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ABSTRACT

As our understanding of the mechanisms of brain function is enhanced, the value
of insights gained from neuroscience to the development of AI algorithms de-
serves further consideration. Here, we draw parallels with an existing tree-based
ANN architecture and a recent neuroscience study (Shadmehr, 2020) arguing that
the error-based organization of neurons in the cerebellum that share a preference
for a personalized view of the entire error space, may account for several desirable
features of behavior and learning. We then analyze the learning behavior and char-
acteristics of the model under varying scenarios to gauge the potential benefits of
a similar mechanism in ANN. Our empirical results suggest that having separate
populations of neurons with personalized error views can enable efficient learning
under class imbalance and limited data, and reduce the susceptibility to unintended
shortcut strategies, leading to improved generalization. This work highlights the
potential of translating the learning machinery of the brain into the design of a
new generation of ANNs and provides further credence to the argument that bio-
logically inspired AI may hold the key to overcoming the shortcomings of ANNs.

1 INTRODUCTION

Artificial neural networks (ANNs) have achieved remarkable performance on many vision tasks
which have been enabled by the considerable progress in developing deeper and more complex net-
work architectures. However, despite the performance gains, the existing networks have been shown
to be brittle and have several limitations and shortcomings. They require huge amounts of data to
train, struggle with noisy and imbalanced datasets, do not generalize well to out-of-distribution data,
and are vulnerable to shortcut learning and adversarial attacks (Vandervert, 2016). While there have
been studies on addressing these challenges individually, the majority of these specialized techniques
and regularization approaches for overcoming a specific challenge lead to a trade-off in performance
and do not provide a general solution (Tsipras et al., 2019).

Humans, on the other hand, excel at learning efficiently even under challenging scenarios with
limited data and can generalize well to novel scenarios. Neuroscience has made substantial progress
in understanding the mechanisms of brain functions and the design principles it employs to enable
efficient learning (Hassabis et al., 2017; Kudithipudi et al., 2022; Hawkins, 2021; Macpherson et al.,
2021). It is therefore, important to further exploit insights from our enhanced understanding of the
learning machinery of the brain into the development of AI algorithms.

We consider a recent study by Shadmehr (2020) that examines the organization of neurons in the
cerebellum, an important learning site in the brain, and resembles a three-layer feedforward network
(see Figure 1). The neurons in the middle layer of the cerebellum are grouped into small populations
that receive a personalized view of the entire error space. This is in stark contrast to standard ANNs
which lack any such organization of neurons and each unit in the network receives the same error
signal. Therefore, we attempt to study the potential effect of a similar error-dependent organization
of neurons in ANNs. To this end, in the object recognition task in ANNs, we consider the classifica-
tion error associated with a learned semantic grouping of object classes as partial views of the error
space and the corresponding set of disjoint subnetworks as populations that share a preference for
a particular partial error view. From this perspective, our intended learning paradigm can be more
aligned with tree-structured ANNs.
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Figure 1: In standard ANN, there is no grouping of neurons within a layer, and all neurons receive
the same global error signal for weight updates. In contrast, The Cerebellum has a vastly different
design and learning mechanism. It resembles a three-layer feedforward network where the inferior
olive organizes Purkinje cells in the hidden layer into small populations which receive a limited
personalized view of the error space. Similar to the cerebellum, the desired population coding based
ANN (PC-ANN) would form an error-dependent grouping of neurons into populations that learn
from partial error views from the classification error associated with learned semantic groupings of
classes. We consider SplitNet as an instance of an architecture that bears similarities PC-ANN.

Thus, we consider SplitNet (Kim et al., 2017), originally proposed to improve inference speed and
reduce the number of parameters, as a suitable tree-structured method to assess the potential of
population coding in ANNs as we see many similarities between its network design and the error-
dependent organization of neurons in the cerebellum (see Figure 1). Analogous to the grouping of
neurons in the cerebellum, SplitNet learns to split the network weights into multiple groups that
use disjoint sets of features. In particular, since the logit values associated with the semantically
disparate class groups only depend on the corresponding branched subtrees of the network and not
the other subtrees, each group (subtrees) receives a gradient signal which is biased towards correct-
ing the error associated with their corresponding semantic group (partial error view), similar to how
populations in the cerebellum share preference for a biased error view. Finally, similar to the cere-
bellum, which receives a highly processed input, SplitNet has a shared layer that extracts features
from the input data before splitting them into separate populations. Therefore, we consider SplitNet
to bear some similarities to the population coding in the cerebellum and is, therefore, suitable for
conducting our empirical study.

