
Under review as a conference paper at ICLR 2023

CONSTRAINED REINFORCEMENT LEARNING FOR
SAFETY-CRITICAL TASKS VIA SCENARIO-BASED
PROGRAMMING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deep reinforcement learning (DRL) has achieved groundbreaking successes in
various applications, including robotics. A natural consequence is the adoption of
this paradigm for safety-critical tasks, where human safety and expensive hard-
ware can be involved. In this context, it is crucial to optimize the performance
of DRL-based agents while providing guarantees about their behavior. This pa-
per presents a novel technique for incorporating domain-expert knowledge into a
constrained DRL training loop. Our technique exploits the scenario-based pro-
gramming paradigm, designed to specify such knowledge in a simple and intu-
itive way. While our approach can be considered general purpose, we validated
our method by performing experiments on a synthetic set of benchmark environ-
ments, and the popular robotic mapless navigation problem, in simulation and on
the actual platform. Our results demonstrate that using our approach to leverage
expert knowledge dramatically improves the safety and performance of the agent.

1 INTRODUCTION

In recent years, deep neural networks (DNNs) have achieved state-of-the-art results in a large va-
riety of tasks, including image recognition (Du, 2018), game playing (Mnih et al., 2013), protein
folding (Jumper et al., 2021), and more. In particular, deep reinforcement learning (DRL) (Sut-
ton & Barto, 2018) has emerged as a popular paradigm for training DNNs that perform complex
tasks through continuous interaction with their environment. Indeed, DRL models have proven
remarkably useful in robotic control tasks, such as navigation (Kulhánek et al., 2019) and manipula-
tion (Nguyen & La, 2019; Corsi et al., 2021), where they often outperform classical algorithms (Zhu
& Zhang, 2021). The success of DRL-based systems has naturally led to their integration as control
policies in safety-critical tasks, such as autonomous driving (Sallab et al., 2017), surgical assis-
tance (Pore et al., 2021), flight control (Koch et al., 2019), and more. Consequently, the learning
community has been seeking to create DRL-based controllers that simultaneously demonstrate high
performance and high reliability; i.e., are able to perform their primary tasks while adhering to some
prescribed properties, such as safety and robustness.

An emerging family of approaches for achieving these two goals, known as constrained
DRL (Achiam et al., 2017), attempts to simultaneously optimize two functions: the reward, which
encodes the main objective of the task; and the cost, which represents the safety constraints. Cur-
rent state-of-the-art algorithms include IPO (Liu et al., 2020), SOS (Marchesini et al., 2021b),
CPO (Achiam et al., 2017), and Lagrangian approaches (Ray et al., 2019). Despite their success
in some applications, these methods generally suffer from significant setbacks: (i) there is no uni-
form and human-readable way of defining the required safety constraints; (ii) it is unclear how to
encode these constraints as a signal for the training algorithm; and (iii) there is no clear method for
balancing cost and reward during training, and thus there is a risk of producing sub-optimal policies.

In this paper, we present a novel approach for addressing these challenges, by enabling users to
encode constraints into the DRL training loop in a simple yet powerful way. Our approach generates
policies that strictly adhere to these user-defined constraints without compromising performance.
We achieve this by extending and integrating two approaches: the Lagrangian-PPO algorithm (Ray
et al., 2019) for DRL training, and the scenario-based programming (SBP) (Damm & Harel, 2001;

1

Under review as a conference paper at ICLR 2023

Harel et al., 2012b) framework for encoding user-defined constraints. Scenario-based programming
is a software engineering paradigm intended to allow engineers to create a complex system in a
way that is aligned with how humans perceive that system. A scenario-based program is comprised
of scenarios, each of which describes a single desirable (or undesirable) behavior of the system at
hand; and these scenarios are then combined to run simultaneously, in order to produce cohesive
system behavior. We show how such scenarios can be used to directly incorporate subject-matter-
expert (SME) knowledge into the training process, thus forcing the resulting agent’s behavior to
abide various safety, efficiency and predictability requirements.

In order to demonstrate the usefulness of our approach to safety-critical tasks, we used it to train
a policy for performing mapless navigation (Zhang et al., 2017; Tai et al., 2017) for robotics by
the Robotis Turtlebot3 platform. While common DRL-training techniques were shown to give rise
to high-performance policies for this task (Marchesini & Farinelli, 2020), these policies are often
unsafe, inefficient, or unpredictable, thus dramatically limiting their potential deployment in real-
world systems (Marchesini et al., 2021a;b). Our experiments demonstrate that, by using our novel
approach and injecting subject-matter expert knowledge into the training process, we are able to
generate trustworthy policies that are both safe and high performance.

To have a complete assessment of the resulting behaviors, we performed a formal verification analy-
sis, following methods such as with (Katz et al., 2017; Liu et al., 2019), of various predefined safety
properties that proved that our approach generates safe agents to deploy in any environment.

2 BACKGROUND

Deep Reinforcement Learning. Deep reinforcement learning (Li, 2017) is a specific paradigm for
training deep neural networks (Goodfellow et al., 2016). In DRL, the training objective is to find
a policy that maximizes the expected cumulative discounted reward Rt = E

[∑
t γ

t · rt
]
, where

γ ∈
[
0, 1

]
is the discount factor, a hyperparameter that controls the impact of past decisions on the

total expected reward. The policy, denoted as πθ, is a probability distribution that depends on the
parameters θ of the DNN, which maps an observed environment state s to an action a. Proximal
policy optimization (PPO) is a state-of-the-art DRL algorithm for producing πθ (Schulman et al.,
2017). A key characteristic of PPO is that it limits the gradient step size between two consecutive
policy updates during training, to avoid changes that can drastically modify πθ (Schulman et al.,
2015).

