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Abstract

Heterogeneous Federated Learning (HFL) is a decentralized machine learning paradigm
that enables participants to leverage distributed knowledge from diversified environments
while safeguarding individual privacy. Recent works that address both data and model
heterogeneity still require aggregating model parameters, which restricts architectural flex-
ibility. Knowledge Distillation (KD) has been adopted in HFL to circumvent direct model
aggregation by aggregating knowledge, but it depends on a public dataset and may incur
information loss when redistributing knowledge from the global model. We propose Fed-
erated Knowledge Exchange (FKE), an aggregation-free FL paradigm in which each
client acts as both teacher and student, exchanging knowledge directly with peers and
removing the need for a global model. To remove reliance on public data, we attach a
lightweight embedding decoder that produces transfer data, forming the Data-Free Fed-
erated Knowledge Exchange (DFFKE) framework. Extensive experiments show that
DFFKE surpasses nine state-of-the-art HFL baselines by up to 18.14%. Anonymous Repo:
https://anonymous.4open.science/r/DFFKE-0E0B.
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Figure 1: Comparison of three general approaches in
Federated Learning with FKE.

As data volumes surge and privacy regula-
tions tighten, data sharing between collaborat-
ing entities for joint learning becomes unten-
able. Federated Learning (FL) has emerged
as a crucial framework for decentralized ma-
chine learning, enabling participants to lever-
age distributed data while safeguarding indi-
vidual privacy. This approach has been in-
creasingly adopted in diverse real-world ap-
plications, including financial crime detection
Suzumura et al. (2022); Liu et al. (2023), med-
ical institution collaboration Joshi et al. (2022);
van de Sande et al. (2021), and closed-loop sup-
ply chain decision-making Zheng et al. (2023);
Islam et al. (2023).

Traditional FL utilizes methods like FedAvg
McMahan et al. (2017) to aggregate local
model updates into a global model (fig. 1a),
enabling collaborative training across diverse
clients without necessitating data sharing. Al-
though effective under homogeneous settings,
FedAvg performance quickly declines as data
heterogeneity increases, which is common in
real-world scenarios where client data are not
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identically and independently distributed (Non-IID) Hsu et al. (2019). To mitigate this, subsequent FL
strategies Li et al. (2020); Karimireddy et al. (2020); Acar et al. (2021); Li et al. (2021); Kim et al. (2022);
Mendieta et al. (2022); Lee et al. (2022); Zhang et al. (2022a); Luo et al. (2023) modify FedAvg, incorpo-
rating mathematical constraints into the learning objectives to align local models with a global optimization
goal. Distinctively, FedGen Zhu et al. (2021) incorporates Data-Free Knowledge Distillation (DFKD) into
FL, utilizing a lightweight generator to produce synthetic embeddings that aid in aligning client training
objectives. Subsequently, FedFTG Zhang et al. (2022b) integrates DFKD as an extension to fine-tune ag-
gregated global models. Despite advances in addressing data heterogeneity, these approaches assume model
homogeneity, relying on a uniform model architecture across clients to perform model aggregation. How-
ever, in practical settings, clients often vary in computational resources and may employ proprietary model
architectures, resulting in significant model heterogeneity without prior knowledge of other clients’ model
choices. This diversity limits the practicality of direct model aggregation and the redistribution of a global
model to all clients.

To tackle the challenge of model heterogeneity, recent studies have explored two main strategies: par-
tial training (PT) and knowledge distillation (KD). PT-based approaches Caldas et al. (2018); Diao et al.
(2020); Horvath et al. (2021); Alam et al. (2022); Wang et al. (2024) adapt to model heterogeneity by
distributing width-based sub-models, tailored to each client’s computational capacity from a large global
model (fig. 1b). These sub-models are trained locally and then aggregated to enhance the global model.
This method extends the FedAvg framework to accommodate resource limitations across clients, but it
still restricts client model selection. Meanwhile, it also struggles with heterogeneous data because of the
limitations of direct model aggregation, potentially diminishing the effectiveness and applicability of FL
systems in heterogeneous environments. Recently, DFRD Wang et al. (2024) integrated DFKD within PT-
based approaches to mitigate the adverse effect of heterogeneous data, addressing both data and model
heterogeneity without relying on additional public datasets. Despite its promise, DFRD continues to face
challenges in accommodating a broader range of client architectures, constrained by the fundamentals of
model aggregation. To handle strict data and model heterogeneity while avoiding the drawbacks of model
aggregation, knowledge distillation is a promising alternative. KD-based methods Li & Wang (2019); Lin
et al. (2020); He et al. (2020); Afonin & Karimireddy (2021); Cho et al. (2022); Fang & Ye (2022) ag-
gregate knowledge from diverse architectures by aligning the logit outputs between client models and
a global model using a public dataset (fig. 1c). Indeed, these KD-based methods can seamlessly address
both data and model heterogeneity. Nevertheless, the effectiveness of KD relies heavily on the availability

Methods Public Data Require Support Model
Dependency Aggregation Heterogeneity

KD-Based dependent Yes / knowledge Yes
FedGen data-free Yes / FedAvg No
FedFTG data-free Yes / FedAvg No
DFRD data-free Yes / PT-based Limited
FedIOD data-free Yes / knowledge Yes
FedBID data-free Yes / knowledge Yes
DFFKE data-free aggregation-free Yes

Table 1: Comparison between existing KD-based and DFKD-
based Zhu et al. (2021); Zhang et al. (2022b); Wang et al. (2024)
federated learning approaches with DFFKE.

and quality of the public dataset; aggregating
knowledge into a global model may inevitably
lead to knowledge loss during redistribution.
FedIOD Gong et al. (2024) and FedBID Zhang
et al. (2026) further integrate DFKD to elimi-
nate the need for a public dataset, but they still
follow the knowledge aggregation paradigm.
Both model and knowledge aggregation impose
undesirable limitations on the algorithm. Ul-
timately, adopting an aggregation-free FL
paradigm is the key to overcoming this bottle-
neck. We present a comprehensive comparison
of existing KD related approaches in table 1.

In this paper, we propose Data-Free Federated Knowledge Exchange (DFFKE) to address the dual challenges
of strict data and model heterogeneity in FL. Specifically, we propose an aggregation-free paradigm named
Federated Knowledge Exchange (FKE) to facilitate multi-client knowledge exchange (fig. 1d), wherein
each participant simultaneously functions as both teacher and student. This innovative dual role promotes
direct knowledge sharing among clients, eliminating the need to aggregate knowledge into a global model and
then redistribute it, which may cause knowledge loss during aggregation. Finally, we employ a lightweight
decoder to produce synthetic transfer data to bridge the communication between client models, thereby
removing dependence on public datasets and enabling data-free FKE. The main contributions of this work
are summarized as follows:
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• We propose FKE, a novel aggregation-free learning paradigm for heterogeneous FL, enabling direct knowl-
edge sharing between clients and eliminating the need for a global model.

