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ABSTRACT

Generative sequence models are typically trained on sample sequences from nat-
ural or formal languages. It is a crucial question whether—or to what extent—
sample-based training is able to capture the true structure of these languages, of-
ten referred to as the “world model”. Theoretical results indicate that we can hope
for soundness at best, that is, generating valid sequences, but not necessarily all
of them. However, it is still important to have practical tools that are able to ver-
ify whether a given sequence model is sound. In this study, we focus on chess,
as it is a domain that provides enough complexity while having a simple rule-
based world model. We propose adversarial sequence generation for verifying the
soundness of the sequence model. Our adversaries generate valid sequences so as
to force the sequence model to generate an invalid next move prediction. Apart
from the falsification of soundness, this method is also suitable for a more fine-
grained analysis of the failure modes and the effects of different choices during
training. To demonstrate this, we propose a number of methods for adversarial
sequence generation and evaluate the approach on a large set of chess models. We
train models on random as well as high-quality chess games, using several training
recipes. We find that none of the models are sound, but some training techniques
and dataset choices are able to improve soundness remarkably. We also investi-
gate the potential application of board state probes in both our training and attack
methods. Our findings indicate that the extracted board states have no causal role
in next token prediction in most of the models.

1 INTRODUCTION

Generative sequence models like large language models see increasingly more use in areas where
a solid understanding of complex concepts and interactions is critical for their success (Lin et al.,
2023;|Nijkamp et al.,[2023} Li et al., 2022b)). Recent findings suggest that such important capabilities
might naturally emerge during training, yet our understanding of how this knowledge is represented
and used by models is still rather limited (Zheng et al., {2024} [Schaeffer et al., [2023]).

An interesting aspect of this problem is whether the emergent capabilities of generative models are
based on some representation of a system of world-states and transitions, and if so, whether this
implicit world model is consistent with reality (Vafa et al.l [2024)). In order to study implicit world
models, recent works proposed the use of synthetic tasks like board games that can be described
by formal languages, where the world model is explicitly known (Li et al.| 2023}, Toshniwal et al.|
2022). We can then compare the behavior of generative models to the true world model.

However, it is difficult to test if the implicit world model of the generative model is sound, that is,
whether it adheres to the true world model. To tackle this problem, we propose a novel methodology
based on adversarial sequence generation, where an adversary generates valid sequences with the
aim of forcing the model to break the formal rules of the true world model.

We examine generative sequence models in the domain of chess, using diverse datasets and various
training recipes that facilitate learning the true world model. Our methodology reveals a low level of
soundness across the board, along with numerous novel insights into the (lack of) causality of world
state probes, the roles of different training objectives, and the impact of dataset choice, such as size
and semantics.
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Our contributions are as follows:

* We present a novel adversarial framework for measuring the soundness of implicit world
models and evaluate it in the domain of chess.

* We perform a large-scale empirical study. We introduce several training schemes that fa-
cilitate learning the true world model over datasets of varying sizes and qualities.

* We analyse the models with our adversarial methodology, and show that none of them are
sound, but the choice of training recipe, dataset, and adversary has significant effects.

* We examine the role of linear board state probes during training and evaluation, and find
that they have a limited causal connection with the predictions of the models.

1.1 RELATED WORK

Instead of explicit generative world models (Ha & Schmidhuber, [2018;|Zeng et al.| [2023)), our paper
focuses on implicit world models learned by generative models (L1 et al., [2023; |Vafa et al., [ 2024)).

One way to verify the soundness of these internal world models is to extract them via mechanistic—
(Bereska & Gavves|, 2024} Nikankin et al.| [2025)), or conceptual interpretability methods (Patel &
Pavlick| 2022). Of the latter, linear probing (Alain & Bengio, 2017; |Hewitt & Manning}, |2019) has
been used extensively to decode learned concepts from feature representations (Abdou et al.| [2021}
Li et al.l 2021} [Hewitt & Liang| 2019} [Feng et al., [2025). However, the causal role of board states
extracted with probes is not evident, as the main goal of probes is analysing if, and how information
is encoded, rather than how it is used (Belinkov & Glass| 2019} Belinkov} |2022)). Therefore, probes
might incorrectly indicate the soundness of implicit world models (Vafa et al., [2024).

Another approach to verification is to compare the outputs of the model with a formal structure that
defines the true world model, such as automata (Liu et al., [2023; Laufer & Kleinberg, 2025), or
formal rules (Sun et al.l [2024; Wolfram & Schein, 2025). |Vafa et al.| (2024)) propose a framework
based on sequence-level distinctions to evaluate whether a language model learned the automaton of
the true world model, and show that generative models fail to do so. We extend this line of work with
a novel approach to implicit model verification that does not rely on sensitive threshold parameters
to define the generated language.

Board games have been extensively used in evaluating the emergent capabilities of language models
(Karvonen et al., 2024). |Li et al.| (2023) successfully train language models on Othello transcripts,
and they, along with Nanda et al.| (2023) and Hazineh et al.| (2023)) argue that linear board state
probes have causal connections to the model’s function, while |jylin04 et al.| (2024) show that the
implicit world model of OthelloGPT is fragmented. [Toshniwal et al.| (2022) and |Karvonen| (2024}
train language models on chess transcripts and argue through output-based and probing methods
that these models have emergent world models that are consistent with the true world model.

2 PRELIMINARIES AND NOTATION

Informally speaking, we assume that there is a ground truth world model, and we train a sequence
model based only on action sequences generated by this world model. Starting from a (hidden) initial
state, an action sequence is recorded by following legal state transitions allowed by the possible
actions in the world model. We then ask whether the implicit world model learned from a set of
action sequences is consistent with the ground truth world model. Let us elaborate on this setup
more formally and present an application as well: the game of chess.

2.1 WORLD MODELS AND GENERATIVE MODELS

Let ¥ be the finite set of all actions in a world model. Let s = a;..a;, be an action sequence, where
k > 0and V;a; € 3. Let the set of all possible action sequences be denoted by X*.

We assume that the true world model is given through the function W, where W (a;..a) C 3 is the
set of valid continuations of the sequence a;..a;,. We say that a sequence a;..ay, is valid if and only
ifa; € W(ay..a;—1) forall 0 < i < k (by definition, the empty sequence (i.e. k = 0) is valid).



Under review as a conference paper at ICLR 2026

Given a set of valid sequences, we can train a generative model M : ¥* — A(X), which is a
model that predicts a probability distribution over ¥, given an action sequence. Let M (a|s) denote
the conditional probability assigned to a € ¥ by the model, given s € ¥*. When generating a
sequence, we need a decoding policy m : ¥* — . For example, the greedy decoding policy is
m(s) = arg max, M(als).

Note that it is possible that one action is represented by a sequence of two or more fokens, in which
case model training and prediction should be understood at the token level.

Definition 2.1. A generative model M with decoding policy m is sound with respect to the true
world model W if and only if for any sequence s that is valid in W and W (s) # 0, we have
m(s) € W(s).

Focusing on soundness. Our problem formulation focuses on the verification of soundness, that is,
examining whether the generative model generates only valid sequences. Our method will be able to
disprove soundness by searching for counterexamples in the form of valid sequences, for which the
sequence model predicts invalid continuations. We note that sound and complete generative models
(ones that are identical to the world model) are theoretically impossible to learn from samples, even
for regular languages (Gold, |1967) while sound models are at least theoretically possible under
reasonable assumptions (Kleinberg & Mullainathan| [2024)).

Scope. In our formulation, we define TV () as the valid continuations of s without any restrictions
on the complexity of the true world model in question. As a result, our framework generalizes to
settings where the true world model is more complex (e.g., a pushdown automaton), as opposed to
the framework of (Vafa et al.,2024), which requires the true world model to be a deterministic finite
automaton.

2.2 CHESS NOTATION

We focus on the game of chess due to its clear and deterministic set of rules that form a ground truth
world model of the type introduced above.

Like [Toshniwal et al. (2022), we use the Universal Chess Interface (UCI) notation to represent
actions (moves). This notation combines the starting and destination squares to represent a move.
For example, the notation e2e4 means the player moved the piece on e2 to e4. Special moves
and events (e.g., castling, check, and checkmate) are not explicitly encoded, with the exception of
promotion, where the piece type the pawn is promoted to is indicated at the end of the move. For
example, the notation a 7a8q means the pawn on a7 was moved to a8 and got promoted to a queen.

2.3 BOARD STATE DECODERS

To analyze the soundness of implicit world models, some of our algorithms rely on a board state
decoder B that is implemented as an extra head added to a generative model M, and trained to
predict the current board state B(M, s) from a hidden representation within M after a sequence
of moves s. Most often, the decoder is a simple linear probe |Alain & Bengio| (2017)) that solves
a 13-class classification problem for each of the 64 squares on the board independently, where the
classes represent the six piece-types for the two sides, and the empty square.

We will also use the loss function L5(M, s) in some of our algorithms that measures the error
between the true board state after move sequence s and the predicted board state B(M, s).