In mission-critical tasks, the concept of optimality often goes beyond the maximization of a reward,
and also involves “hard” safety constraints that the agent must respect. A constrained markov deci-
sion process (CMDP) is an alternative framework for sequential decision making, which includes an
additional signal: the cost function, defined as C : S ×A → R, whose expected values must remain
below a given threshold d ∈ R. CMDP can support multiple cost functions and their thresholds,
denoted by {Ck} and {dk}, respectively. The set of valid policies for a CMDP is defined as:

ΠC := {πθ ∈ Π : ∀k, JCk
(πθ) ≤ dk} (1)

where JCk
(πθ) is the expected sum of the kth cost function over the trajectory and dk is the corre-

sponding threshold. Intuitively, the objective is to find a policy function that respects the constraints
(i.e., is valid) and which also maximizes the expected reward (i.e., is optimal). A natural way to en-
code constraints in a classical optimization problem is by using Lagrange multipliers. Specifically,
in DRL, a possible approach is to transform the constrained problem into the corresponding dual
unconstrained version (Liu et al., 2020; Achiam et al., 2017). The optimization problem can then be
encoded as follows:

J(θ) = min
πθ

max
λ≥0

L(πθ, λ) = min
πθ

max
λ≥0

JR(πθ)−
∑
K

λk(JCk
(πθ)− dk) (2)

Crucially, the optimization of the function J(θ) can be carried out by applying any policy gradient
algorithm, a common implementation is based on PPO (Ray et al., 2019).

Scenario-Based Programming. Scenario-based programming (SBP) (Damm & Harel, 2001; Harel
& Marelly, 2003) is a paradigm designed to facilitate the development of reactive systems, by al-
lowing engineers to program a system in a way that is close to how it is perceived by humans —

The supplementary material includes the appendices. The code will be released upon publication.

2

Under review as a conference paper at ICLR 2023

with a focus on inter-object, system-wide behaviors. In SBP, a system is composed of scenarios,
each describing a single, desired or undesired behavioral aspect of the system; and these scenarios
are then executed in unison as a cohesive system.

An execution of a scenario-based (SB) program is formalized as a discrete sequence of events. At
each time-step, the scenarios synchronize with each other to determine the next event to be triggered.
Each scenario declares events that it requests and events that it blocks, corresponding to desirable
and undesirable (forbidden) behaviors from its perspective; and also events that it passively waits-
for. After making these declarations, the scenarios are temporarily suspended, and an event-selection
mechanism triggers a single event that was requested by at least one scenario and blocked by none.
Scenarios that requested or waited for the triggered event wake up, perform local actions, and then
synchronize again; and the process is repeated ad infinitum. The resulting execution thus complies
with the requirements and constraints of each of the individual scenarios (Harel & Marelly, 2003;
Harel et al., 2012b). For a formal definition of SBP, see (Harel et al., 2012b).

Although SBP is implemented in many high-level languages, it is often convenient to think of sce-
narios as transition systems, where each state corresponds to a synchronization point, and each edge
corresponds to an event that could be triggered. Fig. 1 uses that representation to depict a simple SB
program that controls the temperature and water-level in a water tank (borrowed from (Harel et al.,
2012a)). The scenarios add hot water and add cold water repeatedly wait for WATER LOW event,
and then request three times the event Add HOT or Add COLD, respectively. Since these six events
may be triggered in any order by the event selection mechanism, new scenario stability is added
to keep the water temperature stable, achieved by alternately blocking Add HOT and Add COLD
events. The resulting execution trace is shown in the event log.

WATER LOW
Add HOT
Add COLD
Add HOT
Add COLD
Add HOT
Add COLD
...

EVENT LOG
Wait For:

WATER LOW
Request:
Add HOT

Request:
Add HOT

Request:
Add HOT

Wait For:
WATER LOW

Request:
Add COLD

Request:
Add COLD

Request:
Add COLD

add hot
water

add cold
water

Wait For:
Add HOT
Blocked:

Add COLD

Wait For:
Add COLD

Blocked
Add HOT

stability

WATER LOW Add HOT

WATER LOW Add COLD

Add HOT

Add COLD

Add HOT

Add COLD

Add HOT

Add COLD

Figure 1: A scenario-based program for controlling a water tank. The small black circle indicates the initial
state. Figure is inspired by the work of Harel et al. (2012a).

SBP is an attractive choice for the incorporation of domain-specific knowledge into a DRL agent
training process, due to being formal, fully executable and support of incremental development
(Gordon et al., 2012; Alexandron et al., 2014). Moreover, the language it uses enables domain-
specific experts to directly express their requirements specifications as an SB program.

3 EXPRESSING DRL CONSTRAINTS USING SCENARIOS

Mapless Navigation. We explain and demonstrate our proposed technique using the mapless nav-
igation problem, in which a robot is required to reach a given target efficiently while avoiding
collision with obstacles. Unlike in classical planning, the robot is not given a map of its surrounding
environment and can rely only on local observations — e.g., from lidar sensors or cameras. Thus,
a successful agent needs to be able to adjust its strategy dynamically, as it progresses towards its
target. Mapless navigation has been studied extensively and is considered difficult to solve. Specif-
ically, the local nature of the problem renders learning a successful policy extremely challenging
and hard to solve using classical algorithms (Pfeiffer et al., 2018). Prior work has shown DRL ap-
proaches to be among the most successful for tackling this task, often outperforming hand-crafted
algorithms (Marchesini & Farinelli, 2020).

3

Under review as a conference paper at ICLR 2023

Figure 2: The Robotis Turtlebot3 platform.

