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Abstract

In multimodal large language models (MLLMs), the length of input visual tokens
is often significantly greater than that of their textual counterparts, leading to a high
inference cost. Many works aim to address this issue by removing redundant visual
tokens. However, current approaches either rely on attention-based pruning, which
retains numerous duplicate tokens, or use similarity-based pruning, overlooking
the instruction relevance, consequently causing suboptimal performance. In this
paper, we go beyond attention or similarity by proposing a novel visual token
pruning method named CDPruner, which maximizes the conditional diversity of
retained tokens. We first define the conditional similarity between visual tokens
conditioned on the instruction, and then reformulate the token pruning problem
with determinantal point process (DPP) to maximize the conditional diversity of
the selected subset. The proposed CDPruner is training-free and model-agnostic,
allowing easy application to various MLLMs. Extensive experiments across diverse
MLLMs show that CDPruner establishes new state-of-the-art on various vision-
language benchmarks. By maximizing conditional diversity through DPP, the
selected subset better represents the input images while closely adhering to user
instructions, thereby preserving strong performance even with high reduction ratios.
When applied to LLaVA, CDPruner reduces FLOPs by 95% and CUDA latency
by 78%, while maintaining 94% of the original accuracy. Our code is available at
https://github.com/Theia-4869/CDPruner.

1 Introduction

Benefiting from the remarkable success of large language models (LLMs) [Touvron et al., 2023a,b,
Jiang et al., 2023, Bai et al., 2023, Yang et al., 2024a, Cai et al., 2024b], multimodal large language
models (MLLMs) [Liu et al., 2023, 2024a, Wang et al., 2024, Chen et al., 2024d,c, An et al., 2025]
have extended their powerful reasoning capabilities to more modalities, such as images or videos. To
fully leverage the strengths of LLMs, MLLMs typically encode visual inputs into a form that language
models can understand, known as tokens. Within the input sequence, the length of visual tokens
often numbers in the hundreds, exceeding their textual counterparts by tens of times. And in video
streams [Zhang et al., 2023, Lin et al., 2023, Zhang et al., 2024c] or high-resolution [Liu et al., 2024b,
Luo et al., 2024, Guo et al., 2024] scenarios, this number can grow even larger. Since attention-based
models [Vaswani et al., 2017] exhibit computational complexity that scales quadratically with token
length, an excessive number of visual tokens makes the use of MLLMs costly and impractical for
low-latency or resource-constrained applications. [Team et al., 2024, Hu et al., 2024a].
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Q: What 

brand is the 

restaurant?

A close-up photo of a meal at ICHIRAN. The chashu 

ramen bowl with a spoon is placed in the center. The 

ramen is seasoned with chili sauce, chopped scallions, 

and served with two pieces of chashu. Chopsticks are 

placed to the right of the bowl, still in their paper wrap, 

not yet opened. The ramen is also served with nori on 

the left. On top, from left to right, the following sides 

are served: a bowl of orange spice (possibly garlic 

sauce), a plate of smoke-flavored stewed pork with 

chopped scallions, and a cup of matcha green tea.
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Q: Is the 

ramen spicy?

Q: What is 

special about 

the spoon?

Figure 1: Comparison of different token pruning methods. Attention-based methods retain
numerous duplicate tokens, failing to achieve effective visual token compression. Similarity-based
methods neglect user instructions, always pruning the same tokens and paying insufficient attention to
regions most relevant to the question. Our CDPruner considers the conditional diversity of the selected
subset, dynamically adjusting pruning according to the user instructions and retaining maximal visual
information. In this example, CDPruner successfully preserves tokens related to crucial details, such
as the “ICHIRAN” logo on the bowl and chopsticks, the chili pepper on the ramen, and the anti-slip
design on the spoon handle, while both alternative methods fail.

Abundant efforts have been made to reduce the inference cost of MLLMs by pruning visual tokens,
and existing methods can be roughly divided into two categories. The first is to identify visual
tokens with high attention scores as important and discard those deemed less critical [Chen et al.,
2024a, Xing et al., 2024, Zhang et al., 2024b]. The second is to remove redundant parts based on
feature similarity between visual tokens [Wen et al., 2025b, Alvar et al., 2025, Jeddi et al., 2025].
As illustrated in Figure 1, both approaches suffer from inherent weaknesses, leading to suboptimal
performance after pruning. Attention-based methods only consider the importance of visual tokens,
resulting in a large number of duplicate tokens being retained, while similarity-based methods neglect
user instructions, failing to achieve dynamic pruning in alignment with the current question.

To address these issues, we propose CDPruner, a plug-and-play method for MLLM inference ac-
celeration by maximizing the conditional diversity of the selected subset. Conditional diversity
simultaneously considers feature similarity and instruction relevance, maintaining considerable per-
formance at high reduction ratios without the need for additional training. Specifically, we first
calculate pairwise similarity between visual tokens conditioned on their relevance to the input instruc-
tion. To obtain the retained tokens, we reformulate the token pruning problem with determinantal
point process (DPP), which is widely used for modeling list-wise diversity based on pairwise similar-
ity [Kulesza et al., 2012, Chen et al., 2018, Celis et al., 2018, Li et al., 2024c, Sun et al., 2025]. Direct
MAP inference for DPP is NP-hard. To address this, we adopt a greedy algorithm with polynomial-
time complexity that guarantees a (1− 1/e) approximation. By leveraging Cholesky decomposition,
the additional latency introduced by solving the DPP remains within the limits required for real-time
applications. In practice, the computational complexity can be further reduced through techniques
such as sliding-window [Chen et al., 2018] or Markov chain [Kang, 2013] approximations.

As a simple yet effective solution, CDPruner offers several practical advantages. First, in contrast
to attention-based methods [Chen et al., 2024a, Xing et al., 2024, Zhang et al., 2024b], CDPruner
does not require access to attention scores, which ensures its complete compatibility with efficient
attention acceleration implementations [Dao et al., 2022]. Second, CDPruner does not depend on a
specific visual encoder or language model, and can be readily implemented across any token-based
MLLM [Li et al., 2024a, Bai et al., 2025, Zhu et al., 2025]. Extensive experiments across various
MLLMs demonstrate the effectiveness and efficiency of CDPruner. When applied to LLaVA-NeXT-
7B, it reduces FLOPs by 95%, CUDA latency by 78%, and GPU memory by 17%, while maintaining
94% of the original performance in a training-free manner.
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In summary, the contributions of our work are three-fold:

1. We introduce CDPruner, a plug-and-play and model-agnostic solution for visual token
pruning that maximizes conditional diversity.

2. We reformulate the token pruning problem with determinantal point process, which facilitates
dynamic pruning by jointly considering feature similarity and instruction relevance.

3. We conduct extensive experiments on various vision-language benchmarks, demonstrating
that CDPruner consistently achieves state-of-the-art across different reduction ratios.

2 Related work

Multimodal large language models. The remarkable achievements of large language models
(LLMs) [Touvron et al., 2023a,b, Jiang et al., 2023, Bai et al., 2023, Yang et al., 2024a, Cai et al.,
2024b] have lead to a growing trend of extending their powerful reasoning capabilities to other
modalities, eventually forming multimodal large language models (MLLMs) [Liu et al., 2023, Li
et al., 2024a, Wang et al., 2024, Bai et al., 2025, Chen et al., 2024c, Zhu et al., 2025, Liu et al.,
2024c]. These models typically encode visual inputs as tokens to fully leverage the capabilities
of LLMs. However, the sparsity of visual signals results in a significantly larger number of visual
tokens compared to their textual counterparts. For example, LLaVA-1.5 [Liu et al., 2024a] converts
a 336×336 image into 576 tokens, while its high-resolution variant, LLaVA-NeXT [Liu et al.,
2024b], generates 2,880 tokens from an image with twice the resolution. In video understanding
scenarios, LongVA [Zhang et al., 2024a] transforms 2,000 frames into over 200K visual tokens,
and LongVILA [Chen et al., 2024b] can even handle up to 6,000 frames and produce an ultra-long
input sequence of over 1M visual tokens, leading to enormous computational overhead. Therefore,
achieving more efficient inference for MLLMs is becoming increasingly critical.

Visual token reduction. Reducing the number of input visual tokens is an effective way for MLLM
inference acceleration. Some works attempt to compress visual tokens via vision-text pre-fusion [Li
et al., 2024d, Hu et al., 2024b, Cai et al., 2024a, Zhang et al., 2025b], but these approaches require
architectural modifications and additional training, thereby increasing computational costs. Other
works adopt a training-free approach by removing redundant visual tokens during inference [Liu
et al., 2024d, Yang et al., 2025, Cao et al., 2025, Ma et al., 2025], known as token pruning. These
methods can be broadly categorized into two groups.

The first group leverages text-visual attentions within the language model to assess the importance of
visual tokens [Chen et al., 2024a, Ye et al., 2025, Xing et al., 2024, Zhang et al., 2024b]. However,
as pointed out by Zhang et al. [2025a] and Wen et al. [2025a], such methods suffer from attention
shift, which compromises pruning accuracy. Moreover, the reliance on attention scores makes them
incompatible with efficient attention implementations like FlashAttention [Dao et al., 2022]. The
second group avoids these issues by pruning before the language model [Shang et al., 2024, Yang
et al., 2024b, Song et al., 2024, Zhang et al., 2025a]. Nonetheless, these methods rely on specific
visual encoder architectures and thus cannot be applied across different MLLMs. The third group
directly prunes tokens based on feature similarity among visual tokens [Wen et al., 2025b, Alvar et al.,
2025, Jeddi et al., 2025]. However, like the second group, they fail to consider the relevance between
visual tokens and user instructions during pruning, leading to suboptimal performance. In this work,
our CDPruner addresses all these challenges by jointly modeling feature similarity and instruction
relevance through DPP, thereby ensuring both the diversity and quality of the retained token subset.