3 ADVERSARIAL VERIFICATION OF SOUNDNESS

Our goal is to evaluate whether a generative model generates only valid sequences (i.e., its implicit
world model is sound) and, if not, we are also interested in the extent of the inconsistency.

Sequence-level evaluation is essential. It has been argued by Vafa et al.|(2024) that simple metrics
like next-token prediction accuracy are misleading because even completely wrong models might
have high accuracy. Therefore, there is a need for sequence-level analysis and metrics. Our approach
is based on generating valid but adversarial sequences such that the generative model predicts an
invalid continuation for the sequence.
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Advantages of adversarial verification. While Vafa et al.|(2024) propose a theoretically motivated
methodology to verify and quantitatively characterize soundness, their approach requires the defi-
nition of the formal language generated by the generative model, which in turn requires an ad hoc
probability threshold parameter. At the same time, the adversarial sequences simply seek to provide
existential proof that the generative model is incorrect, avoiding the need for defining the gener-
ated formal language exactly. However, as we will demonstrate, the method still offers quantitative
metrics and a detailed insight into the failure modes of different models through the fine-grained
analysis of successful attacks.

3.1 THE ABSTRACT ADVERSARY

The key component in our framework is the adversary, whose goal is to force the generative model
to generate an invalid next action. It is very important that the adversary itself will always produce
valid sequences, but in a way so that the next action predicted by the attacked model is invalid.

While an adversary could check all valid sequence prefixes in W up to some length to disprove
the soundness of the generative model, this would not be efficient, or even plausible in most cases.
Instead, given a sequence prefix a;..ay that is valid in W, our adversary extends the sequence with
aj,, based on solving

ap., = argmax f(M,a;..apap41), (1)
Ap41 €W(a1..ak)

where f is an auxiliary function that attempts to capture, for example, the uncertainty or incorrect-
ness of the sequence model before or after the sequence a;..ay, is extended with a; . Note that the
maximization is done only over valid actions, so the function f itself does not capture validity, only
an order of preference. We will describe multiple design choices for f in Section[3.2]

The attack is successful if, for some index j > k, the adversary can force an invalid next action. That
is, the adversary finds a sequence s* = a;..axaj ,,..a; where W (s*) # () and m(s*) ¢ W(s*).

Two-player games. Since chess is a two-player game, we adapt our attack framework accordingly
by having the adversary play against the sequence model. The attacker always plays with white,
so for all ¢ > 1, the move ag;_1 is given by Equation [l and as; = m(ay...a2;—1). The attack is
successful if, for some ¢ > 1, ay; is an illegal move.

3.2 ADVERSARY IMPLEMENTATIONS

First, we present three attacks, that is, three different implementations of f in Equation [l We then
add two non-adversarial baselines as well for comparison.

Illegal Move Oracle (IMO). Our first attack is based on a very natural idea: the attacker picks the
legal move that maximizes the conditional probability of an invalid continuation by the opponent.
Formally,

fivmo(M, a;..agap+1) = max M(ak42]a..aks1)- 2)
apt2EWl(ar..aps1)

Board State Oracle (BSO). The attacker picks the legal move that maximizes the error of the
board state predicted by a given probe B compared to the true board state. This attack is motivated
by the hypothesis that the predicted board state has a functional role (a causal effect) on next-token
prediction (Nanda et al., 2023} |Karvonen| 2024)). To be more precise, we maximize the loss of the
board state predictor:

fBso(M,ay..arpaps1) = Le(M, ay..aragi1), 3)
where Lp(M,a;..agar+1) is the classification loss of the probe’s prediction after the moves

at, ... Qk41-

Adversarial Detours (AD) by Vafa et al.|(2024). We include this attack for comparison with re-
lated work. Here, the attacker picks the legal move with the lowest conditional probability according



Under review as a conference paper at ICLR 2026

to the sequence model:
fap(M,ay..agapy1) = —M(agt1]ar..ax). 4)

Note that this attack is not directed explicitly towards forcing an error; instead, it attempts to guide
the generation toward out-of-distribution (OOD) regions.

Random Move (RM). As a simple baseline, the adversary randomly selects a legal move in each
attack step. That is, frjs is random and independent of its parameters.

Sequence Model Move (SMM). The attacker picks the legal move with the highest conditional
probability according to the sequence model:

fsmne (M, a1..apap 1) = M(agyi]a...ag). )]

In practice, this has the effect of simply letting the sequence model generate the sequence, but
correcting any incorrect moves by white. That is, the “attacker” is more of a benevolent oracle here.

4 QOUR SET OF MODELS: ATTEMPTING TO LEARN THE WORLD MODEL

We train a number of models using different training recipes and datasets in order to evaluate the
effect of a number of design choices on the quality of the implicit world model.

4.1 DATASET CHOICE

The curated datasets we used were the following: (1) MB-500k with 500k games from the Million-
base dataset, consisting of high-quality games, used also by [Toshniwal et al.| (2022); (2) Stockfish-
8M with 8M games generated by Karvonen| (2024), where the superhuman chess engine Stockfish
played as white against engines of varying strength; and (3) Lichess-16M with 16M human games
obtained from the public Lichess database, also used in[Karvonen| (2024)).

Random datasets. Motivated by the findings of |L1 et al.| (2023)) and |Vafa et al.| (2024), who show
that models trained on random games learn the true world model better than those that were trained
on curated datasets, we use random datasets as well. These contain 500K, 2M, and 10M valid
random games, respectively, none of which end due to resignation or agreeing to a draw.

Similar to [Toshniwal et al.| (2022), we limit the length of every game in the training sets to 150
moves. Longer games are removed from the datasets, and the dataset sizes are given after filtering.
For more information about the datasets, please refer to Appendix [A]

4.2 TRAINING OBJECTIVES

Tokenization. We use the tokenizer of Toshniwal et al.|(2022), where all squares (e.g. €2), and the
four possible piece types in promotion (g, r, b and n) are represented as single tokens. Thus, all
moves are encoded with either 2 or 3 tokens. We also use BOS and EOS tokens to indicate the start
and end of the game, respectively, and a separate PAD token for efficient training.

The next token (NT) prediction objective aims at predicting the next token after any prefix of any
training sequence. While next token prediction is the usual choice, we introduce two additional
training objectives that capture certain aspects of the true world model more directly.

The first is the probability distribution (PD) objective that aims at capturing all the legal moves
simultaneously, as opposed to training only on a single legal target token. This approach is motivated
by [Vafa et al.| (2024), who explicitly define the generated language with the help of the predicted
distribution. In the case of our tokenization choice, we need target distributions for move-starting
and move-ending tokens. For move-starting tokens, the uniform distribution is used over squares
where the player has a movable piece. For move-ending tokens, the target is the uniform distribution
over the possible destination squares for the selected piece specified by the previous token. In case
of a third promotion token, the uniform distribution is used over the four possible piece type tokens.

The PD objective can also be seen as an explicit way of learning the transition rules of the true
world model. This is particularly important for models that are trained on non-random datasets
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Table 1: Success rate of each attack strategy over all models. Bold and italic represent the highest
and lowest success rates for a model, respectively.

Random-500k Random-2M Random-10M
NT PD NT+JP PD+JP| NT PD NT+JP PD+JP| NT PD NT+JP PD+JP
RM | 0954 0.975 0954 0984 | 0.854 0.931 0.848 0.930 | 0.673 0.874 0.699 0.839
SMM | 0.419 0.881 0.493 0.810 | 0408 0943 0.476 0954 | 0.172 0900 0.192 0.845
IMO | 0.996 0.999 0.996 1.000 | 0.999 1.000 0.997 0.999 | 0.972 0.992 0.976 0.988
BSO | 0.886 0.875 0.816 0.872 | 0.779 0.858 0.745 0.901 | 0.541 0.811 0.528 0.757
AD | 0946 0970 0918 0.985 | 0.841 0947 0.824 0.939 | 0.516 0.902 0.394 0.878

Millionbase-500k Stockfish-8M Lichess-16M
NT PD NT+JP PD+JP| NT PD NT+JP PD+JP| NT PD NT+JP PD+JP
RM | 0.823 0.994 0.818 0.998 | 0.149 0913 0.176 0.931 | 0.107 0.914 0.075 0.852
SMM | 0.513 0.794 0494 0.846 | 0.190 0911 0.267 0.931 | 0.287 0.897 0.211 0.859
IMO | 0.999 1.000 0.995 1.000 | 0.631 1.000 0.662 0.998 | 0.387 0.995 0.349 0.987
BSO | 0.524 0.885 0.547 0.938 | 0.105 0.753 0.147 0.882 | 0.057 0.764 0.043 0.795
AD | 0.806 0.989 0.803 0.994 | 0.142 0.893 0.150 0.915 | 0.066 0.898 0.067 0.883

of high-quality chess games, where the next token objective is highly biased by a strategic value
function. That is, the next token objective does not allow the model to distinguish between illegal
and strategically bad moves (Li et al.,[2023]; | Vata et al., 2024).

