward (1 for exact382

match, 0 otherwise).383

• Model-based reward: For fill-in-the-blank384

and short-answer questions, we use Qwen3-385

32B as a judge to evaluate response accuracy.386

The judge inputs the question, model’s answer,387

and ground truth, producing a binary evalua-388

tion (1 for correct, 0 for incorrect).389

Notably, CoT reasoning paths are not involved in390

the training process, with the model being opti-391

mized using only questions and final answers.392

4 Experiments393

4.1 Experimental Setup394

Baselines. We evaluated three categories395

of MLLMs: (1) proprietary models, includ-396

ing GPT-4o(Jaech et al., 2024), Claude3.5-397

Sonnet(Anthropic, 2024), tested via official398

APIs. (2) Latest open-source models, includ-399

ing Qwen2-VL(Wang et al., 2024a), Qwen2.5-400

VL(Bai et al., 2025), InternVL2.5(Chen et al.,401

2024a),InternVL3(Zhu et al., 2025), LLaVA-402

OneVision(Li et al., 2024), and MiniCPM(Yao403

et al., 2024). (3) Open-source models specifically404

optimized for OCR and chart understanding, in-405

cluding mPlug-DocOwl2(Hu et al., 2024), Chart-406

Gemma(Masry et al., 2024b), TinyChart(Zhang407

et al., 2024), and others. All models were evalu-408

ated using direct output (zero-shot inference) with409

consistent default hyperparameters and prompts.410

Benchmarks. Beyond ChartM3 test set, we in-411

cluded established benchmarks for comparison:412

ChartQA(Masry et al., 2022), CharXiv(Wang et al., 413

2024b), and ReachQA(He et al., 2024). We adapted 414

all benchmarks on VLMEvalKit(Duan et al., 2024) 415

and implemented accuracy evaluation using Qwen- 416

Max(Team, 2024) as the judge model, following 417

their respective prompt designs. 418

Training Evaluations. To validate the effective- 419

ness of ChartM3, we first used Qwen2.5-VL as our 420

base model and performed supervised fine-tuning 421

(SFT) using our synthesized dataset of 130K train- 422

ing samples. We kept the vision encoder frozen 423

while updating other modules, using a learning rate 424

of 1e-5 and batch size of 64 for 2 epochs. 425

For RLVR experiment, the model is optimized 426

with a learning rate of 1e-6 and KL divergence co- 427

efficient of 0.04. We sample 7 rollouts for each 428

prompt, and a global batch contains 7 different 429

prompts. Considering both computational resource 430

limitations and the importance of difficulty distri- 431

bution in reinforcement learning training, we con- 432

structed our training set by sampling 30k items 433

from the complete dataset according to their dif- 434

ficulty scores. More training and data selection 435

details refer to the Appendix A.3. 436

We utilized 8 NVIDIA A100 80G GPUs for all 437

training process. 438

4.2 Experimental Results 439

Our benchmark effectively measures chart com- 440

prehension and reasoning abilities. Both closed 441

and open-source model evaluations show trends 442

similar to ChartQA and ReachQA. Closed-source 443

models demonstrate more balanced performance 444

across all capability dimensions, while newer or 445

larger open-source models exhibit stronger abil- 446

ities across all test sets. Notably, ChartM3-test 447

significantly differentiates performance between 448

various models. For instance, while models score 449

above 86% on ChartQA with minimal differences, 450

ChartM3-test reveals gaps exceeding 15% between 451

models like Claude 3.5 Sonnet (66.18%) and 452

InternVL3-8B (51.08%). 453

Existing advanced models excel at visual recog- 454

nition but struggle with complex reasoning tasks. 455

Open-source models score significantly lower on 456

complex reasoning tasks involving data extrac- 457

tion and computation compared to visual element 458

recognition tasks, particularly evident in smaller- 459

scale models. Additionally, we observed that 460

some OCR/Chart-enhanced models perform well 461

on ChartQA but struggle with ChartM3-test and 462

reasoning-intensive benchmarks. This disparity in- 463
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Models
ChartM3 test ChartM3-Multi test ChartQA* ReachQA CharXiv

Overall VR-A VR-B Ext. Calc. Ana. Overall Ext. Calc. Ana. Overall Overall Overall

Proprietary Multimodal Large Language Models

Claude 3.5 Sonnet 66.18 81.15 68.98 58.88 63.41 68.35 66.67 66.5 65.0 68.5 90.80 63.00 79.48
GPT-4o 58.30 78.53 63.67 48.90 53.12 60.89 53.33 50.0 46.5 63.5 86.70 53.25 76.98
GPT-4o mini 48.35 82.20 54.08 39.52 39.97 48.59 42.50 38.0 39.0 50.5 77.52 40.35 66.76

