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Abstract

Complex chart understanding tasks demand ad-
vanced visual recognition and reasoning capa-
bilities from multimodal large language mod-
els (MLLMs). However, current research pro-
vides limited coverage of complex chart scenar-
i0s and computation-intensive reasoning tasks
prevalent in real-world applications. This study
proposes an automated multi-stage code-driven
pipeline for systematically generating visual
reasoning datasets to address these limitations.
The pipeline integrates retrieval-augmented
generation (RAG) to retrieve professional chart
templates and employs chain-of-thought (CoT)
strategies to generate reasoning codes that sim-
ulate real data distributions, thereby driving
chart rendering and question-related statisti-
cal computations. Through model-based eval-
uation, the pipeline enhances chart diversity
and data quality. Using this framework, we
construct ChartM?, a multi-dimensional and
multi-step dataset containing 38K charts and
142K Q&A pairs for training, along with 2,871
high-quality evaluation samples for enabling
practical performance assessment. Supervised
fine-tuning (SFT) and reinforcement learning
(RL) experiments demonstrate that our dataset
significantly improves reasoning capabilities
and cross-domain generalization performance,
enabling smaller models to achieve perfor-
mance comparable to larger-scale models in
complex chart comprehension.

1 Introduction

Advanced Multimodal Large Language Models
(MLLMs) such as GPT-4o(Jaech et al., 2024),
LLaVA(Liu et al., 2023b), Qwen-VL(Bai et al.,
2025, 2023), and InternVL(Chen et al., 2024b) se-
ries have continuously emerged, demonstrating re-
markable capabilities in Visual Question Answer-
ing (VQA) for natural images. However, these mod-
els still struggle with text-rich images, particularly
in chart comprehension. Unlike natural images,
which primarily focus on perceptual understanding,

charts are intricate visual systems that combine
multiple elements (titles, legends, axes, etc.) to
present structured data. Effectively understanding
charts requires processing visual information, ana-
lyzing the hierarchical relationships between these
elements, and interpreting the underlying design
intent.

Despite strong benchmark performance on
ChartQA(Masry et al., 2022) and PlotQA(Methani
et al., 2020), state-of-the-art MLLLMs often deliver
unsatisfactory results in real-world applications.
This discrepancy arises from the complexity of
actual charts, which significantly exceeds that of
benchmark datasets. Current chart datasets(Xia
et al., 2024; Xu et al., 2023) exhibit several crit-
ical limitations: Limited Chart Type and Ele-
ment Complexity. Most existing datasets primar-
ily focus on compositionally simple charts, such
as line, bar, and pie charts, while neglecting data-
intensive formats like scatter plots and heatmaps,
or sophisticated derivatives such as box plots and
multi-axis composites. Low Question Complex-
ity. Current datasets emphasize basic perceptual
tasks rather than complex business analytics that
demand multi-step reasoning and multi-chart com-
prehension. Lack of Interpretability Support.
These datasets focus solely on question-answer
pairs without providing detailed stepwise reasoning
processes to enhance model understanding, limit-
ing data utility and model explainability in practical
applications. These limitations originate from in-
herent conflicts between data accuracy, complexity,
and construction costs in conventional data creation
approaches.

To address these challenges, we introduce
ChartM?, a comprehensive chart dataset that ex-
tends both chart variety and task complexity while
reflecting real-world analytics scenarios. Our au-
tomated pipeline employs code-driven generation
throughout the process. It begins by construct-
ing a diverse chart template database including
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Figure 1: Left: ChartM? covers 9 major categories of chart types, totaling 62 subcategories. Right: Performance
comparison of representative MLLMs across ChartM? task categories.

62 chart types and generates high-quality ques-
tions across 60 real-world scenarios. We utilize
Retrieval-Augmented Generation (RAG) to select
professional templates, and through LLM’s Long
Chain-of-Thought (CoT) reasoning, generate both
data generation code and visualization code. For
Q&A pair generation, we employ MLLMs to for-
mulate questions and synthesize analytical code for
each question with its source data. Through code
execution and output analysis, we produce accurate
answers with reliable CoT reasoning. To ensure
quality, we employ large and small language mod-
els to filter out unsuitable charts and Q&A pairs.
This Multi-stage, Multi-dimensional, and Multi-
step (M?) approach guarantees data quality and
diversity, resulting in a comprehensive dataset con-
taining 38.4K diverse charts and 142K high-quality
Q&A pairs, and a challenging benchmark of 2,871
rigorously verified samples.

We validate the effectiveness of ChartM3
through comprehensive experiments, demonstrat-
ing substantial improvements in business insight ex-
traction and analytical reasoning capabilities. This
dataset advances the development of practical chart
understanding systems and helps bridge the gap
between academic evaluation and real-world appli-
cations.

Our contributions can be summarized as follows:

* We present a novel pipeline that leverages
open-source LLMs to synthesize aligned
chart data and visual reasoning Q&A pairs.
Through RAG for template retrieval, code-
driven generation, and model-based qual-
ity control, our approach produces diverse,

professional-quality synthetic chart data.

* We construct a comprehensive benchmark that
systematically identifies architectural limita-
tions in complex chart comprehension and
cross-chart reasoning capabilities.

* Comprehensive experiments demonstrate that
models trained on ChartM? show substantial
improvements in visual perception and rea-
soning abilities, validating that our framework
provides a practical methodology for develop-
ing reasoning MLLMs.

2 Related Works

For chart comprehension and question-answering
datasets, early studies (such as FigureQA(Kahou
etal., 2017), DVQA(Kafle et al., 2018)) proposed
synthetic data generation pipelines to produce VQA
datasets for several chart types (typically 1-4 types
of charts). However, these approaches were con-
strained by the limitations of the synthetic data
pipelines at the time, resulting in issues such as
limited chart topics, templated task types, and fixed
answer formats. PlotQA (Methani et al., 2020) ex-
panded the range of chart topics by introducing
real-world data but focused only on bar charts, line
graphs, and scatter plots. Moreover, the program-
synthesized charts had relatively simple styles, with
visual designs and color schemes that could hardly
represent real-world standards. ChartQA (Masry
et al., 2022) further broadened the scope of ques-
tion forms and openness through human annota-
tion and machine generation, breaking free from



Chart Properties Q&A Properties
Datasets - -
Data Source # Chart  Textual # Task Templatf:--Free Multi Chart  Reasoning

Type Data Type Question Q&A Data
FigureQA Synthetic 5 15 X X X
DVQA Synthetic 1 - 3 X X X
PlotQA Real-world, Synthetic 4 Table 3 X X X
ChartQA Real-world, Synthetic 3 Table 4 4 X X
ChartLLama Synthetic 10 Table 7 v X X
MMC-Instruction Real-world 6 Caption 9 v v v
ChartBench Real-world, Synthetic 42 Table 5 v v X
ChartX Synthetic 18 Code 7 v X X
OneChart Real-world, Synthetic 7 Table 1 X X X
CharXiv Real-world - 23 X v X
MultiChartQA Real-world - - 4 v v X
ReachQA Synthetic 32 Code 3 v v v
ChartM?3(Ours) Synthetic 62 Code 18 v v v

Table 1: Comparison of Several Datasets for Chart QA.

template-based restrictions on questions. Neverthe-
less, it still suffered from a limited variety of chart
types. MMC-Instruction (Liu et al., 2023a), Chart-
Bench (Xu et al., 2023), and CharXiv (Wang et al.,
2024b) improved the diversity of chart and ques-
tion types by collecting real-world chart data and
combining them with manual annotations, but this
also led to increased costs and limited scalability.