The second is the joint probe (+JP) objective, motivated by recent advances in deep supervision,
where training multiple heads on related auxiliary tasks has been used to achieve better performance
and consistency (Li et al., [2022a; Zahorodniil 2025} [Huo et al.,[2025). We add a linear board state
probe to the model, and perform joint training by minimizing the combined loss of the next-token
predictor head and the board state probe. This method can be seen as learning to track the world
state explicitly.

Four objectives. We will use four training objectives, namely standard next-token prediction (NT),
probability distribution prediction (PD), next-token prediction combined with board state prediction
(NT+JP), and probability distribution prediction with board state prediction (PD+JP).

4.3 ARCHITECTURE AND HYPERPARAMETERS

Our models follow the GPT-2 architecture [Radford et al.|(2019) with 12 hidden layers, 768 hidden
dimensions, and 12 attention heads, and a total of 86M parameters. All models were trained for 3
epochs with identical parameters, as detailed in Appendix B}

Every model has an associated board state probe. Similar to |Vafa et al.|(2024), our board state
probes take the transformer’s last layer representation as input. We only train and evaluate probes
on move-ending tokens. If a joint probe was included in the training of a model, we use this probe
in our probing experiments. Otherwise, we train a probe for the frozen generative model over SOK
games from the model’s training set. Further details are presented in Appendix [C]

5 EXPERIMENTAL RESULTS: ARE IMPLICIT WORLD MODELS SOUND?

Let us first consider the quality of our set of 24 models. Detailed measurements are provided in
Appendix [D] Here, we highlight that, although models trained on smaller datasets (Random-500k
and Millionbase-500k) achieve relatively low legal move ratios between 94.65% and 96.71% on
their test sets, the models trained on large datasets (Random-10M, Stockfish-8M, and Lichess-16M)
achieve a ratio between 99.75% and 99.98%, so these models could be considered high-quality if
one focused on this metric.

We evaluated every model using our various adversaries. We applied the greedy decoding policy,
that is, m(s) = arg max, M (als), for all the models. With this policy, having the sequence model
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play against any non-random adversary results in a deterministic sequence depending only on the
starting position. Thus, to evaluate the soundness of a model, we selected 1000 unique prefixes of
10 moves from the training dataset of the model, and performed our adversarial evaluation after each
of these warmup sequences, which allowed us to collect statistics and gain fine-grained insights.

The results of the experiments are shown in Table |1|and Figure|l} The table shows the success rate
of the 5 adversaries against our 24 models, while the figure also shows the cumulative attack success
rate as a function of the number of moves after the warmup sequence.

Clearly, the implicit world models are not sound. For most models, at least one adversary achieves
close to 100% success rate, indicating severe inconsistencies between the implicit and the true world
models. In the following, we make a number of more fine-grained observations based on the results.

5.1 ADVERSARIES

IMO is always the strongest adversary, usually by a wide margin. Given that IMO directly steers
the generative model towards an illegal move, this is not surprising; however, what is surprising is
that the other two adversaries, namely AD and BSO, are rather weak. This showcases the need for
strong adversaries in order to reliably verify generative models.

BSO shows a mixed performance, but sometimes it is weaker than even the most benign baseline
SMM. This implies a weak causal link between the correctness of the board state predicted by the
probe and the legality of the move predicted by the generative model. We further investigate this
phenomenon in Section [6]

AD by |Vafa et al.| (2024) consistently achieves success rates similar to Random Move (RM). An
explanation could be that most moves with low conditional probabilities are essentially random
from the generative model’s perspective. This also shows that a more aggressive attack, such as
IMO, is essential for evaluation.

5.2 EFFECT OF TRAINING SETUP

Dataset size matters. According to Figure|l} it is clear that increasing the dataset size very reliably
increases the robustness to our attacks. That is, large datasets increase the level of soundness. This
is true independently of dataset type and training objective.

Random and curated datasets differ mainly when the next token objective is used for training.
With the next token (NT) objective, models trained on curated datasets seem to be very robust,
especially when a large dataset is used. At the same time, models trained on random datasets seem
to be less robust under the NT objective, compared to the distribution objective PD, sometimes
significantly so (see also Appendix [E| on this topic). However, in Section |/| we demonstrate that
when executing the attacks using an out-of-distribution warmup sequence, the curated models are
much less sound. We discuss the possible reasons in Section[7}

Multi-task learning does not help. Adding a joint probe to the training scheme has a negligible
effect on the soundness of the implicit world model. We also investigate this in Section[6]

Models overfit sequence length. Figure [I]also reveals that many models, especially those trained
on large datasets with the PD objective, strongly overfit the sequence length. This is evident from
the fact that after exceeding the sequence lengths available in the dataset (up to 150), the models
suddenly become extremely unreliable. This alarming finding suggests that the models do not use
abstract board state representations internally that would be independent of sequence length.

6 ON THE CAUSALITY OF BOARD STATE PROBES

Here, we investigate the connection between the board state probes and the next-token predictor
heads. As observed in Section [} attacking the board state probe is not an effective strategy, and
multi-task training with a board state probe (+JP) achieves negligible improvements in soundness.
The former observation suggests a weak causal link between the obtained board state and the pre-
diction of the model, and the latter one provides additional evidence that the probe functions inde-
pendently of the next-token predictor head.
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Figure 1: Attack dynamics demonstrated by the move-wise attack success rate (ASR) for each
dataset (row) and model (column). On each plot, the X-axis shows the move number, and the Y-axis
shows the ASR attained by the attacks. Stronger attacks increase ASR more quickly. All lines stop
at the move when the attack reached its final ASR reported in Tablem

Table 2: Mean sample-wise cosine distance of Table 3: Ratio of illegal moves under the BSO
the gradients of the next-token head and the attack where the predicted illegal move is legal
board state probe w.r.t. their input embeddings.  in the board state obtained via probing.

NT PD NT+JP | PD+JP NT PD NT+JP | PD+JP
R-500K | 0.989 0.986 0.982 0.979 R-500K | 0.386 0.477 0.365 0.460
R-2M 0.990 0.989 0.988 0.992 R-2M 0.279 0.328 0.107 0.259
R-10M | 0.989 0.989 0.992 1.000 R-10M | 0.144 0.105 0.051 0.044
MB-500K| 0.984 0.982 0.975 0.975 MB-500K| 0.305 0.514 0.258 0.575
SF-8M | 0.978 0.989 0.989 1.000 SF-8M | 0.181 0.124 0.034 0.184
LC-16M | 0.966 0.988 0.990 1.000 LC-16M | 0.193 0.093 0.023 0.142

Representation gradients. We investigate these hypotheses further using gradient-based alignment
analysis. Let us assume that z(s) is the last token of the final-layer representation of M over an
action sequence s. In our setup, x(s) is also the input of both the next-token predictor head and
the board state probe. We will consider the gradient of the loss terms according to z(s), namely
9B = Vo Lp(M,s) and gnr = V) LnT(M, s). Depending on the model in question, £y is
either the hard next-token loss or the soft PD loss.
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Table 4: Success rate of each attack strategy over the NT and NT+JP models trained on the Lichess-
16M dataset, when evaluated with out-of-distribution (OOD) warmup prefixes of varying lengths.
The increases in ASR compared to evaluations with in-distribution prefixes (as seen in Table|[I)) are
in brackets.

20 OOD Moves 40 OOD Moves 60 OOD Moves
NT NT+JP NT NT+JP NT NT+JP
RM 0.244 (+0.14)  0.221 (+0.15) | 0.360 (+0.25) 0.272 (+0.20) | 0.495 (+0.39) 0.343 (+0.27)
SMM | 0.203 (-0.08)  0.145(-0.07) | 0.244 (-0.04)  0.200 (-0.01) | 0.351 (+0.06) 0.217 (+0.01)
IMO | 0.667 (+0.28) 0.659 (+0.31) | 0.785 (+0.40) 0.735 (+0.39) | 0.864 (+0.48) 0.797 (+0.45)
BSO | 0.080 (+0.02) 0.097 (+0.05) | 0.148 (+0.09) 0.124 (+0.08) | 0.245 (+0.19) 0.154 (+0.11)
AD 0.165 (+0.10)  0.183 (+0.12) | 0.270 (+0.20) 0.225 (+0.16) | 0.374 (+0.31)  0.294 (+0.23)

The heads are independent. We calculate the average cosine distance between gy and gp over
10,000 games from each model’s training set and present them in Table[2} In all the cases—including
the joint probe objectives—the gradient of the board state probe is almost orthogonal to that of the
next-token head, which indicates that the two tasks rely on independent subspaces of the represen-
tation. This finding is the exact opposite of the hypothesis that motivated the use of a joint probe,
namely that training a board state probe will encourage a better representation of the board state,
thereby increasing the soundness of the implicit world model as well.

BSO attack success is mostly independent of probe. Table[3|shows the ratio of those illegal moves
enforced by the BSO attack that are also illegal according to the board state probe. Especially for
large datasets, this ratio is very low, indicating that even when the BSO attack is successful, it is
not due to misleading the board state predictor. This indicates that the probe is more aligned with
the ground truth than the model’s prediction, further supporting a limited causal link between the
predicted board state and the model’s prediction.