• We introduce DFFKE framework; to the best of our knowledge, it is the first FL approach that addresses
both data and model heterogeneity without reliance on public datasets and enables direct client-to-client
communication, which is achieved through an aggregation-free training, and a central data-free module.

• Extensive experimental results demonstrate that DFFKE significantly outperforms existing FL approaches
in heterogeneous environments, showcasing its effectiveness and robustness.

2 Notations and Preliminaries

Notations. We consider a heterogeneous federated learning setting for general supervised multi-class clas-
sification tasks. Let C denote the set of participating clients, with |C| = K. Each client ck ∈ C possesses a
private dataset Dk = (Xk, Yk), where Xk = {xk

i }
Nk
i=1 ⊂ Rd is the set of data samples, and Yk = {yk

i }
Nk
i=1 ⊂ R

is the corresponding set of ground truth labels. Each client owns a local model θk := [θh
k , θl

k], which consists
of two components: a data encoder h(·) : Rd → Rh parameterized by θh

k , where h ≪ d, and a classifier
l(·) : Rh → Rn parameterized by θl

k. For simplicity, we denote the full network as f(·) : Rd → Rn, where
f(xk

i ; θk) = l(h(xk
i ; θh

k ); θl
k). We also denote Ek = h(Xk; θh

k ) and Ŷk = f(Xk; θk) as the collection of embed-
dings and logits of client k, respectively. Lastly, we use {θk} as an abbreviation for {θk}K

k=1 to represent a
set of all clients’ model (the same for {Ek}, {Ŷk}).

Federated Learning (FL). is a distributed machine learning paradigm in which data-constrained clients
collaboratively train models by leveraging collective knowledge without sharing their private data. In a
common FL paradigm, each client k locally optimizes θk on its private dataset Dk and then repeatedly com-
municates with other clients using a shared protocol. Under model homogeneity setting, most approaches
follow the prevalent FedAvg framework McMahan et al. (2017), which aggregates the local models θk into a
global model θglobal and then distributes it back to the clients in each communication round:

θglobal = 1
K

K∑
k=1

θk (1)

Knowledge Distillation (KD). has been proposed to transfer knowledge from a well-trained large model
(teacher) to a smaller model (student) for model compression while maintaining similar performance. Tradi-
tional KD requires manually collecting public data to form a transfer dataset D̂P = {x̂P

i }
NP
i=1 that bridges the

communication between models. The knowledge transfer is often accomplished by minimizing the Kullback-
Leibler (KL) divergence Hinton (2015) between the logits produced by the teacher model θT and the student
model θS on D̂P:

min
θS

Ex∼D̂P
[DKL [f(x; θT ) ∥ f(x; θS)]] (2)

Data-Free Knowledge Distillation (DFKD) emerges as an alternative to KD when an appropriate
public dataset is unavailable. DFKD methods Chen et al. (2019); Micaelli & Storkey (2019); Choi et al.
(2020); Yin et al. (2020); Fang et al. (2021; 2022); Liu et al. (2024) generate a synthetic transfer dataset
D̂syn = {x̂syn

i }n
i=1 by extracting knowledge from a pretrained teacher model and use it to transfer knowl-

edge by minimizing equation 2. The prevailing approach for generating D̂syn involves training a generator
model Gen that produces synthetic data x̂ conditioned on a given class y. To ensure that x̂syn = Gen(y)
approximates the true data distribution of y, the generator Gen minimizes the fidelity loss:

Lfid =
∑
y∈Y

CE (f(Gen(y); θT ), y) (3)

where CE denotes the cross-entropy function. Moreover, to enhance the transferability of the synthetic data
x̂syn, an additional model discrepancy loss is introduced to encourage x̂syn to maximize the knowledge gap
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(KL divergence) between the teacher model θT and the student model θS :

Lmd =
∑
y∈Y

−DKL [f(Gen(y); θT ) ∥ f(Gen(y); θS)] (4)

The overall training objective of Gen in DFKD is a combination of the above losses weighted by coefficients
α, β:

Lgen = αLfid + βLmd (5)

Definition of Aggregation-free. In this paper, aggregation-free means that the training protocol
never aggregates clients into a single global task model, either by (i) FedAvg-style parameter aggregation
θglobal ← 1

K

∑
k θk, or (ii) distillation-based knowledge aggregation into a global teacher/student that is

then redistributed. We still assume a central coordinator that trains and broadcasts auxiliary components
(for example, a generator), which are not global task models and are not used to aggregate task knowledge.

3 Data-Free Federated Knowledge Exchange

Knowledge Exchange. Unlike traditional knowledge distillation (KD), which focuses on one-way knowl-
edge transfer from a teacher model to a student model, we define Knowledge Exchange (KE) as a learning
paradigm that involves concurrent bidirectional knowledge transfer between models. Let θA, θB represent
two independent models, and let D̂A, D̂B denote their respective transfer datasets for KE. The objective of
KE is to obtain a set of knowledge-exchanged models θ̃A, θ̃B , that jointly minimize their knowledge gaps
with respect to each other:

min
θ̃A

Ex∼D̂B

[
DKL

[
f(x; θB) ∥ f(x; θ̃A)

]]
(6)

min
θ̃B

Ex∼D̂A

[
DKL

[
f(x; θA) ∥ f(x; θ̃B)

]]
(7)

Federated Knowledge Exchange. Extending the concept of KE to a multi-model setting, we propose
Federated Knowledge Exchange (FKE), where a group of models collaboratively exchange knowledge in a
federated environment without sharing private data. Assuming K clients are collaborating, FKE aims to
obtain a knowledge-exchanged model θ̃k for each client k by minimizing its knowledge gap (measured by KL
divergence) relative to every other client:

min
θ̃k

K∑
i=1,i̸=k

DKL

[
f(D̂i; θi) ∥ f(D̂i; θ̃k)

]
, ∀k ∈ K (8)

where D̂i denotes the transfer dataset assigned to client i, and f(D̂i; θi) represents the knowledge distribution
of θi on D̂i. To account for non-IID data across clients, D̂i should mirror client i’s local training-data
distribution for optimal performance. In practice, assembling a public transfer dataset for each client is
impractical due to data scarcity and the high overhead of data curation.