Open-Source Multimodal Large Language Models

Qwen2.5-VL-72B 64.73 84.29 66.73 59.48 60.37 65.73 61.00 59.0 59.0 65.0 88.60 61.55 82.24
InternVL3-78B 55.57 77.49 62.24 51.30 46.88 55.24 45.50 44.0 40.5 52.0 89.60 47.25 80.00
Qwen2-VL-72B 54.07 80.63 59.59 47.50 47.72 52.62 47.67 46.5 41.5 55.0 88.04 53.20 78.22
Qwen2.5-VL-7B 57.42 79.06 59.18 50.10 52.78 60.28 52.00 48.5 46 61.5 87.60 57.65 67.50
InternVL3-8B 51.08 75.92 58.78 43.51 45.70 47.98 42.17 41.5 38.5 46.5 86.60 49.45 69.72
InternVL2.5-8B 42.10 66.49 51.02 36.93 29.01 44.76 36.50 29.0 29.5 51.0 77.60 35.20 63.20
MiniCPM-V-2.6 40.64 68.59 46.94 32.14 30.02 44.96 34.67 32.0 26.5 45.5 79.20 34.65 51.86

OCR/Chart-Augmented Open-Source Models

mPlug-DocOwl2 23.25 32.98 15.71 20.76 13.83 40.73 23.17 16.0 13.0 40.5 66.64 10.90 26.74
ChartGemma 22.99 45.55 15.71 22.75 14.5 31.85 - - - - 71.28 18.50 18.84
TinyChart 23.38 37.17 17.55 23.15 17.88 30.65 22.67 20.5 13.0 34.5 76.64 17.85 14.00

SFT Experiments on ChartM3 with single and multi chart data

Qwen2.5-VL-3B 45.00 65.45 45.31 44.51 36.59 47.38 34.83 32.0 25.0 47.5 83.32 45.75 54.34
+ CoT-SFT 62.88 80.63 67.35 56.69 55.48 66.73 51.67 51.5 45.5 58.0 84.12 53.35 55.92

LLaVA-OV-7B 37.12 63.35 42.86 29.34 24.96 43.75 29.00 27.0 17.5 42.5 80.44 28.40 46.24
+ CoT-SFT 64.95 83.25 68.98 63.47 57.50 64.31 54.33 53.5 50.0 59.5 82.32 43.40 51.04

Table 3: Evaluation results on ChartM3 test set and other benchmarks. Bold values indicate the best performance
within each category. Question categories names are abbreviated due to space limits. VR: Visual Recognition, Ext.:
Data Extraction, Calc.: Calculation, Ana.: Data Analysis. "*" indicates that we use LLM as a judge to reevaluate
ChartQA, which yielded slightly different results from those reported in the official technical report. Detailed
explanations for LLM-based evaluation provided in the Appendix A.4.

dicates their weakened instruction alignment and464

reasoning capabilities and suggests possible over-465

fitting to traditional benchmarks.466

High-quality CoT data substantially improves467

chart reasoning performance. As shown in Ta-468

ble 3, our CoT-SFT approach demonstrates sub-469

stantial improvements, achieving at least 12% per-470

formance gains over the base model on our bench-471

marks. The CoT-SFT model exhibits consistent472

improvements across both perception-oriented and473

comprehensive benchmarks in out-of-domain eval-474

uations. Remarkably, on ReachQA, which de-475

mands complex reasoning capabilities, our CoT-476

SFT model achieves significant improvements477

of 7.60% and 15.0% over Qwen2.5-VL-3B and478

LLaVA-OV-7B, respectively. These substantial479

gains validate the quality of our dataset and its480

effectiveness in enhancing visual reasoning for uni-481

versal chart understanding.482

Reinforcement Learning on ChartM3 signif-483

icantly improves both in-domain and out-of-484

domain performance. As shown in Table 4, the485

model trained by GRPO obtains considerable im- 486

provement on various benchmarks. Compared 487

to the base model (Qwen2.5-VL-3B), our RL ap- 488

proach yields notable gains in in-domain evalua- 489

tions, achieving absolute improvements of 7.4% 490

and 5.5% on ChartM³ and ChartM³-Multi bench- 491

marks, respectively. In particular, the RL model 492

demonstrates substantial improvements on out- 493

of-domain benchmarks, particularly achieving a 494

4.96% gain on CharXiv, suggesting better general- 495

ization capability than supervised fine-tuning. This 496

improvement across diverse domains demonstrates 497

the effectiveness and comprehensiveness of our 498

synthetic datasets, covering the abundant scenarios 499

and question types. Note that our SFT model signif- 500

icantly outperforms the RL model on the ChartM3 501

test set, achieving superior performance gains of 502

5.77% and 6.84% on single-chart and multi-chart 503

evaluations, respectively. These compelling results 504

demonstrate the effectiveness of our generated rea- 505

soning paths. The synthetic chain-of-thoughts data 506

introduces diverse and essential patterns for com- 507

7



Models
ChartM3 ChartM3-Multi ChartQA* ReachQA CharXiv SEEDBench2_Plus

Overall Overall Overall Human Aug. Overall Reco. Reas. Overall Desc. Reas. Overall Chart Map Web