In recent years, with the continuous advance-
ment of large language models (LLM), researches
have been utilizing LL.Ms for data synthesis have
emerged. Compared to template-based data syn-
thesis pipelines, these works have significantly
improved chart topic richness and Q&A flexibil-
ity. For example, ChartLlama (Han et al., 2023)
and ChartInstruct (Masry et al., 2024a) generate
data, plotting code, and Q&As through pipelines,
but there is still room for improvement in fine-
grained visual element analysis (e.g., layout, color
style). Regarding evaluation tasks, ChartInsights
(Wu et al., 2024) systematically defines structural
parsing tasks for seven types of charts, revealing
deficiencies in mainstream models like GPT-4V in
low-level tasks such as axis recognition and legend
matching (with an average accuracy below 60%).
ChartX (Xia et al., 2024) further extends the eval-
uation dimensions by supporting seven subtasks,
including structure extraction and cross-modal gen-
eration, with 48k quadruples (image-CSV-code-
text). However, current chart datasets still face
challenges in constructing complex scenario ques-
tions and multi-step reasoning tasks, with evalu-
ation pipelines that are not sufficiently objective.
As a result, existing datasets still cannot accurately
measure the true chart comprehension capabilities

of MLLMs. In this article, we introduce ChartM?,
a novel chart dataset produced by an automatic
multi-stage data synthesis pipeline designed for
high-quality visual reasoning chart Q&A data.

3 ChartM?

Figure 2 illustrates the ChartM? automated work-
flow. Our core approach combines RAG-based
chart template selection with a multi-stage, code-
driven generation process and model-based quality
verification. Beyond single-chart analysis, we also
incorporate cross-chart comparison tasks that re-
quire examining multiple images simultaneously.
The following sections detail each stage of imple-
mentation: template database construction (§ 3.1),
chart data and image generation (§ 3.2), instruc-
tional Q&A generation (§ 3.3), and data evaluation
(§ 3.4). Based on our dataset, we introduce a novel
reinforcement learning approach for chart compre-
hension tasks, as detailed in (§ 3.5).

3.1 Template Database Construction

We developed a comprehensive chart taxonomy
by analyzing major visualization frameworks such
as Matplotlib(Hunter, 2007), Vega(Satyanarayan
et al., 2017), EChart(Li et al., 2018), and
Seaborn(Waskom et al., 2017). Our analysis iden-
tified 62 scientifically rigorous chart types com-
monly used in real-world scenarios (shown in Fig-
ure 1). Each chart type is annotated with descriptive
tags covering definitions, usage scenarios, and data
characteristics.

For Database generation, we utilize Claude 3.5
to create structured data and code templates for
each chart type, incorporating comprehensive pa-
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Figure 2: The ChartM? data generation pipeline follows a progressive automated workflow that begins by generating
key questions and utilizing RAG to select appropriate templates from a diverse chart database. The process then
advances through multiple code-driven stages: creating structured data, producing rendering code, and generating
Q&A pairs with multi-step visual reasoning reasoning synthesizing analytical code. Finally the pipeline conducts
model-based comprehensive assessments of data quality and difficulty levels.

rameters for standardized rendering. To enhance
visualization diversity, we incorporate domain-
specific styles from various professional fields and
manually refine details to better align with real-
world charts. Additionally, we collected real-world
charts from various sectors including finance and
scientific research. These charts are recreated using
Claude 3.5 to generate style-matching code tem-
plates, which are then categorized by chart type.
Each chart template is labeled with multiple at-
tributes, including industry domain, theme, and
visualization purpose, all constructed based on vi-
sual characteristics and type descriptions.

3.2 Chart Image Generation

Instead of direct data generation, we divided this
building process into multiple sub-stages with a
code-driven method to avoid distributional conver-
gence in LLM-generated content. We curated 60
domains commonly associated with data visualiza-
tion and created key questions that require analyti-
cal reasoning rather than generating random titles.
This approach reflects real-world charts’ purpose-
driven nature, typically designed to address specific
problems or analyze trends. Using the domain and
questions as input, we leverage RAG to select the
most suitable templates from the template database.

LLMs then transform these key questions into
realistic contextual narratives and develop corre-
sponding structured data and metadata (including
titles and descriptions). To prevent distributional
monotony and errors in large-scale data genera-

tion, we require LLMs to output data generation
code rather than direct data. LLMs are prompted
to incorporate data distribution trends, stochastic
functions, and controlled noise into their code.
During the generation of visualization code, we
use a step-by-step reasoning approach to enhance
code usability and visual quality. The process be-
gins by guiding LLMs through visualization re-
quirement analysis, which includes evaluating data
and industry background and developing a detailed
solution of visual elements. To increase visual
diversity, we randomly integrate style-enhancing
prompts during this phase. Using the generated
visualization solution and selected template code
as few-shot demonstrations, we produce and exe-
cute visualization code to generate chart images.
If code execution fails, we feed the code and error
messages back to LLMs for iterative refinement.

3.3 Instruction Q&A Generation

We developed 18 specialized Q&A categories
across four primary dimensions based on percep-
tion and reasoning levels: visual element recogni-
tion, data extraction, calculation, and data analysis.
These tasks incorporate diverse formats, including
Multiple-choice, True/False, Fill-in-the-blank, and
Short-answer. Using visualization code, data, task
specifications, and Q&A templates as inputs, we
guide LLMs to systematically analyze task objec-
tives and context to generate questions that require
in-depth thinking and multi-step reasoning.

Our approach revealed two key challenges in



LLM-synthesized Q&A data: 1) Complex charts
may exhibit information misalignment between
plotting code/data and rendered images, poten-
tially creating unanswerable questions when re-
lying solely on LLM-generated content. 2) Open-
source models show high error rates in numerical
comparison and complex computation tasks, risk-
ing hallucination during model fine-tuning.

To address these challenges, we executed
Qwen2.5-VL-72B, currently the most capable
open-source MLLM, to focus exclusively on vi-
sual information during question generation. We
adopted an agent-inspired approach for computa-
tionally demanding tasks, where LLMs generate ex-
ecutable code snippets for problem-solving. Then,
we used the execution outputs and intermediate
steps to summarize the reasoning process and an-
swer comprehensively.

3.4 Data Evaluation

Since we heavily depend on LLM synthesis
throughout the process, we implement several qual-
ity control modules beyond the basic filtering of
abnormal outputs and code execution failures:
Chart Quality Verification. Our experiments re-
vealed that even MLLMs with up to 72B parame-
ters struggle to reliably evaluate chart quality, often
missing issues like data occlusion or suboptimal
layout arrangements. Using MLLMs pre-labeling
as a starting point, we corrected erroneous results
to create a chart quality classification dataset com-
prising 700 positive and 500 negative samples. We
then trained a classifier based on Qwen2-VL-2B,
which achieved a higher F1 score on the validation
set compared to Qwen2.5-VL-72B.