In the following section, we introduce Data-Free Federated Knowledge Exchange (DFFKE), a framework that
eliminates the need for public data in FKE. DFFKE operates in three key steps during each communication
round. First (§3.1), we translate each client’s independently evolved model embedding space into a unified
embedding space to ensure alignment across clients. Next (§3.2), we train an embedding decoder model
Dec(·) : Rh → Rd that maps the unified embedding space to the data space. By using the synthetic data
produced by the embedding decoder as a bridge for communication, we effectively eliminate the need for
public data. Finally (§3.3), we perform federated knowledge exchange and introduce a memory buffer to
facilitate efficient and effective knowledge sharing among clients. Additionally, to secure the privacy of
embeddings, clients can opt to use differential privacy before sharing embeddings (§4.3). An overview of the
DFFKE learning procedure is illustrated in Fig.2.
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Figure 2: DFFKE comprises four procedures per communication round: (1) Training on each client’s private dataset
to prepare for knowledge sharing, (2) Translating each client’s embeddings distribution into a unified embedding
space, (3) Training an emb-decoder to map the unified embedding space to the data space, and (4) Conducting FKE
using synthetic transfer data and a memory buffer.

3.1 Embedding Space Unification

In heterogeneous federated learning environments, clients individually train their models on private datasets,
resulting in distinct embedding spaces due to independent evolution:

min
θk

E(x,y)∼Dk
[CE (f(x; θk), y)] , ∀k ∈ K (9)

Such divergence in embedding space limits the possibility of training a single embedding decoder Dec(·) :
Rh → Rd for all clients. To enable effective feature utilization, it is crucial to map each clients’ embeddings
into a unified embedding space. We achieve this through an embedding translation mechanism.

For each client k, we introduce a pluggable docking layer z(·) : Rh → Rh parameterized by θz
k, which is a

learnable linear transformation that projects the client’s embedding outputs into a shared embedding space.
Let Ek = h(Xk; θh

k ) = {εk
i }

Nk
i=1 denote the set of embeddings encoded from the private data of client k. The

docking layer transforms the embeddings as follows:

Ẽk = z(Ek; θz
k) (10)

To align the translated embeddings of all clients, we introduce a linear global classification layer θl
global that

operates on all translated embeddings {Ẽk}K
k=1. Recall that each embedding εk

i ∈ Ek has a corresponding
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class label yk
i ∈ Yk. We jointly train the docking layers {θz

k}K
k=1 and the classification layer θl

global by
minimizing the cross entropy:

min
{θz

k
},θl

global

K∑
k=1

CE
(
l(Ẽk; θl

global), Yk

)
(11)

This optimization encourages the docking layers θz
k to map divergent embeddings into a common embedding

space where the global classifier l(·; θl
global) can effectively group similar embeddings. This process can also

be seen as a clustering method in which embeddings that belong to the same class from different clients are
grouped together in the shared space. θl

global is a temporary linear head used only to support alignment,
and it is discarded after unification step. To fully protect client’s privacy, clients can apply a differential
privacy mechanism to protect their embeddings before sharing. Without loss of generality, we focus here on
our FKE design and defer the detailed discussion of privacy protection to section 4.3.

3.2 Synthetic Data Space

FKE is a promising approach, but its reliance on a public dataset limits its practicality. To support commu-
nication among client models in a data-free manner, we introduce an embedding decoder Dec(·) : Rh → Rd,
which maps embeddings from a unified embedding space to the data space and facilitates knowledge flow
through the synthetic dataset. Moreover, unlike traditional class-guided generator methods in previous data-
free approaches Zhang et al. (2022b); Wang et al. (2024), which struggle with data diversity, our embedding
decoder network effectively diversifies outputs by producing distinct data based on unique embeddings.
Specifically, with each client k’s model weight θk, we train Dec to produce a synthetic dataset {D̂k} from
the input embeddings {Ẽk} by minimizing the following data fidelity loss.

Data Fidelity is the basis of training the generative model. Dec is expected to synthesize a synthetic
dataset that approximates the embedding distribution in the unified embedding space. Specifically, when
synthetic data D̂k = Dec(Ẽk) is passed through the client’s encoder and docking layer, the predicted embed-
ding Ẽpred should match the input embedding Ẽk. This is formulated as:

Lfid =
K∑

k=1
MSE

(
z(h(Dec(Ẽk); θh

k ); θz
k), Ẽk

)
(12)

By optimizing Lfid, the embedding decoder learns to synthesize a diversified transfer dataset for each client,
which serves as the communication medium for knowledge flow. In practice, Dec(·) is trained on a central
server; however, it is not a global task model, and it is not a form of knowledge aggregation. The data-free
module (§3.1 and §3.2) is introduced to eliminate the need for a public transfer dataset. If a public transfer
dataset were available, FKE can be run directly on that dataset without Dec; the rest of the knowledge
exchange protocol would remain unchanged.

3.3 Knowledge Exchange with Memory Buffer

With the trained embedding decoder Dec and the unified embedding set {Ẽk}K
k=1 distributed to all clients,

we proceed to the final Federated Knowledge Exchange (FKE) step using synthetic data. Each client retrieve
synthetic transfer datasets {D̂k} = Dec({Ẽk}) from decoder and use them to bridge communication between
models. Alongside learning from {D̂k} in the current round, we also maintain a memory buffer BBB to store
past synthetic data for later review. The training objectives are defined as follows.

Knowledge Exchange. For each client k, we minimize the discrepancy between its model’s predictions
on {D̂i}i̸=k and the corresponding target logits {Ŷi}i ̸=k shared by other clients. The FKE loss is formulated
as:

Lk
FKE =

K∑
i=1,i̸=k

DKL

[
f(D̂i; θk) ∥ Ŷi

]
(13)
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Classic Heterogeneous FL
High Data Heterogeneity (α = 0.1) Low Data Heterogeneity (α = 1.0)

TinyImageNet CIFAR10 CIFAR100 TinyImageNet CIFAR10 CIFAR100 CIFAR100 - More Model Heterogeneity
Methods HtFE-1 HtFE-1 HtFE-2 HtFE-5 HtFE-10
LG-FedAvg 12.55±0.85 33.65±4.25 19.57±1.52 17.91±0.59 63.53±7.29 32.34±0.93 30.81±0.91 29.59±1.91 26.35±3.50
FedGen† 11.98±0.96 33.71±4.09 19.11±1.48 16.99±0.77 63.55±6.41 31.35±0.87 29.27±0.91 28.72±1.99 25.50±3.13
FedGH 12.85±1.03 34.21±4.39 20.05±1.83 19.28±0.37 64.44±7.64 34.09±1.08 31.48±1.55 30.83±2.18 27.74±4.23
FML 11.81±0.95 32.84±4.61 18.87±1.51 17.66±0.48 64.36±7.15 32.29±0.85 30.40±1.26 29.31±1.87 26.02±3.31
FedKD 12.09±1.00 32.81±4.61 18.76±1.60 18.57±0.60 63.53±7.98 32.35±0.88 30.92±1.19 29.42±1.89 26.73±4.42
FedDistill 11.84±1.13 33.37±4.72 18.72±1.44 17.50±0.48 63.49±8.19 31.96±0.94 29.55±1.50 28.55±2.06 25.47±3.41
FedProto 11.52±0.96 34.23±4.57 19.68±1.79 18.96±0.45 63.77±6.46 35.93±1.15 31.33±1.50 30.44±2.49 27.77±4.89
FedTGP 12.48±1.05 33.35±4.46 19.56±1.69 18.75±0.80 63.00±7.81 33.23±1.13 32.24±2.95 30.79±3.43 28.35±6.93
FedKTL 10.17±1.01 29.19±5.80 13.38±1.68 14.45±0.61 57.83±7.75 21.51±2.49 18.48±2.58 17.40±1.60 14.40±7.40
DFFKE 27.92±0.33 43.21±4.82 38.19±0.76 31.74±0.40 68.20±4.05 47.49±0.38 46.48±1.46 45.84±1.02 39.06±3.43