We assess the potential benefits of the error-based organization of neurons in the design of ANNs
under varying training conditions and assess its effect on the learned model. Our empirical evalu-
ation demonstrates the effectiveness of the considered architecture in improving the generalization
of the model over standard training under challenging scenarios. It provides considerable perfor-
mance gains under class imbalance which is inherent in real-world datasets and significantly im-
proves the sample efficiency of the model, enabling the model to generalize better with fewer data.
Additionally, our empirical results suggest that error-based organization of neurons can reduce the
texture bias and vulnerability to unintended shortcut cues which improve generalization to out-of-
distribution data. We attribute these improvements to the flexibility of the subnets to explore the
feature space more and learn specialized features for the semantic groups. Furthermore, our analy-
ses of the characteristics of the model suggest that it compresses more information and converges to
flatter minima. We would like to emphasize that all of these benefits come merely from the design
of the network rather than explicit regularization or specific techniques for each scenario. Our em-
pirical results highlight the potential of error-based grouping and partial error views based learning
mechanisms in ANNs.

Our work aims to bring the perspective of population coding-based design in ANNs and presents it as
a promising direction for further research. We believe that exploring the design space of population
coding-based ANNs can lead to more reliable and robust models that may address some of the key
challenges and limitations of current AI models.
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2 BACKGROUND AND METHODOLOGY

We outline the background and premises of our study: Section 2.1 reviews population coding in
the cerebellum (Shadmehr, 2020), Section 2.2 details SplitNet, and Section 2.3 explores its parallels
with ANNs and the benefits of population coding.

2.1 POPULATION CODING IN THE CEREBELLUM

The cerebellum is an important learning site in the brain (Rapoport et al., 2000; Vandervert, 2016)
and, therefore, several studies in neuroscience have scrutinized how efficient learning is enabled in
the cerebellum (Herzfeld et al., 2020; 2018; Kitazawa et al., 1998; Kojima et al., 2010). It has a
relatively simple circuit architecture that resembles a three-layer feedforward network of neurons
in which the “hidden layer” consists of Purkinje cells (P-cells), and the output layer consists of
deep cerebellar nucleus (DCN) neurons. Our study focuses on the recent work of Shadmehr (2020),
which provides an extensive overview of the learning characteristics and organization of neurons in
the cerebellum from a machine learning perspective and its implications. Unlike an ANN, P-cells are
grouped into small populations that converge on single DCN neurons. Furthermore, the error signal
conveyed to the P-Cells, which in turn act as surrogate teachers for the downstream DCN neurons
they project to, is not a fair reflection of the entire error space, but is rather biased to provide a limited
(personalized) view of the error space. This error-dependent grouping of P-cells into populations is
believed to play a crucial role in enabling efficient learning in the cerebellum. Our study aims to
bring this perspective to ANNs and to study the potential benefits of such an architecture.

2.2 SPLITNET

To this end, we consider an existing ANN architecture that bears some resemblance to a grouping
of neurons with personalized error views. SplitNet (Kim et al., 2017) was originally proposed to
optimize the inference speed of the model by learning a tree-structured network architecture that
is highly parallelizable. The method involves splitting the network into a set of subnetworks that
share a common lower layer and using a disjoint set of features for the specific group of classes
associated with the subnetwork. SplitNet employs a two-stage learning scheme whereby in the
first stage classes-to-group and features-to-group assignment matrices are learned along with the
network weights while regularizing them to be disjoint across groups. The learned assignment
matrices are then utilized to obtain a tree-structured network that involves no connection between
branched subtrees of semantically disparate class groups, which are subsequently finetuned with the
cross-entropy loss.

Concretely, for a given number of groups, G, the vector of assignment of the feature group and the
vector of assignment of the class group for the group g (1 ≤ g ≤ G) are given by pg ∈ RD and
qg ∈ RK where D is the dimension of the features and K is the number of classes. pg and qg define
a group together, where pg represents the features associated with the group and qg indicates a set
of classes assigned to the group. The disjoint set of classes and features are learning by imposing a
constraint on the network weight at each layer W l to be a block-diagonal matrix, where each block
W l
g is associated with a class group g ∈ G. There is no overlap between groups, either in features

or classes, so each disjoint group of classes has exclusive features associated with it. See Appendix
for regularization objectives.