Determinantal point process. Determinantal Point Process (DPP) was first introduced to describe
the distribution of fermion systems in thermal equilibrium [Macchi, 1975], where no two fermions
can occupy the same quantum state, resulting in an “anti-bunching” effect that can be interpreted
as diversity. Later, DPPs have been widely adopted in list-wise diversity modeling across various
domains [Chen et al., 2018, Celis et al., 2018, Li et al., 2024c, Sun et al., 2025]. Unlike Max-
Min Diversity Problem (MMDP) [Porumbel et al., 2011], which also aims to maximize diversity,
DPP emphasizes global diversity and typically yields more balanced and representative subset
selections [Kulesza et al., 2012]. Traditional DPP focuses solely on feature similarity among samples.
In this work, we extend this formulation by incorporating instruction relevance as a condition,
enabling a unified consideration for superior visual token pruning performance in MLLMs.
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Figure 2: Overview of CDPruner. We first calculate the similarity between visual tokens conditioned
on their relevance to the current instruction. Then, CDPruner uses a DPP to select the subset to keep.
As a training-free and model-agnostic method, it ensures both the diversity and quality of the selected
token subset, significantly reducing computational cost while maintaining considerable performance.

3 Method

In this section, we first review visual token pruning in MLLMs in Section 3.1. Then, we model the
feature similarity among visual tokens and their relevance to user instructions in Section 3.2 and
Section 3.3. Finally, we present our CDPruner in Section 3.4, which maximizes the conditional
diversity to obtain the optimal token subset. The overall design of CDPruner is shown in Figure 2.

3.1 Visual token pruning

Existing MLLMs [Liu et al., 2024a, Wang et al., 2024, Chen et al., 2024c] typically consist of three
core components: a vision encoder fv , a multimodal projector g, and an LLM fϕ. The vision encoder
encodes the input image Xv into a sequence of visual tokens Hv = g(fv(Xv)) ∈ Rn×d, whose
length is significantly greater than that of their textual counterparts Hq . Visual token pruning aims to
reduce the inference cost of MLLMs by decreasing the number of visual tokens:

H̃v
∗
= argmin

H̃v⊆Hv,|H̃v|=m

L
(
fϕ([H̃v;Hq]), fϕ([Hv;Hq])

)
. (1)

Here, L measures the discrepancy between the model outputs before and after visual token pruning,
and m is the number of visual tokens retained (m < n). Previous methods mainly rely on attention
scores for pruning [Chen et al., 2024a, Xing et al., 2024, Zhang et al., 2024b, Shang et al., 2024,
Yang et al., 2024b], which often leads to significant redundancy. Alvar et al. [2025] formulates the
subset selection problem as a Max-Min Diversity Problem (MMDP) [Porumbel et al., 2011], but this
approach overly focuses on extreme cases while neglecting global diversity.

3.2 DPP with token similarity

DPP was initially introduced to model fermion repulsion in quantum physics [Macchi, 1975], and
has been widely applied in list-wise diversity modeling [Chen et al., 2018, Celis et al., 2018, Sun
et al., 2025]. Formally, a DPP P on a discrete set Z = {1, 2, . . . , n} is a probability measure defined
on the power set 2Z . When P gives nonzero probability to the empty set, there exists a positive
semi-definite (PSD) kernel matrix L ∈ Rn×n indexed by elements of Z, such that for every subset
S ⊆ Z, the probability of sampling S is:

P(S) =
det (LS)

det (L+ I)
∝ det (LS) , (2)

where LS is the principal submatrix of L corresponding to the subset S.

In the context of token pruning, we leverage DPP to model the diversity of the retained visual token
subset. Given a sequence of visual tokens Hv , the kernel matrix L is defined by the pairwise cosine
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Is there a bird in the image? Is there a bottle in the image? Is there a banana in the image? Is there a knife in the image?

Figure 3: Visualization of relevance scores. We compute the relevance scores for several samples
from the POPE benchmark using LLaVA-1.5-7B, with the instruction following the template: “Is
there a {object} in the image?” Red indicates high relevance, while blue indicates low relevance.

similarity of visual features:

Lij =
Hi

v ·Hj
v

∥Hi
v∥ · ∥H

j
v∥

. (3)

According to the DPP sampling process, the optimal subset H̃v
∗

is given by:

S∗ = argmax
S⊆Z,|S|=m

det (LS) , H̃v
∗
=

{
Hi

v | i ∈ S∗} . (4)

3.3 Instruction relevance

The above only considers the feature similarity among visual tokens, resulting in the same pruning
result regardless of user instructions. We further introduce instruction relevance as a condition to
achieve dynamic pruning. Given the visual embeddings Hv ∈ Rn×d extracted from the input image
and the text embeddings H̄q ∈ Rd derived from the user instruction, we calculate the cosine similarity
to measure the relevance r ∈ Rn between each visual token and the instruction:

ri =
Hi

v · H̄q

∥Hi
v∥ · ∥H̄q∥

. (5)

For MLLMs [Liu et al., 2023, 2024b, Li et al., 2024a] that employ visual encoders paired with
corresponding text encoders (e.g., CLIP [Radford et al., 2021]), we use features extracted from both
as visual and text embeddings, respectively. For MLLMs [Bai et al., 2025, Zhu et al., 2025] only
contain dedicated visual encoders, we instead use the output of the multimodal projector as the visual
embeddings, and take the average of all token embeddings corresponding to the instruction from the
language model as the text embedding. For simplicity, we denote the visual and text embeddings
obtained through both ways as Hv and H̄q . Figure 3 shows the relevance scores derived through the
LLaVA-1.5-7B [Liu et al., 2024a] for several samples from the POPE benchmark [Li et al., 2023].

Furthermore, we apply min-max normalization to the obtained relevance scores to ensure the values
are within the range of 0 to 1:

r̃ =
r −min(r)

max(r)−min(r)
. (6)

3.4 CDPruner

Finally, we integrate feature similarity and instruction relevance for visual token pruning, leading to
our proposed CDPruner, as shown in Figure 2. Specifically, we modulate the original kernel matrix
with the relevance scores to obtain a new conditional kernel matrix:

L̃ = diag (r̃) ·L · diag (r̃) . (7)

The updated log-probability of the subset S for DPP is:

log det
(
L̃S

)
=

∑
i∈S

log
(
r̃2i

)
+ log det (LS) . (8)
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Table 1: Performance comparison of different pruning methods on LLaVA-1.5-7B. Here, Acc.
denotes the average performance across 10 benchmarks, Rel. represents the average percentage of per-
formance maintained. Attention-based methods are shown with red background, attention&similarity-
based methods with green background, and similarity-based methods with blue background.

Method VQAV2 GQA VizWiz SQAIMG VQAText POPE MME MMBEN MMBCN MMVet Acc. Rel.
Upper Bound, All 576 Tokens (100%)

LLaVA-1.5-7B 78.5 61.9 50.1 69.5 58.2 85.9 1506.5 64.7 58.1 31.3 63.4 100.0%
Retain 128 Tokens (↓ 77.8%)

FastV(ECCV24) 71.0 54.0 51.9 69.2 56.4 68.2 1368.9 63.0 55.9 27.0 58.5 92.8%
PDrop(CVPR25) 74.3 57.1 49.4 70.1 56.7 77.5 1444.1 62.3 55.3 27.6 60.3 95.0%
SparseVLM(ICML25) 75.1 57.3 49.7 69.0 56.3 83.1 1399.3 62.6 56.9 29.7 61.0 96.3%
PruMerge+(2024.05) 75.0 58.2 53.7 69.1 54.0 83.1 1408.1 61.8 55.8 30.4 61.2 96.8%
TRIM(COLING25) 75.4 58.4 51.6 68.6 52.2 85.3 1413.4 63.0 52.3 29.9 60.7 95.8%
VisionZip(CVPR25) 75.6 57.6 51.6 68.7 56.9 83.3 1436.9 62.1 57.0 31.6 61.6 97.6%
DART(2025.02) 74.7 57.9 52.8 69.1 56.3 80.4 1408.7 60.7 57.3 30.9 61.1 96.9%
DivPrune(CVPR25) 76.0 59.4 52.8 68.6 55.9 87.0 1405.1 61.5 54.8 30.6 61.7 97.5%
CDPruner(Ours) 76.6 59.9 52.8 69.0 56.2 87.7 1431.4 63.1 55.0 32.8 62.5 99.0%

Retain 64 Tokens (↓ 88.9%)
FastV(ECCV24) 55.9 46.0 49.1 70.1 51.6 35.5 973.5 50.1 42.1 18.9 46.8 74.9%
PDrop(CVPR25) 56.3 46.1 46.3 68.8 49.2 40.8 982.2 48.0 36.6 17.7 45.9 72.9%
SparseVLM(ICML25) 66.9 52.0 49.4 69.2 52.1 69.7 1190.4 58.3 49.6 24.4 55.1 87.1%
PruMerge+(2024.05) 71.3 55.4 53.7 69.5 52.0 75.7 1316.8 59.6 52.1 28.0 58.3 92.4%
TRIM(COLING25) 72.4 56.6 51.1 69.0 49.7 85.9 1350.9 60.9 48.2 24.8 58.6 91.6%
VisionZip(CVPR25) 72.4 55.1 52.9 69.0 55.5 77.0 1365.2 60.1 55.4 29.4 59.5 94.4%
DART(2025.02) 71.3 54.7 53.5 69.3 54.7 73.8 1365.1 59.5 54.0 26.5 58.6 92.6%
DivPrune(CVPR25) 74.1 57.5 53.6 68.0 54.5 85.5 1334.7 60.1 52.3 28.1 60.0 94.7%
CDPruner(Ours) 75.4 58.6 53.4 68.1 55.3 87.5 1415.1 61.1 53.2 30.5 61.4 97.0%

Retain 32 Tokens (↓ 94.4%)
PruMerge+(2024.05) 65.6 52.9 53.5 67.9 49.2 66.7 1236.6 55.1 45.9 24.7 54.3 86.1%
TRIM(COLING25) 68.6 54.5 50.7 68.1 47.6 84.9 1251.8 57.7 40.1 20.5 55.5 86.2%
VisionZip(CVPR25) 67.1 51.8 52.4 69.1 53.1 69.4 1251.2 57.0 50.3 25.3 55.8 88.4%
DART(2025.02) 67.1 52.9 52.5 69.3 52.2 69.1 1273.3 58.5 50.0 25.0 56.0 88.6%
DivPrune(CVPR25) 71.2 54.9 53.3 68.6 52.9 81.5 1284.9 57.6 49.1 26.3 58.0 91.3%
CDPruner(Ours) 73.6 57.0 53.1 69.5 53.2 87.9 1373.0 59.6 49.6 27.8 60.0 94.3%

We then obtain the optimal subset via MAP inference. Although MAP inference for DPP is NP-
hard, there exists a greedy algorithm with polynomial-time complexity that guarantees a (1− 1/e)
approximation [Chen et al., 2018]. By using Cholesky decomposition, the overall time complexity
can be reduced to O(nm2). The additional latency is negligible when m ≪ n, with less than 10ms
per sample. The pseudocode for algorithm implementation is provided in the technical appendix.