Table 2: Test accuracy (%) of K = 10 clients with participation rate ρ = 1.0 under different levels of data hetero-
geneity and heterogeneous model scenarios. Results are reported as the mean and standard deviation of the accuracy
of all client models on a global test set with a uniform class distribution.

Personalized Heterogeneous FL
High Data Heterogeneity (α = 0.1) Low Data Heterogeneity (α = 1.0)

TinyImageNet CIFAR10 CIFAR100 TinyImageNet CIFAR10 CIFAR100 CIFAR100 - Large Client Amount

K = 10, ρ = 1.0 K = 10, ρ = 1.0 K = 20 K = 50 K = 100
Methods ρ = 0.5 ρ = 0.2 ρ = 0.1
LG-FedAvg 55.93±4.18 93.49±2.84 73.59±4.61 32.43±2.44 82.70±1.61 48.55±3.66 39.70±2.65 31.37±4.79 30.90±5.66
FedGen† 55.19±4.63 93.28±2.74 73.19±4.97 31.70±2.39 82.07±2.46 47.72±4.07 37.98±2.69 31.32±3.97 30.55±6.28
FedGH 57.12±4.58 94.11±2.36 73.62±5.34 32.94±2.32 82.05±2.18 49.40±3.25 39.66±3.53 32.35±4.35 31.98±5.08
FML 57.21±4.69 94.59±2.62 74.04±4.06 32.70±2.71 83.46±2.06 49.89±3.28 40.37±2.82 32.54±4.34 32.33±5.89
FedKD 56.35±4.72 94.55±2.76 74.08±4.57 32.17±2.33 82.87±2.59 49.11±4.16 39.73±2.62 31.85±4.86 31.22±5.57
FedDistill 55.54±4.73 94.51±2.52 73.86±4.78 31.94±2.58 82.12±2.23 48.34±3.30 38.97±2.89 30.95±4.27 30.77±5.80
FedProto 54.19±4.00 94.24±2.51 70.67±4.96 32.91±2.18 82.84±2.51 47.86±3.28 38.15±2.59 31.25±4.59 30.23±5.41
FedTGP 58.63±3.86 94.77±2.50 76.52±4.39 35.25±2.69 83.97±2.01 55.22±2.78 44.71±3.20 35.60±4.61 35.40±5.15
FedKTL 56.84±5.79 94.59±3.32 74.98±5.53 33.20±2.82 83.06±3.12 51.31±4.58 40.15±3.70 33.32±4.93 33.00±6.26
DFFKE 60.45±3.08 95.84±2.37 76.95±3.72 39.72±1.90 84.21±1.63 56.83±2.18 49.50±2.50 43.78±3.91 43.63±5.36

Table 3: Test accuracy (%) of personalized FL on different numbers of clients and participation rates using HtFE-5.
Results are reported as the mean and standard deviation of the accuracy of all client models on their individual local
test sets, where the test distribution matches the client’s private training data distribution.

Memory Buffer. Empirically, we observe that knowledge from previous rounds may fade during training
(see table 5). To retain the proficiency in past rounds synthetic data, we adopt a memory buffer BBB = {Bi}K

i=1,
where Bi temporarily stores synthetic data for client i from earlier rounds. Each client’s memory buffer
is synchronized and contains synthetic data from all clients. In each round t, clients sample a subset
BBBt = {Bt

i}K
i=1 ⊂ BBB to obtain the target logits Ŷ

Bt
i

i using their latest model, and share them with others. The
knowledge retention loss is defined as:

Lk
mem =

K∑
i=1,i̸=k

DKL

[
f(Bt

i ; θk) ∥ Ŷ
Bt

i
i

]
(14)

Overall Optimization. In each iteration, clients alternately update their models using the FKE loss
on current synthetic data and the knowledge retention loss on memory buffer data. The pseudocode for
Data-Free Federated Knowledge Exchange can be found in the appendix A.

4 Experiments

4.1 Experimental Setups

Baselines and Model Heterogeneity. We compare our proposed DFFKE method against nine existing
model heterogeneous federated learning algorithms that do not rely on public data. These algorithms,
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implemented in HtFLlib Zhang et al. (2023), include LG-FedAvg Liang et al. (2020), FedGen Zhu et al.
(2021), FedGH Yi et al. (2023), FML Shen et al. (2020), FedKD Wu et al. (2022), FedDistill Jeong et al.
(2018), FedProto Tan et al. (2022b), FedTGP Zhang et al. (2024b), and FedKTL Zhang et al. (2024a).
Since FedGen originally aggregates client models using FedAvg, HtFLlib implements a modified version
combining FedGen with LG-FedAvg, denoted as FedGen†. Note that LG-FedAvg, FedGen†, and FedGH
assume a homogeneous classifier. To enable a fair comparison, we only consider model heterogeneity within
the feature extractors (encoder) of client models. Following the HtFLlib convention, we use the notation
“HtFE-X” to represent different heterogeneous model scenarios, where X indicates the number of distinct
architectures used among clients. For example, HtFE-1 uses only ResNet18 He et al. (2016), while HtFE-10
includes ten architectures: ResNet18, ResNet34, ResNet50 He et al. (2016), GoogLeNet Szegedy et al. (2015),
EfficientNetV2 Tan & Le (2021), MobileNet-v3-small, MobileNet-v3-large Howard et al. (2019), ShuffleNet-
v2-x1.5, ShuffleNet-v2-x2.0 Ma et al. (2018), and ViT-Tiny Dosovitskiy et al. (2020). The embedding
dimensions h differ across these encoder architectures.