Instruction Verification. We implemented a multi-
modal verification step to prevent QA data from ref-
erencing non-visualized data and to address other
accuracy issues. This process involves feeding im-
ages, QA pairs, and reasoning chains into MLLMs
to evaluate three key dimensions: chart relevance,
data accuracy, and logical consistency.

Difficulty Rating. We perform 10 random sam-
pling iterations using small MLLMs at high tem-
peratures to establish clear difficulty levels based
on chart complexity and task reasoning difficulty.
Question difficulty was quantified by the number of
incorrect answers generated during these sampling
runs, and overly simple questions are filtered out.
For data intended for reinforcement learning, we
further refine the selection to retain only "challeng-
ing but learnable" examples(DeepSeek-Al, 2025),

Statistic Train Test
Total Questions 132,955/ 8,845 2,271/ 600
Chart Nums 31,772/ 6,650 1,221/333
Category

- Visual Recognition 56,651/0 681/0

- Data Extraction 23,680/2,963 501 /200

- Calculation 21,614 /2,861 593 /200

- Data Analysis 19,609 / 3,021 496 /200

- Chart2Markdown 11,401/0 0/0
Tokens

- Avg Question 27.44 /37.81 32.60/35.88
- Avg Reasoning 202.40/266.43 236.03/274.88
- Avg Answer 1591/4.33 6.99/7.80

Table 2: ChartM? dataset statistics with single-chart /
multi-chart. The tokens of questions and answers are
measured using Qwen2.5 tokenizer.

ensuring optimal training effectiveness.
Benchmark Refinement. For the evaluation
benchmark, we implemented enhanced quality re-
quirements beyond our standard pipeline. This
included adjusting question difficulty distribution,
conducting manual verification, and correcting. To
ensure the benchmark effectively assesses models’
genuine chart understanding capabilities, we use
LLM as a judge to evaluate alignment between
model predictions and answers. We also optimize
judge prompts and eliminate questions that produce
inconsistent evaluation results.

Table 2 summarizes the statistics related to the
final ChartM? dataset.

3.5 Chart RL with Verifiable Reward

Studies involving DeepSeek-R1 (DeepSeek-Al,
2025) and Kimi-1.5 (Team et al.,, 2025) have
provided empirical evidence for the effectiveness
of reinforcement learning with verifiable reward
(RLVR) in improving the reasoning abilities of
LLMs. Similarly, VLM-R1 (Shen et al., 2025) and
R1-Omni (Zhao et al., 2025) have extended this
success to visual reasoning tasks. A key factor con-
tributing to RLVR is the availability of large-scale
data with verifiable answer formats, which enables
effective reward modeling. Despite the promising
results of RLVR in various domains, its application
to chart understanding tasks remains unexplored
mainly, with a notable scarcity of suitable datasets.

ChartM? offers an extensive collection of chart-
text Q&A pairs that naturally align with RLVR
requirements. Leveraging this dataset, we propose
a hybrid reward mechanism to adapt RLVR for
chart understanding tasks. Following the Group



Relative Policy Optimization (GRPO) (Shao et al.,
2024) and reward modeling in DeepSeek-R1, our
approach decomposes the reward signal into two
components: accuracy reward R,.. and format
reward(R format, Which are combined to form the
total reward R.

The format reward Ryorma: €valuates
whether the model’s output adheres to the
required output format: “<think>{thinking
process}</think><answer>{final answer}
</answer>", assigning a binary score (1 for com-
pliance, 0 otherwise). The accuracy reward Rg..
incorporates both rule-based and model-based
evaluation mechanisms:

* Rule-based reward: For multiple-choice and
true/false questions, we employ strict match-
ing between the model predict and ground
truth, yielding a binary reward (1 for exact
match, 0 otherwise).

* Model-based reward: For fill-in-the-blank
and short-answer questions, we use Qwen3-
32B as a judge to evaluate response accuracy.
The judge inputs the question, model’s answer,
and ground truth, producing a binary evalua-
tion (1 for correct, O for incorrect).

Notably, CoT reasoning paths are not involved in
the training process, with the model being opti-
mized using only questions and final answers.

4 Experiments

4.1 Experimental Setup

Baselines. We evaluated three categories
of MLLMs: (1) proprietary models, includ-
ing GPT-40(Jaech et al., 2024), Claude3.5-
Sonnet(Anthropic, 2024), tested via official
APIs. (2) Latest open-source models, includ-
ing Qwen2-VL(Wang et al., 2024a), Qwen2.5-
VL(Bai et al., 2025), InternVL2.5(Chen et al.,
2024a),InternVL3(Zhu et al., 2025), LLaVA-
OneVision(Li et al., 2024), and MiniCPM(Yao
et al., 2024). (3) Open-source models specifically
optimized for OCR and chart understanding, in-
cluding mPlug-DocOwl12(Hu et al., 2024), Chart-
Gemma(Masry et al., 2024b), TinyChart(Zhang
et al., 2024), and others. All models were evalu-
ated using direct output (zero-shot inference) with
consistent default hyperparameters and prompts.

Benchmarks. Beyond ChartM? test set, we in-
cluded established benchmarks for comparison:

ChartQA(Masry et al., 2022), CharXiv(Wang et al.,
2024b), and ReachQA(He et al., 2024). We adapted
all benchmarks on VLMEvalKit(Duan et al., 2024)
and implemented accuracy evaluation using Qwen-
Max(Team, 2024) as the judge model, following
their respective prompt designs.

Training Evaluations. To validate the effective-
ness of ChartM3, we first used Qwen2.5-VL as our
base model and performed supervised fine-tuning
(SFT) using our synthesized dataset of 130K train-
ing samples. We kept the vision encoder frozen
while updating other modules, using a learning rate
of le-5 and batch size of 64 for 2 epochs.

For RLVR experiment, the model is optimized
with a learning rate of 1e-6 and KL divergence co-
efficient of 0.04. We sample 7 rollouts for each
prompt, and a global batch contains 7 different
prompts. Considering both computational resource
limitations and the importance of difficulty distri-
bution in reinforcement learning training, we con-
structed our training set by sampling 30k items
from the complete dataset according to their dif-
ficulty scores. More training and data selection
details refer to the Appendix A.3.

We utilized 8 NVIDIA A100 80G GPUs for all
training process.

4.2 Experimental Results

Our benchmark effectively measures chart com-
prehension and reasoning abilities. Both closed
and open-source model evaluations show trends
similar to ChartQA and ReachQA. Closed-source
models demonstrate more balanced performance
across all capability dimensions, while newer or
larger open-source models exhibit stronger abil-
ities across all test sets. Notably, ChartM>-test
significantly differentiates performance between
various models. For instance, while models score
above 86% on ChartQA with minimal differences,
ChartM?3-test reveals gaps exceeding 15% between
models like Claude 3.5 Sonnet (66.18%) and
InternVL3-8B (51.08%).