2.3 STUDYING THE POTENTIAL BENEFITS OF POPULATION CODING IN ANNS

The resemblance of the cerebellum to a feedforward network and a preliminary understanding of
the error-driven organization of neurons and the learning mechanisms it employs provide us with
an opportunity to study the benefits of such an architecture in ANNs. Standard learning consists
of evaluating an overall error term (e.g. mean cross-entropy loss over a training batch) and subse-
quently updating each neuron’s weight in the gradient direction, which minimizes the loss term. As
explained in Section 2.1, this is in stark contrast to how the cerebellum learns, and therefore we aim
to study the potential impact of a similar error-dependent grouping of neurons into populations and
subsequently learning from partial error views in ANNs.
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Table 1: Test accuracy on different datasets. PC-ANN consistently improves the generalization of
the model across datasets of varying complexity, demonstrating its versatility.

CIFAR-10 CIFAR-100 TINY-IMAGENET

BASELINE 92.49 ±0.25 73.65 ±0.18 49.14 ±0.49
PC-ANN 93.24 ±0.21 75.33 ±0.47 53.02 ±0.22

To this end, we first define the framework within which we conduct our study by drawing parallels
under the classification task in ANNs. We aim to learn semantically disparate grouping of object
classes which can be represented by a disjoint set of features. Semantically similar classes are likely
to share features and meaningfully partition the input space. Therefore, the classification error as-
sociated with each semantic group can provide a personalized view of the error space, which can be
subsequently utilized to learn specialized features in the associated subnetwork (population of neu-
rons). This paradigm naturally lends itself to tree-structured network architectures such as SplitNet.
Figure 1 shows the similarities between the cerebellum and structure and the learning dynamics of
SplitNet (referred to as PC-ANN for emphasis). Notably, a closer look at the backpropagation of
errors in SplitNet reveals an intriguing property that makes it suitable for our study as an instance
of ANN architecture that bears similarity to the population coding in the cerebellum: the logits for
each class in a semantic group depend only on the associated subtree (population) which therefore
receives an error signal which is biased towards correcting the error associated with the semantic
group (partial error). For instance, consider the scenario where we have two semantic groups: living
and non-living, and the input image is of a cat. The logit values for non-living classes are provided
by the associated subtree and vice versa. Hence, as the error signal for each unit depends on its in-
volvement in the forward pass, the subtree for the living semantic group will receive an error signal
biased towards correcting the error associated with the logits for living classes and similarly for the
non-living subtree. Therefore, we posit that splitNet implicitly utilizes partial error views to create
specialized populations of neurons. Studying the performance and characteristics of such a network
enables us to gauge the potential benefits of mimicking population coding in ANNs.

3 EMPIRICAL EVALUATION

To study the potential benefits of incorporating a similar mechanism for population coding in ANN,
we evaluate the characteristics and learning behavior of SplitNet in various challenging scenar-
ios. Therefore, we refer to SplitNet as an instance of the desired population coding-based ANN
(PC-ANN), the subnetworks as populations, and the classification error associated with the learned
semantic grouping of classes as partial error views to emphasize our focus on studying the potential
impact of a similar mechanism of population coding in ANNs as the cerebellum.

3.1 PERFORMANCE

To assess model versatility, we evaluate multiple datasets of varying complexity. Table 1 shows
that PC-ANN consistently improves generalization, particularly on complex datasets with more
classes and higher interclass similarity. These results suggest that PC-ANN efficiently forms seman-
tic groups and learns from partial error views. By providing targeted signals to specific populations,
partial error views encourage broader feature exploration and specialized learning, helping mitigate
narrow learning pitfalls (Tramèr et al., 2020).