Datasets and Data Heterogeneity. We conduct experiments on CIFAR10/100 Krizhevsky et al. (2009),
and TinyImageNet Le & Yang (2015) with heterogeneous data partitions to simulate federated collaborative
learning. Following standard practice Lin et al. (2020); Zhu et al. (2021), we use a Dirichlet distribution
Dir(α) for data partitioning to simulate non-IID distributions among clients. Smaller α values indicate
greater data heterogeneity, where each client’s private data is biased toward fewer classes from the original
dataset. We adopt α ∈ {0.1, 1.0} to represent high and low data heterogeneity, respectively. The training
images from all datasets are partitioned using the non-IID method to form clients’ private training datasets.
For testing, we consider two federated learning (FL) settings: classic FL and personalized FL Tan
et al. (2022a). In classic FL, all clients share an IID test set of 10,000 images to evaluate collaborative
learning performance on global knowledge, whereas in personalized FL, each client form a local test set that
matches the distribution of its private training data, thereby highlighting the benefits of FL for their personal
objectives.

General Implementation Details. We combine the aforementioned model and data heterogeneity set-
tings to simulate heterogeneous federated learning scenarios. Performance is evaluated by averaging the test
accuracy of all clients’ models after each round. For all algorithms, we report the highest test accuracy
achieved over a maximum of n = 300 communication rounds. During training and testing, all image data
are resized to 128 × 128. We simulate heterogeneous FL scenarios on K = 10 clients with a client partici-
pation ratio ρ = 1.0, and we experiment on 20, 50, and 100 clients with ρ = 0.5, 0.2, and 0.1 respectively.
For training both the embedding encoder and clients’ models in all baseline methods and DFFKE, unless
otherwise specified, we use the Adam optimizer with a learning rate of 0.001 and a batch size of 100. To
accommodate the consistent embedding dimension assumption in FedGH, FedKD, FedProto, and FedTGP,
we follow Zhang et al. (2023) to add an average pooling layer before classifiers and set h = 512 by default
for all baseline methods.

DFFKE Implementation Details. In the DFFKE framework, each client trains locally on its private
dataset until converge before communication. During each communication round, the docking layers are
trained for TTran = 100 epochs. The embedding decoder is trained for TDec = 3, 6, and 6 epochs on CIFAR10,
CIFAR100, and TinyImageNet, respectively, and clients perform knowledge exchange for TFKE = 2, 4, and 4
epochs. For the embedding decoder, we adopt a lightweight 3-layer, 4.4M-parameter architecture from Fang
et al. (2021). To evaluate the performance of vanilla DFFKE, differential privacy is disabled by default in
main experiments tables.

4.2 Result Comparison

Table 2 presents the classic federated learning test accuracy of all methods, where DFFKE consistently
outperforms the heterogeneous federated learning baselines by a large margin across all scenarios. Notably,
the performance advantage of DFFKE is more pronounced with increasing data heterogeneity and more
challenging datasets. For instance, on CIFAR-100/TinyImageNet with high data heterogeneity, DFFKE
outperforms the best baseline by a substantial margin of 18.14%/15.07%. Furthermore, DFFKE also
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Dataset α Best Baseline
w/o DP w/ DP Base w/ DP+ w/ DP++ w/ DP+++ Pure Noise

ϵ = 1 ϵ = 0.75 ϵ = 0.5 ϵ = 0.25
CE = 1 CE = 0.45 CE = 0.35 CE = 0.24 CE = 0.12 CE = 0
CŶ = 1 CŶ = 0.67 CŶ = 0.44 CŶ = 0.27 CŶ = 0.13 CŶ = 0

CIFAR100 0.1 20.05±1.83 38.19±0.76 36.67±1.03 35.22±0.63 34.85±0.92 34.92±0.72 34.58±1.12
1.0 35.93±1.15 47.49±0.38 45.60±0.57 44.98±0.55 45.03±0.89 44.81±0.66 44.88±0.32

CIFAR10 0.1 34.23±4.57 43.21±4.82 42.24±6.42 41.92±5.77 41.68±6.03 41.52±5.14 41.71±5.59
1.0 64.44±7.64 68.20±4.05 68.15±3.43 67.48±2.95 66.44±3.27 66.04±3.94 66.35±3.71

TinyImageNet 0.1 12.85±1.03 27.92±0.33 26.36±0.55 25.85±0.43 25.39±0.51 25.55±0.37 25.40±0.59
1.0 19.28±0.37 31.74±0.40 32.17±0.25 31.73±0.49 31.77±0.43 31.92±0.53 31.59±0.39

Table 4: Sensitivity analysis w.r.t. different noise level in differential privacy, conducted by varying the privacy
budget ϵ ∈ {1.0, 0.75, 0.5, 0.25} or by replacing the embedding E and logit Ŷ entirely with noise. Experiments are
conducted in the Classic FL setting. To interpret the effect of injected noise, we report CE and CŶ , which denote
the cosine similarities between E and Eencrypted, and between Ŷ and Ŷencrypted, respectively.

demonstrates competitive performance in the personalized FL task, as shown in table 3. DFFKE outperforms
FL baseline methods specialized in the personalized FL setting, such as FedTGP Zhang et al. (2024b). Across
varying client counts K and participation rates ρ, DFFKE consistently maintains higher performance and
stability than the baseline methods. These results highlight the overall superiority of DFFKE as a general
solution for heterogeneous and personalized federated learning.

4.3 DFFKE Analysis

In this section, we evaluate the effectiveness of the design components introduced in DFFKE and computation
overhead. Unless otherwise specified, all experiments are conducted with K = 10 clients, a participation
rate of ρ = 1.0, on the CIFAR100 dataset with a data heterogeneity parameter of α = 1.0, and using the
HtFE-1 model group. More ablation studies can be found in the Appendix.

Differential Privacy. We propose to leverage clients’ local embeddings and logits to improve the effective-
ness of DFFKE, but this could expose clients to the risk of data leakage through malicious reverse engineering
attack. To address this issue, we suggest applying additive Gaussian noise based on (ϵ, δ)-Differential Privacy
to obscure private information. Specifically, Differential Privacy (DP) Dwork et al. (2014) is a theoretically
proven framework for releasing statistical information about datasets while protecting the privacy of indi-
vidual data samples. It has been widely adopted in deep learning Abadi et al. (2016); Zhao et al. (2019) and
federated learning Wei et al. (2020); El Ouadrhiri & Abdelhadi (2022) tasks to protect individual data while
preserving the utility of the released data. We propose to obscure private information in the embeddings or
logits by adding Gaussian noise following the (ϵ, δ)-Differential Privacy standard, as given by:

xencrypted = x +N
(

0,
2 ln(1.25/δ)(∆f)2

ϵ2 I|x|

)
(15)

where the privacy budget ϵ ≤ 1 controls the trade-off between privacy and utility, δ ≤ 1 represents the failure
probability of the differential privacy guarantee, and ∆f represents the model sensitivity. For DFFKE, we set
ϵ = 1 and δ = 1

Dataset Size to ensure that every data point is protected. In addition, we present an sensitivity
analysis w.r.t. noise level in table 4. DP effectively reduces privacy risk, and the analysis result shows
a clear privacy–utility trade-off. When pushing noise to extreme level, which fundamentally replacing
embeddings and logits by pure noise, DFFKE still maintains significant superiority over the baseline methods.
As such, sharing clients’ private embeddings and logits are not mandatory in our framework. In
real-world FL scenario, users can opt in sharing such information based on individual privacy preference with
protection of DP. For the proof of (ϵ, δ)-Differential Privacy using the Gaussian Mechanism and additional
details about the model sensitivity ∆f , please refer to the appendix G.
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Memory Buffer Size R Accuracy(%)
Best baseline / FedProto 35.93± 1.15
No Memory Buffer 38.22± 0.90
Memory Limit 1 41.59± 0.77
Memory Limit 5 44.18± 0.60
Memory Limit 10 45.01± 0.96
Memory Limit 20 46.67± 0.43
DFFKE (Unlimited, up to 50) 47.49± 0.38

Table 5: Limited memory buffer size. R: the number
of past communication rounds’ synthetic data stored.