Qwen2.5-VL-3B 45.00 34.83 83.92 76.48 91.36 45.75 60.3 31.2 54.34 59.62 33.2 67.72 64.19 59.23 82.42
+ CoT Prompt 43.68 34.83 74.80 64.16 85.44 32.60 35.7 29.5 53.74 59.52 30.6 67.06 66.29 56.00 81.51
+ SFT with 30K data 58.17 47.17 82.20 75.84 88.56 50.10 60.8 39.4 54.44 60.6 29.8 66.13 64.81 55.14 81.21
+ RL with 30K data 52.40 40.33 85.28 78.88 91.68 49.10 58.8 39.4 59.30 65.4 34.9 68.99 66.29 60.47 82.72

Table 4: Reinforcement Learning results on five benchmarks. Details for these benchmarks are presented in § 4.1.
Bold values indicate the best performance within each category.
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Figure 3: Performance comparison between models
trained by SFT with and without CoT Q&A across dif-
ferent evaluation metrics.

plex chart understanding tasks, effectively address-508

ing scenarios where the base model lacks domain-509

specific knowledge.510

4.3 Further Study511

In this subsection, we perform ablation studies to512

investigate the impact of different dataset composi-513

tions and training data sizes on the reinforcement514

learning process.515

Figure 3 illustrates an ablation study on dataset516

composition. We compare models trained with and517

without CoT data. While both models achieve com-518

parable performance on perception-based tasks, the519

CoT model significantly outperforms its counter-520

part on computation-intensive and statistic-related521

tasks, demonstrating the importance of our con-522

structed CoT data in enhancing chart reasoning523

capabilities.524

To investigate the impact of training data scale525

on reinforcement learning performance, we con-526

duct experiments with two different dataset sizes:527

5,000 and 30,000 samples. As shown in Figure 4,528

the model trained with 30,000 samples consistently529

outperforms its counterpart trained with 5,000 sam-530

ples across most datasets. While reinforcement531

learning is generally considered data-efficient, scal-532

ing up training data leads to substantial improve-533

ments. This is particularly crucial for fill-in-the-534

blank and short-answer questions, where benefi-535
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Figure 4: Performance of models trained by GRPO with
different numbers of samples across multiple datasets.

cial reasoning patterns are more sparse and require 536

larger datasets to be effectively captured during 537

training. Notably, with limited training data (5K 538

samples), the model’s performance on ReachQA 539

degrades due to the high variance nature of RL 540

training, but this instability is effectively addressed 541

when scaling up to 30K samples, yielding a 6.95% 542

improvement. 543

5 Conclusion 544

This work examines current MLLMs’ challenges in 545

real-world chart comprehension and evaluates the 546

limitations of existing dataset construction methods. 547

We propose a multi-stage, code-driven pipeline 548

for synthesizing visual reasoning Q&A data. Our 549

method starts by generating a key question, retriev- 550

ing appropriate chart templates, using LLMs to 551

generate code that simulates real data distribution, 552

plotting charts and solving problems, and imple- 553

menting data filtering through various-sized models 554

to obtain diverse charts and high-quality CoT data. 555

We developed ChartM3, a multi-dimensional and 556

multi-step dataset, and conducted CoT supervised 557

fine-tuning and reinforcement learning. The results 558

show significant performance improvements across 559

multiple benchmarks. Our framework bridges the 560

gap between academic research in chart understand- 561

ing and practical applications, advancing the devel- 562

opment of reasoning MLLMs. 563
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Limitations564

Although our work achieves promising results in565

chart-related reasoning tasks, several limitations566

exist. (1) The chart rendering code is primarily567

Python-based, with limited support for other visual-568

ization languages, suggesting a need to incorporate569

additional languages to diversify chart generation570

capabilities. (2) This work concentrates mainly on571

statistical charts. Future research should consider572

extending this approach to flowcharts (such as pro-573

cess diagrams and relationship diagrams) and other574

visual formats. (3) The reinforcement learning ex-575

periments are not conducted at a larger scale. In the576

future, we will explore expanding the data scale,577

model size, and investigating chart reasoning data578

distillation based on reinforcement learning.579

Ethical Consideration580

We strictly declare that all authors are aware of and581

adhere to the ACL Code of Ethics throughout this582

research. We strictly adhere to the licenses of all583

open source datasets and models used. During the584

benchmark refinement phase of Data Evaluation,585

quality validation was conducted through human586

annotations. Annotators received task-specific ma-587

terials and explicit consent was obtained for using588

their annotations exclusively for academic research589

purposes. It is imperative to ensure the privacy of590

all annotators throughout the annotation process.591

Furthermore, all annotators were adequately com-592

pensated according to local standards.593

For this work, we used open-source and closed-594

source models obtained from official sources and595

accessible to the public to avoid potential harm596

to individuals or groups. We did not use any per-597

sonally identifiable information, and all data were598

anonymized before analysis. The prompts and599

benchmarks underwent a meticulous human se-600

lection and processing phase to ensure no names601

or unique identifiers of individual people or of-602

fensive content were included. Additionally, we603

used Grammarly to refine the language in our604

manuscript.605
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A Appendix810

A.1 Data Categories811

In our generation pipeline, we predefine chart types,812

Q&A task categories, and visualization domains.813

Table 6 presents 9 major, 62 minor chart types.814

Table 7 outlines 18 specialized Q&A categories815

across 4 primary dimensions, along with the Chart816

To Markdown task. Due to varying difficulty levels,817

we have divided Visual Recognition into two parts:818

A and B. The distribution of questions across these819

subcategories is illustrated in Figure 5. Addition-820

ally, Table 8 enumerates 60 domains commonly821

used in data visualization.822

A.2 Examples of Chart Template Database823

We sample several charts from Chart3 chart tem-824

plate database. The visualization is presented in825

Figure 6.826
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Figure 5: The distribution of ChartM3 Q&A categories.