As a platform for our study, we used the Robotis Turtlebot 3 platform (Turtlebot, for short; see
Fig. 2), which is widely used in the community (Nandkumar et al., 2021; Amsters & Slaets, 2019).
The Turtlebot is capable of horizontal navigation and is equipped with lidar sensors for detecting
nearby obstacles. In order to train DRL policies for controlling the Turtlebot, we built a simulator
based on the Unity3D engine (Juliani et al., 2018), which is compatible with the Robotic Operat-
ing System (ROS) (Quigley et al., 2009) and allows a fast transfer to the actual platform (sim-to-
real (Zhao et al., 2020)). We used a hybrid reward function, which includes a discrete component
for the terminal states (“collision”, or “reached target”), and a continuous component for the non-
terminal states. Formally:

Rt =

{
±1 terminal states
(distt−1 − distt) · η − β otherwise

(3)

Where distk is the distance from the target at time k; η is a normalization factor; and β is a penalty,
intended to encourage the robot to reach the target quickly (in our experiments, we empirically set
η = 3 and β = 0.001). Additionally, in terminal states, we increase the reward by 1 if the target is
reached, or decrease it by 1 in case of collision. For our DNN topology, we used an architecture that
was shown to be successful in a similar setting (Marchesini & Farinelli, 2020): (i) an input layer of
nine neurons, including seven for the lidar scans and two for the polar coordinates of the target; (ii)
two fully-connected hidden layers of 32 neurons each; and (iii) an output layer of three neurons for
the discrete actions (i.e., move FORWARD, turn LEFT, and turn RIGHT). In Section 4, we provide
details about the training algorithm we used. Using the reward defined in Eq. 3, we were able to
train agents that achieved high performance — i.e., obtained a success rate of approximately 95%,
where “success” means that the robot reached its target without colliding into walls or obstacles.

Analyzing the trained agents further, we observed that even DRL agents that achieved a high suc-
cess rate may demonstrate highly undesirable behavior in different scenarios. One such behavior is
a sequence of back-and-forth turns, that causes the robot to waste time and energy. Another unde-
sirable behavior is when the agent makes a lengthy sequence of right turns instead of a much shorter
sequence of left turns (or vice versa), wasting time and energy. A third undesirable behavior that we
observed is that the agent might decide not to move forward towards a target that is directly ahead,
even when the path is clear. Our goal was thus to use our approach to remove these undesirable
behaviors.

A Rule-Based Approach. Following the approach of (Yerushalmi et al., 2022), we integrated a
scenario-based program into the DRL training process, in order to remove the aforementioned unde-
sirable behaviors. More concretely, we created specific scenarios to rule out each of the three afore-
mentioned undesirable behaviors we observed. To accomplish this, we created a mapping between
each possible action at ∈ {Move FORWARD, Turn LEFT, Turn RIGHT} of the DRL agent and a
dedicated event eat

∈ {SBP MoveForward, SBP TurnLeft, SBP TurnRight} within the scenario-
based program. These events allow the various scenarios to keep track and react to the agent’s
actions. Similarly to (Yerushalmi et al., 2022), we refer to these eat events as external events, in-
dicating that they can only be triggered when requested from outside the SB program proper. By
convention, we assume that after each triggering of a single, external event, the scenario-based pro-
gram executes a sequence of internal events (a super-step (Yerushalmi et al., 2022)), until it returns
to a steady-state and then waits for another external event.

The novelty of our approach, compared to (Yerushalmi et al., 2022), is in the strategy by which
we use scenarios to affect the training process. Specifically, we define the DRL cost function to

4

Under review as a conference paper at ICLR 2023

Wait For:
LEFT, RIGHT

Blocked:
NONE

Wait For:
FORWARD, LEFT

Blocked:
RIGHT

Wait For:
FORWARD, RIGHT

Blocked:
LEFT

RIGHTLEFT

FORWARD ANY EVENT

Wait For:
LEFT, RIGHT

Blocked:
NONE

Wait For:
FORWARD, LEFT

Blocked:
RIGHT

Wait For:
FORWARD, RIGHT

Blocked:
LEFT

RIGHTLEFT

(a) avoid back-and-forth rotation

Wait For:
FORWARD, LEFT, RIGHT

Blocked:
NONE

Wait For:
FORWARD, LEFT, RIGHT

Blocked:
NONE

Wait For:
FORWARD, RIGHT

Blocked:
LEFT

ANY EVENT
FORWARD or
RIGHT

LEFT and
[$leftCounter == $k]

LEFT and
[$leftCounter < $k]
$leftCounter ++

Wait For:
LEFT, RIGHT

Blocked:
NONE

Wait For:
FORWARD, LEFT, RIGHT

Blocked:
NONE

Wait For:
FORWARD, RIGHT

Blocked:
LEFT

LEFT and
[$leftCounter == $k]

LEFT and
[$leftCounter < $k]
/ $leftCounter ++

(b) avoid turns larger than 180◦

Wait For:
FORWARD, LEFT, RIGHT

Blocked:
NONE

Wait For:
FORWARD

Blocked:
LEFT, RIGHT

ANY EVENT

ELSE

ANY EVENT [forward lidar is clear] and
ANY EVENT [target diretction is
straight ahead]

Wait For:
FORWARD, LEFT, RIGHT

Blocked:
NONE

Wait For:
FORWARD

Blocked:
LEFT, RIGHT

ELSE

ANY EVENT [front lidar is clear]
and
ANY EVENT [target diretction is
straight ahead]

(c) avoid turning when clear

Figure 3: A visualization of the three scenarios. Figure (b) refers to the Left turns part only. ’Wait For’
and ’Blocked’ in the state-blob indicates events that the scenario waits for or blocks, respectively. The
events SBP MoveForward, SBP TurnLeft and SBP TurnRight are represented respectively, by
FORWARD, LEFT, RIGHT.

correspond to violations of scenario constraints by the DRL agent. Whenever the agent selects an
action that is mapped to a blocked SBP event, we increase the cost. This approach is described
further in Section 4, and constitutes a general method for injecting explicit constraints (expressed,
e.g., by scenarios) directly into the policy optimization process.