7 ARE SEEMINGLY SOUND MODELS REALLY SOUND?

Our results in Section [5]indicated a surprising
level of soundness for the models trained on
the larger curated datasets, and especially on
Lichess-16M with next-token prediction (NT).
Here, we argue that these models are not ac-
tually sound. We hypothesize that the appar-
ent soundness of models trained on large cu-
rated datasets has to do with a strong gravita-
tion to in-distribution trajectories. This, in turn,
is most likely due to predicting not only legal,
but also strategically good moves, resulting in
a much more focused distribution that assigns a
high probability to far fewer moves than other
models.
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To test this hypothesis, we applied random but
valid warmup sequences that are not in the
training set. We evaluated 1000 such out-
of-distribution warmup sequences of different
lengths: 10, 20, and 30 moves per player. Ta-
ble 4| shows the success rates of each attack,
along with the difference from the original eval-
uation with in-distribution warmup sequences,
and Figure 2] shows the corresponding attack dynamics.

Figure 2: Attack dynamics demonstrated similarly
to Figure [[for NT (top row) and NT+JP (bottom
row) models trained on the Lichess-16M dataset,
evaluated with out-of-distribution (OOD) warmup
sequences of varying lengths.

The attack success rate significantly increases as we make the initial board state more and more
out-of-distribution. This indicates that the model does not capture the true abstract transition rules.
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Table 5: Success rate of each attack strategy over all models with the top-k decoding strategy (k =
4). Results are averaged over three separate evaluations over the same set of warmup sequences.
Bold and italic represent the highest and lowest success rates for a model, respectively.

Random-500k Random-2M Random-10M
NT PD NT+JP PD+JP| NT PD NT+JP PD+JP| NT PD NT+JP PD+JP
RM | 0963 0.990 0.969 0.993 | 0.886 0.971 0.902 0.976 | 0.703 0.903 0.750 0.908
SMM | 0.937 0.994 0937 0.997 | 0.745 0973 0.819 0984 | 0.315 0913 0.386 0.926
IMO | 0.998 1.000 0.999 0.999 | 0.995 0.997 0.998 0.999 | 0.958 0.974 0.959 0.959
BSO | 0.961 0.979 0.960 0.978 | 0.895 0.954 0903 0.968 | 0.706 0.885 0.750 0.884
AD | 0982 0991 0985 0.993 | 0.969 0.975 0.977 0.979 | 0.944 0938 0.955 0919

Millionbase-500k Stockfish-8M Lichess-16M
NT PD NT+JP PD+JP| NT PD NT+JP PD+JP| NT PD NT+JP PD+JP
RM | 0954 0998 0951 0.996 | 0.326 0.926 0.365 0930 | 0.246 0912 0.189 0.922
SMM | 0952 0.999 0968 1.000 | 0.263 0.943 0.281 0949 | 0.623 0910 0.607 0.922
IMO | 0.998 1.000 0.996 1.000 | 0.787 0.981 0.815 0.985 | 0.654 0.979 0.616 0.977
BSO | 0.938 0.993 0.927 0990 | 0.366 0909 0394 0913 | 0240 0.871 0.194 0.902
AD | 0943 099 0.936 0998 | 0.322 0935 0344 0.943 | 0.192 0932 0.156 0.933

8 ON THE IMPACT OF DECODING POLICY

In this section, we investigate the impact that different, sampling-based decoding policies have on
our analysis framework. Here, we focus on top-k sampling (Fan et al., 2018) and we further in-
vestigate top-p sampling (Holtzman et al.l 2020) in Appendix [El where we observed highly similar
results.

Experimental setup. We use top-k sampling with £ = 4. In order to remain consistent with our
earlier experiments, we used the same 1000 warmup sequences in our evaluations. Since the move
sequence is now non-deterministic, we perform three sets of evaluations with different random seeds
and report the average ASR achieved by our attacks over these evaluations.

Results. Table [5|shows the average ASR of our attacks when our models use the top-k decoding
policy. All attacks achieve a higher ASR compared to the results against the greedy decoding policy,
but otherwise their relative performance is similar, showcasing that our results are robust to the
decoding policy used to generate sequences. This is particularly interesting in the case of the IMO
attack, which assumes a greedy decoding policy. These results imply that steering the model towards
states that maximize the probability of the top-1 error will also maximize the overall probability of
error, suggesting that IMO is able to uncover vulnerabe state-regions, that is, gaps in the model’s
knowledge as opposed to just one-off errors.

9 CONCLUSIONS AND LIMITATIONS

We proposed adversarial sequence generation to test the soundness of implicit world models. The
most successful attack was IMO based on an explicit lookahead search for illegal moves. Our
methodology allowed us not only to prove that none of the training setups resulted in sound models,
but also to observe interesting patterns, such as the importance of using a large dataset, the mislead-
ing appearance of soundness in the case of a high-quality, large gameplay dataset, and the positive
effect of using a probability distribution objective. At the same time, we found that board state
probes do not help much in any form we tried, and seem to be mostly independent of generation.

Our main limitation is that, similar to other seminal works in the field (Vata et al., [2024; |L1 et al.,
2023)), we rely on one generative sequence model architecture due to the expensive training and
evaluation. Although this study provides compelling arguments behind our proposed methodology,
the effect of different architectures would certainly be interesting to analyse in the future.
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Table 6: Number of tokens and moves for each dataset, along with the average game lengths (stan-
dard deviation indicated in brackets).

Dataset Number of Tokens Number of Moves
97,974,729 48,389,735
Random-500K
Avg. per game: 195.95 (+/-72.20) | Avg. per game: 96.78 (+/-35.97)
392,296,887 193,756,892
Random-2M
Avg. per game: 196.15 (+/-72.06) | Avg. per game: 96.88 (+/-35.89)
1,962,204,706 969,142,950
Random-10M
Avg. per game: 196.22 (+/-71.93) | Avg. per game: 96.91 (+/-35.84)
. 75,964,911 37,469,929
Millionbase-500K
Avg. per game: 151.93 (+/-57.52) | Avg. per game: 74.94 (+/-28.73)
1,302,918,935 641,501,357
Stockfish-8M
Avg. per game: 163.97 (+/-66.97) | Avg. per game: 80.73 (+/-33.29)
) 2,311,925,519 1,138,275,036
Lichess-16M
Avg. per game: 142.57 (+/-53.74) | Avg. per game: 70.19 (+/-26.75)

A DATASET DETAILS

In our evaluations, we used three randomly generated datasets and three curated datasets. All
datasets contain only legal game sequences. We rounded the sizes of the Stockfish-8M and Lichess-
16M datasets (Karvonen, 2024), as they contain 7,946,149 and 16,216,625 games after filtering,
respectively. The number of moves and tokens in each dataset is shown in Table[6] and the distribu-
tion of game lengths is shown in Figure 3]

All games in the random datasets, as well as the StockFish-8M dataset, end according to the rules
(i.e., by checkmate, stalemate, draw by repetition, or draw by insufficient material). However, human
games in the Millionbase-500K and Lichess-16M datasets can end prematurely (i.e., by one player
resigning, both players agreeing on a draw, or, in rare cases, a player running out of time). In the
tokenized game sequences, this phenomenon shows up as the EOF token — which is always used to
indicate the end of the game — being at the end of a sequence where the game is not over according
to the rules.

While 70.22% of games in the Lichess-16M dataset, and a staggering 94.37% of games in the
Millionbase-500K dataset, end prematurely, usually immediately after a player makes a strategic
blunder, we found this to have little effect on the soundness of the implicit world models. We detail
these findings in Appendix [E]

B MODEL TRAINING DETAILS

We used the GPT-2 implementation of the t ransf ormersﬂlibrary (Wolf et al., |2019). Our hyper-
parameter setting closely follows that of [Toshniwal et al.|(2022). All our models were trained for 3
epochs using the AdamW optimizer (Loshchilov & Hutter, 2019)), with a learning rate of 3 x 104,
and an L, weight decay of 0.01. The learning rate is warmed up linearly over the first 10% of
training, followed by a linear decay. We used a batch size of 128 and accumulated gradients over
4 batches before each optimizer step. We did not use mixed-precision training. Depending on the
dataset size, training a model took between 70 minutes and 37 hours on a single Nvidia H100 GPU.

For the joint probe (+JP) training objective, we experimented with various scaling factors for the loss
of the board state probe in our initial exploration phase, but found no meaningful difference between

'Specifically, version 4.55.3, as compatibility with other versions is not guaranteed.
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Figure 3: Distribution of game lengths in our datasets.

different settings. We don’t apply any scaling to any loss term and note that the joint probe’s loss is
typically a fifth of the next token predictor’s loss.

B.1 ILLUSTRATING THE PROBABILITY DISTRIBUTION OBJECTIVE

Figure [] illustrates the probability distribution (PD) objective for the first three moves of a game.
After a game prefix, the model is trained to learn the probability distribution of valid single-token
continuations.