A.3 GRPO Training Setting 827

Data Sampling for GRPO. DAPO (Yu et al., 2025) 828

indicates that samples with zero advantage variance 829

lead to performance degradation, thus should be 830

filtered out during training. Based on this finding, 831

we carefully curate the GRPO training dataset by 832

filtering out both overly difficult and simple sam- 833

ples. Specifically, we perform uniform sampling 834

from items with difficulty scores ranging from 3 835

to 9 (difficulty score definition in Section 3.4) to 836

ensure a balanced distribution of task complexity. 837

Additionally, we maintain an approximately 1:1 838

ratio between questions with rule-based rewards 839

(True/False and Multiple-choice) and model-based 840

rewards (Short-answer and Fill-in-the-blank), as 841

shown in Table 5. 842

KL Divergence Approximation. In original 843

GRPO, KL divergence approximation can be for- 844

mulated as Eq. 1: 845

DKL[πθ∥πref ] = r − log r − 1,

where r =
πref (a|s)
πθ(a|s)

(1) 846

where a denotes the current token and s represents 847

previous sequence before a, πref is the reference 848

model initialized from base model, and πθ is the 849

policy model being optimized. 850

In this paper, all GRPO experiments apply an- 851

other approximation, called k2 (Schulman, 2020), 852

and can be formulated as Eq. 2: 853

Dk2[πθ∥πref ] =
1

2
(log r)2 (2) 854
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Question Type Count

True/False 6,958
Multiple-choice 6,734
Short-answer 2,657
Fill-in-the-blank 13,651

Table 5: Distribution of different question types in
GRPO training dataset.

where r is defined the same as in Eq. 1.855

A.4 Explanation for LLM-based Evaluation856

This work utilizes LLM-based evaluation for all857

chart benchmarks, including ChartQA. The tradi-858

tional evaluation method for ChartQA, which relies859

on string exact matching and numerical calcula-860

tions within a relative error range, exhibits several861

limitations:862

1. Unit Discrepancies: Mismatches occur when863

predicted results include units while reference864

answers do not (for example, "5" versus "5865

meters" or "5" versus "5 million").866

2. Numerical Range Issues: When labels on the867

x-axis are numbers (particularly years), the tra-868

ditional evaluation method’s 5% error range869

is too permissive. For instance, if the cor-870

rect answer is 2000, predictions ranging from871

1900 to 2100 would be incorrectly marked as872

correct.873

These limitations make it difficult to accurately874

assess the performance of MLLMs that have not875

been specifically trained on similar data distribu-876

tions. To address these issues, our experiment em-877

ploys LLMs as judges, resulting in more accurate878

evaluations. The detailed judge prompt is shown in879

Figure 14.880

A.5 Evaluation Comparisons Example881

We provide comparative examples of multiple mod-882

els’ evaluation results on ChartM3 to demonstrate883

that after Chain-of-Thought Self-Fine-Tuning884

(CoT-SFT) with high-quality data, the base model885

significantly improves reasoning capabilities in886

complex chart comprehension. The examples of887

the evaluation results are presented in Figure 7 and888

Figure 8.889

A.6 Prompt Templates890

We present the prompt templates used in this paper.891

Prompt for Data Generation. We utilize LLMs 892

to transform the key questions into realistic con- 893

textual narratives and output data generation code 894

rather than direct data. The prompt is shown in 895

Figure 9. 896

Prompt for Visualization Generation. We em- 897

ploy a step-by-step reasoning approach to improve 898

code usability and visual presentation. The pro- 899

cess begins by guiding LLMs through visualization 900

requirement analysis and developing a detailed so- 901

lution of visual elements. Using the solutions as 902

few-shot prompt, we generate and execute visual- 903

ization code to create chart images. The prompts 904

are shown in Figure 10 and Figure 11. 905

Prompt for Q&A Generation. We employ a 906

two-stage Code-driven approach for Q&A pair con- 907

struction. The first stage involves question formula- 908

tion and analytical code synthesis for each question 909

and its source data. The second stage generates 910

CoT reasoning and precise answers through code 911

execution results and the computational process. 912

The prompts are shown in Figure 12 and Figure 13. 913

Prompt for Evaluating Models. In the evalua- 914

tion of ChartM3, we use Qwen-Max as the judge 915

model, the judge prompt is optimized based on 916

Reachqa and CharXiv methods, which is shown in 917

Figure 14. 918
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Major Category Minor Category
Bar Single Bar Chart, Grouped Bar Chart, Stacked Bar Chart, Positive-Negative Bar Chart, Lollipop Plot,