4 Experiments

4.1 Experimental setup

Model architectures. We apply CDPruner to various MLLM architectures, including the LLaVA
series such as LLaVA-1.5 [Liu et al., 2024a] for image understanding, LLaVA-NeXT [Liu et al.,
2024b] for high-resolution inputs, and LLaVA-Video [Zhang et al., 2024c] for video understanding,
as well as the current state-of-the-art open-source model Qwen2.5-VL [Bai et al., 2025]. Additional
results on more model architectures are provided in the technical appendix.

Evaluation benchmarks. We evaluate our method on 14 image-based multimodal benchmarks,
including 10 general VQA tasks such as VQAv2 [Goyal et al., 2017], GQA [Hudson and Manning,
2019], VizWiz [Gurari et al., 2018], ScienceQA-IMG [Lu et al., 2022], HallBench [Guan et al., 2024],
POPE [Li et al., 2023], MME [Fu et al., 2024a], MMBench [Liu et al., 2025], MMBench-CN [Liu
et al., 2025] and MM-Vet [Yu et al., 2023], 4 text-oriented VQA tasks such as TextVQA [Singh
et al., 2019], ChartQA [Masry et al., 2022], AI2D [Kembhavi et al., 2016] and OCRBench [Liu et al.,
2024e], and 1 multi-turn dialog task MMDU [Liu et al., 2024f]. We also conduct experiments on 4
widely-used video understanding benchmarks, including MLVU [Zhou et al., 2024], MVBench [Li
et al., 2024b], LongVideoBench [Wu et al., 2024] and Video-MME [Fu et al., 2024b]. All experiments
on these benchmarks follow the default settings and evaluation metrics. Detailed descriptions of each
task are provided in the technical appendix.

Comparison methods. We choose several recent works of different types as comparsion methods, in-
cluding attention-based methods like FastV [Chen et al., 2024a], PyramidDrop [Xing et al., 2024] and
SparseVLM [Zhang et al., 2024b], attention&similarity-based methods like LLaVA-Prumerge [Shang
et al., 2024], TRIM [Song et al., 2024] and VisionZip [Yang et al., 2024b], as well as similarity-based
methods like DART [Wen et al., 2025b] and DivPrune [Alvar et al., 2025].
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Table 2: Performance comparison of different pruning methods on LLaVA-NeXT-7B. Acc.
denotes the average performance across 10 benchmarks, Rel. represents the average percentage of per-
formance maintained. Attention-based methods are shown with red background, attention&similarity-
based methods with green background, and similarity-based methods with blue background.

Method VQAV2 GQA VizWiz SQAIMG VQAText POPE MME MMBEN MMBCN MMVet Acc. Rel.
Upper Bound, All 2880 Tokens (100%)

LLaVA-NeXT-7B 81.3 62.5 55.2 67.5 60.3 86.8 1511.8 65.8 57.3 40.0 65.2 100.0%
Retain 640 Tokens (↓ 77.8%)

FastV(ECCV24) 77.0 58.9 53.9 67.4 58.1 79.5 1412.6 63.1 53.5 39.5 62.2 95.6%
PDrop(CVPR25) 79.1 60.0 53.8 66.7 57.8 83.8 1475.9 64.1 55.2 36.7 63.1 96.5%
SparseVLM(ICML25) 79.2 61.2 53.6 67.6 59.7 85.3 1456.8 65.9 58.6 36.1 64.0 97.9%
PruMerge+(2024.05) 78.2 60.8 57.9 67.8 54.9 85.3 1480.2 64.6 57.3 32.7 63.4 96.6%
TRIM(COLING25) 78.3 62.1 54.8 66.9 54.8 86.9 1471.8 66.8 55.8 37.8 63.8 97.6%
VisionZip(CVPR25) 79.1 61.2 57.1 68.1 59.9 86.0 1493.4 65.8 58.1 38.9 64.9 99.5%
DART(2025.02) 78.3 61.3 57.0 68.2 59.5 85.0 1450.2 64.9 57.1 36.9 64.1 98.2%
DivPrune(CVPR25) 79.3 61.9 55.7 67.8 57.0 86.9 1469.7 65.8 57.3 38.0 64.3 98.5%
CDPruner(Ours) 79.9 62.6 55.6 67.9 58.4 87.3 1474.5 66.3 57.5 41.9 65.1 100.1%

Retain 320 Tokens (↓ 88.9%)
FastV(ECCV24) 61.5 49.8 51.3 66.6 52.2 49.5 1099.0 53.4 42.5 20.0 50.2 76.9%
PDrop(CVPR25) 66.8 50.4 49.7 66.7 49.0 60.8 1171.5 55.5 44.7 24.0 52.6 80.3%
SparseVLM(ICML25) 74.6 57.9 54.2 67.2 56.5 76.9 1386.1 63.1 56.7 32.8 60.9 93.3%
PruMerge+(2024.05) 75.3 58.8 57.7 68.1 54.0 79.5 1444.3 63.0 55.6 31.4 61.6 94.0%
TRIM(COLING25) 74.9 59.9 53.5 66.2 50.2 86.5 1443.8 63.5 51.0 32.7 61.1 92.9%
VisionZip(CVPR25) 76.2 58.9 56.2 67.5 58.8 82.3 1397.1 63.3 55.6 35.8 62.4 95.7%
DART(2025.02) 75.7 59.5 56.8 67.5 57.6 81.0 1419.5 64.2 55.7 35.7 62.5 95.8%
DivPrune(CVPR25) 77.2 61.1 55.6 67.7 56.2 84.7 1423.3 63.9 55.7 34.8 62.8 96.0%
CDPruner(Ours) 78.4 61.6 55.8 67.8 57.4 87.2 1453.0 65.5 55.7 37.9 64.0 98.0%

Retain 160 Tokens (↓ 94.4%)
PruMerge+(2024.05) 70.5 56.2 57.2 66.9 50.3 71.1 1289.6 58.0 48.9 29.3 57.3 87.7%
TRIM(COLING25) 71.0 57.4 52.9 65.5 45.8 84.8 1275.8 61.6 45.2 29.6 57.8 87.7%
VisionZip(CVPR25) 71.4 55.2 55.5 67.9 55.0 74.9 1327.8 58.6 50.4 32.3 58.8 90.0%
DART(2025.02) 72.5 56.8 56.7 67.8 54.9 75.3 1325.4 62.0 53.6 32.2 59.8 91.7%
DivPrune(CVPR25) 75.0 59.3 56.1 67.1 54.1 80.0 1356.6 62.9 53.7 32.0 60.8 92.9%
CDPruner(Ours) 76.7 60.8 55.2 67.5 55.4 86.8 1425.3 64.2 53.8 36.2 62.8 96.0%

4.2 Main results

We first apply CDPruner to LLaVA-1.5, which is widely adopted for evaluating visual token pruning
strategies. Table 1 presents the performance of different pruning methods on the LLaVA-1.5-7B model
when retaining only 128, 64, or 32 visual tokens. With 77.8% of tokens pruned, CDPruner remarkably
maintains nearly all the original performance, surpassing VisionZip by 1.4%. When the number of
visual tokens further decreases to 64, roughly one-tenth of the original token length, attention-based
pruning methods exhibit significant performance degradation of over 25%, indicating that internal
text-visual attention within the language model is not an ideal metric for pruning. Under the same
reduction ratio, CDPruner only decreases the original performance by 3.4%, outperforming VisionZip
and DivPrune by 2.6% and 2.3%, respectively. With only 5.6% of visual tokens retained, attention
and similarity-based methods also encounter noticeable performance degradation because, despite
selecting relatively important tokens, they include excessive redundancy and duplication. In this
scenario, CDPruner still maintains 94.3% of the original performance, significantly outperforming
the best similarity-based method, DivPrune, by 3%, which fully demonstrates its effectiveness.

Among all 10 benchmarks, CDPruner achieves particularly strong performance on POPE [Li et al.,
2023], even exceeding the unpruned original LLaVA-1.5 model. Since POPE is specifically designed
to evaluate visual hallucination, this result suggests that appropriate pruning may help mitigate
hallucination in MLLMs, which we believe is a valuable direction for future research. On the other
hand, CDPruner shows limited advantage on VizWiz [Gurari et al., 2018], primarily because questions
in this benchmark often lack informative context (e.g., “What is this?”), making them insufficiently
effective as conditional guidance for the DPP process.

4.3 CDPruner for high resolution inputs

Increasing the resolution of input images can improve the performance of MLLMs, but this improve-
ment comes with substantial computational overhead. Higher resolutions introduce more visual
tokens, inherently increasing redundancy and thus making it more suitable for pruning. To evaluate
this, we apply CDPruner to LLaVA-NeXT, a model specifically designed for handling high-resolution
inputs. To ensure a fair comparison by controlling the number of visual tokens, we fix the input
resolution to 672×672, resulting in 2,880 visual tokens. As shown in Table 2, with 77.8% of tokens
pruned, CDPruner maintains performance comparable to, or slightly better than, the original LLaVA-
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Table 3: Performance comparison of different pruning methods on LLaVA-Video-7B with 64
frames per video. Here, Acc. denotes the average accuracy across 4 video-based benchmarks, and
Rel. represents the average percentage of performance maintained. Attention-based methods are
shown with red background, and similarity-based methods are shown with blue background.

Method MLVU MVBench LongVideoBench Video-MME
Metric m-avg test val perception relation w/o sub short medium long Acc. Rel.