Example: Constraint Scenarios. Considering again our Turtlebot mapless navigation case study,
we created scenarios for discouraging the three undesirable behaviors we had previously observed.
The scenarios, defined in Python, are presented in Appendix A; and are visualized in Fig. 3, using
an amalgamation of Statecharts and SBP graphical notation languages (Harel, 1987; Marron et al.,
2018).

Scenario avoid back-and-forth rotation (Fig. 3(a)) seeks to prevent in-place, back-and-forth turns by
the robot, to conserve time and energy.

Scenario avoid turns larger than 180◦ (Fig. 3(b)) seeks to prevent left turns in angles that are greater
than 180◦, to conserve time and energy (the right-turn case is symmetrical). A forward slash indi-
cates an action that is performed when a transition is taken; square brackets denote guard conditions,
and $k and $leftCounter are variables. Each turn rotates the robot by 30◦, and so we set k = 7.

Scenario avoid turning when clear (Fig. 3(c)) seeks to force the agent to move towards the target
when it is ahead, and there is a clear path to it. This is performed by blocking any turn actions when
this situation occurs. Triggered events carry data, which can be referenced by guard conditions.

4 USING SCENARIOS IN DRL TRAINING

Even after defining constraints as an SB program, obtaining a differentiable function for the training
process is not straightforward. We propose to use the following binary (indicator) function to this
end:

ck(st, a, st+1) = I(the tuple ⟨st, a, st+1⟩ is a blocked state in the SB program, by the kth rule)

Intuitively, summing the values of the different ck’s over the training episode yields the exact number
of violations to the respective kth rule during the full trajectory; those are the values we aim to
minimize; moreover, following the intuition of Roy et al. (2021), this value, if normalized over the
number of steps, can be seen as a probability of having a violation. This value can be treated as a cost
function, the corresponding objective function defined as follows: JCk

=
∑

N c(si, ai, si+1), for a
trajectory of N steps. This value is dependent on the action policy a and is therefore differentiable
on the parameters θ of the policy through the policy gradient theorem.

Optimized Lagrangian-PPO. In Section 2 we proposed to relax the Lagrangian constrained opti-
mization problem into an unconstrained, min-max version thereof. Taking the gradient of Equation 2,

5

Under review as a conference paper at ICLR 2023

and some algebraic manipulation, we derive the following two simultaneous problems:

∇θL(π, λ) = ∇θ(JR(π)−
∑
K

λkJCk
(π)) ∀k, ∇λk

L(π, λ) = −(JCk
(π)− dk) (4)

In closed form, the Lagrangian dual problem would produce exact results. However, when applied
using a numerical method like gradient descent, it has shown strong instability and the proclivity to
optimize only the cost, limiting the exploration and resulting in a poorly-performing agent (Achiam
et al., 2017). To overcome these problems, we introduce three key optimizations that proved crucial
to obtaining the results we present in the next section.

1. Reward Multiplier: the standard update rule for the policy in a Lagrangian method is given
in Equation 4. However, as mentioned above, it often fails to maximize the reward. To
overcome this failure, we introduce a new parameter α, which we term reward multiplier,
such that α ≥

∑
K λk. This parameter is used as a multiplier for the reward objective:

∇θL(π, λ) = ∇θ(α · JR(π)−
∑
K

λkJCk
(π)) (5)

2. Lambda Bounds and Normalization: Theoretically, the only constraint on the Lagrangian
multipliers is that they are non-negative. However, when solving numerically, the value
of λk can increase quickly during the early stages of the training, causing the optimizer to
focus primarily on the cost functions (Eq. 4), potentially not pushing the policy towards a
high performance reward-wise. To overcome this, we introduced dynamic constraints on
the multipliers (including the reward multiplier α), such that

∑
K λk + α = 1. In order

to also enforce the previously mentioned upper bound for α, we clipped the values of the
multipliers such that

∑
K λk ≤ 1

2 . Formally, we perform the following normalization over
all the multipliers:

∀k, λk =
λ̃k

2(
∑

K λ̃k)
α = 1−

∑
K

λk (6)

3. Algorithmic Implementation: the primary objective of the previously introduced optimiza-
tions is to balance the learning between the reward and the constraints. To further stabilize
the training, we introduce additional, minor improvements to the algorithm: (i) lambda
initialization: we initialize all the Lagrangian multipliers with zero to guarantee a focus on
the reward optimization during the early stages of the training (consequently, following Eq.
6, α = 1); (ii) lambda learning rate: to guarantee a smoother update of the Lagrangian
multipliers, we scale this parameter to 10% of the learning rate used for the policy update;
and (iii) delayed start: we enable the update of the multipliers only when the success rate
is above 60% during the last 100 episodes. Intuitively, this delays the optimization of the
cost functions until a minimum performance threshold is reached.

5 EVALUATION

Setup. We performed training on a distributed cluster of HP EliteDesk machines, running at 3.00
GHz, with 32 GB RAM. We collected data from more than 100 seeds for each algorithm, reporting
the mean and standard deviation for each learning curve, following the guidelines of Colas et al.
(2019). For training purposes, we built a realistic simulator based on the Unity3D engine (Juliani
et al., 2018). Next, we evaluated the performance of the trained models using a physical Robotis
Turtlebot3 robot (Fig. 2) and confirmed that it behaved similarly to the behavior observed in our
simulations.