Bidirectional Bar Chart, Butterfly Diagram, Range Bar Chart, Waterfall Plot, Candlestick Plot,
Single Histograms, Rectangular Funnel Chart, Box Plot, Error Bars Chart, Bullet Chart, Barbell Chart
Nested Bar Chart, Dumbbell Plot

Line Single Line Chart, Grouped Line Chart, Stacked Line Chart, Slope Graph, Step Chart
Area Single Area Chart, Stacked Area Chart, Bilateral Area Chart, Range Area Chart, Error Bands Chart,

Streamgraph, Density Plot
Pie Single Pie Chart, Multidimensional Pie Chart, Donut Pie Chart, Multilevel Donut Chart, Sunburst Chart
Radar Single Radar Chart, Grouped Radar Chart, Stacked Radar Chart, Single Rose Chart, Grouped Rose Chart,

Stacked Rose Chart
Scatter Scatter Plot, Bubble Plot, Quadrant Plot, Strip Plot, Swarm Plot, Violin Plot
Heatmap Heatmap Plot, Calendar Heatmap, Waffle Chart
Progress Gauge graph, Semi-circular Progress Chart, Bar Progress Chart, Circular Progress Chart
Combination Line-Column Combination Chart, Line-Area Combination Chart, Dual Y-Axis Line Chart,

Dual Y-Axis Bar Chart, Multiple Subplot Bar Chart, Multiple Subplot Area Chart,
Multiple Subplot Line Chart, Multiple Subplot Pie Chart

Table 6: Major and Minor Charts Types.

Major Category Minor Category
Visual Recognition A Type Classification, Title Identification, Axis Label Recognition, Legend Identification
Visual Recognition B Color Identification, Axis Scale Recognition, Chart Element Counting, Chart Element Position
Data Extraction Data Query, Extreme Value Query, Conditional Query
Calculation Calculation, Comparison, Sorting
Data Analysis Correlation Analysis, Anomaly Detection, Inferential Judgment, Trend Analysis
Chart2Markdown Chart To Markdown

Table 7: Major and Minor Categories of Charts.

Education Art Finance Healthcare Information Technology
Environmental Science Social Science Economics Political Science History
Psychology Management Marketing Law Engineering
Physics Chemistry Biology Geography Astronomy
Geology Meteorology Oceanography Agriculture Forestry
Animal Husbandry Fishery Food Science Energy Materials Science
Mechanical Engineering Electrical Engineering Civil Engineering Aerospace Transportation
Architecture Urban Planning Interior Design Industrial Design Fashion Design
Graphic Design Advertising Journalism Public Relations Sports Science
Entertainment Tourism Retail Manufacturing Logistics
Human Resources Corporate Strategy Risk Management Audit & Accounting Tax
Non-profit Management International Relations Foreign Policy Hospitality Supply Chain

Table 8: Chart Domains.
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Figure 6: Examples of ChartM3 Template Database.
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Question:
Arrange the bridge types in ascending 
order based on their median accident 
rates.

GPT-4o: 
The bridge types arranged in ascending order 
based on their median accident rates are:
1. Suspension
2. Cable-Stayed
3. Arch
4. Beam
5. Truss

Claude 3.5 Sonnet:
To arrange the bridge types in ascending order 
based on their median accident rates, I‘ll look at 
the middle line (median) of each box plot, from 
lowest to highest:
1. Suspension
2. Beam
3. Cable-Stayed
4. Arch
5. Truss
So the order from lowest median accident rate 
to highest is: Suspension, Beam, Cable-Stayed, 
Arch, Truss.

Qwen2.5-VL-3B (Base): 
Suspension, Cable-Stayed, Beam, Truss, Arch

Qwen2.5-VL-3B + CoT-SFT: 
```thinking
### Step 1: Identify the Median Accident Rates for Each Bridge 
Type
From the box plot, we can visually estimate the median 
accident rates for each bridge type:
- Suspension: The median is approximately 2.45.
- Beam: The median is approximately 3.08.
- Arch: The median is approximately 3.55.
- Cable-Stayed: The median is approximately 3.32.
- Truss: The median is approximately 3.82.
### Step 2: Compare the Median Accident Rates
We compare the estimated median accident rates to determine 
the order:
- Suspension (2.45) < Beam (3.08) < Cable-Stayed (3.32) < Arch 
(3.55) < Truss (3.82)
### Step 3: Arrange the Bridge Types in Ascending Order
Based on the comparison, the bridge types in ascending order 
of median accident rates are:
Suspension, Beam, Cable-Stayed, Arch, Truss
Thus, the final answer is:
```
Suspension, Beam, Cable-Stayed, Arch, Truss

Suspension, Beam, Cable-Stayed, Arch, Truss

Figure 7: A Case Study of ChartM3 Evaluation Results. While both GPT-4o and the base model provided incorrect
answers, the model trained with CoT-SFT successfully analyze the medians across categories during its reasoning
process and produce the correct ranking.
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Question: From 2000 to 2020, the contribution of Renewable energy to the total energy consumption 
increase is _____%. (Round to the nearest whole number)