Upper Bound, All 64 × 169 Tokens (100%)
LLaVA-Video-7B 67.7 58.2 59.0 65.0 53.8 63.6 76.6 61.2 53.1 62.1 100.0%

Retain 64 × 64 Tokens (↓ 62.1%)
FastV(ECCV24) 63.9 55.8 56.1 60.6 52.1 61.9 73.6 59.3 52.7 59.4 95.7%
PDrop(CVPR25) 64.9 56.9 56.9 62.2 52.2 62.5 74.1 60.7 52.7 60.3 97.1%
SparseVLM(ICML25) 65.5 56.8 56.0 61.0 51.7 61.0 73.0 58.8 51.2 59.8 96.3%
DART(2025.02) 64.1 55.5 57.5 62.1 53.5 61.6 73.0 59.9 51.9 59.7 96.1%
DivPrune(CVPR25) 64.1 55.1 58.6 64.2 53.7 61.1 72.9 59.3 51.2 59.7 96.2%
CDPruner(Ours) 66.3 57.4 58.7 64.5 53.7 62.6 74.6 60.3 52.9 61.3 98.6%

Retain 64 × 32 Tokens (↓ 81.1%)
FastV(ECCV24) 58.5 52.7 52.4 57.0 48.5 56.0 63.8 55.9 48.4 54.9 88.5%
PDrop(CVPR25) 59.7 53.1 52.4 56.6 48.6 58.2 67.0 57.7 50.0 55.9 89.9%
SparseVLM(ICML25) 60.7 54.1 53.7 58.1 49.9 59.0 69.8 56.9 50.3 56.9 91.6%
DART(2025.02) 61.1 52.7 54.1 57.8 50.8 58.1 67.3 57.1 50.0 56.5 91.0%
DivPrune(CVPR25) 61.5 53.7 56.4 62.1 51.4 59.3 69.9 57.9 50.2 57.7 93.0%
CDPruner(Ours) 63.0 55.7 56.5 61.0 52.7 60.5 71.9 58.6 51.0 58.9 95.0%

Retain 64 × 16 Tokens (↓ 90.5%)
FastV(ECCV24) 52.8 46.7 46.6 48.8 44.7 50.0 55.0 50.0 45.0 49.0 79.0%
PDrop(CVPR25) 52.8 44.3 44.3 47.5 41.4 48.9 52.9 50.0 43.8 47.6 76.5%
SparseVLM(ICML25) 52.0 48.7 47.6 53.0 42.8 49.8 53.8 49.3 46.3 49.5 79.9%
DART(2025.02) 56.7 50.4 51.8 56.8 47.5 55.3 64.8 52.9 48.1 53.6 86.3%
DivPrune(CVPR25) 58.6 52.0 52.1 57.6 47.2 56.7 67.7 54.2 48.2 54.9 88.3%
CDPruner(Ours) 58.9 53.8 52.7 57.4 48.5 57.3 66.2 56.0 49.6 55.7 89.7%

NeXT, demonstrating the higher visual redundancy in high-resolution scenarios. As the reduction
ratio further increases to 88.9% and 94.4%, CDPruner still retains up to 98% and 96% of the original
performance, outperforming the second-best DivPruner by 2% and 3.1%, respectively. These results
highlight the strong effectiveness of CDPruner in high-resolution contexts.

4.4 CDPruner for video understanding

Video understanding is another task with high visual redundancy. To validate CDPruner in such a
scenario, we apply it to LLaVA-Video, an advanced video MLLM. We set the maximum number of
video frames to 64, each with a resolution of 384×384, resulting in over 10k tokens and considerable
visual redundancy. As demonstrated in Table 3, with 62.1% of visual tokens pruned, CDPruner
maintains 98.6% of the original performance, outperforming PDrop by 1.5%. As the reduction ratio
increases to 81.1%, CDPruner still preserves 95% performance, significantly exceeding DivPrune’s
93%. Furthermore, when only 16 visual tokens are retained per frame, text-based methods exhibit
substantial performance degradation, while CDPruner is able to maintain 89.7% performance,
showing a substantial 10% improvement over SparseVLM. These results adequately demonstrate the
effectiveness of CDPruner in video understanding applications.

4.5 CDPruner for advanced architectures

In addition to the LLaVA series, we further apply CDPruner to the most advanced open-source
MLLM architectures to validate its generalizability. Here, we select Qwen2.5-VL as a representative
model, with the input resolution fixed at 1008×1008, yielding 1,296 visual tokens. Due to the unique
structure of its visual encoder and multimodal projector, pruning methods that require the [cls] token
are no longer applicable. Therefore, we compare CDPruner only against representative methods
from the other two categories, attention-based FastV and similarity-based DivPrune, with results
summarized in Table 4. Compared to the LLaVA series, Qwen2.5-VL exhibits a more noticeable
performance drop after pruning. This is because visual tokens are already compressed within its
projector. Nevertheless, CDPruner consistently outperforms other methods under the same reduction
ratios. With 60.5% and 80.2% of tokens pruned, CDPruner retains 97.5% and 92.8% of the original
performance, surpassing the second-best FastV by 0.5% and 2.0%, respectively. When only 128
visual tokens remained, competing methods suffer from severe performance degradation. In contrast,
CDPruner maintains 85.2% of the original performance, significantly higher than DivPrune’s 79.9%,
demonstrating the strong generalizability of CDPruner on advanced MLLM architectures.
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Table 4: Performance comparison of different pruning methods on Qwen2.5-VL-7B. Acc.
denotes the average accuracy, Rel. represents the average percentage of performance maintained.
Attention-based methods are shown with red background, and similarity-based methods with blue.

Method TextVQA ChartQA AI2D OCRBench HallBench MME MMB-EN MMB-CN Acc. Rel.
Upper Bound, All 1296 Tokens (100%)

Qwen2.5-VL-7B 84.8 86.1 80.4 863 46.8 2304 82.8 83.2 83.2 100.0%
Retain 512 Tokens (↓ 60.5%)

FastV(ECCV24) 84.1 82.2 78.8 815 42.4 2317 82.0 81.8 81.1 97.0%
DivPrune(CVPR25) 81.8 79.6 78.6 800 43.3 2279 81.6 82.1 80.1 96.0%
CDPruner(Ours) 84.2 82.8 78.9 827 42.5 2327 82.2 82.6 81.5 97.5%

Retain 256 Tokens (↓ 80.2%)
FastV(ECCV24) 81.5 70.9 76.2 703 39.0 2238 79.6 78.9 76.0 90.8%
DivPrune(CVPR25) 76.0 65.1 76.5 692 36.4 2184 80.0 79.6 74.0 88.2%
CDPruner(Ours) 82.4 73.0 77.5 749 40.1 2245 80.9 79.9 77.6 92.8%

Retain 128 Tokens (↓ 90.1%)
FastV(ECCV24) 73.8 52.2 71.4 531 33.8 2008 72.9 72.2 66.2 79.0%
DivPrune(CVPR25) 67.0 50.4 72.1 549 32.6 2108 77.8 77.8 67.3 79.9%
CDPruner(Ours) 77.8 59.2 74.0 632 37.2 2127 76.2 76.5 71.3 85.2%

Table 5: Performance comparison of different pruning methods on multi-turn dialogues. Acc.
denotes the average accuracy, Rel. represents the average percentage of performance maintained.
GPT-4o is used for evaluation from six dimensions: Creativity (C), Richness (R), Visual Perception
(VP), Logical Coherence (LC), Answer Accuracy (AA), Image Relationship Understanding (IRU).

Method C R VP LC AA IRU Acc. Rel.
Upper Bound, All 576 Tokens (100%)

LLaVA-1.5-7B 34.8 32.7 39.4 65.3 47.4 39.5 42.9 100.0%
Retain 128 Tokens (↓ 77.8%)

TRIM(COLING25) 35.7 34.2 38.7 64.6 46.8 39.2 42.8 99.8%
CDPruner(Ours) 36.2 34.9 40.0 66.2 48.0 40.8 44.0 102.6%

Retain 64 Tokens (↓ 88.9%)
TRIM(COLING25) 35.6 34.1 37.1 63.8 44.8 37.7 41.7 97.2%
CDPruner(Ours) 36.1 34.4 38.6 64.5 46.2 39.0 42.8 99.8%

Retain 32 Tokens (↓ 94.4%)
TRIM(COLING25) 35.4 34.0 36.1 62.8 44.2 36.9 41.2 96.0%
CDPruner(Ours) 35.6 34.0 36.7 62.9 44.6 38.0 41.5 96.7%

4.6 CDPruner for multi-turn dialog understanding

Multi-turn dialog understanding presents a major challenge for visual token pruning. In single-turn
scenarios, pruning methods only need to retain visual tokens most relevant to the current question.
In contrast, multi-turn dialogues require preserving more holistic visual semantics to avoid losing
information that may be crucial for answering future questions. To evaluate our proposed method, we
adopt the MMDU benchmark [Liu et al., 2024f], which includes both multi-turn and multi-image
dialogues, and compare our CDPruner against TRIM, which prunes tokens solely based on their
relevance to the current query. Both pruning methods are applied to LLaVA-1.5 model for evaluation.
To prevent dialogues from exceeding LLaVA’s context length limit, we select a subset of 100 samples
from MMDU, each containing five dialogue turns and no more than 12 images. GPT-4o is used for
evaluation across the six dimensions defined in the original paper.

As shown in Table 5, CDPruner consistently outperforms TRIM across various reduction ratios,
demonstrating its superior adaptability to multi-turn dialogues. With 77.8% of visual tokens removed,
CDPruner achieves better performance than the LLaVA-1.5 baseline. Even when 88.9% of visual
tokens are pruned, it maintains 99.8% of the original performance, surpassing TRIM by 2.6%. When
only 32 tokens per image are retained, CDPruner still preserves 96.7% of the original performance.
TRIM prunes tokens based on their relevance to the current instruction, which is suboptimal for
multi-turn dialogues. If the subsequent question differs significantly from the previous one, the
retained tokens may no longer be relevant, resulting in degraded performance. In contrast, CDPruner
incorporates diversity modeling via DPP, which enables it to preserve more informative and compre-
hensive visual content while still considering relevance. As a result, it maintains better performance
even in multi-turn scenarios. Exploring a visual token pruning framework that can effectively handle
both single- and multi-turn dialogues is a valuable research direction, which we leave for future work.
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Table 6: Efficiency analysis of different pruning methods on LLaVA-NeXT-7B. The performance
is evaluated on POPE. Attention-based methods are shown with red background, attention&similarity-
based methods with green background, and similarity-based methods with blue background.