C PROBE TRAINING DETAILS

Our linear board state probes are trained to predict the board state at the end of a move sequence from
the final-layer representation of the language model. We only train and evaluate probes on move-
ending tokens, i.e., for moves comprised of two tokens (e.g. e2e4), we use the representation of
the destination square token, and for moves comprised of three tokens (e.g. e 7e8q), the promotion
piece type token’s representation is used. This is motivated by the fact that only after processing the
last token of the move should the move be completed in the language model’s internal model. We
rely on a separate oracle to know which tokens are move-ending, not the language model itself.

In formulating the targets for the board state classification problem, we use an absolute encoding
just like [Li et al.| (2023), where a piece’s label is always the same, regardless of which player’s turn
it is. In contrast, [Karvonen| (2024) and [Nanda et al (2023) use a side-specific encoding, where the
labels of the pieces depend on which player is to move. [Nanda et al| (2023) show that absolute en-
coding is harder for probes to learn, but our probes achieve comparable (and in some cases superior)

accuracies to those in[Karvonen| (2024), as showcased in Section D]

When probes are not jointly trained with the language model, we train them after the model is trained
and frozen. Our training parameters are inspired by [Karvonen|(2024). We train our probes on 50,000
games from the model’s own training set for 1 epoch using the AdamW optimizer with betas (0.9,
0.99), an initial learning rate of 10~ 3 and L, weight decay of 0.01. The batch size, i.e., the number
of move-ending token representations per optimization step, was 4096, and we decayed the learning
rate to 10~ 4 after 1000 optimization steps.

D PERFORMANCE METRICS

Table |Z| shows the perplexities of our models, evaluated over 15,000 test games that were unseen
by either the model or the probe during training. While perplexity does not measure the soundness
of the implicit world model, the values show that the joint probe (+JP) objective fails to achieve
meaningful (or, in some cases, any) improvement in the model’s performance.
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Game Prefix: BOS

Valid next-token probability distribution:
bl:1/10 ¢1:1/10 a2:1/10 b2:1/10 c2:1/10
d2:1/10 e2:1/10 £2:1/10 g2:1/10 h2:1/10

Game Prefix: BOS e2

Valid next-token probability distribution:
deé: 1/2
ds: 1/2

Game Prefix: BOS e2e4

Valid next-token probability distribution:
b8:1/10 g8:1/10 a7:1/10 b7:1/10 <7:1/10
d7: 110 e7:1/10 £7:1/10 g7:1/10 h7:1/10

Game Prefix: BOS e2e4 d7

Valid next-token probability distribution:
de: 1/2
ds: 1/2

Game Prefix: BOS e2e4 d7d5

Valid next-token probability distribution:
bl:1/13 d1:1/13 el:1/13 £1:1/13 gl:1/13
a2: 113 b2: 113 c2:1/13 d2:1/13 £2:1/13

g2: 1/13 h2: 1/13 e4:1/13

Game Prefix: BOS e2e4 d7d5 f1

Valid next-token probability distribution:
e2:1/5 d3:1/5 c4:1/5
b5:1/5 a6:1/5

Figure 4: Illustration of the probability distribution (PD) objective using the first three moves of a
game. Boards on the left highlight movable pieces after a sequence of completed moves, indicating
the possible move-starting squares. A uniform probability distribution is assigned to the tokens
corresponding to these squares. Boards on the right highlight the possible destination squares in red,
once a starting square (highlighted with green) is available. A uniform probability distribution is
assigned to these possible move-ending squares as well.

Table 7: Model perplexities. We report the standard, token-wise perplexity, as opposed to canonical
(move-wise) perplexity reported by Toshniwal et al.[(2022).

R500k | R2M | R10M | MB500K | SF8M | LC8M
NT 5.9478 | 5.7139 | 5.7574 | 3.1347 2.3756 | 2.1577
PD 6.5096 | 6.1893 | 6.2446 | 6.6601 5.0957 | 5.9161

NT+JP | 6.0369 | 57428 | 5.7812 | 3.1480 | 2.3820 | 2.1581

PD+JP | 6.7879 | 6.2740 | 6.3030 | 6.9640 | 5.0999 | 5.9257

The perplexities of models trained with the probability distribution (PD) objective are naturally
lower, as the model is trained not to assign a high probability to the actual next token in the sequence
but to approximate the probability distribution of valid single-token continuations. As a result, the
model’s confidence for the actual next token will be lower, which in turn increases perplexity.

Table [§] shows the ratio of legal moves played by our models in 10,000 games that were unseen
by each model during training. While models trained on smaller datasets (Random-500k and
Millionbase-500k) achieve relatively low legal move ratios between 94.65% and 96.71%, models
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Table 8: Ratio of legal moves of our models on 10,000 test games that were unseen by the models
during training.
R500k | R2M | R10M | MB500K | SF8M | LC8M
NT 0.9634 | 0.9914 | 0.9986 | 0.9640 | 0.9977 | 0.9985
PD 0.9539 | 0.9862 | 0.9985 | 0.9671 0.9991 | 0.9998
NT+JP | 0.9612 | 0.9883 | 0.9985 | 0.9638 | 0.9975 | 0.9983
PD+JP | 0.9465 | 0.9772 | 0.9989 | 0.9597 | 0.9990 | 0.9997

trained on large datasets (Random-10M, Stockfish-8M, and Lichess-16M) achieve high legal move
ratios between 99.75% and 99.98%.

However, as argued by [Vafa et al.| (2024)) and demonstrated by our results, legality ratio is only a
surface-level metric and does not reflect on the soundness of the implicit world model.

Tables[9]and[I0]show the move-wise mean accuracies and piece accuracies of our board state probes,
evaluated over 15,000 test games that were unseen by either the model or the probe during training.
Piece accuracy is defined as accuracy over squares that either contain pieces (i.e., they are not empty)
or are predicted by the probe to contain pieces.

While most probes achieve remarkably high accuracies (on par with, or even higher than, the probing
accuracy reported in|Karvonen| (2024)), it must be noted that probes, especially those that were not
jointly trained with the model, are biased towards empty squares. As shown in Figure[5] towards the
later parts of the game, probes get progressively worse at predicting pieces on the board, but their
accuracies stay high due to the large number of empty squares that the probe is able to correctly
guess.

To correct this bias, we experimented with weighting the loss term of the board state probe per
square, based on whether it is a “piece square” (i.e., a square that either contains a piece or is
predicted by the probe to contain a piece) or an empty square. Our goal was to apply an increased
weight to piece squares, thereby forcing the probe to learn to track the pieces better. We applied
weights between 2 and 20 to piece squares in preliminary experiments, the results of which showed
minor improvements in piece accuracy at a minor cost of overall accuracy, but these probes showed
no difference compared to the standard probes when used as the basis of the BSO adversary in our
framework.

While we believe this bias towards empty squares represents a fundamental issue, its relevance to
our findings is minimal, especially in light of the aforementioned weighting experiments. We leave
it up to future work to create linear probe training methods that properly address this challenge.

Table 9: Move-wise average accuracies of our board state probes.

R500k | R2M | R10M | MB500K | SF8M | LC8M
NT 0.8416 | 09178 | 0.9554 | 0.9014 | 0.9640 | 0.9698
PD 0.8237 | 0.8754 | 0.9410 | 0.8849 | 0.9584 | 0.9732

NT+JP | 0.9831 | 0.9996 | 1.0000 | 0.9879 | 0.9999 | 1.0000

PD+JP | 0.9786 | 0.9982 | 1.0000 | 0.9851 1.0000 | 1.0000

E FURTHER EXPERIMENTAL RESULTS

In this section, we present further experimental results supporting our claims.
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Table 10: Move-wise average piece accuracies of our board state probes.

R500k | R2M | R10M | MB500K | SF8M | LC8M
NT 0.6005 | 0.7856 | 0.8812 | 0.7473 | 0.8858 | 0.9182
PD 0.5634 | 0.6840 | 0.8445 | 0.7041 0.8671 | 0.9264

NT+JP | 0.9546 | 0.9989 | 1.0000 | 0.9675 | 0.9998 | 0.9999

PD+JP | 0.9427 | 0.9951 | 1.0000 | 0.9600 1.0000 | 1.0000
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Figure 5: Move-wise mean board state probe accuracies and piece accuracies. Error bars represent
one standard deviation.

E.1 MODEL RESILIENCE TO OUR ADVERSARIES

Table [T1] shows the average lengths of the sequences generated by the various adversaries playing
against all models, without counting the length of the warmup sequence, regardless of whether the
adversary succeeds. These results complement Table[I] as stronger attacks yield shorter sequences,
while weaker attacks result in longer sequences. From a different point of view, longer sequences
for the same adversary show an increase in resilience by the models.

Interestingly, models trained with the probability distribution (PD) objective are harder to attack
than regular next-token (NT) models. This is especially true for weaker adversaries, where PD can
achieve a nearly 3 x increase in sequence lengths. This supports the notion that PD is a more explicit
way of learning the rules, while NT models learn inconsistent and possibly fragmented rules. On the
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Table 11: Average sequence length under adversarial conditions.