Results. Fig. 4 depicts a comparison between policies trained with a standard end-to-end
PPO (Schulman et al., 2017) (the baseline), and those trained using our constrained method with
the injection of rules. In Figs. 4(a) and 4(d), we show results of policies trained with just
avoid back-and-forth rotation added as a constraint. Fig. 4(a) shows that the success rate of the base-
line stabilizes at around 87%, while the success rate of our improved policies stabilizes at around

6

Under review as a conference paper at ICLR 2023

95%. Fig. 4(d) then compares the frequency of undesired behavior occurrences between the base-
line, at about 13 per episode, and our policies, where the frequency diminishes almost completely.

Next, for Fig. 4(b) we show results of policies trained with all three of our added rules; we note that
the success rate for these policies stabilizes around 95%, compared to 87% for the baseline.

Finally, in Figs. 4(c), (e) and (f), we compare the frequency of the occurrence of undesired behaviors
between the baseline and the policies trained with all rules active. Using the baseline, the frequency
of the three behaviors is about 13, 3, and 17 per episode. The undesired behaviors are removed
almost completely for the policies trained with our additional rules and method.

We note that the undesired behavior addressed by the rule avoid turns larger than 180◦ is quite rare
in general; and so the statistics reported in Fig. 4(c) were collected over the final 100 episodes of
training.

0 10000 20000 30000 40000 50000
episode

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

Baseline
Rule 1

(a) success rate

0 10000 20000 30000 40000 50000
episode

0.0

0.2

0.4

0.6

0.8

1.0
su

cc
es

s r
at

e

Baseline
All Rules

(b) success rate

0 10000 20000 30000 40000 50000
episode

0
1
2
3
4
5
6
7
8
9

av
oi

d
tu

rn
s l

ar
ge

r t
ha

n
18

0° Baseline
All Rules

(c) avoid turns larger than 180◦

0 10000 20000 30000 40000 50000
episode

0

5

10

15

20

25

30

av
oi

d
ba

ck
-a

nd
-fo

rth
 ro

ta
tio

n Baseline
Rule 1

(d) avoid back-and-forth rotation

0 10000 20000 30000 40000 50000
episode

0

5

10

15

20

25

30

av
oi

d
ba

ck
-a

nd
-fo

rth
 ro

ta
tio

n Baseline
All Rules

(e) avoid back-and-forth rotation

0 10000 20000 30000 40000 50000
episode

0

5

10

15

20

25

30

av
oi

d
tu

rn
in

g
wh

en
 c

le
ar

Baseline
All Rules

(f) avoid turning when clear

Figure 4: A comparison between the baseline policies to policies trained using our approach. The black dotted
line states the threshold (dk) we considered for the kth rule.

The results clearly show that our method is able to train agents that respect the given constraints,
without damaging the main training objective — the success rate. Moreover, it also highlights the
scalability of our method, i.e., performing well when single or multiple rules are applied. Review-
ing Fig 4(b), comparing the baseline’s success rate with our method’s success rate when all rules are
applied together with all the optimizations presented in Section 4, shows a clear advantage. Excit-
ingly, our approach even led to an improved success rate, suggesting that the contribution of expert
knowledge can drive the training to better policies. This showcases the importance of enabling
expert-knowledge contributions, compared to end-to-end approaches.

Formal Verification and Safety Guarantees. To further prove the effectiveness of our method,
we show results of a DNN verification engine (Katz et al., 2019) assessing the reliability of our
trained models. DNN verification is a sound and complete method for checking whether a DNN
model displays unwanted behavior, over all possible inputs. We trained two batches of 60 models
each: one batch of models trained by the “baseline” training algorithm, and one batch with models
trained by our approach. The results indicate that while almost none of the baseline models upheld
the properties (i.e., there was always at least one input for which they violated the properties), more
than 80% of our improved models satisfied the properties for all possible inputs. A full summary of
these results appears in Table 1 of Appendix B.

Additional Environment. To further validate our approach, we applied our algorithm to an ad-
ditional environment beyond the one used in Section 5. In particular, we drastically increased the
number of obstacles, which is one of the main challenges in mapless navigation. Fig. 5 shows the
difference between the two training environments.

7

Under review as a conference paper at ICLR 2023

(a) basic environment (b) additional environment

Figure 5: A comparison between the basic training environment that we used for the main analysis (Sec. 5),
and the additional environment used in this Section.

0 10000 20000 30000 40000 50000
episode

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

LPPO
PPO

(a) success rate

0 10000 20000 30000 40000 50000
episode

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

av
oi

d
ba

ck
-a

nd
-fo

rth
 ro

ta
tio

n LPPO
PPO

(b) avoid back-and-forth rotation

0 10000 20000 30000 40000 50000
episode

0

5

10

15

20

25

30

av
oi

d
tu

rn
in

g
wh

en
 c

le
ar

LPPO
PPO

(c) avoid turning when clear

Figure 6: Experiments in an additional, more complex, environment. The figure shows a comparison of our
Lagrangian PPO (LPPO) and a baseline (PPO).

Fig. 6 shows the results of our experiments in a more complex environment. The results indicate that
our approach scales very well, even when the number of obstacles is larger. Clearly, with respect to
the results of Sec. 5, the algorithm requires more iterations to converge; however, the success rate
satisfies the requirements, keeping the number of violations to the rule below the given threshold.

6 RELATED WORK

To the best of our knowledge, this is the first work that combines scenario-based programming into
the training of a constrained deep reinforcement learning system. In Yerushalmi et al. (2022), the
authors proposed integration between SBP and DRL using a reward-shaping approach that penalizes
the agent when rules are violated, with an unconstrained optimization method. Our approach, based
on constrained optimization, provides many advantages compared to the mentioned work, which
results in high-performing agents and fewer rule violations. We provide an extensive comparison
between the two approaches below.