Method # Token FLOPs
(T)

Prefill Time
(ms/token)

Decode Time
(ms/token)

KV Cache
(MB)

GPU Memory
(GB)

Score
(F1)

LLaVA-NeXT-7B 2880 41.7 246 29 1440.0 16.7 86.8
FastV(ECCV24) 320 4.4 (×9.5) 54 (×4.6) 23 (×1.2) 160.3 15.6 49.5
PDrop(CVPR25) 320 4.5 (×9.3) 55 (×4.5) 24 (×1.2) 160.2 15.6 60.8
SparseVLM(ICML25) 320 4.5 (×9.3) 71 (×3.5) 25 (×1.1) 161.2 18.6 76.9
VisionZip(CVPR25) 320 4.2 (×9.9) 38 (×6.6) 22 (×1.3) 160.0 14.8 82.3
DivPrune(CVPR25) 320 4.2 (×9.9) 38 (×6.6) 22 (×1.3) 160.0 13.8 84.7
CDPruner(Ours) 320 4.2 (×9.9) 38 (×6.6) 22 (×1.3) 160.0 13.8 87.2
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Figure 4: Ablation study of CDPruner design. DPPruner denotes applying DPP to visual token
pruning without conditioning on instruction relevance, as a degraded variant of CDPruner.

4.7 Efficiency analysis

To demonstrate the efficiency of CDPruner, we conduct a comparative analysis against other pruning
methods in terms of FLOPs, CUDA latency, KV cache, and GPU memory on the high-resolution
MLLM LLaVA-NeXT-7B. All experiments are performed on a single NVIDIA A100-80GB GPU.
We choose POPE for evaluating inference efficiency, as it contains questions of similar length and
happens to contain only one prefill and one decode stage. As shown in Table 6, when the number of
visual tokens is reduced from 2,880 to 320, CDPruner achieves nearly a ×10 reduction in FLOPs.
Regarding CUDA latency, CDPruner reduces the time for prefill and decode stages by ×6.6 and
×1.3, respectively, significantly improving real-world inference efficiency. In addition to runtime
latency, CDPruner also reduces KV cache and GPU memory. Compared to all other pruning methods,
CDPruner consistently achieves the best efficiency while maintaining the highest performance.

4.8 Ablation study

We further conduct an ablation on the design of CDPruner, as illustrated in Figure 4. We compare the
performance of different pruning strategies on LLaVA-1.5-7B across four benchmarks, under varying
numbers of visual tokens. Here, DPPruner refers to a variant that directly applies DPP to visual token
pruning without any condition. This version consistently outperforms DivPrune, demonstrating that
the global modeling of token diversity via DPP is more effective than MMDP. When instruction
relevance is further incorporated as a condition, CDPruner achieves additional performance gains,
validating the benefit of jointly modeling feature similarity and instruction relevance.

5 Conclusion

In this paper, we introduce a novel training-free visual token pruning method CDPruner, for MLLM
inference acceleration. Specifically, it first defines the conditional similarity between visual tokens
based on the instruction, and then reformulates the token pruning problem with DPP to maximize
the conditional diversity of the selected subset. Extensive experiments on diverse image and video
benchmarks demonstrate that CDPruner achieves state-of-the-art performance across various MLLM
architectures, including the LLaVA series and the advanced Qwen2.5-VL. Efficiency analysis further
shows that CDPruner significantly reduces inference latency and memory usage while maintaining
competitive performance, facilitating the practical deployment of MLLMs in real-world applications.
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Beyond Attention or Similarity: Maximizing
Conditional Diversity for Token Pruning in MLLMs

Appendix

Section A describes the fast greedy MAP inference algorithm used in this work, along with the
corresponding pseudocode. Section B provides some details of the experimental setup, including
information about model architectures, evaluation benchmarks, comparison methods and implemen-
tation. Sections C and D present additional experimental and visualization results respectively. And
sections E and F discuss the limitations and broader impacts of this work.

A Fast greedy MAP inference algorithm for DPP

The direct MAP inference for DPP is NP-hard. Therefore, we adopt the fast greedy algorithm
proposed by Chen et al. [2018]. Specifically, given the kernel matrix L ∈ Rn×n indexed by elements
of Z and the current selected subset S ⊆ Z, the next index j to be added in the iteration satisfies:

j = argmax
i∈Z\S

log det
(
LS∪{i}

)
− log det (LS) . (9)

Since L is a PSD matrix, all of its principal minors are also PSD. Suppose det(LS) > 0, and the
Cholesky decomposition LS = V V ⊤, where V ∈ R|S|×|S| is an invertible lower triangular matrix.
For any i ∈ Z \ S, the Cholesky decomposition of LS∪{i} can be derived as:

LS∪{i} =

[
LS LS,i

Li,S Lii

]
=

[
V 0
ci di

] [
V 0
ci di

]⊤
, (10)

where the row vector ci ∈ R|S| and scalar di ≥ 0 satisfies:

V c⊤i = LS,i, (11)

d2i = Lii − ∥ci∥22. (12)

In addition, according to eq. (10), it can be derived that

det(LS∪{i}) = det(V V ⊤) · d2i = det(LS) · d2i . (13)

Therefore, eq. (9) is equivalent to

j = argmax
i∈Z\S

log
(
det(LS) · d2i

)
− log (det(LS)) = argmax

i∈Z\S
log

(
d2i
)
. (14)

Once eq. (14) is solved, the Cholesky factor of LS can be efficiently updated after a new item is
added to S. For each item i, ci and di can be updated incrementally. Define c′i and d′i as the new
vector and scalar of i ∈ Z \ (S ∪ {j}). According to eq. (10) and eq. (11), we have[

V 0
cj dj

]
c′i

⊤
= LS∪{j},i =

[
LS,i

Lji

]
. (15)

Combining eq. (15) with eq. (11), we get

c′i = [ci (Lji − ⟨cj , ci⟩)/dj ]
.
= [ci ei] . (16)

And eq. (12) implies

d′2i = Lii − ∥c′i∥22 = Lii − ∥ci∥22 − e2i = d2i − e2i . (17)

Initially, S = ∅, and eq. (13) implies d2i = det(Lii) = Lii. The complete algorithm is shown in
Algorithm 1. In the k-th iteration, for each item i ∈ Z \ S, updating ci and di involve the inner
product of two vectors of length k, resulting in overall complexity O(kn). Therefore, the greedy
algorithm runs in O(nm2) time. After parallelizing the for-loop over i using CUDA, the additional
inference latency introduced for each sample can be reduced to less than 10ms, which is negligible.
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Algorithm 1 Fast greedy MAP inference algorithm for DPP

Input: kernel matrix L, index list Z, retained size m
Output: selected subset S

1: ci = [], d2i = Lii

2: j = argmaxi∈Z log(d2i ), S = {j}
3: while | S |< m do
4: for i ∈ Z \ S do
5: ei = (Lji − ⟨cj , ci⟩)/dj
6: ci = [ci ei], d2i = d2i − e2i
7: end for
8: j = argmaxi∈Z\S log(d2i ), S = S ∪ {j}
9: end while

10: return S

B Details of experimental setup

B.1 Model architectures

B.1.1 LLaVA series

LLaVA-1.5 [Liu et al., 2024a] The LLaVA series is one of the most widely used open-source
vision-language models, and its simple design, low training cost, and outstanding performance have
made it a cornerstone in the field of open-source MLLMs. Specifically, the original LLaVA adopts
a pretrained CLIP [Radford et al., 2021] as the visual encoder and Vicuna [Chiang et al., 2023] as
the language model. A simple linear projector connects these two modules, enabling the LLM to
accept image grid features as input. And the visual instruction tuning enables LLaVA to handle
vision-language tasks. Compared to the original version, LLaVA-1.5 updates the linear connector
with an MLP, increases the input image resolution, and incorporates a broader set of instruction
tuning data, resulting in significant performance improvements. The model processes image inputs at
a resolution of 336×336, leading to 576 visual tokens per image.

LLaVA-NeXT [Liu et al., 2024b] To further enhance the visual perception capabilities of the model,
LLaVA-NeXT, also known as LLaVA-1.6, adopts a dynamic resolution design to increase the input
image resolution. Specifically, the model selects the optimal aspect ratio based on the original
resolution of the input image, increasing the resolution by up to 4×. Without replacing the visual
encoder, LLaVA-NeXT splits the high-resolution image into several sub-images of the same size as
the original image. These sub-images are individually encoded and then concatenated as input to the
LLM, leading to improved performance in reasoning, OCR, and world knowledge. To ensure a fair
comparison by controlling the number of visual tokens, we fix the input resolution to 672×672, 4×
the original resolution, resulting in totally 2,880 visual tokens.

LLaVA-Video [Zhang et al., 2024c] A variant in the LLaVA series specifically designed for video
understanding tasks. It introduces the SlowFast representation to balance the number of video frames
and the count of visual tokens. The model employs SigLIP [Zhai et al., 2023] as the visual encoder
and accepts video inputs with a resolution of 384×384, encoding each frame into 729 visual tokens.
To further reduce computational cost, LLaVA-Video applies 2×2 average pooling to the grid visual
features, reducing the number of visual tokens by 4×. During evaluation, we sample 64 frames per
video, resulting in a total of 10,816 visual tokens.

B.1.2 Advanced architectures

Qwen2.5-VL [Bai et al., 2025] The most advanced model of the Qwen-VL series. Building upon its
predecessor, Qwen2-VL, it introduces significant enhancements in visual understanding, document
parsing, and video comprehension. The model employs a redesigned Vision Transformer architecture
with window attention, SwiGLU activation, and RMSNorm, aligning with the Qwen2.5 language
model structure. Notably, it supports dynamic resolution and frame rate processing, enabling the
comprehension of videos up to an hour long with precise event localization. Qwen2.5-VL excels
in tasks such as object detection, OCR, and structured data extraction from documents, making it a
versatile visual agent capable of reasoning and tool usage across various domains.
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InternVL3 [Zhu et al., 2025] One of the most advanced open-source MLLMs at present. Building
upon its predecessor, InternVL2.5, it retains the ViT-MLP-LLM architecture, integrating a Vision
Transformer with a large language model through an MLP connector. InternVL3 features a native
multimodal pre-training paradigm, jointly acquiring linguistic and multimodal capabilities in a single
stage. It incorporates Variable Visual Position Encoding to handle extended multimodal contexts and
employs advanced training techniques like supervised fine-tuning and mixed preference optimization.
InternVL3 demonstrates superior performance across a wide range of multimodal tasks, including
tool usage, GUI agents, industrial image analysis, and 3D vision perception.