3.2 OUT-OF-DISTRIBUTION (OOD) GENERALIZATION

A long-standing challenge for AI is its inability to generalize well to OOD data, while humans excel
at generalizing to novel situations. To test whether population coding enables the model to learn
more generalizable features, we consider two challenging scenarios. We first utilize the cleaned
version of the DomainNet dataset (Peng et al., 2019) that consists of data from different domains
on 345 object classes. We train the models on the real domain and use the painting, clip art, sketch,
and infograph domains for our OOD testing. We also consider different variants of the ImageNet
dataset (Deng et al., 2009). ImageNet-R (Hendrycks et al., 2021) and ImageNet-B (Hendrycks
et al., 2021) contain images from 11 different renditions and real blurry images from a subset of
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(a) (b)

Figure 2: Comparison of OOD Generalization: (a) performance of models trained on real photos
and tested on various out-of-distribution domains. (b) Generalization of models trained on Tiny-
ImageNet and tested on common classes in different variants of ImageNet dataset. Population cod-
ing enables the model to learn better generalizable features, improving OOD generalization.

(a) (b)

Figure 3: (a) Shortcut learning analysis on CelebA-Skewed: PC-ANN significantly reduces reliance
on the blonde color shortcut, as reflected in the performance gap between Blonde-M and Non-
Blonde-F. (b) Texture bias analysis on Tiny-ImageNet: PC-ANN achieves better generalization on
stylized images, indicating lower texture bias than standard ANNs.

100 classes of ImageNet classes, respectively. However, ImageNet-A (Hendrycks et al., 2019b)
provides a dataset for naturally occurring adversarial examples. We test the models trained on Tiny-
ImageNet datasets on the common subset of classes within each of these ImageNet variants for OOD
evaluation. PC-ANN provides better generalization across all the domains of DomainNet (Figure 2
(a). We observe similar gains on different variants of the ImageNet datasets (Figure 2 (b)). Although
the difference in ImageNet-A is minor, it provides early evidence that having separate subnetworks
may improve adversarial robustness. We hypothesize that the generalization gains with PC-ANN
may be attributed to learning a specialized set of features for the learned semantic groups.

3.3 SHORTCUT LEARNING

Shortcuts are decision rules that perform well on standard benchmarks but fail to transfer to more
challenging testing conditions, including real-world scenarios (Geirhos et al., 2020). As the models
are typically trained to maximize the training accuracy, they are quite likely to rely on spurious
correlations: associations that are predictive of the training data, but not valid for the actual task. A
major challenge for enabling efficient learning in ANNs is therefore to control the sensitivity of the
training process to such spurious correlations. To evaluate the susceptibility of the model to shortcut
learning, we follow the analysis in (Jain et al., 2021) and consider a gender classification task based
on CelebA dataset (Liu et al., 2015) (CelebA-Skewed) where the training dataset is biased so that
it only contains blonde females and non-blond males. Therefore, hair color is highly predictive on
training data but not in test data where hair color and gender are independent attributes. Therefore,
this may result in a decision rule based only on hair color.

Figure 3 shows that PC-ANN is in fact less vulnerable to shortcut learning and significantly improves
generalization compared to standard ANN. Particularly, we see considerable gain in generalization
to non-blond females and blond males without any explicit regularization. To better understand

5
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Figure 4: Visual explanations of the models trained on CelebA-Skewed. Attention maps suggest that
PC-ANN relies on the salient features of the face to predict gender, while standard training relies
more on the unintended shortcut cue (blond hair color in this case).

how the two models make decisions, we use the Grad-CAM (Selvaraju et al., 2017) approach to
examine the visual explanations of the models. We use the penultimate layer to extract the feature
embeddings and use a threshold of 0.4 on the attention maps. Figure 4 shows that population coding
remarkably enables the model to attend to the salient features of the face to distinguish between the
genders, while standard training relies more on the unintended shortcut cue of the hair color, thus
paying more attention to the hair region to inform its decision. The remarkable ability of PC-ANN
to avoid the shortcut cue without any explicit regularization can also be attributed to the flexibility
of PC-ANN to learn specialized disjoint features for each gender and avoid narrow learning.

3.4 TEXTURE BIAS

Geirhos et al. (2018) conducted a comparative study on convolutional neural networks (CNNs) and
human observers on images with a texture-shape cue conflict. Their study revealed that, in sharp
contrast to humans, CNNs are strongly biased towards recognizing texture instead of shape, allud-
ing to fundamentally different classification strategies. They further showed that models that learn
shape-related features are more robust and generalizable whereas models that rely on texture are
susceptible to shortcut learning and result in poor generalization. As PC-ANNs bear some similari-
ties to population coding in the cerebellum, we aim to investigate whether they exhibit behavior that
is closer to humans than standard ANNs.