Existing advanced models excel at visual recog-
nition but struggle with complex reasoning tasks.
Open-source models score significantly lower on
complex reasoning tasks involving data extrac-
tion and computation compared to visual element
recognition tasks, particularly evident in smaller-
scale models. Additionally, we observed that
some OCR/Chart-enhanced models perform well
on ChartQA but struggle with ChartM3-test and
reasoning-intensive benchmarks. This disparity in-



Model ChartM? test ChartM?-Multi test ChartQA* ReachQA CharXiv
odels
Overall VR-A VR-B Ext. Cale. Ana. Overall Ext. Calc. Ana. Overall Overall  Overall
Proprietary Multimodal Large Language Models
Claude 3.5 Sonnet  66.18 81.15 68.98 58.88 63.41 68.35 66.67 66.5 650 68.5 90.80 63.00 79.48
GPT-40 58.30 78.53 63.67 4890 53.12 60.89 5333 50.0 465 635 86.70 53.25 76.98
GPT-40 mini 48.35 8220 54.08 39.52 39.97 4859 4250 38.0 39.0 505 77.52 40.35 66.76
Open-Source Multimodal Large Language Models
Qwen2.5-VL-72B  64.73 84.29 66.73 59.48 60.37 65.73 61.00 59.0 59.0 65.0 88.60 61.55 82.24
InternVL3-78B 5557 7749 6224 5130 46.88 5524 4550 44.0 405 52.0 89.60 47.25 80.00
Qwen2-VL-72B 54.07 80.63 59.59 47.50 47.72 52.62 47.67 46.5 415 55.0 88.04 53.20 78.22
Qwen2.5-VL-7B 5742 79.06 59.18 50.10 52.78 60.28 52.00 485 46 61.5 87.60 57.65 67.50
InternVL3-8B 51.08 7592 58.78 43.51 4570 4798 42.17 415 385 465 86.60 49.45 69.72
InternVL2.5-8B 42.10 6649 51.02 3693 29.01 44.76 36.50 29.0 29.5 51.0 77.60 35.20 63.20
MiniCPM-V-2.6 40.64 68.59 46.94 32.14 30.02 4496 34.67 32.0 265 455 79.20 34.65 51.86
OCR/Chart-Augmented Open-Source Models
mPlug-DocOwI2 2325 3298 1571 20.76 13.83 40.73 23.17 16.0 13.0 40.5 66.64 10.90 26.74
ChartGemma 2299 4555 1571 2275 145 31.85 - - - - 71.28 18.50 18.84
TinyChart 2338 37.17 17.55 23.15 17.88 30.65 22.67 20.5 13.0 345 76.64 17.85 14.00
SFT Experiments on ChartM? with single and multi chart data

Qwen2.5-VL-3B 45.00 6545 4531 4451 3659 4738 3483 320 250 475 83.32 45.75 54.34
+ CoT-SFT 62.88 80.63 67.35 56.69 5548 66.73 51.67 51.5 455 58.0 84.12 53.35 55.92
LLaVA-OV-7B 37.12  63.35 4286 29.34 2496 43775 29.00 27.0 175 425 80.44 28.40 46.24
+ CoT-SFT 64.95 83.25 68.98 63.47 57.50 6431 5433 535 50.0 59.5 82.32 43.40 51.04

Table 3: Evaluation results on ChartM? test set and other benchmarks. Bold values indicate the best performance
within each category. Question categories names are abbreviated due to space limits. VR: Visual Recognition, Ext.:
Data Extraction, Calc.: Calculation, Ana.: Data Analysis. "*" indicates that we use LLM as a judge to reevaluate
ChartQA, which yielded slightly different results from those reported in the official technical report. Detailed
explanations for LLM-based evaluation provided in the Appendix A.4.

dicates their weakened instruction alignment and
reasoning capabilities and suggests possible over-
fitting to traditional benchmarks.

High-quality CoT data substantially improves
chart reasoning performance. As shown in Ta-
ble 3, our CoT-SFT approach demonstrates sub-
stantial improvements, achieving at least 12% per-
formance gains over the base model on our bench-
marks. The CoT-SFT model exhibits consistent
improvements across both perception-oriented and
comprehensive benchmarks in out-of-domain eval-
uations. Remarkably, on ReachQA, which de-
mands complex reasoning capabilities, our CoT-
SFT model achieves significant improvements
of 7.60% and 15.0% over Qwen2.5-VL-3B and
LLaVA-OV-7B, respectively. These substantial
gains validate the quality of our dataset and its
effectiveness in enhancing visual reasoning for uni-
versal chart understanding.

Reinforcement Learning on ChartM? signif-
icantly improves both in-domain and out-of-
domain performance. As shown in Table 4, the

model trained by GRPO obtains considerable im-
provement on various benchmarks. Compared
to the base model (Qwen2.5-VL-3B), our RL ap-
proach yields notable gains in in-domain evalua-
tions, achieving absolute improvements of 7.4%
and 5.5% on ChartM3 and ChartM3-Multi bench-
marks, respectively. In particular, the RL model
demonstrates substantial improvements on out-
of-domain benchmarks, particularly achieving a
4.96% gain on CharXiv, suggesting better general-
ization capability than supervised fine-tuning. This
improvement across diverse domains demonstrates
the effectiveness and comprehensiveness of our
synthetic datasets, covering the abundant scenarios
and question types. Note that our SFT model signif-
icantly outperforms the RL model on the ChartM?
test set, achieving superior performance gains of
5.77% and 6.84% on single-chart and multi-chart
evaluations, respectively. These compelling results
demonstrate the effectiveness of our generated rea-
soning paths. The synthetic chain-of-thoughts data
introduces diverse and essential patterns for com-



Model ChartM? ChartM>3-Multi ChartQA* ReachQA CharXiv SEEDBench2_Plus
odels

Overall Overall Overall Human Aug. Overall Reco. Reas. Overall Desc. Reas. Overall Chart Map Web
Qwen2.5-VL-3B 45.00 34.83 83.92 7648 9136 4575 603 312 5434 59.62 332 6772 64.19 59.23 82.42
+ CoT Prompt 43.68 34.83 74.80 64.16 8544 32,60 357 295 53.74 5952 306 67.06 6629 56.00 81.51
+ SFT with 30K data ~ 58.17 47.17 82.20 75.84 8856 50.10 60.8 394 5444 606 298 66.13 64.81 55.14 81.21
+ RL with 30K data 52.40 40.33 85.28 78.88 91.68 49.10 588 394 5930 654 349 6899 6629 60.47 82.72

Table 4: Reinforcement Learning results on five benchmarks. Details for these benchmarks are presented in § 4.1.
Bold values indicate the best performance within each category.

832 B LLaVA-OV-7B(Base)
80 1 SFT wio CoT Q&
B SFT w/ CoT Q&A

Score

Metrics

Figure 3: Performance comparison between models
trained by SFT with and without CoT Q&A across dif-
ferent evaluation metrics.

plex chart understanding tasks, effectively address-
ing scenarios where the base model lacks domain-
specific knowledge.

4.3 Further Study

In this subsection, we perform ablation studies to
investigate the impact of different dataset composi-
tions and training data sizes on the reinforcement
learning process.