B.2 Evaluation benchmarks

B.2.1 General image benchmarks

VQAv2 [Goyal et al., 2017] The second version of the VQA benchmark [Antol et al., 2015] for
open-ended visual question answering, designed to evaluate the ability to understand images, natural
language, and commonsense knowledge. It includes 265,016 images from COCO [Lin et al., 2014]
and abstract scenes, each paired with an average of 5.4 questions. Each question is annotated with 10
ground truth answers and 3 plausible alternatives. We use the test-dev split for evaluation.

GQA [Hudson and Manning, 2019] A large-scale visual question answering benchmark built on
real images from the Visual Genome dataset [Krishna et al., 2017], designed to assess compositional
reasoning and visual understanding. It provides over 22 million balanced question-answer pairs, with
each image annotated by a detailed scene graph describing object classes, attributes, and relationships
in the scene. We use the test-dev balanced split for evaluation.

VizWiz [Gurari et al., 2018] A visual question answering benchmark collected in a real-world
accessibility setting, where blind users captured images and asked spoken questions about them.
Each visual question is paired with 10 crowdsourced answers. It introduces two key tasks: answering
visual questions and predicting whether a question is unanswerable based on the image, highlighting
challenges such as poor image quality and ambiguous content. We use the test split for evaluation.

ScienceQA [Lu et al., 2022] A large-scale multimodal multiple-choice question answering bench-
mark focused on diverse scientific domains. It contains 21,208 questions spanning natural science,
language science, and social science, categorized into 26 topics, 127 categories, and 379 skills.
Among them, 48.7% include image context, 48.2% include text context, and 30.8% include both.
A majority of questions are annotated with grounded lectures (83.9%) and detailed explanations
(90.5%), offering external knowledge and reasoning to support the correct answer. We use the test
split that includes image context (also known as ScienceQA-IMG) for evalution.

POPE [Li et al., 2023] A benchmark designed to assess object hallucination in large vision-language
models. The images are sourced from COCO [Lin et al., 2014], and the questions focus on whether a
specific object is present in the image, assessing the degree of object hallucination. Precision, recall,
and F1 score are used to quantify hallucination rates, and we use the test split for evaluation.

HallusionBench [Guan et al., 2024] An image-context reasoning benchmark crafted to expose two
frequent failure modes of large vision–language models: language hallucination (answers driven
by strong linguistic priors that contradict the image) and visual illusion (misleading visual features
that produce confident yet wrong responses). Comprising carefully designed examples that remain
challenging for GPT-4V and LLaVA-1.5, it enables fine-grained diagnosis of how VLMs over-trust
language or under-exploit vision, offering insights for building more faithfully grounded models.

MME [Fu et al., 2024a] A comprehensive benchmark evaluating both perception and cognition
abilities of multimodal large language models. It contains a total of 14 subtasks. The perception tasks
include coarse- and fine-grained recognition as well as OCR. Coarse-grained recognition primarily
focuses on the presence, count, position, and color of objects, while fine-grained recognition involves
identifying specific posters, celebrities, scenes, landmarks, and artworks. The cognition tasks include
commonsense reasoning, numerical calculation, text translation and code reasoning.

MMBench [Liu et al., 2025] A comprehensive multimodal benchmark designed to evaluate a wide
range of vision-language capabilities. It features a carefully curated dataset with a larger number and
greater diversity of evaluation questions and skills compared to existing benchmarks. MMBench also
introduces a novel CircularEval strategy, leveraging ChatGPT to convert open-ended model responses
into structured choices, enabling more consistent and robust evaluation of model predictions.
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MM-Vet [Yu et al., 2023] A benchmark focuses on the integration of different multimodal capa-
bilities. It defines 6 core capabilities through 218 challenging examples, including recognition,
OCR, knowledge, language generation, spatial awareness, and mathematics. This benchmark utilizes
ChatGPT assistant for evaluation, providing unified metrics for assessing answers of varying styles.

B.2.2 Text-oriented benchmarks

AI2D [Kembhavi et al., 2016] A diagram-based question answering benchmark consisting of
over 5,000 grade school science diagrams, annotated with more than 150,000 structured labels and
ground-truth syntactic parses. It also includes over 15,000 multiple-choice questions aligned with the
diagrams, enabling research on visual reasoning and diagram understanding in scientific contexts.
We use the test split with mask for evaluation.

TextVQA [Singh et al., 2019] A benchmark designed to evaluate a model’s ability to read and reason
about text within images. The images are primarily sourced from the Open Images v3 dataset Krasin
et al. [2017], containing various scenarios such as signs, billboards, and product packaging with rich
text information. It introduces a new modality, scene text, that models must recognize and interpret in
order to answer questions accurately. This benchmark emphasizes the integration of OCR and visual
reasoning for effective multimodal understanding. We use the validation split for evaluation.

ChartQA [Masry et al., 2022] A large-scale benchmark designed for question answering over charts,
focusing on complex reasoning that involves both visual interpretation and logical or arithmetic
operations. It includes 9.6K human-written questions and 23.1K questions generated from chart
summaries. Unlike prior template-based benchmarks, ChartQA challenges models to perform multi-
step reasoning using both the visual content and underlying data tables of charts, highlighting the
need for advanced multimodal understanding. We use the test split for evaluation.

OCRBench [Liu et al., 2024e] A comprehensive evaluation benchmark assessing the OCR ca-
pabilities of large multimodal models. It comprises 29 datasets across diverse text-related visual
tasks, including text recognition, scene text-centric VQA, document-oriented VQA, key information
extraction, and handwritten mathematical expression recognition.

B.2.3 Video benchmarks

MLVU [Zhou et al., 2024] The first comprehensive benchmark designed to evaluate multimodal large
language models on long video understanding tasks. It features a diverse set of long videos ranging
from 3 minutes to 2 hours in length and includes nine evaluation tasks spanning multiple-choice and
free-form generation formats. These tasks are categorized into holistic understanding, single-detail
understanding, and multi-detail understanding, challenging models to process both global and local
information across long video content. We use M-Avg as the evaluation metric.

MVBench [Li et al., 2024b] A comprehensive benchmark for evaluating the temporal understanding
abilities of multimodal large language models in video comprehension. It consists of 20 challenging
tasks specifically designed to require dynamic video analysis beyond single-frame understanding.
MVBench introduces a novel static-to-dynamic transformation approach, converting static tasks into
temporally grounded ones, thus systematically testing a wide range of temporal reasoning skills from
low-level perception to high-level cognition. We use the test split for evaluation.

LongVideoBench [Wu et al., 2024] A large-scale benchmark for evaluating long-form video un-
derstanding in large multimodal models. It features 3,763 varying-length web-collected videos (up
to an hour long) with subtitles, across diverse topics. This benchmark introduces a novel referring
reasoning task, where questions include explicit references to specific video segments, requiring
models to retrieve and reason over detailed multimodal context. It includes 6,678 human-annotated
multiple-choice questions in 17 fine-grained categories. We use the validation split for evaluation.

Video-MME [Fu et al., 2024b] The first comprehensive benchmark specifically designed to evaluate
multimodal large language models in video understanding. It includes 900 manually selected and
annotated videos totaling 256 hours, covering 6 primary domains and 30 subfields. This benchmark
supports diverse temporal lengths (from 11 seconds to 1 hour) and integrates multiple modalities
such as video frames, subtitles, and audio. With 2,700 expert-annotated question-answer pairs,
Video-MME provides a high-quality, fine-grained assessment of MLLMs’ ability to reason over
complex sequential and multimodal information. We do not use subtitles during evalution.
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B.3 Comparison methods

B.3.1 Text-based methods

FastV [Chen et al., 2024a] The first work to identify the inefficient visual attention phenomena in
MLLMs. Based on this observation, FastV proposes a straightforward solution, that is, to prune the
part of visual tokens with the lowest visual-text attention score after layer 2 of the model, thereby
achieving MLLM inference acceleration in a training-free manner.

PyramidDrop [Xing et al., 2024] Building upon FastV, PyramidDrop further observes that pruning
in shallow layers has a larger impact on model performance, while the redundancy of visual tokens
tends to increase with model depth. Based on this insight, it proposes a hierarchical pruning strategy
that divides the MLLM into multiple stages and prunes a certain proportion of visual tokens at the
end of each stage, leading to improved performance.

SparseVLM [Zhang et al., 2024b] Similar to PyramidDrop, SparseVLM also adopts a multi-stage
token pruning strategy. However, unlike previous approaches, it focuses on the impact of the
instruction tokens on vision-language attention. It argues that not all text tokens contribute to the
visual token pruning, only those highly relevant to the visual content are important. Therefore, it first
selects the text tokens most related to the visual input as raters, and uses their attention to the visual
tokens to guide the pruning process, leading to further performance improvements.

B.3.2 Vision-based methods

LLaVA-Prumerge [Shang et al., 2024] The first work to perform token pruning solely based on
visual information. It first selects important visual tokens using attention scores from the visual
encoder, and then merges each of the remaining tokens with its most similar selected token through
a clustering-based approach. Building on this, LLaVA-Prumerge+ introduces spatially uniform
sampling to further enhance performance.

TRIM [Song et al., 2024] Pruning only based on visual information while ignoring user instructions
may lead to suboptimal performance. TRIM addresses this by leveraging CLIP metrics for pruning.
Specifically, it computes the cosine similarity between image tokens from the visual encoder and text
tokens from the text encoder, and uses these similarities to estimate the importance of each visual
token. Tokens with lower similarity scores are pruned to accelerate inference.

VisionZip [Yang et al., 2024b] Similar to LLaVA-Prumerge, VisionZip also relies on visual informa-
tion for token pruning. It observes that attention within the visual encoder is highly concentrated,
and therefore first selects several dominant tokens based on visual attention. Then, among all the
remaining tokens, a set of contextual tokens is obtained through clustering. These two groups are
combined and fed into the language model, aiming to preserve as much visual information as possible.