Following Geirhos et al. (2018), we evaluate the texture bias of the model by applying style trans-
fer (Huang & Belongie, 2017) to the Tiny-ImageNet test images. We use four different style images
and apply style transfer with varying strengths, i.e. alpha ∈ [0.2, 0.4, 0.6] so that only the shape
of the image corresponds to the correct label. Figure 3 (b) shows that PC-ANN generalizes better
under varying stylization strengths, suggesting that it is less biased toward the texture of the image.

Additionally, Section B shows that PC-ANN considerably increases the robustness of model to
class imbalance, enhances the sample efficiency and leads to convergence to flatter minima and
compresses more information than standard ANN. These results further support our hypothesis that
incorporating the details of the learning machinery of the brain can address some of the shortcomings
of standard ANNs and bring us closer to human intelligence.

4 CONCLUSION

We conducted an empirical study to explore the potential benefits of drawing insights from neuro-
science findings to the development of AI algorithms. Here, we focused on the recent study (Shad-
mehr, 2020), which explains the error-based organization of neurons in the cerebellum from a ma-
chine learning perspective and attempted to draw parallels with an existing tree-structured ANN. Our
empirical evaluation of the considered architecture shows improved robustness to class imbalance
and shortcut learning, efficient learning under limited data, and reduced texture bias. Furthermore,
the characteristic analyses demonstrate that it compresses higher information in the hidden states,
and converges to flatter minima. We hypothesize that these benefits are a consequence of the archi-
tecture that resembles population coding in the cerebellum, and further work to explicitly mimic the
error-based grouping of neurons in ANN is a promising research direction.
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A REGULARIZATION OBJECTIVES IN SPLITNET

The regularization which assigns features and classes into disjoint groups consists of three objec-
tives:

- Group Weight Regularization, RW prunes out inter-group connections to obtain block-diagonal
weight matrices by minimizing the off-block-diagonal entries;

RW (W,P,Q) =
∑
g

∑
i

‖((I− Pg)WQg)i∗‖2 +
∑
g

∑
j

‖(PgW (I−Qg))∗j‖2 (1)

where Pg = diag(pg) and Qg = diag(qg) are the feature and class group assignment matrices for
group g, and (M)i∗ and (M)∗j denote i-th row and j-th column of M . Eq. 1 imposes row/column-
wise l2,1-norm on the inter-group connections.

- Disjoint Group Assignment, RD ensures that the group assignment vectors are mutually exclusive
by enforcing orthogonality;

RD(P,Q) =
∑
i<j

pi · pj +
∑
i<j

qi · qj (2)

- Balanced Group Assignment, RE encourages the group assignments to be uniformly distributed
by minimizing the squared sum of elements in each group assignment vector.

RE(P,Q) =
∑
g

(
(
∑
i

pgi)
2 + (

∑
j

qgj)
2
)

(3)

Therefore, the overall regularization loss is as follows;

Ω(W,P,Q) = λ1RW (W,P,Q) + λ2RD(P,Q) + λ3RE(P,Q) (4)

where λ1, λ2, and λ3 control the strength of each regularization. For more details, see Kim et al.
(2017).

B ADDITIONAL EMPIRICAL EVALUATION

B.1 IMBALANCED DATASETS

The majority of the benchmark datasets have a uniform distribution of samples across the object
classes. However, class imbalance is naturally inherent in the real world, where some objects are
more prevalent than others, or it is relatively easier to obtain more data for certain classes. Stan-
dard training exhibits bias towards the prevalent classes at the expense of minority class (Dong
et al., 2018) leading to a significant drop in generalization performance. While several approaches
have been proposed for efficiently training models under class imbalance (Johnson & Khoshgoftaar,
2019) which employs specialized techniques for tackling class imbalance or making certain assump-
tions about the distribution of data, we still lack a general method that improves the robustness of
the underlying learning paradigm.