Memory Buffer Size. As shown in table 5, the
memory Buffer is a fundamental component in DF-
FKE. We evaluate DFFKE’s performance by varying
the memory limit from 1 round up to no limit (i.e.,
storing all past synthetic data). The results indicate
that test accuracy correlates with the size of the mem-
ory Buffer. Nonetheless, even without memory buffer,
DFFKE can outperforms the best baseline, a modest
buffer (for example, 5 rounds) recovers much of the
gain. In terms of storage, memory buffer does not need
to store raw synthetic images directly. In our imple-
mentation, clients can store compact information (past
translated embeddings, and the corresponding decoder checkpoint for that round) and regenerate synthetic
samples on demand. Since Dec is lightweight, regeneration is fast. For N samples per round with embedding
dimension h and dtype size b bytes, and store a decoder checkpoint of size |Dec| bytes, then for a memory
limit of R past rounds, BufferBytes ≈ R ·

(
|Dec| + N · h · b

)
. With CIFAR100, client will use 16.89 MB of

decoder and 14.7 MB of embeddings for one round.

DFFKE Participation Proportion π Accuracy(%)
10%, No Collaboration (1 out of 10) 31.25±0.85
20% (2 out of 10) 35.71±0.20
30% (3 out of 10) 39.94±0.08
40% (4 out of 10) 42.43±0.30
50% (5 out of 10) 43.98±0.51
60% (6 out of 10) 45.79±0.45
70% (7 out of 10) 46.57±0.41
80% (8 out of 10) 47.00±0.32
90% (9 out of 10) 47.32±0.60
100%, Full Participation (10 out of 10) 47.49±0.38

Table 6: Ablation on client participation proportion π
in DFFKE. Accuracy improves with more participating
clients but saturates beyond π ≈ 70%.

Limited Client Participation Our main experi-
ments are conducted under the hypothesis of perfect
collaboration, where all clients participate in the FL at
least once. To evaluate DFFKE’s performance under
limited collaboration, we conduct an ablation study
on the participation proportion π, as shown in ta-
ble 6. The dataset is partitioned into 10 shares, and
each client owning 1/10 of the full dataset. The av-
erage test accuracy grows as π increase from 10% to
100%. This aligns with the intuition that larger col-
laboration scales benefit clients by providing access
to a broader global knowledge base. Notably, the im-
provement slows and plateaus after π = 70%, suggest-
ing that benefit of scaling DFFKE is diminishing.

Computation and Communication Cost. DFFKE achieves superior performance without compromis-
ing computational efficiency as shown in fig. 3. In addition, DFFKE consumes a total of 47.34 GB com-
munication overhead, which remains at the same level of upload/download overhead as the widely used FL
approaches. For example, FedAvg McMahan et al. (2017) uploads/downloads model weights each round and
converges in 200 rounds of communication and uses a total of 171.4 GB of traffic under the same experiment
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Figure 3: Computation cost comparison. Each algorithm is
running on a single RTX 4090.

setting. Also, comparing with other Knowledge
Distillation (KD) based FL approaches such as
FedKD and FML, they incur much higher total
costs than our method (251.32 GB and 559.18
GB, respectively). For the majority of federated
learning methods, which transfer client mod-
els θ with a time complexity of O(m), where
m is the model size |θ|, DFFKE maintains the
same O(m) complexity by uploading local mod-
els θk and downloading a lightweight decoder
Dec with |Dec| < m. See the appendix D for a
more detailed communication cost analysis.

DFFKE Complexity. Let K be the total number of clients and let ρ ∈ (0, 1] be the per-round partici-
pation ratio, so Kr = ρK clients participate in a round. Let Nsyn denote the number of synthetic samples
used per peer in one round, and let Nbuf denote the number of memory-buffer samples per peer (if enabled).
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• Per-client computation cost scale as O(Kr (Nsyn + Nbuf)). For a participating client k, Eq. (13)
sums over the participating peers i ∈ P \ {k}, hence the number of peer terms is (Kr − 1) = O(Kr).
Computing Lk

FKE requires evaluating f(·; θk) on (Kr − 1) · Nsyn samples per round, and with memory
buffer it additionally evaluates (Kr − 1) ·Nbuf samples.

• Global computation cost scale as O
(
K2

r (Nsyn + Nbuf)
)
. Summed over all participating clients, the

total number of client-to-client interactions per round is Kr(Kr − 1) = O(K2
r ).
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Figure 4: Synthetic data visualization from communication rounds t = {1, 5, 10, 20} without DP protection.

Synthetic Data Visualization. As shown in fig. 4 and fig. 5, the synthetic data generated by the gen-
erator G does not resemble specific instances from clients’ datasets. In DFFKE, synthetic samples are a
communication medium for knowledge flow (clients exchange logits on them), so photorealism is not the
target. The decoder is embedding-conditioned and is trained to generate a distinct synthetic sample for each
input embedding, which supports diversity of the transfer set.

Theoretical Analysis. The theoretical analysis of DFFKE in addressing data heterogeneity can be found
in appendix H.
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Figure 5: Synthetic data visualization from communication rounds t = {1, 5, 10, 20} with DP protection.