Figure 3 illustrates an ablation study on dataset
composition. We compare models trained with and
without CoT data. While both models achieve com-
parable performance on perception-based tasks, the
CoT model significantly outperforms its counter-
part on computation-intensive and statistic-related
tasks, demonstrating the importance of our con-
structed CoT data in enhancing chart reasoning
capabilities.

To investigate the impact of training data scale
on reinforcement learning performance, we con-
duct experiments with two different dataset sizes:
5,000 and 30,000 samples. As shown in Figure 4,
the model trained with 30,000 samples consistently
outperforms its counterpart trained with 5,000 sam-
ples across most datasets. While reinforcement
learning is generally considered data-efficient, scal-
ing up training data leads to substantial improve-
ments. This is particularly crucial for fill-in-the-
blank and short-answer questions, where benefi-

90
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Accuracy (%)
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Datasets

Figure 4: Performance of models trained by GRPO with
different numbers of samples across multiple datasets.

cial reasoning patterns are more sparse and require
larger datasets to be effectively captured during
training. Notably, with limited training data (5K
samples), the model’s performance on ReachQA
degrades due to the high variance nature of RL
training, but this instability is effectively addressed
when scaling up to 30K samples, yielding a 6.95%
improvement.

5 Conclusion

This work examines current MLLMs’ challenges in
real-world chart comprehension and evaluates the
limitations of existing dataset construction methods.
We propose a multi-stage, code-driven pipeline
for synthesizing visual reasoning Q&A data. Our
method starts by generating a key question, retriev-
ing appropriate chart templates, using LLMs to
generate code that simulates real data distribution,
plotting charts and solving problems, and imple-
menting data filtering through various-sized models
to obtain diverse charts and high-quality CoT data.
We developed ChartM?, a multi-dimensional and
multi-step dataset, and conducted CoT supervised
fine-tuning and reinforcement learning. The results
show significant performance improvements across
multiple benchmarks. Our framework bridges the
gap between academic research in chart understand-
ing and practical applications, advancing the devel-
opment of reasoning MLLMs.



Limitations

Although our work achieves promising results in
chart-related reasoning tasks, several limitations
exist. (1) The chart rendering code is primarily
Python-based, with limited support for other visual-
ization languages, suggesting a need to incorporate
additional languages to diversify chart generation
capabilities. (2) This work concentrates mainly on
statistical charts. Future research should consider
extending this approach to flowcharts (such as pro-
cess diagrams and relationship diagrams) and other
visual formats. (3) The reinforcement learning ex-
periments are not conducted at a larger scale. In the
future, we will explore expanding the data scale,
model size, and investigating chart reasoning data
distillation based on reinforcement learning.

Ethical Consideration

We strictly declare that all authors are aware of and
adhere to the ACL Code of Ethics throughout this
research. We strictly adhere to the licenses of all
open source datasets and models used. During the
benchmark refinement phase of Data Evaluation,
quality validation was conducted through human
annotations. Annotators received task-specific ma-
terials and explicit consent was obtained for using
their annotations exclusively for academic research
purposes. It is imperative to ensure the privacy of
all annotators throughout the annotation process.
Furthermore, all annotators were adequately com-
pensated according to local standards.

For this work, we used open-source and closed-
source models obtained from official sources and
accessible to the public to avoid potential harm
to individuals or groups. We did not use any per-
sonally identifiable information, and all data were
anonymized before analysis. The prompts and
benchmarks underwent a meticulous human se-
lection and processing phase to ensure no names
or unique identifiers of individual people or of-
fensive content were included. Additionally, we
used Grammarly to refine the language in our
manuscript.
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A Appendix

A.1 Data Categories

In our generation pipeline, we predefine chart types,
Q&A task categories, and visualization domains.
Table 6 presents 9 major, 62 minor chart types.
Table 7 outlines 18 specialized Q&A categories
across 4 primary dimensions, along with the Chart
To Markdown task. Due to varying difficulty levels,
we have divided Visual Recognition into two parts:
A and B. The distribution of questions across these
subcategories is illustrated in Figure 5. Addition-
ally, Table 8 enumerates 60 domains commonly
used in data visualization.

A.2 Examples of Chart Template Database

We sample several charts from Chart3 chart tem-
plate database. The visualization is presented in
Figure 6.
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Figure 5: The distribution of ChartM® Q&A categories.

A.3 GRPO Training Setting

Data Sampling for GRPO. DAPO (Yu et al., 2025)
indicates that samples with zero advantage variance
lead to performance degradation, thus should be
filtered out during training. Based on this finding,
we carefully curate the GRPO training dataset by
filtering out both overly difficult and simple sam-
ples. Specifically, we perform uniform sampling
from items with difficulty scores ranging from 3
to 9 (difficulty score definition in Section 3.4) to
ensure a balanced distribution of task complexity.
Additionally, we maintain an approximately 1:1
ratio between questions with rule-based rewards
(True/False and Multiple-choice) and model-based
rewards (Short-answer and Fill-in-the-blank), as
shown in Table 5.

KL Divergence Approximation. In original
GRPO, KL divergence approximation can be for-
mulated as Eq. 1:

Drrlmol|mres] =7 —logr — 1,
Trey(als)
mo(als)

ey

where r =

where a denotes the current token and s represents
previous sequence before a, ..y is the reference
model initialized from base model, and 7y is the
policy model being optimized.

In this paper, all GRPO experiments apply an-
other approximation, called k2 (Schulman, 2020),
and can be formulated as Eq. 2:

1
Dya[mg||mres] = 5(10g r)? ?2)
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Question Type Count
True/False 6,958
Multiple-choice 6,734
Short-answer 2,657
Fill-in-the-blank 13,651

Table 5: Distribution of different question types in
GRPO training dataset.

where r is defined the same as in Eq. 1.

A.4 Explanation for LLM-based Evaluation

This work utilizes LLM-based evaluation for all
chart benchmarks, including ChartQA. The tradi-
tional evaluation method for ChartQA, which relies
on string exact matching and numerical calcula-
tions within a relative error range, exhibits several
limitations:

1. Unit Discrepancies: Mismatches occur when
predicted results include units while reference
answers do not (for example, "5" versus "5
meters" or "5" versus "5 million").

Numerical Range Issues: When labels on the
x-axis are numbers (particularly years), the tra-
ditional evaluation method’s 5% error range
is too permissive. For instance, if the cor-
rect answer is 2000, predictions ranging from
1900 to 2100 would be incorrectly marked as
correct.

These limitations make it difficult to accurately
assess the performance of MLLMSs that have not
been specifically trained on similar data distribu-
tions. To address these issues, our experiment em-
ploys LLMs as judges, resulting in more accurate
evaluations. The detailed judge prompt is shown in
Figure 14.

A.5 Evaluation Comparisons Example

We provide comparative examples of multiple mod-
els’ evaluation results on ChartM? to demonstrate
that after Chain-of-Thought Self-Fine-Tuning
(CoT-SFT) with high-quality data, the base model
significantly improves reasoning capabilities in
complex chart comprehension. The examples of
the evaluation results are presented in Figure 7 and
Figure 8.

A.6 Prompt Templates

We present the prompt templates used in this paper.
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Prompt for Data Generation. We utilize LLMs
to transform the key questions into realistic con-
textual narratives and output data generation code
rather than direct data. The prompt is shown in
Figure 9.