GPT-4o: 
To calculate the percentage increase in the contribution of renewable 
energy to the total energy consumption from 2000 to 2020, we need to 
determine the renewable energy consumption values for these years 
from the second graph.
In 2000, the renewable energy consumption is approximately 500 kWh.
In 2020, the renewable energy consumption is approximately 1000 
kWh.
The increase in renewable energy consumption from 2000 to 2020 is:
1000 kWh - 500 kWh = 500 kWh
To find the percentage increase, we use the formula:
\[\text{Percentage Increase} = \left( \frac{\text{Increase}}{\text{Initial 
Value}} \right) \times 100\]
Substituting the values:
\[\text{Percentage Increase} = \left( \frac{500}{500} \right) \times 100 
= 100\%\]
Therefore, the contribution of renewable energy to the total energy 
consumption increased by 100% from 2000 to 2020.

Claude 3.5 Sonnet:
To calculate the contribution of Renewable energy to the total 
energy consumption increase from 2000 to 2020, we need to:
1. Calculate the total increase in energy consumption
2. Calculate the increase in Renewable energy consumption
3. Divide the Renewable increase by the total increase and convert 
to a percentage
From the first graph:
Total energy consumption in 2000: 10,000 kWh
Total energy consumption in 2020: 12,300 kWh
Total increase: 12,300 - 10,000 = 2,300 kWh
From the second graph:
Renewable energy in 2000: about 500 units
Renewable energy in 2020: about 1500 units
Renewable increase: 1500 - 500 = 1000 units
Contribution of Renewable energy:
(1000 / 2300) * 100 = 43.48%
Rounding to the nearest whole number: 43%
Therefore, the contribution of Renewable energy to the total 
energy consumption increase from 2000 to 2020 is 43%.

Qwen2.5-VL-3B (Base): 
To determine the contribution of Renewable energy to the total energy 
consumption increase from 2000 to 2020, we need to follow these steps:
1. **Calculate the total energy consumption in 2000 and 2020:**

- Total energy consumption in 2000: 10,000 kWh
- Total energy consumption in 2020: 12,300 kWh

2. **Calculate the increase in total energy consumption:** …
3. **Determine the contribution of Renewable energy to the total 
energy consumption increase:**

- Total energy consumption in 2000: 10,000 kWh
- Total energy consumption in 2020: 12,300 kWh
- Increase in total energy consumption: 2,300 kWh

4. **Assume the contribution of Renewable energy to the total energy 
consumption increase:**
\[R = \frac{\text{Increase in total energy consumption}}{\text{Total 
energy consumption in 2000}} \times 100\]

\[R = \frac{2,300 \text{ kWh}}{10,000 \text{ kWh}} \times 100 = 23\%\]
Therefore, the contribution of Renewable energy to the total energy 
consumption increase from 2000 to 2020 is **23%**.

Qwen2.5-VL-3B + CoT-SFT: 
```thinking
Step 1: From Chart 1, get the total energy consumption in 2000 and 
2020:
- 2000: 10,000 kWh
- 2020: 12,300 kWh
Step 2: From Chart 2, get the Renewable energy consumption in 2000 
and 2020:
- 2000: 500 kWh
- 2020: 1450 kWh
Step 3: Calculate the increase in total energy consumption:
- Increase = 12,300 - 10,000 = 2,300 kWh
Step 4: Calculate the increase in Renewable energy consumption:
- Increase = 1450 - 500 = 950 kWh
Step 5: Calculate the contribution of Renewable energy to the total 
energy consumption increase:
- Contribution = (950 / 2,300) * 100 = 41.30%
Step 6: Round to the nearest whole number:
- Contribution = 41%
```
41

41

(Within 5% error range)

Figure 8: A Case Study of ChartM3 Evaluation Results for Multi-Chart Scenarios. Although individual chart
elements are straightforward, GPT demonstrates limitations in cross-graph analysis. Specifically, when examining
renewable energy growth from 2000 to 2020, GPT fails to properly reference the first graph. The base model
incorrectly substitutes total energy consumption data for renewable energy consumption. In comparison, the model
trained with CoT-SFT correctly identifies that renewable energy levels in 2020 are below 1500 units, producing a
prediction that more closely aligns with the standard answer compared to Claude 3.5 Sonnet.
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LLM Prompt

You are a senior business analyst and data visualization expert. Please generate high-quality data for chart creation based
on the following detailed requirements. The generated data should solve a key question through chart visualization. You
need to first conceive a realistic background story based on the specified chart type, business domain, theme, and other
conditions, then provide the data generation code.