5 Conclusion

In this paper, we propose Federated Knowledge Exchange (FKE), a novel aggregation-free learning paradigm
for heterogeneous federated learning (HFL). By applying FKE to address data and model heterogeneity, we
eliminate the need for a global model and enable direct knowledge sharing between clients. Compared to
traditional two-step knowledge distillation approaches in FL, which require an intermediate global model to
aggregate knowledge and redistribute, direct knowledge exchange preserves more accurate information and
reduces potential information loss. To remove reliance on public data for knowledge transfer, we attach a
lightweight embedding decoder that produces transfer data, forming the Data-Free Federated Knowledge
Exchange (DFFKE) framework. DFFKE is evaluated on three benchmark datasets. Extensive experiments
demonstrate that DFFKE achieves superior performance without compromising computational efficiency,
communication cost, or client privacy. We demonstrate its scalability to a large number of clients (up to
100) with limited participation rates, and to a 200-class dataset with 100,000 images on a single RTX 4090
GPU. We will further explore the effectiveness on real-world industrial tasks in future.
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Appendix

A DFFKE Pseudocode

Algorithm 1 Data-Free Federated Knowledge Exchange
1: Require: Clients’ private datasets {Dk}K

k=1, Heterogeneous
models {θk}K

k=1, Generator model Gen, Generator training
steps TGen, FKE steps TFKE.

2: for each communication round t do
3: # Local Training:
4: for each client k ∈ K in parallel do
5: Local training θk on private data Dk by Eq. 9
6: Share θk, Ek to Data-Free Module
7: Apply (ϵ, δ)-Differential Privacy on Ek (Optional)
8: # Embedding Space Unification:
9: Optimize docking layers {θz

k}K
k=1 using Eq. 11

10: Translate embeddings Ẽk = z(Ek; θz
k) for all clients

11: # Synthetic Representation Space:
12: Train Gen by minimizing Eq. 12 for TGen steps
13: Distribute Dec and {Ẽk}K

k=1 to all clients
14: # Federated Knowledge Exchange:
15: for each client k ∈ K in parallel do
16: Collect synthetic data D̂i = Dec(Ẽi) for all i ̸= k

17: Sample a subset BBBt and share logits output Ŷ
Bt

k

k

18: for s = 1, . . . , TFKE do
19: Knowledge exchange by minimizing Eq. 13
20: Review memory buffer by minimizing Eq. 14
21: Update memory bank Bk with new synthetic data

B Table of Notations

Notations Definitions or Descriptions
K the number of participating clients in a round
ck the k-th client
Dk the private dataset belongs to ck

(Xk, Yk) the data samples and labels in Dk

Nk the size of private dataset Dk

D̂k the transfer dataset assigned to ck

f(·), θk full network and ck’s model parameter
h(·), θh

k encoder and ck’s encoder parameter
l(·), θl

k classifier and ck’s classifier parameter
z(·), θz

k translator and ck’s translator parameter
Ek embedding collection of ck’s data
Ŷk logit collection of ck’s data
Ẽk translated embeddings from Ek

{θk} set of all clients’ model parameters
{Ek} set of all clients’ embeddings
{Ŷk} set of all clients’ logits
BBBt subset of memory buffer for round t

Table 7: Notations used in this paper.
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C Privacy Evaluation: Model Inversion Attack

Original w/o Protection w/ DP Base

Model Inversion Attack

Figure 6: Model Inversion Attack.
To make the privacy discussion concrete, we conduct a representation inversion attack under exposure of
model weights and embeddings: an attacker trains an auxiliary inversion model (e.g. an image generator)
that maps embeddings back to images, and we evaluate it with and without DP noise. In fig. 6, without
DP, the attacker can recover some coarse visual characteristics when the original image is simple and high-
contrast; for more complex images, the reconstructions are visibly more distorted and hard to interpret.
With the DP base configuration ϵ = 1.0, the inversion attack fails and the recovered contours become
unrecognizable.

D Additional Communication Cost Analysis

As discussed in section 4.3: Communication Cost, we state that (1) DFFKE maintain a same space com-
plexity of O(m) for transferring models, where m is the model size |θ|. (2) Existing KD approaches transfer
knowledge through embeddings E and logits Ŷ , with a time complexity of O(n̂), where n̂ is the trans-
fer dataset size |D̂|. In comparison, DFFKE performs two rounds of communication involving the sets
{Ek}K

k=1 or {Ŷk}K
k=1, resulting in the same overall complexity of O(n̂), where K is the number of clients

and |{D̂k}K
k=1| = |D̂|. This holds particularly when the number of clients participating in each round re-

mains fixed, even as the total number of clients increases. Specifically, DFFKE involves two circulations
of embeddings and logits per round: (1) When training Data-Free Module, each client k uploads Ek and
receives {Ẽk}K

k=1 in return. (2) During knowledge exchange, each client k share Ŷ D̂k

k , Ŷ
Bt

k

k to K − 1 other
clients and receives a set {Ŷ D̂i

i , Ŷ
Bt

i
i }K

i=1,i̸=k from all other clients, where |{B̂t
k}K

k=1| = n̂. Therefore, since
each transmission is bounded by O(n̂), the overall complexity for each client remains O(n̂).

E Necessity of the Model Discrepancy Loss for Embedding Decoder.

Training the generative model in combination with a model discrepancy loss Lmd (eq. (4)) to produce a
synthetic dataset is a common approach in data-free knowledge distillation. However, in the data-free
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Figure 7: DFFKE is robust against variations in local training epochs (Varied by local training goal τ).

module of DFFKE, we found that Lmd is not beneficial. table 8 presents an ablation study of various
function choices F for Lmd during our embedding decoder training. Notably, when F is implemented using
KL-Divergence (KL-Div), the loss value quickly diverges to −∞, preventing algorithm convergence. To
address this, we scale the loss by a coefficient of 0.1 to moderate its effect. MAE and MSE are commonly
used as alternatives for the model discrepancy loss in previous approaches Zhang et al. (2022b), as their
values are bounded within [− 2

n , 0], where n is the number of classes. Our results indicate that incorporating
the model discrepancy loss does not significantly improve the performance of DFFKE.

F Choice for Model Discrepancy Loss Accuracy (%)
No Model Discrepancy Loss 47.49±0.38
KL-Divergence (KL-Div) 46.54±0.55
Mean Absolute Difference (MAE) 47.08±0.64
Mean Squared Difference (MSE) 47.56±0.48

Table 8: Test accuracy (%) of DFFKE in the classic FL setting with different design choices for Lmd in
embedding decoder training.

F Impact of Private Training Epochs.

Impact of Local Training Epochs. In DFFKE, we set a training accuracy goal τ for clients during
private training instead of specifying a fixed number of epochs. The idea is that overfitting individual
models to their private datasets strengthens their expertise, thereby enhancing the effectiveness of knowledge
exchange. The local training accuracy goal τ can range from 0.8 to 0.98, and DFFKE is highly tolerant to
variations in τ (see fig. 7 and table 9). The difference in test accuracy between goals τ = 98% and τ = 80%
is only 1.6%, with nearly identical convergence speeds.