Prompt for Visualization Generation. We em-
ploy a step-by-step reasoning approach to improve
code usability and visual presentation. The pro-
cess begins by guiding LLMs through visualization
requirement analysis and developing a detailed so-
lution of visual elements. Using the solutions as
few-shot prompt, we generate and execute visual-
ization code to create chart images. The prompts
are shown in Figure 10 and Figure 11.

Prompt for Q& A Generation. We employ a
two-stage Code-driven approach for Q&A pair con-
struction. The first stage involves question formula-
tion and analytical code synthesis for each question
and its source data. The second stage generates
CoT reasoning and precise answers through code
execution results and the computational process.
The prompts are shown in Figure 12 and Figure 13.

Prompt for Evaluating Models. In the evalua-
tion of ChartM?, we use Qwen-Max as the judge
model, the judge prompt is optimized based on
Reachqa and CharXiv methods, which is shown in
Figure 14.



Major Category

Minor Category

Bar

Single Bar Chart, Grouped Bar Chart, Stacked Bar Chart, Positive-Negative Bar Chart, Lollipop Plot,
Bidirectional Bar Chart, Butterfly Diagram, Range Bar Chart, Waterfall Plot, Candlestick Plot,

Single Histograms, Rectangular Funnel Chart, Box Plot, Error Bars Chart, Bullet Chart, Barbell Chart
Nested Bar Chart, Dumbbell Plot

Line Single Line Chart, Grouped Line Chart, Stacked Line Chart, Slope Graph, Step Chart
Area Single Area Chart, Stacked Area Chart, Bilateral Area Chart, Range Area Chart, Error Bands Chart,
Streamgraph, Density Plot
Pie Single Pie Chart, Multidimensional Pie Chart, Donut Pie Chart, Multilevel Donut Chart, Sunburst Chart
Radar Single Radar Chart, Grouped Radar Chart, Stacked Radar Chart, Single Rose Chart, Grouped Rose Chart,
Stacked Rose Chart
Scatter Scatter Plot, Bubble Plot, Quadrant Plot, Strip Plot, Swarm Plot, Violin Plot
Heatmap Heatmap Plot, Calendar Heatmap, Waffle Chart
Progress Gauge graph, Semi-circular Progress Chart, Bar Progress Chart, Circular Progress Chart
Combination Line-Column Combination Chart, Line-Area Combination Chart, Dual Y-Axis Line Chart,
Dual Y-Axis Bar Chart, Multiple Subplot Bar Chart, Multiple Subplot Area Chart,
Multiple Subplot Line Chart, Multiple Subplot Pie Chart
Table 6: Major and Minor Charts Types.
Major Category Minor Category

Visual Recognition A
Visual Recognition B

Data Extraction

Type Classification, Title Identification, Axis Label Recognition, Legend Identification
Color Identification, Axis Scale Recognition, Chart Element Counting, Chart Element Position
Data Query, Extreme Value Query, Conditional Query

Calculation Calculation, Comparison, Sorting
Data Analysis Correlation Analysis, Anomaly Detection, Inferential Judgment, Trend Analysis
Chart2Markdown Chart To Markdown

Table 7: Major and Minor Categories of Charts.
Education Art Finance Healthcare Information Technology
Environmental Science ~ Social Science Economics Political Science History
Psychology Management Marketing Law Engineering
Physics Chemistry Biology Geography Astronomy
Geology Meteorology Oceanography Agriculture Forestry
Animal Husbandry Fishery Food Science Energy Materials Science
Mechanical Engineering  Electrical Engineering  Civil Engineering  Aerospace Transportation
Architecture Urban Planning Interior Design Industrial Design Fashion Design
Graphic Design Advertising Journalism Public Relations Sports Science
Entertainment Tourism Retail Manufacturing Logistics
Human Resources Corporate Strategy Risk Management Audit & Accounting Tax
Non-profit Management International Relations Foreign Policy Hospitality Supply Chain

Table 8: Chart Domains.
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Bridge Type vs. Accident Rate Box Plot (2013-2022)

Accident Rate

| & g

Question:

order based on their median accident
rates.

5 ] ‘ - ## Arrange the bridge types in ascending
|
k] ‘

Suspension, Beam, Cable-Stayed, Arch, Truss

Suspension Beam Arch Cable-Stayed
Bridge Type

GPT-40:

The bridge types arranged in ascending order
based on their median accident rates are:

1. Suspension

2. Cable-Stayed

3. Arch

4. Beam

5. Truss 6
Claude 3.5 Sonnet:

To arrange the bridge types in ascending order
based on their median accident rates, I‘ll look at
the middle line (median) of each box plot, from
lowest to highest:

1. Suspension

2. Beam

3. Cable-Stayed

4. Arch

5. Truss

So the order from lowest median accident rate
to highest is: Suspension, Beam, Cable-Stayed,

Arch, Truss. Q

Qwen2.5-VL-3B (Base):
Suspension, Cable-Stayed, Beam, Truss, Arch °

Qwen2.5-VL-3B + CoT-SFT:

““thinking

#### Step 1: Identify the Median Accident Rates for Each Bridge
Type

From the box plot, we can visually estimate the median
accident rates for each bridge type:

- Suspension: The median is approximately 2.45.

- Beam: The median is approximately 3.08.

- Arch: The median is approximately 3.55.

- Cable-Stayed: The median is approximately 3.32.

- Truss: The median is approximately 3.82.

#it# Step 2: Compare the Median Accident Rates

We compare the estimated median accident rates to determine
the order:

- Suspension (2.45) < Beam (3.08) < Cable-Stayed (3.32) < Arch
(3.55) < Truss (3.82)

### Step 3: Arrange the Bridge Types in Ascending Order
Based on the comparison, the bridge types in ascending order
of median accident rates are:

Suspension, Beam, Cable-Stayed, Arch, Truss

Thus, the final answer is:

Suspension, Beam, Cable-Stayed, Arch, Truss Q

Figure 7: A Case Study of ChartM? Evaluation Results. While both GPT-40 and the base model provided incorrect
answers, the model trained with CoT-SFT successfully analyze the medians across categories during its reasoning

process and produce the correct ranking.
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Trend of Total Energy Consumption - 2000 to 2020

Energy Consumption Trends Analysis
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Question: From 2000 to 2020, the contribution of Renewable energy to the total energy consumption
increase is _41 %. (Round to the nearest whole number)

GPT-40:

To calculate the percentage increase in the contribution of renewable
energy to the total energy consumption from 2000 to 2020, we need to
determine the renewable energy consumption values for these years
from the second graph.

In 2000, the renewable energy consumption is approximately 500 kWh.
In 2020, the renewable energy consumption is approximately 1000
kWh.