To evaluate the robustness of PC-ANN to class imbalance, we simulate varying degrees of class
imbalance on different datasets. We follow Hendrycks et al. (2019a) and employ the power law
model in which the number of training samples for a class c is given by nc = ba/((c − 1)−γ +
b)e, where b.e is the integer rounding function, γ represents an imbalance ratio, a and b are offset
parameters to specify the largest and smallest class sizes. The training data becomes a power-law
class distribution as the imbalance ratio γ decreases. We compare the performance of PC-ANN with
the standard ANN on varying degrees of class imbalance γ ∈ {2.0, 1.0, 0.6, 0.20} as the γ value
decreases, the class imbalance increases. (a, b) are set so that the maximum and minimum class
counts are (5000, 250) for CIFAR-10, (500, 25) for CIFAR-100, and Tiny-ImageNet.

Table 2 shows that PC-ANN consistently provides a considerable performance improvement over
standard ANNs, especially for more complex datasets with high degrees of class imbalance without
any explicit regularization. We believe that a major shortcoming of standard ANNs is that there
is no division or specialization of neurons as each unit is involved in correcting the prediction for
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Table 2: Comparison of models trained under various levels of class imbalance. Note that the degree
of imbalance increases as γ reduces. PC-ANN provides consistent generalization gains over base-
line under varying degrees of class imbalance, particularly for higher imbalance on more complex
datasets.

CIFAR-10 CIFAR-100 TINY-IMAGENET

γ BASELINE PC-ANN BASELINE PC-ANN BASELINE PC-ANN

2 78.02 ±0.68 79.85 ±0.61 47.42 ±0.49 51.55 ±0.29 23.67 ±0.08 28.46 ± 0.07
1 74.59 ±0.42 75.84 ±0.85 36.87 ±0.34 42.35 ±0.45 17.74 ±0.29 21.67 ±0.17
0.6 72.84 ±0.68 74.66 ±0.51 34.02 ±0.46 38.41 ±0.43 15.75 ±0.79 19.54 ±0.16
0.2 71.68 ±0.24 73.57 ±0.90 30.43 ±0.81 35.10 ±0.49 13.57 ±0.42 17.45 ±0.12

Table 3: Performance of the models trained on a different percentage of the training samples. PC-
ANN improves the sample efficiency of the model, allowing it to achieve higher performance with
less amount of training data.

SAMPLES
(%)

CIFAR-10 CIFAR-100 TINY-IMAGENET

BASELINE PC-ANN BASELINE PC-ANN BASELINE PC-ANN

100 92.49 ±0.25 93.24 ±0.21 73.67 ±0.18 75.33 ±0.47 49.14 ±0.49 53.02 ±0.22
50 88.69 ± 0.23 90.34 ±0.16 65.22 ±0.21 68.35 ±0.37 40.27 ±0.30 46.07 ±0.12
20 80.89 ±0.24 84.02 ±0.35 48.93 ±0.55 53.42 ±0.54 26.04 ±1.00 32.73 ±0.46
10 73.13 ±0.42 76.36 ±0.43 35.58 ±0.39 40.95 ±0.34 18.66 ±0.37 23.09 ±0.13
5 63.48 ±0.86 67.28 ±0.09 23.77 ±0.42 28.07 ±0.65 11.83 ±0.45 15.21 ±0.23
1 42.64 ±0.20 44.03 ±0.16 8.52 ±0.27 9.47 ±0.10 4.35 ±0.23 4.83 ±0.05

every input. Therefore, an imbalanced batch significantly affects the performance of the model
as the entire network is adjusted to reduce the loss on the imbalanced batch, thus preferring the
dominant class at the expense of less sampled classes. On the contrary, the partial error views and
disjoint subtrees in PC-ANN provide more protection to parts of the network, providing implicit
regularization. Furthermore, it can take the prevalence of classes into account while grouping them
to mitigate the impact of dominant classes on the performance of minority classes, which builds
robustness into the learning framework itself.