Goal Elocal-training Accuracy(%)
τ = 80% (30, 7, 4, 3, 3) 45.89±0.58
τ = 90% (40, 9, 5, 5, 4) 46.85±0.56
τ = 95% (60, 12, 7, 6, 5) 47.25±0.49
τ = 98% (80, 14, 10, 8, 7) 47.49±0.38

Table 9: Impact of different numbers of private training epochs E (approximated empirically based on
accuracy goal τ). Elocal-training is presented as a list of local training epochs sampled from communication
rounds t = (0, 1, 5, 10, 20) respectively.
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G Differential Privacy Proof for Gaussian Mechanism

To prove a gaussian mechanism M is (ϵ, δ)-differentially private, we need to show that for any measurable
set S ⊆ Rk and for all neighboring data sample X1 and X2, M satisfies

Pr[M(X1) ∈ S] ≤ eϵ Pr[M(X2) ∈ S] + δ.

Proof. Let f : X → Rk be a vision model with sensitivity,

∥f(X1)− f(X2)∥2 ≤ ∆f,

for all neighboring data points X1 and X2. The Gaussian mechanism is defined by

M(X) = f(X) +N
(

0,
2 ln(1.25/δ)(∆f)2

ϵ2 Ik

)
,

The probability density function of M(X1) is given by

p(E) = 1
(2πσ2)k/2 exp

(
−∥E − f(X1)∥2

2
2σ2

)
,

and for M(X2),

p′(E) = 1
(2πσ2)k/2 exp

(
−∥E − f(X2)∥2

2
2σ2

)
.

Privacy Loss: Define the privacy loss at output E as

L(E) = ln p(E)
p′(E) = ∥E − f(X2)∥2

2 − ∥E − f(X1)∥2
2

2σ2 .

Bounding the Privacy Loss: Using the bound on the sensitivity, it can be shown Dwork et al. (2014) that
the tail probability of the privacy loss satisfies

Pr
[
L(E) > ϵ

]
≤ δ.

This is achieved by analyzing the difference ∥E−f(X2)∥2
2−∥E−f(X1)∥2

2 and using properties of the Gaussian
distribution.

With the chosen σ, the mechanism M satisfies

Pr[M(X1) ∈ S] ≤ eϵ Pr[M(X2) ∈ S] + δ.

Thus, the Gaussian mechanism with

σ2 = 2 ln(1.25/δ)(∆f)2

ϵ2 Ik

satisfies (ϵ, δ)-Differential Privacy.

Model Sensitivity. The sensitivity ∆f measures the maximum change in a function’s output when a single
data point is modified or removed. For image data, such a change is typically manifested as a modification
to a pixel value. In practice, we estimate the model sensitivity by selecting a random pixel in an image and
replacing its value with a random value sampled from the uniform distribution U(0, 255).

H Theoretical Analysis of DFFKE in Addressing Data Heterogeneity

This section shows that DFFKE reduces the adverse effect of Non-IID data by (i) learning a synthetic dis-
tribution that matches the global mixture and (ii) exchanging knowledge so that every client asymptotically
minimises its risk on that mixture. Throughout, let

pk(x) be the data distribution of client k, p(x) = 1
K

K∑
k=1

pk(x)

and let psyn(x) denote the distribution induced by the embedding decoder after training.
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H.1 Assumptions

1. Embedding alignment. For every class y, the docking layers {zk} satisfy zk

(
h(x; θh

k )
)
∼ qy for all k,

where qy is the embedding distribution of class y shared amount all clients in the unified embedding space.
Alignment loss equation 11 enforces this.

2. Decoder fidelity. The decoder Dec is trained to minimize Lfid in equation 12. Hence Dec is the left
inverse of the aligned encoder on the support of every qy.

3. Finite capacity and uniform mixing. Each client uses at most Nk synthetic samples per round and
shares them with all other clients through the memory buffer, so that every client observes Nk(K − 1)
IID draws from psyn per communication round.

H.2 Main results

Theorem 1 (Synthetic distribution consistency). Under Assumptions 1–2, the optimal decoder yields
psyn(x) = p(x).

Proof. Fix a class y. Let ε ∼ qy be an aligned embedding obtained from any client. Because the decoder is
a left inverse, Dec(ε) is a sample whose re-encoded embedding again follows qy. Hence the joint distribution
of (x, y) generated by (Dec, qy) equals the union of all client distributions conditioned on y. Marginalising
over y, and since each client contributes equally through the uniform mixing protocol, we obtain psyn(x) =
1
K

∑
k pk(x) = p(x).

Theorem 2 (Generalisation bound of DFFKE). Let f
(T )
k be the model of client k after T communication

rounds, and let
L(f) = Ex∼p[ ℓ

(
f(x), y

)
]

be the expected cross-entropy loss on the global mixture. Suppose that each client follows the FKE training
objective equation 13 with learning rate η and that ℓ is 1-Lipschitz and bounded in [0, 1]. Then, with probability
at least 1− δ,

1
K

K∑
k=1

L
(
f

(T )
k

)
≤ 1

K

K∑
k=1

L̂syn
k +

√
log(2/δ)

2Nk(K − 1)T + η
(

εdec + εmem

)
︸ ︷︷ ︸

bias terms

,

where L̂syn
k is the empirical loss of f

(T )
k on its synthetic mini-batches, εdec = supx∥x − Dec

(
zk(h(x))

)
∥

measures residual decoder error, and εmem measures imperfect coverage of past rounds.

Sketch proof. Because Theorem 1 grants psyn = p, each synthetic mini-batch is an IID sample from the
target distribution. A standard uniform convergence argument (generalization bound by Hoeffding inequality
Hoeffding (1963)) yields the concentration term

√
log(2/δ)/(2Nk(K − 1)T ). Optimization dynamics under

stochastic gradient descent with learning rate η add a bias that scales with the magnitude of the residual
decoder error and the memory buffer mismatch, completing the bound.

Discussion. Theorems 1–2 show that, once the decoder fidelity is high and the memory buffer is large
enough, the additional bias terms vanish. The remaining bound is identical to that of a centrally trained
model on p(x), and no term depends on any divergence between pk and p. Hence DFFKE removes the
Non-IID penalty that appears in prior bounds for KD-based or model-aggregation methods.

Corollary. When εdec → 0 and εmem → 0, every client’s model converges (in expectation) to the minimizer
of L(f), matching the optimal centralized solution.

I Data Heterogeneity Visualization

fig. 8, 9, and 10 visualize the heterogeneous partitions of CIFAR10 and CIFAR100 used in our experiments.
The size of the circle corresponds to the number of data samples.
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Figure 8: Left: 10 Clients, CIFAR10, Low Data-Hetero (α = 1.0). Right: 10 Clients, CIFAR10, High
Data-Hetero (α = 0.1).
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Figure 9: 10 Clients, CIFAR100, Low Data-Hetero (α = 1.0)

0 20 40 60 80
Class labels

0

2

4

6

8

C
lie

nt
 ID

s

Figure 10: 10 Clients, CIFAR100, High Data-Hetero (α = 0.1)
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