The increase in renewable energy consumption from 2000 to 2020 is:
1000 kWh - 500 kWh = 500 kWh

To find the percentage increase, we use the formula:
\[\text{Percentage Increase} = \left( \frac{\text{Increase}}{\text{Initial
Value}} \right) \times 100\]

Substituting the values:

\[\text{Percentage Increase} = \left( \frac{500}{500} \right) \times 100
=100\%\]

Therefore, the contribution of renewable energy to the total energy
consumption increased by 100% from 2000 to 2020. e

Claude 3.5 Sonnet:

To calculate the contribution of Renewable energy to the total
energy consumption increase from 2000 to 2020, we need to:
1. Calculate the total increase in energy consumption

2. Calculate the increase in Renewable energy consumption

3. Divide the Renewable increase by the total increase and convert
to a percentage

From the first graph:

Total energy consumption in 2000: 10,000 kWh

Total energy consumption in 2020: 12,300 kWh

Total increase: 12,300 - 10,000 = 2,300 kWh

From the second graph:

Renewable energy in 2000: about 500 units

Renewable energy in 2020: about 1500 units

Renewable increase: 1500 - 500 = 1000 units

Contribution of Renewable energy:

(1000 / 2300) * 100 = 43.48%

Rounding to the nearest whole number: 43%

Therefore, the contribution of Renewable energy to the total
energy consumption increase from 2000 to 2020 is 43%.

(Within 5% error range)

o

Qwen2.5-VL-3B (Base):
To determine the contribution of Renewable energy to the total energy
consumption increase from 2000 to 2020, we need to follow these steps:
1. **Calculate the total energy consumption in 2000 and 2020:**

- Total energy consumption in 2000: 10,000 kWh

- Total energy consumption in 2020: 12,300 kWh
2. **Calculate the increase in total energy consumption:** ...
3. **Determine the contribution of Renewable energy to the total
energy consumption increase:**

- Total energy consumption in 2000: 10,000 kWh

- Total energy consumption in 2020: 12,300 kWh

- Increase in total energy consumption: 2,300 kWh
4. **Assume the contribution of Renewable energy to the total energy
consumption increase:**
\[R = \frac{\text{Increase in total energy consumption}}{\text{Total
energy consumption in 2000}} \times 100\]

\[R = \frac{2,300 \text{ kWh}}{10,000 \text{ kWh}} \times 100 = 23\%\]
Therefore, the contribution of Renewable energy to the total energ
consumption increase from 2000 to 2020 is **23%**. g

Qwen2.5-VL-3B + CoT-SFT:

“thinking

Step 1: From Chart 1, get the total energy consumption in 2000 and
2020:

-2000: 10,000 kWh

-2020: 12,300 kWh

Step 2: From Chart 2, get the Renewable energy consumption in 2000
and 2020:

-2000: 500 kWh

-2020: 1450 kWh

Step 3: Calculate the increase in total energy consumption:

- Increase = 12,300 - 10,000 = 2,300 kWh

Step 4: Calculate the increase in Renewable energy consumption:

- Increase = 1450 - 500 = 950 kWh

Step 5: Calculate the contribution of Renewable energy to the total
energy consumption increase:

- Contribution = (950 / 2,300) * 100 = 41.30%

Step 6: Round to the nearest whole number:

- Contribution = 41% Q

41

Figure 8: A Case Study of ChartM? Evaluation Results for Multi-Chart Scenarios. Although individual chart
elements are straightforward, GPT demonstrates limitations in cross-graph analysis. Specifically, when examining
renewable energy growth from 2000 to 2020, GPT fails to properly reference the first graph. The base model
incorrectly substitutes total energy consumption data for renewable energy consumption. In comparison, the model
trained with CoT-SFT correctly identifies that renewable energy levels in 2020 are below 1500 units, producing a
prediction that more closely aligns with the standard answer compared to Claude 3.5 Sonnet.
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You are a senior business analyst and data visualization expert. Please generate high-quality data for chart creation based
on the following detailed requirements. The generated data should solve a key question through chart visualization. You
need to first conceive a realistic background story based on the specified chart type, business domain, theme, and other
conditions, then provide the data generation code.

## Basic Information Requirements
1. Key Question: {key_question}
2. Domain: {domain}

## Chart Type Information
Here is the specific information of chart type: {description}

## Data Content Requirements

1. Data Description:

- Data background overview (time range, data source, etc.)

- Data distribution and overall trend analysis

- Key feature points explanation (maximum, minimum, turning points, etc.)

- Comparative analysis between data

2. Chart Title

- Title should be concise and summarize core information

- Include key dimensional information (time, location, object, etc.)

- For stacked charts, specify chart type in the title

3. Original Data Generation Code

- Python code, import necessary libraries like import pandas as pd and import numpy as np
- Can use random numbers and mathematical distribution functions to generate data
- Save all data as data.csv file, first row must be column names

- Ensure generated values retain maximum three significant digits

- Ensure code is executable correctly

## Data Generation Rules

1. Data Structure Requirements:

- Ensure data structure fully complies with technical requirements of specified chart type

- Data scale should be reasonably set while maintaining chart clarity and readability

- All data items must contain complete label information

2. Data Quality Requirements:

- Choose appropriate data distribution and trends based on actual business domain characteristics
- Unless specifically required in key question, legends should not exceed 5

- Value ranges must be reasonable and business meaningful

- If including time series, ensure consistency of time intervals

- Can include 1-2 meaningful outliers, but proportion should not exceed 10% of total data

3. Business Background Requirements:

- Provide detailed data collection background (time range, geographic range, statistical criteria, etc.)
- Fictional details need to maintain internal consistency

- All value changes should be explainable by business logic

## Common Data Distribution References
Normal distribution, Poisson distribution, Uniform distribution, Exponential distribution, Skewed distribution, Multi-
modal distribution, Long-tail distribution, Bimodal distribution, Other distributions,

## Common Data Trend References
Linear trends(continuous rise, continuous fall, stable), Cyclical trends, Compound trends, Mutation patterns, Fluctuation
patterns, S-curve, Other trends,

## Data Generation Code Example
{example_data}

## Output Format

Output all content in English.

First provide the thinking process, output in a code block with "thinking" header. Then output the result in JSON format
without any other content, including the following fields:

{ "description": "Data description", "title": "Chart title", "data_code": "Original data generation code" }

Figure 9: Prompt template for data generation.
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You are a data visualization expert responsible for analyzing visualization requirements and providing detailed chart
design recommendations. Please analyze according to the following steps based on user requirements and uploaded data.

Phase 1: Requirements Analysis, consider the following questions:
1. Data Analysis

- What are the key characteristics of the provided data?

- Which relationships or patterns need to be highlighted?

2. Background Understanding

- What is the industry background and target audience?

- What insights need to be conveyed?

- What are common visualization methods in this field?

3. Visualization Strategy, based on data characteristics and business context:
- Which chart types are most effective?

- What alternatives were considered and why were they rejected?

- If needed, how should multiple elements be composed?

Phase 2: Visualization Design, develop visualization solutions based on above results.

1. Detailed Design Specifications for implementation in Python visualization libraries like Matplotlib or plotly. Pay
attention to chart aesthetics:

- Chart type and layout [User selected chart type: {target_chart_type}, do not consider other types]

- Color scheme and style

- Axis configuration and scale

- Labels, titles and annotations [Note: All text content (titles, legends, axis labels etc.) should be in English]

- Legend position and format

- Gridlines and other reference elements

- Size and aspect ratio

- Other visual elements

Note: All above content must be designed only when relevant data columns exist. Do not generate plotting requirements
without data conditions!