Random-500k Random-2M Random-10M
NT PD NT+JP PD+JP| NT PD NT+JP PD+JP| NT PD NT+JP PD+JP
RM 790 806 77.8 723 929 1122 92.1 105.2 | 106.5 131.3 106.9 131.8
SMM | 453 78.1 47.8 78.1 526  105.0 61.0 96.5 46.7 1255 48.6 1284
IMO | 20.9 18.7  20.1 190 | 279 346 279 29.7 51.5 81.4  50.1 95.4
BSO | 46.1 549 573 577 354 719 576 852 | 439 1132 674 116.6
AD 73.0 702 721 62.4 84.5 932 834 86.7 96.7 1243 91.6 129.1

Millionbase-500k Stockfish-8M Lichess-16M
NT PD NT+JP PD+JP| NT PD NT+JP PD+JP| NT PD NT+JP PD+JP
RM 654 494 627 437 | 51.8 129.1 539 1299 | 504 131.7 52.6 130.8
SMM | 488 59.1 50.7 573 | 724 1206 73,5 1245 | 848 1204 829 1254
IMO | 13.5 10.8 16.0 8.4 490 659 517 745 | 653 70.2 70.7 80.0
BSO | 48.7 51.5 532 475 | 467 103.6 489 1207 | 414 1177 449 1194
AD 61.6 409 621 359 | 46,5 118.6 52.6 1250 | 454 1239 470 1283

Table 12: Ratio of games that end in either checkmate or stalemate where the model correctly
identifies the end of the game by predicting the EOS token after the final move and nowhere else.

R500k | R2M | R10M | MB500K | SF8M | LC8M
NT 0.1865 | 0.3330 | 0.6806 | 0.0388 | 0.2510 | 0.3122
PD 0.1686 | 0.2948 | 0.6955 | 0.0000 | 0.2744 | 0.6139

NT+JP | 0.1846 | 0.3236 | 0.6503 | 0.0397 | 0.2413 | 0.3280

PD+JP | 0.1533 | 0.2528 | 0.7617 | 0.0000 | 0.2926 | 0.5635

other hand, the joint probe (+JP) objective has minimal impact on the models’ resilience, furthering
our claim that the board state probe is largely independent of the next-token predictor head.

E.2 THE IMPACT OF PREMATURELY ENDED GAMES

As mentioned in Appendix [A] our two datasets of human games contain a high ratio of games
that end prematurely. Here, we investigate if this has any effect on the models and the adversarial
evaluation.

We evaluate the models’ ability to correctly predict the end of the game, on 10000 games that end
in checkmate and 1000 games that end in stalemate. All games were unseen by all models. We say
a model is able to accurately identify the end of the game if, when processing the entire sequence, it
predicts the EOS token after the final move, and nowhere before.

Table [12] shows the accuracies of all our models in predicting the end of the game. It is clear that
the nature of the dataset (random or curated) has more impact on the models’ ability to identify the
end of the game than the ratio of prematurely ended games. Models trained on the Stockfish-8M
dataset, a dataset without prematurely ended games, still perform poorly, while models trained on
the largest random dataset (which is only slightly larger than Stockfish-8M) are significantly better
at predicting the end of the game.

However, it is still possible that the mistake the adversaries force the models to make is incorrectly
predicting the end of the game. One could assume that, for models whose training data has a very
high ratio of prematurely ended games, this type of error would dominate the adversarial evaluation.
While this would not mean the implicit world models are sound, a phenomenon like this would still
cast shade on our results by suggesting that we simply identified overfitting in our models.
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Table 13: The success rate of our attacks against our models broken down into its two possible
sources of success: forcing the model to predict an illegal move (top half), and forcing the model to
incorrectly predict the end of the game (bottom half).

Attack Success Rate due to Illegal Move
Random-500k Random-2M Random-10M

NT PD NT+JP PD+JP| NT PD NT+JP PD+JP| NT PD NT+JP PD+JP

RM | 0.609 0.762 0.612 0.831 | 0.298 0.346 0.311 0.511 | 0.093 0.062 0.106 0.047
SMM | 0.272 0.769 0.349 0.731 | 0.188 0.483 0.242 0.660 | 0.060 0.166 0.054 0.107

IMO | 0.842 0.855 0.851 0.868 | 0.695 0.821 0.752 0.878 | 0.445 0.507 0.452 0.361

BSO | 0.700 0.763 0.660 0.791 | 0.385 0.498 0.502 0.655 | 0.134 0.148 0.145 0.119

AD | 0.803 0.845 0.813 0.891 | 0.611 0.604 0.612 0.726 | 0.256 0.184 0.157 0.134

Millionbase-500k Stockfish-8M Lichess-16M
NT PD NT+JP PD+JP| NT PD NT+JP PD+JP| NT PD NT+JP PD+JP
RM | 0.724 0.989 0.766 0.993 | 0.121 0.178 0.147 0.197 | 0.049 0.151 0.029 0.121
SMM | 0484 0.791 0478 0.843 | 0.045 0.382 0.054 0.407 | 0.030 0.341 0.030 0.247
IMO | 0.995 0.998 0.990 1.000 | 0.552 0.701 0.561 0.610 | 0.173 0.724 0.155 0.683
BSO | 0.512 0.883 0.544 0938 | 0.079 0.231 0.129 0.349 | 0.042 0.176 0.037 0.257
AD | 0.732 0989 0.758 0.994 | 0.121 0.330 0.114 0.319 | 0.049 0.300 0.041 0.215

Attack Success Rate due to Incorrectly Predicted Game Ending
Random-500k Random-2M Random-10M
NT PD NT+JP PD+JP| NT PD NT+JP PD+JP| NT PD NT+JP PD+JP
RM | 0.251 0.092 0.237 0.096 | 0.356 0.180 0.307 0.067 | 0.164 0.056 0.166 0.037
SMM | 0.141 0.041 0.136 0.032 | 0.208 0.190 0.195 0.084 | 0.092 0.163 0.112 0.071
IMO | 0.153 0.143 0.144 0.132 | 0.303 0.179 0.245 0.119 | 0.502 0.331 0.501 0.351
BSO | 0.181 0.104 0.139 0.061 | 0.390 0.269 0.180 0.076 | 0.382 0.199 0.267 0.097
AD | 0.094 0.090 0.065 0.089 | 0.120 0.189 0.088 0.106 | 0.037 0.132 0.040 0.063

Millionbase-500k Stockfish-8M Lichess-16M
NT PD NT+JP PD+JP| NT PD NT+JP PD+JP| NT PD NT+JP PD+JP
RM | 0.035 0.000 0.013 0.000 | 0.011 0.023 0.009 0.047 | 0.024 0.016 0.010 0.021
SMM | 0.029 0.000 0.016 0.000 | 0.136 0.047 0.201 0.037 | 0.212 0.024 0.155 0.035
IMO | 0.004 0.002 0.005 0.000 | 0.065 0.186 0.082 0.243 | 0.101 0.116 0.038 0.101
BSO | 0.012 0.000 0.002 0.000 | 0.026 0.152 0.016 0.044 | 0.012 0.053 0.001 0.016
AD | 0.035 0.000 0.012 0.000 | 0.006 0.101 0.010 0.074 | 0.010 0.017 0.003 0.019

Table[I3|breaks down the attack success rate (ASR) achieved by every adversary against our models
into two components: ASR due to forcing the model to predict an illegal move, and ASR due to
forcing the model to incorrectly predict the end of the game. In almost all cases, the vast majority
of successful attacks force the model to predict illegal moves, even when the models were trained
on datasets that contain many prematurely ended games. Among the few exceptions, the IMO
adversary against the Stockfish-PD and Random10M-NT models cannot be explained by the ratio
of prematurely ended games, because there are none in these datasets (and, in the former case, PD
eliminates premature game ends as well). The other notable exception is the sequence model move
(SMM) baseline adversary against the Lichess-NT models, which suggests a degree of overfitting to
the errors present in the dataset.

While incorrectly predicting the end of the game is still a rule violation and is enough to show that
the implicit world models are not sound, our findings reveal that our adversaries do not solely rely
on this error type. Furthermore, even if the adversaries succeed this way, it is not a result of the
models overfitting to this type of error in the dataset.
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Table 14: Attack success rates achieved by simply letting the models generate the sequence after
processing the warmup prefix.

R500k | R2M | R10M | MB500K | SF8M | LC8M
NT 0.616 | 0.563 | 0.263 0.762 0.316 | 0.427
PD 0.947 | 0.966 | 0.921 0.935 0.936 | 0.916

NT+JP | 0.696 | 0.609 | 0.273 0.740 0.395 | 0.349

PD+JP | 0918 | 0.975 | 0.866 0.955 0.956 | 0.891

E.3 SEQUENCE MODELS FAIL BY THEMSELVES

A further possible baseline adversary against sequence models can be implemented by letting the
sequence model simply generate the sequence until it *fails by itself’. While this method does not
conform to our definition of an adversary, it is probably the easiest way to verify the soundness of
the implicit world model.