0 10000 20000 30000 40000 50000
episode

0.0

0.2

0.4

0.6

0.8

1.0

su
cc

es
s r

at
e

LPPO
penalty: 0.1
penalty: 1.0
penalty: 1.5

(a) success rate

0 10000 20000 30000 40000 50000
episode

0

5

10

15

20

25

30

av
oi

d
ba

ck
-a

nd
-fo

rth
 ro

ta
tio

n LPPO
penalty: 0.1
penalty: 1.0
penalty: 1.5

(b) avoid back-and-forth rotation

0 10000 20000 30000 40000 50000
episode

0
1
2
3
4
5
6
7
8
9

av
oi

d
tu

rn
s l

ar
ge

r t
ha

n
18

0° LPPO
penalty: 0.1
penalty: 1.0
penalty: 1.5

(c) avoid turns larger than 180◦

Figure 7: The graphs compare results achieved by our approach, denoted by LPPO, with those achieved
by (Yerushalmi et al., 2022), denoted by penalty and its value: fixed penalty of 0.1, 1.0, or 1.5: graph (a)
measures the success rates with all three scenario-based rules. The results of using the penalty approach with
a penalty value of 0.1 are practically the same as using our approach. However, using penalty approach with
penalty values of 1.0 and 1.5 results in poor performance; graph (b) measures the frequency of violations to
the avoid back-and-forth rotation rule. The results of using the penalty approach with penalty values of 0.1
and 1.0 are similar to ours. When using penalty approach with a penalty value of 1.5, the violations diminishes
completely — however, also the performance, as mentioned above; graph (c) measures the frequency of viola-
tions to the avoid turns larger than 180◦ rule. The results of using the penalty approach with penalty values of
1.0 and 1.5 are practically the same as ours.

8

Under review as a conference paper at ICLR 2023

Fig. 7 compares the results of our approach and those of Yerushalmi et al. (2022). As shown in Fig. 7
using their approach, a low penalty value allows the agent to reach high-performance reward-wise
but fails to minimize the cost (e.g., the number of rule violations). In contrast, a high penalty value
reduces the agent’s rule violations but fails to reach adequate performance in terms of the reward
function. Our approach is shown here to reach similar performances as the best of (Yerushalmi et al.,
2022), using a penalty value of 0.1, and reducing the agent’s rule violations as the best of it, using a
penalty value of 1.0 or 1.5.

Our approach adopts a constraint-driven DRL framework that differentiates between optimizing
the main reward and minimizing the costs. This differentiation presents significant advantages,
including:

• Allows the setting of constraint thresholds independently for each rule/property and the
handling of multiple such constraints in the same way, unlike methods such as (Yerushalmi
et al., 2022) that only allow a global minimization to zero of the total cost.

• Separates reward maximization from cost minimization, simplifying the reward engineer-
ing task.

• Automatically balances the focus of the training, between the different cost elements and
the reward, by learning the values of the different multipliers for each cost factor.

• Introduces novel numerical optimizations to the training phase, resulting in a more stable
algorithm with a higher cumulative reward (as shown in Appendix C on a synthetic set of
benchmarking environments).

In a recent work on constrained reinforcement learning (Roy et al., 2021), the authors advocate an
optimized version of Lagrangian-PPO. They propose a different approach to balance the constraints
and the return, based on the softmax activation function and without imposing bounds on the values
for the multipliers. Moreover, their work focuses on game development, a different domain from
our focus, which presents very different challenges, e.g., safety and efficiency are not considered
crucial requirements. In addition, they do not encode constraints using a framework geared for this
purpose, such as SBP.

Limitations. Our method suffers from various limitations. First, it does not completely guarantee
that the resulting policies are safe. For example, as shown in Table 1 of Appendix B: even though
the number of formally safe models is significant, it is not absolute. Second, the scalability of
the method needs to be investigated. We showed in this work that the algorithm can easily handle
one to three constraints, in addition to the main objective. We leave to future work the analysis of
performance when the number of constraints increases further. Third, we noticed some performance
deterioration after about 10,000 episodes shown in Fig.4 (a) and (b). We believe that the performance
deterioration is related to the activation of the cost multipliers, especially as the performance was
recovered afterward. We plan to investigate that further in the future.

7 CONCLUSION

This paper presents a novel and generic approach for incorporating subject-matter-expert knowl-
edge directly into the DRL learning process, allowing to achieve user-defined safety properties and
behavioral requirements. We show how to encode the desired behavior as constraints for the DRL al-
gorithm and improve a state-of-the-art algorithm with various optimizations. Importantly, we define
properties comprehensibly, leveraging scenario-based programming to encode them into the train-
ing loop. We apply our method to a real-world robotic problem, namely mapless navigation, and
show that our method can produce policies that respect all the constraints without adversely affect-
ing the main objective of the optimization. We further demonstrate the effectiveness of our method
by providing formal guarantees, using DNN verification, about the safety of trained policies.

Moving forward, we plan to extend our work to different environments including navigation in more
complex domains (e.g., air and water). Another key challenge for the future is to inject rules aiming
to encode behaviours in a cooperative (or competitive) multi-agent environment.

9

Under review as a conference paper at ICLR 2023

REFERENCES

J. Achiam, D. Held, A. Tamar, and P. Abbeel. Constrained Policy Optimization. In Proc. 34th Int.
Conf. on Machine Learning (ICML), pp. 22–31, 2017.

G. Alexandron, M. Armoni, M. Gordon, and D. Harel. Scenario-Based Programming: Reducing the
Cognitive Load, Fostering Abstract Thinking. In Proc 36th Int. Conf. on Software Engineering
(ICSE), pp. 311–320, 2014.