Below are the user data characteristics and requirements:

## User Data Start

Title: {file_name}

Goal: {seed_description}

data.head(): {data_head}

data.describe(): {data_describe}
data.describe(include="object’): {data_describe_object}
## User Data End

Now, please begin analysis and output a JSON string in a “‘json code block containing these two fields (both plain text,
add line breaks between points):

- ’analysis’: Provide thought process for requirements analysis phase

- "guidance’: Provide visualization design phase solutions (note: no actual visualization code needed) Do not output
anything besides JSON. Keep results concise and refined without excessive verbiage.

Figure 10: Prompt template for the first stage in visualization generation.
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You are a data visualization expert with a Python visualization code generation task. You need to first read the example
code, then implement visualization code for user data based on their requirements.

## Example Start

Target Chart Type: {target_chart_type} {visual_definition}
Sample Data Format: {sample_data_head}

Sample Plot Code: {sample_code}

## Example End

Below are the user data characteristics and requirements:
## User Data Start

Title: {file_name}

Goal: {seed_description}

data.head(): {data_head}

data.describe(): {data_describe}
data.describe(include="object’): {data_describe_object}
## User Data End

Actual Visualization Requirements: {vis_guidance}

All text content in charts (titles, legends, axis labels etc.) should be in English.

Now, please reference the example and generate visualization code meeting the requirements based on actual user data
situation and needs.

Specific requirements:

1. User data is loaded into memory in ’data’ variable as pandas.DataFrame. Do not output any data reading/declaration
code.

2. Based on example code, try to meet actual visualization requirements but avoid complex code modifications to prevent
errors. For long text, avoid overlapping text in x-axis, legend etc.

3. Generate two Python functions: *def preprocess(data):” for plot data preprocessing, input is raw dataframe, output is
preprocessed dataframe; *def plot(data):” for drawing corresponding charts. Only generate one final chart (can have
multiple subplots).

4. preprocess function needs to be called in plot function. Only generate function bodies, no need for plot function
calling code.

5. Complete all plot data preprocessing in preprocess function (including decimal places), no data processing in plot
function!

6. Save result to file named ’plot.png’.

7. Most importantly, ensure code can execute correctly, so keep plotting function parameters consistent with example as
much as possible. Generate all code in one “‘python code block.

Figure 11: Prompt template for the second stage in visualization generation.
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You are a senior business analyst with extensive experience in data analysis and visualization. Your task is to generate
a high-quality analytical question based on chart visualization code and data, and write Python code to calculate the
answer.

## Data Description: {chart_description}

## Visualization Code: {code}

## Data Path: {data_path}

## Data Format Example: {data}

## Task Type
Please strictly generate questions according to the following task type requirement:
{task}

## Question Generation Requirements

1. Ensure questions have clear business analysis and practical application value

2. Prioritize generating questions that require multiple calculation steps or statistical analysis

3. Note that question solvers can only see the chart image, not the original chart code and data values

4. While meeting task type requirements, generate appropriately more complex and challenging questions, such as:
- Requiring comprehensive information from multiple dimensions (>3)

- Including multiple steps of reasoning process

- Requiring multiple mathematical operations or complex statistical analysis

- Answers that need in-depth analysis to derive

5. For counting tasks, do not generate questions with answers greater than 20

## Code Requirements

1. Use libraries like pandas and numpy for data processing

2. Code must include clear comments explaining the purpose of each step

3. Ensure calculation results are accurate and reliable

4. Only use the provided original data

5. Output necessary intermediate calculation results

6. Code style should be standardized with meaningful variable names

7. For multiple-choice questions, only provide the answer, no need to judge which option is correct

## Question Types

1. Multiple-choice: Question includes ABCD four options, answer is a single uppercase letter (A/B/C/D), other options
must be incorrect

2. True/False: Question is in interrogative form, answer is Yes or No

3. Fill-in-the-blank: Question is in interrogative or fill-in-the-blank form, answer is a specific number, word, or phrase
4. Short-answer: Question is in interrogative form, answer is a complete sentence not exceeding 50 words

## Output Format

“‘thinking

First provide thinking process, such as explaining what analysis angles and questions can be generated for this task type
requirement based on the chart

113

“json
{ "task_type": "Task type", "question_type": "Question type", "question": "Question text", "options": "Option text
(string, empty for non-multiple-choice questions)” }

e

“‘python

# Import required libraries

import pandas as pd

import numpy as np

# Loading Data from csv file
data_file_path = "data_path"

df = pd.read_csv(data_file_path)

# Data processing and calculation code

# Print intermediate results
print("Average of metric a:", average_a)

# Print final results
print("Final result:", result)

113

Figure 12: Prompt template for the first stage in Q&A generation.
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The code execution result is:
{code_output}

Please use this as data support to provide detailed reasoning analysis for the question and generate the final answer.
Specifically, for multiple-choice questions, if you believe all options are incorrect or multiple options are correct, please
modify the options to ensure: the final answer is completely correct, and all other options except the answer are incorrect.

## Generation Requirements

1. Please fully trust the correctness of code execution results.

2. All reasoning processes should be expressed as analysis and calculation of visual information from the chart. Don’t
mention that you referenced code or output results; instead, present them as if they were results you calculated yourself
based on visual chart information.

3. Provide necessary reasoning steps without omitting similar processes. Calculation processes should include formulas
and answers.

4. All reasoning processes should be fluent and use concise descriptions without verbosity.

5. Finally, provide a concise and clear answer that meets the answer format requirements for the question type.

6. No code language snippets or color coding should appear.

## Output Format
‘54json
{ "task_type": "Task type", "question_type": "Question type", "question": "Question text", "options": "Option text",

"explanation": "Detailed step-by-step reasoning process", "answer": "Final answer" }

1113

## Example Start
{qa_example}
## Example End

Figure 13: Prompt template for the second stage in Q&A generation.

Compare the ground truth with the prediction from Al model and determine if the prediction is correct. The question is
about an image, which we have not given here. You need to determine whether the model’s prediction is consistent with
the ground truth. No points will be awarded for wrong answers, over answers or under answers. The reasoning process
in the prediction does not need to be considered too much, you only need to determine if the final answer is consistent.
There are times when the answer may have a different form of expression and some variation is acceptable.

Notice:

1. The provided ground truth is absolutely correct and should be fully trusted.

2. Different expressions of units are acceptable. (e.g., "5" vs "5 meters" and "5" vs "5 million" are equivalent if they
refer to the same measurement)

3. Numbers with/without "%" are equivalent (e.g., "5%" vs "5" are equivalent)

4. After removing units or "%", if both prediction and ground truth are numbers, an error margin within 5% error is
acceptable.

5. If the ground truth is provided as multiple arrays, prediction matching any one of them will be considered correct.
6. When the question asks about years: The prediction must match exactly with the ground truth.

## Question: {question}

## Ground Truth: {answer}

## Prediction: {prediction}

Now, let’s take a analysis and then provide your judgement. Your response must follow the format below:
Analysis: (analyze the correctness briefly)

Correctness: (Yes or No)

Figure 14: Prompt template for LLM judge model.
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