B.3.3 Similarity-based methods

DART [Wen et al., 2025b] This work argues that in token pruning, duplication matters more than
importance. Based on this insight, it first selects a small set of pivot tokens, and then iteratively
retains the most diverse tokens from the remaining ones by selecting those with the lowest similarity
to the already selected tokens. Finally, a group of the most diverse visual tokens is obtained.

DivPrune [Alvar et al., 2025] This work also focuses on token diversity. However, unlike previous
approaches, DivPrune reformulates the token pruning problem as a MMDP, aiming to retain the most
diverse subset by maximizing the minimum pairwise distance among the selected tokens.

B.4 Implementation details

For image benchmarks, we use the official implementation of LLaVA3. For video benchmarks, we
adopt the official codebase of LLaVA-NeXT4 for the model architecture and utilize lmms-eval5 for
evaluation. For advanced architectures like Qwen2.5-VL, we employ VLMEvalKit6 for evaluation.

3https://github.com/haotian-liu/LLaVA
4https://github.com/LLaVA-VL/LLaVA-NeXT
5https://github.com/EvolvingLMMs-Lab/lmms-eval
6https://github.com/open-compass/VLMEvalKit
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Table 7: Performance comparison of different pruning methods on LLaVA-1.5-13B. Acc. denotes
the average performance across 10 benchmarks, Rel. represents the average percentage of perfor-
mance maintained. Attention-based methods are shown with red background, attention&similarity-
based methods with green background, and similarity-based methods with blue background.

Method VQAV2 GQA VizWiz SQAIMG VQAText POPE MME MMBEN MMBCN MMVet Acc. Rel.
Upper Bound, All 576 Tokens (100%)

LLaVA-1.5-13B 80.0 63.3 53.6 72.8 61.2 86.0 1531.2 68.5 63.5 36.2 66.2 100.0%
Retain 128 Tokens (↓ 77.8%)

FastV(ECCV24) 75.3 58.3 54.6 74.2 58.6 75.5 1460.6 66.1 62.3 32.8 63.1 95.4%
PDrop(CVPR25) 78.2 61.0 53.8 73.3 60.2 83.6 1489.5 67.5 62.8 32.1 64.7 97.4%
SparseVLM(ICML25) 77.6 59.6 51.4 74.3 59.3 85.0 1487.9 68.4 62.6 35.2 64.8 97.8%
PruMerge+(2024.05) 76.2 58.3 52.8 73.3 56.1 82.7 1445.9 66.3 61.2 33.6 63.3 95.5%
TRIM(COLING25) 76.4 59.4 49.7 72.4 55.0 86.8 1426.9 67.1 58.4 35.1 63.2 95.2%
VisionZip(CVPR25) 76.8 57.9 52.3 73.8 58.9 82.7 1449.2 67.4 62.5 36.0 64.1 97.0%
DART(2025.02) 75.7 57.7 53.0 74.2 58.7 80.4 1395.0 65.4 62.2 34.8 63.2 95.7%
DivPrune(CVPR25) 77.1 59.2 53.5 72.8 58.0 86.8 1457.7 66.3 60.7 34.4 64.2 96.8%
CDPruner(Ours) 77.7 59.7 52.9 73.2 58.4 87.3 1478.0 67.5 61.5 36.2 64.8 98.0%

Retain 64 Tokens (↓ 88.9%)
FastV(ECCV24) 65.3 51.9 53.8 73.1 53.4 56.9 1246.4 59.2 55.1 26.9 55.8 84.7%
PDrop(CVPR25) 70.8 54.1 50.5 73.1 55.3 66.1 1247.0 63.1 56.6 21.9 57.4 85.9%
SparseVLM(ICML25) 73.2 55.9 52.1 73.0 57.1 77.9 1374.3 65.2 60.3 32.9 61.6 93.2%
PruMerge+(2024.05) 72.6 56.3 52.4 73.5 54.4 75.7 1338.2 65.0 59.3 30.3 60.6 91.5%
TRIM(COLING25) 73.2 57.9 49.2 72.0 52.0 86.5 1406.2 65.0 52.7 27.8 60.7 90.6%
VisionZip(CVPR25) 73.7 56.2 53.2 74.2 57.4 75.7 1379.6 64.9 61.3 33.4 61.9 93.8%
DART(2025.02) 72.4 55.7 53.4 73.8 57.3 72.8 1380.0 64.7 60.6 32.8 61.3 92.8%
DivPrune(CVPR25) 75.2 57.9 54.4 71.7 57.4 84.5 1454.2 64.1 59.8 29.3 62.7 94.1%
CDPruner(Ours) 76.7 59.4 53.6 72.5 57.6 87.1 1466.8 65.5 58.8 35.2 64.0 96.6%

Retain 32 Tokens (↓ 94.4%)
PruMerge+(2024.05) 66.8 54.1 52.3 71.7 52.4 67.4 1269.1 61.1 53.5 28.7 57.1 86.5%
TRIM(COLING25) 69.8 55.6 48.8 70.4 49.6 85.8 1284.7 63.1 45.4 26.4 57.9 86.4%
VisionZip(CVPR25) 68.4 52.7 53.0 72.9 55.2 66.8 1257.7 61.2 55.8 29.3 57.8 87.6%
DART(2025.02) 68.1 53.9 52.0 73.2 55.1 66.9 1282.8 61.9 56.2 29.4 58.1 88.0%
DivPrune(CVPR25) 72.0 56.2 54.5 70.9 54.6 79.3 1405.2 61.7 57.2 27.8 60.4 90.8%
CDPruner(Ours) 75.2 58.5 53.5 71.9 55.3 87.6 1421.0 63.7 56.6 30.9 62.4 93.8%

C Additional experimental results

C.1 CDPruner for larger language model

To evaluate the effectiveness of our proposed method on larger language models, we apply CDPruner
to two models equipped with 13B LLMs: LLaVA-1.5-13B and LLaVA-NeXT-13B. The results are
presented in Tables 7 and 8. The larger language models lead to significant performance improvements
and also make MLLMs less sensitive to visual token pruning. Among various pruning strategies,
text-attention based methods benefit the most from scaling up the language model, indicating that
larger LLM brings more accurate attention. Across different types of pruning methods, CDPruner
consistently outperforms all other approaches under various reduction ratios. With 77.8% of visual
tokens removed, our method retains 98.0% and 99.9% of the original performance on LLaVA-1.5-13B
and LLaVA-NeXT-13B, respectively, demonstrating its effectiveness on larger language models.

C.2 CDPruner for advanced open-source MLLM

In addition to Qwen2.5-VL, we further apply CDPruner to one of the most advanced open-source
MLLMs to date, InternVL3. The results are shown in Table 9. Here, we fix the input resolution
to 896×896, yielding 1,280 visual tokens. Notably, unlike its performance on the LLaVA series,
DivPrune exhibits a significant performance drop on InternVL3, as it does not account for the
relevance to user instructions during pruning. In contrast, our CDPruner jointly considers both
diversity and relevance, consistently achieving the best performance across different reduction ratios.
Specifically, even when 90% of the visual tokens are removed, our method retains 83.9% of the
original performance, 3% higher than the second-best FastV, demonstrating its effectiveness and
adaptability in advanced MLLM architectures.

C.3 Efficiency analysis on larger language model

Here, we conduct an additional efficiency analysis on LLaVA-NeXT-13B, which has higher computa-
tional demands. As shown in Table 10, the combination of higher input image resolution and a larger
LLM results in significantly increased inference cost. Our CDPruner effectively reduces the number
of visual tokens from 2,880 to 320, achieving a 10× reduction in FLOPs, along with 6.8× and 1.4×
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Table 8: Performance comparison of different pruning methods on LLaVA-NeXT-13B. Acc.
denotes the average performance across 10 benchmarks, Rel. represents the average percentage of per-
formance maintained. Attention-based methods are shown with red background, attention&similarity-
based methods with green background, and similarity-based methods with blue background.

Method VQAV2 GQA VizWiz SQAIMG VQAText POPE MME MMBEN MMBCN MMVet Acc. Rel.
Upper Bound, All 2880 Tokens (100%)

LLaVA-NeXT-7B 82.3 64.4 59.1 73.1 63.2 85.3 1539.5 68.5 61.2 45.0 67.9 100.0%
Retain 640 Tokens (↓ 77.8%)

FastV(ECCV24) 79.4 60.9 56.4 71.7 60.7 80.2 1516.7 65.5 59.9 43.8 65.4 96.4%
PDrop(CVPR25) 81.1 62.8 58.1 71.7 62.1 84.4 1559.1 66.6 60.8 39.7 66.5 97.6%
SparseVLM(ICML25) 79.9 62.7 57.5 72.5 62.8 85.6 1562.7 68.8 64.0 41.3 67.3 98.9%
PruMerge+(2024.05) 78.7 62.8 56.2 70.6 56.2 83.7 1497.3 67.4 61.9 39.4 65.2 95.6%
TRIM(COLING25) 79.4 63.1 54.1 71.2 57.6 87.3 1554.6 68.7 61.2 42.3 66.3 97.2%
VisionZip(CVPR25) 79.7 62.9 56.2 70.8 62.1 85.8 1549.2 68.1 62.6 46.8 67.2 99.2%
DART(2025.02) 79.3 62.7 56.2 71.0 61.3 85.2 1542.4 67.6 61.9 45.5 66.8 98.4%
DivPrune(CVPR25) 80.4 63.5 56.7 72.2 59.2 86.5 1526.1 67.5 62.9 39.0 66.4 97.3%
CDPruner(Ours) 81.0 64.0 57.1 71.8 61.0 87.5 1545.6 68.9 62.1 47.3 67.8 99.9%