G. Amir, M. Schapira, and G. Katz. Towards Scalable Verification of Deep Reinforcement Learning.
In Proc. 21st Int. Conf. on Formal Methods in Computer-Aided Design (FMCAD), pp. 193–203,
2021.

G. Amir, D. Corsi, R. Yerushalmi, L. Marzari, D. Harel, A. Farinelli, and G. Katz. Verifying
Learning-Based Robotic Navigation Systems, 2022. Technical Report. https://arxiv.
org/abs/2205.13536.

R. Amsters and P. Slaets. Turtlebot 3 as a Robotics Education Platform. In Proc. 10th Int. Conf. on
Robotics in Education (RiE), pp. 170–181, 2019.

E. Bacci, M. Giacobbe, and D. Parker. Verifying Reinforcement Learning Up to Infinity. In Proc.
30th Int. Joint COnf. on Artificial Intelligence (IJCAI), 2021.

C. Colas, O. Sigaud, and P. Oudeyer. A hitchhiker’s guide to statistical comparisons of reinforcement
learning algorithms. arXiv preprint arXiv:1904.06979, 2019.

D. Corsi, E. Marchesini, and A. Farinelli. Formal Verification of Neural Networks for Safety-
Critical Tasks in Deep Reinforcement Learning. In Proc. 37th Conf. on Uncertainty in Artificial
Intelligence (UAI), pp. 333–343, 2021.

W. Damm and D. Harel. LSCs: Breathing Life into Message Sequence Charts. Journal on Formal
Methods in System Design (FMSD), 19(1):45–80, 2001.

J. Du. Understanding of object detection based on cnn family and yolo. In Journal of Physics:
Conference Series, 2018.

T. Eliyahu, Y. Kazak, G. Katz, and M. Schapira. Verifying Learning-Augmented Systems. In
Proc. Conf. of the ACM Special Interest Group on Data Communication on the Applications,
Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM), pp. 305–
318, 2021.

T. Gehr, M. Mirman, D. Drachsler-Cohen, E. Tsankov, S. Chaudhuri, and M. Vechev. AI2: Safety
and Robustness Certification of Neural Networks with Abstract Interpretation. In Proc. 39th IEEE
Symposium on Security and Privacy (S&P), 2018.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

M. Gordon, A. Marron, and O. Meerbaum-Salant. Spaghetti for the Main Course? Observations on
the Naturalness of Scenario-Based Programming. In Proc. 17th ACM Annual Conf. on Innovation
and Technology in Computer Science Education (ITCSE), pp. 198–203, 2012.

S. Gronauer. Bullet safety gym, 2021. https://github.com/SvenGronauer/
Bullet-Safety-Gym.

D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming using LSCs and the
Play-Engine, volume 1. Springer Science & Business Media, 2003.

D. Harel, G. Katz, A. Marron, and G. Weiss. Non-Intrusive Repair of Reactive Programs. In Proc.
17th IEEE Int. Conf. on Engineering of Complex Computer Systems (ICECCS), pp. 3–12, 2012a.

D. Harel, A. Marron, and G. Weiss. Behavioral Programming. Communications of the ACM
(CACM), 55(7):90–100, 2012b.

David Harel. Statecharts: A visual formalism for complex systems. Science of computer program-
ming, 8(3):231–274, 1987.

10

https://arxiv.org/abs/2205.13536
https://arxiv.org/abs/2205.13536
https://github.com/SvenGronauer/Bullet-Safety-Gym
https://github.com/SvenGronauer/Bullet-Safety-Gym

Under review as a conference paper at ICLR 2023

David Harel, Assaf Marron, and Gera Weiss. Programming coordinated behavior in java. In ECOOP
2010 – Object-Oriented Programming, pp. 250–274, 2010.

X. Huang, M. Kwiatkowska, S. Wang, and M. Wu. Safety Verification of Deep Neural Networks.
In Proc. 29th Int. Conf. on Computer Aided Verification (CAV), pp. 3–29, 2017.

A. Juliani, V. Berges, E. Teng, A. Cohen, J. Harper, C. Elion, C. Goy, Y. Gao, H. Henry, M. Mattar,
et al. Unity: A General Platform for Intelligent Agents, 2018. Technical Report. https://
arxiv.org/abs/1809.02627.

J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasuvunakool,
R. Bates, A. Žı́dek, A. Potapenko, et al. Highly accurate protein structure prediction with al-
phafold. Nature, 2021.

G. Katz, C. Barrett, D. Dill, K. Julian, and M. Kochenderfer. Reluplex: An Efficient SMT Solver for
Verifying Deep Neural Networks. In Proc. 29th Int. Conf. on Computer Aided Verification (CAV),
pp. 97–117, 2017.

G. Katz, D. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah, S. Thakoor, H. Wu, A. Zeljić,
D. Dill, M. Kochenderfer, and C. Barrett. The Marabou Framework for Verification and Analysis
of Deep Neural Networks. In Proc. 31st Int. Conf. on Computer Aided Verification (CAV), pp.
443–452, 2019.

W. Koch, R. Mancuso, R. West, and A. Bestavros. Reinforcement learning for uav attitude control.
ACM Transactions on Cyber-Physical Systems, 2019.

J. Kulhánek, E. Derner, T. De Bruin, and R. Babuška. Vision-based navigation using deep reinforce-
ment learning. In 2019 European Conference on Mobile Robots (ECMR), 2019.

Y. Li. Deep Reinforcement Learning: An Overview, 2017. Technical Report. http://arxiv.
org/abs/1701.07274.

C. Liu, T. Arnon, C. Lazarus, C. Barrett, and M. Kochenderfer. Algorithms for Verifying Deep
Neural Networks, 2019. Technical Report. http://arxiv.org/abs/1903.06758.