## Basic Information Requirements
1. Key Question: {key_question}
2. Domain: {domain}

## Chart Type Information
Here is the specific information of chart type: {description}

## Data Content Requirements
1. Data Description:
- Data background overview (time range, data source, etc.)
- Data distribution and overall trend analysis
- Key feature points explanation (maximum, minimum, turning points, etc.)
- Comparative analysis between data
2. Chart Title
- Title should be concise and summarize core information
- Include key dimensional information (time, location, object, etc.)
- For stacked charts, specify chart type in the title
3. Original Data Generation Code
- Python code, import necessary libraries like import pandas as pd and import numpy as np
- Can use random numbers and mathematical distribution functions to generate data
- Save all data as data.csv file, first row must be column names
- Ensure generated values retain maximum three significant digits
- Ensure code is executable correctly

## Data Generation Rules
1. Data Structure Requirements:
- Ensure data structure fully complies with technical requirements of specified chart type
- Data scale should be reasonably set while maintaining chart clarity and readability
- All data items must contain complete label information
2. Data Quality Requirements:
- Choose appropriate data distribution and trends based on actual business domain characteristics
- Unless specifically required in key question, legends should not exceed 5
- Value ranges must be reasonable and business meaningful
- If including time series, ensure consistency of time intervals
- Can include 1-2 meaningful outliers, but proportion should not exceed 10% of total data
3. Business Background Requirements:
- Provide detailed data collection background (time range, geographic range, statistical criteria, etc.)
- Fictional details need to maintain internal consistency
- All value changes should be explainable by business logic

## Common Data Distribution References
Normal distribution, Poisson distribution, Uniform distribution, Exponential distribution, Skewed distribution, Multi-
modal distribution, Long-tail distribution, Bimodal distribution, Other distributions,

## Common Data Trend References
Linear trends(continuous rise, continuous fall, stable), Cyclical trends, Compound trends, Mutation patterns, Fluctuation
patterns, S-curve, Other trends,

## Data Generation Code Example
{example_data}

## Output Format
Output all content in English.
First provide the thinking process, output in a code block with "thinking" header. Then output the result in JSON format
without any other content, including the following fields:
{ "description": "Data description", "title": "Chart title", "data_code": "Original data generation code" }

Figure 9: Prompt template for data generation.
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LLM Prompt

You are a data visualization expert responsible for analyzing visualization requirements and providing detailed chart
design recommendations. Please analyze according to the following steps based on user requirements and uploaded data.

Phase 1: Requirements Analysis, consider the following questions:
1. Data Analysis
- What are the key characteristics of the provided data?
- Which relationships or patterns need to be highlighted?
2. Background Understanding
- What is the industry background and target audience?
- What insights need to be conveyed?
- What are common visualization methods in this field?
3. Visualization Strategy, based on data characteristics and business context:
- Which chart types are most effective?
- What alternatives were considered and why were they rejected?
- If needed, how should multiple elements be composed?

Phase 2: Visualization Design, develop visualization solutions based on above results.
1. Detailed Design Specifications for implementation in Python visualization libraries like Matplotlib or plotly. Pay
attention to chart aesthetics:
- Chart type and layout [User selected chart type: {target_chart_type}, do not consider other types]
- Color scheme and style
- Axis configuration and scale
- Labels, titles and annotations [Note: All text content (titles, legends, axis labels etc.) should be in English]
- Legend position and format
- Gridlines and other reference elements
- Size and aspect ratio
- Other visual elements
Note: All above content must be designed only when relevant data columns exist. Do not generate plotting requirements
without data conditions!

Below are the user data characteristics and requirements:

## User Data Start
Title: {file_name}
Goal: {seed_description}
data.head(): {data_head}
data.describe(): {data_describe}
data.describe(include=’object’): {data_describe_object}
## User Data End

Now, please begin analysis and output a JSON string in a “‘json code block containing these two fields (both plain text,
add line breaks between points):
- ’analysis’: Provide thought process for requirements analysis phase
- ’guidance’: Provide visualization design phase solutions (note: no actual visualization code needed) Do not output
anything besides JSON. Keep results concise and refined without excessive verbiage.

Figure 10: Prompt template for the first stage in visualization generation.
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LLM Prompt

You are a data visualization expert with a Python visualization code generation task. You need to first read the example
code, then implement visualization code for user data based on their requirements.

## Example Start
Target Chart Type: {target_chart_type} {visual_definition}
Sample Data Format: {sample_data_head}
Sample Plot Code: {sample_code}
## Example End

Below are the user data characteristics and requirements:
## User Data Start
Title: {file_name}
Goal: {seed_description}
data.head(): {data_head}
data.describe(): {data_describe}
data.describe(include=’object’): {data_describe_object}
## User Data End

Actual Visualization Requirements: {vis_guidance}
All text content in charts (titles, legends, axis labels etc.) should be in English.
Now, please reference the example and generate visualization code meeting the requirements based on actual user data
situation and needs.

Specific requirements:
1. User data is loaded into memory in ’data’ variable as pandas.DataFrame. Do not output any data reading/declaration
code.
2. Based on example code, try to meet actual visualization requirements but avoid complex code modifications to prevent
errors. For long text, avoid overlapping text in x-axis, legend etc.
3. Generate two Python functions: ’def preprocess(data):’ for plot data preprocessing, input is raw dataframe, output is
preprocessed dataframe; ’def plot(data):’ for drawing corresponding charts. Only generate one final chart (can have
multiple subplots).
4. preprocess function needs to be called in plot function. Only generate function bodies, no need for plot function
calling code.
5. Complete all plot data preprocessing in preprocess function (including decimal places), no data processing in plot
function!
6. Save result to file named ’plot.png’.
7. Most importantly, ensure code can execute correctly, so keep plotting function parameters consistent with example as
much as possible. Generate all code in one “‘python code block.