Retain 320 Tokens (↓ 88.9%)
FastV(ECCV24) 669.8 54.6 53.3 70.5 55.4 63.6 1279.0 59.8 54.4 30.2 57.6 84.5%
PDrop(CVPR25) 75.4 57.7 52.1 72.1 56.2 74.6 1386.3 62.8 55.3 29.5 60.5 88.2%
SparseVLM(ICML25) 76.7 60.9 54.7 70.9 60.0 81.5 1491.6 68.0 63.5 39.3 65.0 95.5%
PruMerge+(2024.05) 75.9 61.1 53.6 70.7 55.9 79.1 1426.5 66.6 60.6 36.5 63.1 92.6%
TRIM(COLING25) 75.9 61.3 52.2 69.9 52.8 87.2 1476.6 67.3 57.4 33.1 63.1 91.9%
VisionZip(CVPR25) 76.8 60.7 54.8 70.2 60.7 82.3 1487.3 66.5 62.3 41.1 65.0 95.6%
DART(2025.02) 76.4 60.9 54.2 69.8 59.7 81.1 1457.4 65.9 61.9 41.4 64.4 94.8%
DivPrune(CVPR25) 78.1 61.8 55.0 72.3 57.6 85.2 1473.0 65.9 61.9 39.2 65.1 95.4%
CDPruner(Ours) 79.6 63.1 55.1 71.6 58.7 87.6 1498.5 66.3 61.8 42.4 66.1 97.1%

Retain 160 Tokens (↓ 94.4%)
PruMerge+(2024.05) 71.6 57.9 50.8 70.1 52.8 72.1 1345.9 63.2 57.1 30.6 59.3 86.8%
TRIM(COLING25) 72.1 58.9 51.2 69.1 49.2 87.0 1392.3 65.7 51.6 27.8 60.2 87.3%
VisionZip(CVPR25) 72.4 57.8 52.5 69.7 58.6 76.8 1393.9 64.8 60.0 35.9 61.8 90.8%
DART(2025.02) 72.8 58.7 52.1 70.1 57.2 75.7 1389.3 64.6 60.8 35.0 61.6 90.5%
DivPrune(CVPR25) 75.6 60.0 53.5 71.4 56.3 81.9 1436.7 65.1 60.9 37.4 63.4 92.9%
CDPruner(Ours) 77.8 62.2 53.1 71.7 56.7 88.3 1476.9 65.9 60.1 40.4 65.0 95.2%

Table 9: Performance comparison of different pruning methods on InternVL3-8B. Acc. denotes
the average accuracy, Rel. represents the average percentage of performance maintained. Attention-
based methods are shown with red background, and similarity-based methods with blue.

Method AI2D TextVQA ChartQA OCRBench HallBench MME MMB-EN MMB-CN Acc. Rel.
Upper Bound, All 1280 Tokens (100%)

InternVL3-8B 85.2 81.5 85.1 853 50.0 2394 83.9 82.6 84.2 100.0%
Retain 256 Tokens (↓ 80.0%)

FastV(ECCV24) 82.2 74.4 70.7 632 48.5 2348 83.6 82.0 77.8 92.4%
DivPrune(CVPR25) 80.9 64.7 57.5 477 38.7 2249 80.8 80.2 70.4 82.8%
CDPruner(Ours) 82.7 75.7 72.0 640 48.8 2334 83.5 81.7 78.1 92.9%

Retain 128 Tokens (↓ 90.0%)
FastV(ECCV24) 77.3 63.7 46.9 426 42.5 2250 81.3 80.2 68.4 80.9%
DivPrune(CVPR25) 76.4 55.6 42.7 378 37.7 2166 78.4 77.6 64.3 75.7%
CDPruner(Ours) 79.9 67.5 50.8 471 44.6 2282 82.1 80.3 70.8 83.9%

decreases in prefill and decode time, respectively. Meanwhile, it maintains competitive performance,
demonstrating the efficiency of CDPruner for larger MLLM inference.

C.4 Ablation study on balance factor

Since the amount of information contained in the instructions of different benchmarks varies, we can
introduce a balance factor θ to control the trade-off between diversity and relevance. Specifically,
from eq. (8), we derive α = θ/(2(1− θ), which is then used to transform the relevance vector r̃ and
construct a new conditional kernel matrix:

L̃′ = diag (exp (αr̃)) ·L · diag (exp (αr̃)) . (18)

The updated log-probability of a subset S for DPP is given by:

log det
(
L̃S

)
= 2α ·

∑
i∈S

r̃i + log det (LS) ∝ θ ·
∑
i∈S

r̃ + (1− θ) · log det (LS) (19)

By adjusting θ, we can modulate the relative importance of relevance and diversity in the modeling
process. As shown in Table 11, the ablation results for θ indicate that the optimal value varies across
benchmarks. Selecting the best factor value for each dataset leads to performance improvements. It is
worth noting that even without introducing this balancing factor (i.e., the version used in the main
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Table 10: Efficiency analysis of different pruning methods on LLaVA-NeXT-13B. The per-
formance is evaluated on POPE. Attention-based methods are shown with red background, atten-
tion&similarity-based methods with green background, and similarity-based methods with blue
background.

Method # Token FLOPs
(T)

Prefill Time
(ms/token)

Decode Time
(ms/token)

KV Cache
(MB)

GPU Memory
(GB)

Score
(F1)

LLaVA-NeXT-13B 2880 79.9 434 44 2250.0 30.1 85.3
FastV(ECCV24) 320 8.5 (×9.4) 75 (×5.8) 33 (×1.3) 250.8 28.0 63.6
PDrop(CVPR25) 320 8.5 (×9.4) 86 (×5.0) 34 (×1.3) 250.7 28.0 74.6
SparseVLM(ICML25) 320 8.5 (×9.4) 101 (×4.3) 38 (×1.2) 254.8 31.6 81.5
VisionZip(CVPR25) 320 8.2 (×9.7) 64 (×6.8) 32 (×1.4) 250.0 26.6 82.3
DivPrune(CVPR25) 320 8.2 (×9.7) 64 (×6.8) 32 (×1.4) 250.0 25.9 85.2
CDPruner(Ours) 320 8.2 (×9.7) 64 (×6.8) 32 (×1.4) 250.0 25.9 87.6

Table 11: Ablation study of balance factor on LLaVA-1.5-7B, 64 visual tokens retained.
θ VQAV2 GQA VizWiz SQAIMG VQAText POPE MME MMBEN MMBCN MMVet Acc. Rel.
0.0 74.6 57.6 53.9 67.9 55.8 86.2 1358.7 59.3 53.4 29.2 60.6 95.7%
0.2 74.8 58.2 53.8 68.2 55.7 86.6 1362.1 59.4 53.3 29.3 60.7 95.9%
0.4 75.1 58.7 53.9 68.1 55.7 87.2 1378.2 59.5 53.0 29.5 61.0 96.2%
0.6 75.5 58.9 54.1 68.5 55.6 87.3 1396.3 60.3 52.9 30.7 61.4 97.0%
0.8 75.2 58.5 53.3 68.4 55.0 87.4 1415.3 61.6 52.8 29.4 61.2 96.5%
best 75.5 58.9 54.1 68.5 55.8 87.4 1415.3 61.6 53.4 30.7 61.7 97.5%

experiments), our method already achieves strong results. Therefore, in practical applications, one
may choose whether to introduce and tune this additional hyperparameter based on specific needs.

D Additional visualization results

Here, we provide additional visualizations of relevance scores in Figure 5. It can be clearly observed
that models with language-image pre-training are able to effectively capture the correspondence
between user instructions and regions of interest in the image, which is crucial for instruction-guided
visual token pruning in multimodal large language models.

E Limitations

One limitation of our work is that the proposed method can only be applied to open-source MLLMs,
where the encoded visual tokens can be accessed during inference. However, there exist many black-
box models, including ChatGPT, Gemini, and Claude, which also require significant computational
resources for visual reasoning. Moreover, although our method is applicable to state-of-the-art open-
source MLLM architectures such as Qwen2.5-VL and InternVL3, and achieves superior performance
compared to existing approaches, these models are generally more sensitive to visual token pruning.
It can be observed that, compared to the LLaVA series, these advanced models tend to suffer greater
performance degradation after pruning. This is likely due to the fact that their architectures already
incorporate visual token compression techniques like pixel unshuffle. Exploring how to enable
efficient inference within these architectures will be an important direction of our future work.

F Broader impacts

Recently, MLLMs have been widely applied across various industries, thanks to their powerful
reasoning capabilities. However, redundant visual inputs bring high computational complexity and
significantly increases its usage cost. In this work, we propose a simple yet effective solution that
accelerates MLLM inference by visual token pruning without the need of any additional training. We
believe this approach can facilitate the practical application of MLLMs by reducing deployment costs,
lowering inference latency, and enabling usage on resource-constrained edge devices. It is important
to note that this work does not mitigate the potential misuse of MLLMs by malicious actors.
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Input Image Is there a bird? Is there a boat? Is there a rock? Is there a lake?

Input Image Is there a phone? Is there a plate? Is there a bottle? Is there a glass?

Input Image Is there a banana? Is there a bowl? Is there a kettle? Is there a table?

Input Image Is there a blender? Is there a knife? Is there a lime? Is there a tequila?

Figure 5: Additional visualizations of relevance scores. We compute the relevance scores for
several samples from the POPE benchmark using LLaVA-1.5-7B, with the instruction following the
template: “Is there a {object} in the image?” Red indicates high relevance, while blue indicates low.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the claims made, including the
contributions made in the paper. And the claims made accurately match experimental results,
which can be well generalized to other MLLMs.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: There is a separate “limitations” section in the technical appendices located in
the technical appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: There is no theoretical result in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The detailed methods are described in the paper. All the pre-trained models
and datasets used in the experiments are publicly available, and the code is provided in the
technical appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The paper provides the code with sufficient instructions to faithfully reproduce
the main experimental results in the technical appendix. The authors also plan to release the
code on open-source websites such as GitHub after the publication of the paper.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the evaluation details are clearly provided in the paper. The proposed
method does not contain any hyperparameters, and the settings on all benchmarks follow
the previous work. The authors also provide the corresponding implementation details in
the code and technical appendices located in the technical appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The paper focuses on training-free model inference acceleration, and thus does
not involve experimental statistical significance.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All the experiments were conducted on 8 NVIDIA A100-80GB GPUs. There is
also a separate analysis section for comparing the inference efficiency of different methods.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors have reviewed and ensured compliance with the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no negative societal impact of the work performed

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The authors have appropriately cited the original papers that produced the code
package or dataset.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper provides the code with detailed documentation in the technical
appendix.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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