B.2 SAMPLE EFFICIENCY

Learning complex concepts with a few examples is a hallmark of human intelligence (Zador, 2019),
whereas it remains a challenge for ANNs that are data-hungry and require an abundant amount of
labeled data to generalize well (Deng et al., 2009). This limits their application in a limited data
regime (Yao, 2021). We believe that mimicking the learning machinery of the brain may lead to
models that can generalize better under a low data regime. To this end, we compare the performance
of the models trained on a subset of different datasets where we only use p ∈ [1, 5, 10, 20, 50] per-
centage of the training dataset and test on the full test set. Table 3 shows that PC-ANN consistently
provides better generalization compared to standard ANNs, suggesting that it can learn efficiently
with limited data. Notably, the performance gains are higher for complex datasets, where both the
number of classes and their interclass similarities are higher. We hypothesize that the grouping of
neurons into populations allows each population to explore different regions in the feature space,
enabling the model to learn more efficiently from partial error views of fewer data.

B.3 CONVERGENCE TO FLATTER MINIMA

As the loss landscape of DNN’s optimization objective is non-convex, there can be multiple solu-
tions that can fit the training data, some solutions, however, generalize better because of being in
wider valleys where the model predictions do not change drastically with small perturbations in the
parameter space compared to the narrow crevices (Selvaraju et al., 2017; Chaudhari et al., 2019;
Keskar et al., 2017). To assess whether PC-ANN converges to wider minima, we follow the analysis
in Zhang et al. (2018) and add independent Gaussian noise of increasing strength to the parameters
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Figure 5: Training accuracy of models on Tiny-ImageNet under varying degrees of weight pertur-
bations. PC-ANN is more stable to weight perturbations, indicating convergence to flatter minima.

Table 4: Comparative analysis on the degree to which a model with frozen learned representations
can fit random binary labels. Lower training accuracy indicates higher information compression.

CIFAR-10 CIFAR-100 TINY-IMAGENET

BASELINE 51.80 ±1.08 92.50 ±2.57 74.37 ±3.89
PC-ANN 51.60 ±0.65 90.58 ±2.21 71.33 ±0.78

of the trained model and analyze the generalization of the trained models on the training dataset.
Figure 5 shows that the performance is more stable to the perturbations, suggesting convergence to
wider minima.

B.4 INFORMATION COMPRESSION

A number of studies that view ANNs from an information theory perspective (Tishby & Zaslavsky,
2015; Shwartz-Ziv & Tishby, 2017) relate the degree to which ANNs compress the information in
their hidden states to the bounds on generalization, with higher information compression leading to
a stronger bound. To evaluate the effect of population coding on the compression of information
in the learned representation, we follow the analysis in Lamb et al. (2019) by freezing the learned
representation of the model and measuring how well the frozen representations can fit random labels.
we add a 2-layer multi-layer perceptron (MLP) network with 400 and 200 neurons on top of the
frozen models trained on the different datasets and fit them on random binary labels. Table 4 shows
that PC-ANN enables higher information compression suggesting that the disjoint set of features
in PC-ANN allows the model to learn optimal representations that can compress higher semantic
information.

C EXPERIMENTAL SETUP

To ensure a fair comparison, we compare the standard training and population coding based training
paradigm under uniform experimental settings. Following Kim et al. (2017), we employ WRN-16-
8 (Zagoruyko & Komodakis, 2016) for both baseline (Standard-ANN) and SplitNet experiments.
Unless otherwise stated, we use the following learning scheme: random horizontal flip and random
crop data augmentations with reflective padding of 4 and mean standard normalization; Adam opti-
mizer with 5e−4 weight decay; 100 epochs; the batch size of 64; and an initial learning rate of 1e−4,
decayed by a factor of 0.1 at epochs 10, 30 and 50. For SplitNet, we use a 2-way split (i.e. G = 2) at
the final linear layer. For all our experiments, we use λ1 = 1, λ2 = 2 and λ3 = 10. For evaluation,
we report the mean and one standard deviation of 3 runs with different seeds.
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D LIMITATIONS AND FUTURE WORK

Our study focused on the object recognition task where a meaningful semantic grouping of the
classes is possible and utilizes an existing suitable tree-based architecture. As such, the network does
not explicitly mimic population coding in the cerebellum, and it is not straightforward to employ it
for other tasks (e.g. regression) or when semantic grouping is not possible. We hope that our study
inspires exploration of this idea in different domains.

Some potential focus areas for future work can be better strategies for forming error-based groupings
of neurons and partial error views and aligning them to minimize the global task error, intertwining
the population formation and learning from partial views instead of two separate stages of learning,
and explicitly biasing the update rule of the population towards the partial views while also varying
the strength of the update in different layers.
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