Figure 11: Prompt template for the second stage in visualization generation.
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LLM Prompt

You are a senior business analyst with extensive experience in data analysis and visualization. Your task is to generate
a high-quality analytical question based on chart visualization code and data, and write Python code to calculate the
answer.
## Data Description: {chart_description}
## Visualization Code: {code}
## Data Path: {data_path}
## Data Format Example: {data}

## Task Type
Please strictly generate questions according to the following task type requirement:
{task}

## Question Generation Requirements
1. Ensure questions have clear business analysis and practical application value
2. Prioritize generating questions that require multiple calculation steps or statistical analysis
3. Note that question solvers can only see the chart image, not the original chart code and data values
4. While meeting task type requirements, generate appropriately more complex and challenging questions, such as:
- Requiring comprehensive information from multiple dimensions (>3)
- Including multiple steps of reasoning process
- Requiring multiple mathematical operations or complex statistical analysis
- Answers that need in-depth analysis to derive
5. For counting tasks, do not generate questions with answers greater than 20

## Code Requirements
1. Use libraries like pandas and numpy for data processing
2. Code must include clear comments explaining the purpose of each step
3. Ensure calculation results are accurate and reliable
4. Only use the provided original data
5. Output necessary intermediate calculation results
6. Code style should be standardized with meaningful variable names
7. For multiple-choice questions, only provide the answer, no need to judge which option is correct

## Question Types
1. Multiple-choice: Question includes ABCD four options, answer is a single uppercase letter (A/B/C/D), other options
must be incorrect
2. True/False: Question is in interrogative form, answer is Yes or No
3. Fill-in-the-blank: Question is in interrogative or fill-in-the-blank form, answer is a specific number, word, or phrase
4. Short-answer: Question is in interrogative form, answer is a complete sentence not exceeding 50 words

## Output Format
“‘thinking
First provide thinking process, such as explaining what analysis angles and questions can be generated for this task type
requirement based on the chart
“‘

“‘json
{ "task_type": "Task type", "question_type": "Question type", "question": "Question text", "options": "Option text
(string, empty for non-multiple-choice questions)" }
“‘

“‘python
# Import required libraries
import pandas as pd
import numpy as np
# Loading Data from csv file
data_file_path = "data_path"
df = pd.read_csv(data_file_path)
# Data processing and calculation code
...
# Print intermediate results
print("Average of metric a:", average_a)
...
# Print final results
print("Final result:", result)
“‘

Figure 12: Prompt template for the first stage in Q&A generation.
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LLM Prompt

The code execution result is:
{code_output}

Please use this as data support to provide detailed reasoning analysis for the question and generate the final answer.
Specifically, for multiple-choice questions, if you believe all options are incorrect or multiple options are correct, please
modify the options to ensure: the final answer is completely correct, and all other options except the answer are incorrect.

## Generation Requirements
1. Please fully trust the correctness of code execution results.
2. All reasoning processes should be expressed as analysis and calculation of visual information from the chart. Don’t
mention that you referenced code or output results; instead, present them as if they were results you calculated yourself
based on visual chart information.
3. Provide necessary reasoning steps without omitting similar processes. Calculation processes should include formulas
and answers.
4. All reasoning processes should be fluent and use concise descriptions without verbosity.
5. Finally, provide a concise and clear answer that meets the answer format requirements for the question type.
6. No code language snippets or color coding should appear.

## Output Format
“‘json
{ "task_type": "Task type", "question_type": "Question type", "question": "Question text", "options": "Option text",
"explanation": "Detailed step-by-step reasoning process", "answer": "Final answer" }
“‘

## Example Start
{qa_example}
## Example End

Figure 13: Prompt template for the second stage in Q&A generation.

Judge Prompt

Compare the ground truth with the prediction from AI model and determine if the prediction is correct. The question is
about an image, which we have not given here. You need to determine whether the model’s prediction is consistent with
the ground truth. No points will be awarded for wrong answers, over answers or under answers. The reasoning process
in the prediction does not need to be considered too much, you only need to determine if the final answer is consistent.
There are times when the answer may have a different form of expression and some variation is acceptable.
Notice:
1. The provided ground truth is absolutely correct and should be fully trusted.
2. Different expressions of units are acceptable. (e.g., "5" vs "5 meters" and "5" vs "5 million" are equivalent if they
refer to the same measurement)
3. Numbers with/without "%" are equivalent (e.g., "5%" vs "5" are equivalent)
4. After removing units or "%", if both prediction and ground truth are numbers, an error margin within 5% error is
acceptable.
5. If the ground truth is provided as multiple arrays, prediction matching any one of them will be considered correct.
6. When the question asks about years: The prediction must match exactly with the ground truth.

## Question: {question}
## Ground Truth: {answer}
## Prediction: {prediction}
Now, let’s take a analysis and then provide your judgement. Your response must follow the format below:
Analysis: (analyze the correctness briefly)
Correctness: (Yes or No)

Figure 14: Prompt template for LLM judge model.
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