Table [14] presents the adversarial success rates achieved by this simple method. Impressively, this
method achieves high ASRs against Lichess-NT models; however, it is generally among the weaker
adversaries.

E.4 DOES THE BSO ADVERSARY SUCCEED?

The goal of the board state oracle (BSO) adversary is to cause the sequence model’s associated board
state probe to have as many errors as possible when predicting the board state. One could assume
that the reason behind the weakness of the BSO adversary is that it fails to cause the probe to have
significant errors.

Figure [6] shows the move-wise mean accuracies and piece accuracies under non-adversarial condi-
tions (evaluated on unseen test games), as well as when the BSO adversary is used to generate moves
for white. The BSO adversary is able to guide the game towards regions where the probe’s accuracy
is significantly higher than its error on non-adversarial test games.

Despite its success in inducing errors in the probed board state, BSO still fails to be an effective
adversary against the rule-following capabilities of our sequence models. This further shows the
limited causal connection between the generative model’s function and the board state probe’s out-
put.

E.5 AGREEMENT BETWEEN MODELS AND PROBES

Here, we delve into the agreement between the ground truth board state, the output of the board state
probe, and the implicit board state representation of the sequence models. For a move sequence
s € X*, let us define the implicit world state representation of a sequence model M as Wy, (s) =
{a € £ : M(a|s) > €}, i.e. the set of actions with at least e conditional probability. Given a world
state probe B, let us denote the set of legal actions in B(M, s) (i.e., the world state predicted by the
probe) as Wg(s) C 3. As introduced in the main text, W (s) C X represents the set of legal actions
in the true world model after the action sequence s.

Let us use the intersection over union (IoU) metric to quantify the agreement between the true world
model, the world state probe, and the implicit world state. Formally,

_ W) "W (s)]

IoU == 6
Y W,M(‘S) |W(S) U WM(S)‘ ( )
denotes the agreement between the true world state and the implicit world state of M,
Wi(s)nW,
IoUy p(s) = T O WEE) )

[W(s)UWa(s)]
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Figure 6: Move-wise mean board state probe accuracies and piece accuracies (similar to Figure ,
along with accuracies and piece accuracies when the BSO adversary generates the moves for white.
Note that the BSO adversary takes effect after move 10, which is the end of the warmup sequence.
Error bars indicate one standard deviation.

denotes the agreement between the true world state and the state recovered by the world state probe,
and

_ [Wat(s) N W(s)]
(Wt () O W (s)]

denotes the agreement between the implicit world state of M and the state recovered by the world
state probe.

IOUM’B(S) (8)

Figure [7] shows the move-wise agreements between the true world model, the board state probes,
and the models’ implicit world state, evaluated over 15,000 test games that were unseen by either

the models or the probes during training. Inspired by (2024)), we used ¢ = 0.01.

Our findings show stark differences between dataset types and training objectives as well. It is clear
that models trained on random datasets agree more with the true world state than models trained on
curated datasets, as also shown in |Li et al.| (2023) and |Vafa et al.[(2024)). However, the probability
distribution (PD) objective mitigates the probable fragmentation of the NT models throughout all
phases of the game, again showing that it is a more effective tool for learning the rules.

More strikingly, there is always a significant difference between the IoUyy, 3s and IoUy, g, indicat-
ing that there is a significant disagreement between the models’ next-token predictor heads, and the
board states extracted by the probes. This phenomenon is most striking when the next-token predic-
tion and joint probe objectives are combined (NT+JP), where the probes always agree with the true
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Figure 7: Move-wise mean IoUs between board state probes, model outputs, and the true world
state. Error bars represent one standard deviation.

world model, but the agreement between the models and probes, as well as the models and the true
world model, is significantly lower.

These results cast further doubt over the causality of probes, as well as the generally accepted prob-
ing paradigm, where the probes are trained to extract the ground truth. We believe it would be more
beneficial to create probes that directly represent the "knowledge’ of the sequence models, but we
leave this up to future work.

E.6 THE COMPUTATIONAL COST OF OUR ADVERSARIES

Table[T5]shows the computational costs of our adversaries against every model. We report these costs
in seconds per sequence when using a single H100 GPU, averaged over 1000 sequences used in our
evaluation against the top-k sampling strategy. Note that longer sequences yield longer evaluation
times.

The cheapest adversary is RMM, as it does not require model inference. The computational costs of
SMM and AD are similar as they both require one model inference at each attack step. Interestingly,
BSO is computationally inefficient due to the rather costly evaluation of the board state probe, but we
admit that our implementation has room for optimization. On the other hand, IMO uses an optimized
implementation that predicts the probabilities of single-move continuations using an internal batch
size of 128. As expected, IMO is the slowest attack, showing a 10-20x increase in computational
cost compared to single-inference attacks like SMM and AD, which is in line with the cost of
standard adversarial attacks in other domains.
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Table 15: Computational cost of each of our attacks against all models in seconds per sequence,
averaged over 1000 sequences.

Random-500k Random-2M Random-10M
NT PD NT+JP PD+JP| NT PD NT+JP PD+JP| NT PD NT+JP PD+JP
RM | 0.359 0.457 0.327 0326 | 0.692 0.700 0.630 0.504 | 0.913 0.996 0.869 0.984
SMM | 0.519 0.716 0.438 0.557 | 0.846 0.984 0.722 0.763 | 0.854 1.445 0.878 1.516
IMO | 7.949 6.775 6.880 6.733 |14.031 12.384 12.099 9.614 |28.727 32.496 25.371 34.828
BSO 10916 8.959 5.265 4.179 | 9.296 8.147 7.681 7.137 |15.945 38.180 12.986 13.902
AD | 0.655 0.590 0.604 0.514 | 1.281 0.866 1.097 0.777 | 1.513 1.650 1.586 1.640

Millionbase-500k Stockfish-8M Lichess-16M
NT PD NT+JP PD+JP| NT PD NT+JP PD+JP| NT PD NT+JP PD+JP
RM | 0.314 0.238 0.402 0.205 | 0.469 1.086 0.507 0.932 | 0.365 1.035 0.372 0.978
SMM | 0.493 0.427 0.582 0.388 | 0.482 1.533 0.443 1426 | 0.798 1.439 0.788 1.425
IMO | 6.258 4.824 7.926 3.984 |18.339 31.363 17.668 34.055|13.037 33.389 13.391 34.174
BSO [11.228 11.200 5.007 4.471 | 7.800 17.158 6.549 17.024| 4.512 23.387 2.976 18.685
AD | 0567 0.341 0.673 0.287 | 0.796 1.524 0.766 1.535 | 0.609 1.644 0.579 1.549

Table 16: Success rate of each attack strategy over all models with the top-p decoding strategy (p =
0.9). Results are averaged over three separate evaluations over the same set of warmup sequences.
Bold and italic represent the highest and lowest success rates for a model, respectively.

Random-500k Random-2M Random-10M
NT PD NT+JP PD+JP| NT PD NT+JP PD+JP| NT PD NT+JP PD+JP
RM | 0983 0.993 0.990 0.996 | 0.936 0.969 0.955 0.980 | 0.804 0.911 0.833 0.908
SMM | 0.951 0.997 0.966 0.995 | 0.805 0.968 0.861 0984 | 0.408 0921 0.451 0.925
IMO | 1.000 1.000 1.000 1.000 | 0.998 0.998 0.998 1.000 | 0.978 0.965 0.975 0.962
BSO | 0974 0.982 0.975 0.980 | 0.928 0.964 0.933 0.964 | 0.784 0.878 0.816 0.873
AD | 0990 0995 0.993 0.993 | 0.986 0975 0987 0.979 | 0.973 0.933 0.978 0.924

Millionbase-500k Stockfish-8M Lichess-16M
NT PD NT+JP PD+JP| NT PD NT+JP PD+JP| NT PD NT+JP PD+JP
RM | 0972 0.998 0967 0998 | 0.383 0.931 0.379 0.918 | 0.254 0917 0.183 0913
SMM | 0.967 0.999 0970 0.999 | 0.226 0946 0.248 0.943 | 0.507 0.933 0.459 00915
IMO | 0.999 1.000 0.998 1.000 | 0.832 0.981 0.836 0.980 | 0.667 0.974 0.649 0.976
BSO | 0.953 0.992 0.944 0.990 | 0.404 0.909 0.441 0919 | 0.226 0.873 0.178 0.893
AD | 0963 0.997 0951 0.997 | 0.360 0.939 0.366 0.938 | 0.194 0926 0.150 0.931

E.7 RESULTS AGAINST TOP-p SAMPLING

Table[I6]shows the ASR of our attacks against our models with the top-p sampling policy (p = 0.9).
These results echo our findings with the top-k sampling policy in Section [8} The success rates of
each attack is higher than the ASR against the greedy decoding policy, giving further evidence to
the generalizability of our method.