Y. Liu, J. Ding, and X. Liu. Ipo: Interior-Point Policy Optimization under Constraints. In Proc. 34th
AAAI Conf. on Artificial Intelligence (AAAI), pp. 4940–4947, 2020.

Z. Lyu, C. Ko, Z. Kong, N. Wong, D. Lin, and L. Daniel. Fastened Crown: Tightened Neural
Network Robustness Certificates. In Proc. 34th AAAI Conf. on Artificial Intelligence (AAAI), pp.
5037–5044, 2020.

E. Marchesini and A. Farinelli. Discrete Deep Reinforcement Learning for Mapless Navigation. In
Proc. IEEE Int. Conf. on Robotics and Automation (ICRA), pp. 10688–10694, 2020.

E. Marchesini, D. Corsi, and A. Farinelli. Benchmarking Safe Deep Reinforcement Learning in
Aquatic Navigation. In Proc. IEEE/RSJ Int. Conf on Intelligent Robots and Systems (IROS),
2021a.

E. Marchesini, D. Corsi, and A. Farinelli. Exploring Safer Behaviors for Deep Reinforcement Learn-
ing. In Proc. 35th AAAI Conf. on Artificial Intelligence (AAAI), 2021b.

Assaf Marron, Yotam Hacohen, David Harel, Andreas Mülder, and Axel Terfloth. Embedding
scenario-based modeling in statecharts. In MODELS workshops, pp. 443–452, 2018.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing Atari with Deep Reinforcement Learning, 2013. Technical Report. https://arxiv.
org/abs/1312.5602.

C. Nandkumar, P. Shukla, and V. Varma. Simulation of Indoor Localization and Navigation of
Turtlebot 3 using Real Time Object Detection. In Proc. Int. Conf. on Disruptive Technologies for
Multi-Disciplinary Research and Applications (CENTCON), 2021.

11

https://arxiv.org/abs/1809.02627
https://arxiv.org/abs/1809.02627
http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/1701.07274
http://arxiv.org/abs/1903.06758
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602

Under review as a conference paper at ICLR 2023

H. Nguyen and H. La. Review of deep reinforcement learning for robot manipulation. In 2019 Third
IEEE International Conference on Robotic Computing (IRC), 2019.

M. Pfeiffer, S. Shukla, M. Turchetta, C. Cadena, A. Krause, R. Siegwart, and J. Nieto. Reinforced
Imitation: Sample Efficient Deep Reinforcement Learning for Mapless Navigation by Leveraging
Prior Demonstrations. IEEE Robotics and Automation Letters, 3(4):4423–4430, 2018.

A. Pore, D. Corsi, E. Marchesini, D. Dall’Alba, A. Casals, A. Farinelli, and P. Fiorini. Safe Re-
inforcement Learning using Formal Verification for Tissue Retraction in Autonomous Robotic-
Assisted Surgery. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), pp.
4025–4031, 2021.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, et al. Ros: an open-source
robot operating system. In ICRA workshop on open source software, 2009.

A. Ray, J. Achiam, and D. Amodei. Benchmarking Safe Exploration in Deep Reinforcement Learn-
ing, 2019. Technical Report. https://cdn.openai.com/safexp-short.pdf.

J. Roy, R. Girgis, J. Romoff, P. Bacon, and C. Pal. Direct Behavior Specification via Constrained Re-
inforcement Learning, 2021. Technical Report. https://arxiv.org/abs/2112.12228.

A. Sallab, M. Abdou, E. Perot, and S. Yogamani. Deep reinforcement learning framework for
autonomous driving. Electronic Imaging, 2017.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization. In
International conference on machine learning, 2015.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal Policy Optimization
Algorithms, 2017. Technical Report. http://arxiv.org/abs/1707.06347.

R. Sutton and A. Barto. Reinforcement Learning: An Introduction. MIT press, 2018.

L. Tai, G. Paolo, and . Liu. Virtual-to-Real Deep Reinforcement Learning: Continuous Control of
Mobile Robots for Mapless Navigation. In Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), pp. 31–36, 2017.

S. Wang, K. Pei, J. Whitehouse, J. Yang, and S. Jana. Formal Security Analysis of Neural Networks
using Symbolic Intervals. In Proc. 27th USENIX Security Symposium, pp. 1599–1614, 2018.

T. Yaacov. BPPy: Behavioral Programming in Python, 2020. https://github.com/bThink-
BGU/BPPy.

Raz Yerushalmi, Guy Amir, Achiya Elyasaf, David Harel, Guy Katz, and Assaf Marron. Scenario-
Assisted Deep Reinforcement Learning. In Proc. 10th Int. Conf. on Model-Driven Engineering
and Software Development (MODELSWARD), pp. 310–319, 2022.

J. Zhang, J. Springenberg, J. Boedecker, and W. Burgard. Deep reinforcement learning with succes-
sor features for navigation across similar environments. In 2017 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2017.

W. Zhao, J. Queralta, and T. Westerlund. Sim-to-real transfer in deep reinforcement learning for
robotics: a survey. In 2020 IEEE Symposium Series on Computational Intelligence (SSCI), 2020.

K. Zhu and T. Zhang. Deep reinforcement learning based mobile robot navigation: A review. Ts-
inghua Science and Technology, 2021.

12

https://cdn.openai.com/safexp-short.pdf
https://arxiv.org/abs/2112.12228
http://arxiv.org/abs/1707.06347

	Introduction
	Background
	Expressing DRL Constraints using Scenarios
	Using Scenarios in DRL Training
	Evaluation
	Related Work
	Conclusion