E.8 TOWARDS ADAPTIVE ADVERSARIES

In this section we present a modification of the Illegal Move Oracle (IMO) adversary that can be
seen as an adaptive variant of the IMO variant we used in the main text. As opposed to selecting the
move that maximizes the conditional probability of an illegal continuation, this variant aims to find
the move that maximizes the sum of the conditional probabilities of all illegal continuations.

In practice, our implementation only analyzes single-move continuations that are reachable by top-k
sampling. When we set k to be the size of the vocabulary, the attack is equivalent to the original idea
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Table 17: ASR of out adaptive IMO attacks against our models with the greedy decoding strategy
(left), and the top-k sampling decoding strategy (right).

NT PD NT+JP | PD+JP NT PD NT+JP | PD+JP
R-500K | 1.000 1.000 0.998 1.000 R-500K | 1.000 0.999 1.000 1.000
R-2M 0.999 0.999 0.995 0.998 R-2M 0.998 0.995 0.997 0.999
R-10M | 0.994 0.967 0.995 0911 R-10M | 0.979 0.904 0.979 0.899
MB-500K| 1.000 1.000 0.998 1.000 MB-500K| 0.999 1.000 0.994 1.000
SF-8M | 0.644 0.985 0.661 0.990 SF-8M | 0.670 0.941 0.680 0.953
LC-16M | 0.481 0.951 0.417 0.947 LC-16M | 0.561 0.923 0.458 0.903

above. As a result of this modification, this can be seen as an adaptive attack against top-k sampling,
although sampling is done on the token level, and the attack analyzes moves (that are made of 2 or
3 tokens).

Table |17|shows the results of this attack against our models with both the greedy decoding strategy
and the top-k sampling strategy. Surprisingly, this attack achieved marginally higher ASR against
models with greedy decoding (compared to that of of the original IMO in Table [I)), and somewhat
lower ASR against models with top-k decoding (compared to the success rates in Table [5). This
surprising finding hints at a disconnect between the token-level decoding strategies of the models
and the move-level analysis of the attacks.

F BREAKING DOWN HOW OUR MODELS BREAK DOWN

Here, we investigate the types of errors our models made as a result of our adversarial evaluation.
We first provide a taxonomy of possible errors, analyze their frequencies, and provide further fine-
grained insights into some of the more complex errors.

F.1 A TAXONOMY OF ERRORS
Let us start by introducing seven error categories:

(1) Nonexistent Piece: The model tries to move a piece that does not exist. In other words, the
starting square predicted by the model is empty.

(2) Opponent’s Piece: The model tries to move a piece that belongs to its opponent. In other
words, the starting square predicted by the model contains the opponent’s piece.

(3) Immovable Piece: The model tries to move a piece that cannot be moved for some reason,
e.g., it is blocked, or the model has to block a check and the selected piece is unable to do
S0, etc.

(4) Invalid Direction: The model picks a movable piece, but moves it in an invalid direction,
e.g., moving a rook diagonally or a bishop horizontally.

(5) Erroneous Move: The error made by the model cannot be categorized into the previous
categories, e.g., jumping over pieces, capturing the opponent’s king, invalid castling, incor-
rect promotion, moving the king next to the opponent’s king, etc.

(6) Structural Error: The move predicted by the model is not in the UCI notation, e.g., the
model predicts e8¢ as its move.

(7) Incorrect End Prediction: The model incorrectly predicts the end of the game. This error
type was analyzed in Appendix

Note that our taxonomy is by no means a complete breakdown of all possible error types in chess,
but it serves as a sensible grouping of the possible failure modes. In addition, not all failure modes
can be attributed to an atomic deficiency in the model. Only error types (1) and (2) can be clearly
attributed to the model having an incorrect understanding of the board state, but error types (3), (4),
(5), and (7) can all arise from an incorrect board state representation, a lack of understanding the
rules, or even an incorrect representation of the game history as well.
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Figure 8: Frequencies of different error types made by our models against all adversaries, with
models trained on random datasets being shown on the left, and models trained on curated datasets
on the right.

Results. Figure [§] shows the frequencies of different error types. Note that our attack does not
differentiate between error types; an error type not being prevalent in our evaluation does not mean
the model is guaranteed to not make that error, only that other errors are easier to cause.

For all models, Immovable piece (type 3) and erroneous move (type 5) errors are always among the
most prevalent. Incorrect end prediction (type 7) is more common for models trained on random
datasets, as also demonstrated in Appendix [E.2]

The difference between the NT and PD objectives is relatively small when random datasets are used
in training, but remarkable when curated datasets are used instead. The PD objective leads to a more
uniform error distribution which, when combined with our earlier analysis on model resilience,
suggests that PD models fundamentally break down towards the end of the game.

When it comes to attacks, the four weaker attacks (RM, SMM, BSO, and AD) almost always yield
similar error distributions. The only exception is SMM against models trained on curated datasets
with the NT objective, where it achieves high ASR by causing the model to incorrectly predict the
end of the game. However, IMO is clearly different, as it achieves errors related to rule knowledge
(types 3, 4, and 5) more frequently.
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Figure 9: Frequencies of illegally moved pieces grouped by piece type for complex, rule-based
errors. Results of models trained on random datasets are on the left, and that of models on trained
on are on the right.

F.2 THE IMPACT OF PIECE TYPES IN COMPLEX ERRORS

We further analyze the impact of piece types in complex errors, namely immovable piece (type 3),
invalid direction (type 4), and erroneous move (type 5) from our previous taxonomy. Here, we
investigate which pieces the model tries to move, but moves illegally.

Figure [9| shows the results for every model and attack. The trends are largely similar to our earlier
analysis on general error types. Models trained on random datasets, as well as those trained with
the PD objective overwhelmingly struggle with king moves, while models trained on large curated
datasets with the NT objective predominantly struggle with pawn moves.

G RESULTS ON LLAMA MODELS

We trained LLaMA models (Touvron et al}, [2023) with the settings described in Section[d] resulting
in a further 24 models. We used the same architecture size as with the GPT-2 architecture, as
described in Sectionf.3] We then evaluated them using our adversarial framework, adhering to the
settings described in Section [5]
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Table 18: Success rate of each attack strategy against LLaMA models. Bold and italic represent the
highest and lowest success rates for a model, respectively.

Random-500k Random-2M Random-10M
NT PD NT+JP PD+JP| NT PD NT+JP PD+JP| NT PD NT+JP PD+JP
RM | 0944 0.987 0.961 0.990 | 0.899 0.935 0.885 0.910 | 0.703 0.839 0.680 0.811
SMM | 0.777 0.892 0.792 0.950 | 0.702 0.940 0.645 0.930 | 0.285 0.863 0.286 0.877
IMO | 0.999 1.000 0.999 1.000 | 0.999 1.000 0.999 1.000 | 0.979 1.000 0.980 0.990
BSO | 0.885 0.953 0.896 0.951 | 0.826 0.875 0.814 0.873 | 0.525 0.699 0.581 0.772
AD | 0973 0986 0.968 0.990 | 0.930 0960 0.889 0.958 | 0.726 0.901 0.672 0.868

Millionbase-500k Stockfish-8M Lichess-16M
NT PD NT+JP PD+JP| NT PD NT+JP PD+JP| NT PD NT+JP PD+JP
RM | 0.853 0.994 0.849 0.993 | 0.303 0917 0.267 0.841 | 0.229 0.888 0.230 0.848
SMM | 0.767 0.867 0.745 0.915 | 0.178 0928 0.196 0.895 | 0.280 0.883 0.331 0.859
IMO | 0.998 1.000 0.999 1.000 | 0.838 1.000 0.780 0.994 | 0.659 0.996 0.646 0.995
BSO | 0.754 0.921 0.756 0.959 | 0.264 0.904 0.273 0.861 | 0.096 0.766 0.148 0.806
AD | 0.846 0.999 0.843 0.992 | 0.298 0.925 0.232 0.892 | 0.194 0.863 0.179 0.852

Table [18[shows the success rates of each attack against all 24 LLaMA models, and Figure|10|shows
the dynamics of each attack. Notably, all our findings hold true for the LLaMA architecture as well,
showcasing that the errors we found with our methodology are not architecture-specific.

Notably, LLaMA models are even less sound than GPT-2 models, with most errors occuring before
the 150-move mark. However, as shown in Figure@], these models also exhibit a substantial bias to-
wards the 150-move sequence length, showcasing that the models pick up irrelevant patterns when it
comes to rule learning. Interestingly, LLaMA models can predict legal moves beyond the 150-move
mark, which is most notable with models that were trained with the probability distribution (PD)
objective, further showcasing that PD facilitates rule learning better than the next-token prediction
(NT) objective. We suspect this capability is a result of the LLaMA architecture replacing absolute
positional embedding with rotary positional embeddings (Su et al., 2024).
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Figure 10: Attack dynamics demonstrated by the move-wise attack success rate (ASR) for each
dataset (row) and model (column) using the LLaMA architecture. On each plot, the X-axis shows
the move number, and the Y-axis shows the ASR attained by the attacks. Stronger attacks increase
ASR more quickly
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