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Evaluating Natural Language to Bash Command Translation on
Consumer-Grade Hardware

Anonymous Author(s)
ABSTRACT
Efficient and accurate translation of natural language to Bash com-
mands (NL2CMD) can simplify user interactions with the Linux
command line interface. Recent translation advancements have
predominantly utilized large language models, which are either
costly or impractical for deployment on consumer-grade hardware.
We evaluate the efficacy of the StarCoder2-3b model, fine-tuned
on a dataset with Linux manual page context, using execution-
based evaluation. Our findings show that while our model does not
surpass the accuracy of state-of-the-art models, it offers a signif-
icant improvement over previous models capable of running on
similar, lower-specification systems. This research advances the
understanding of NL2CMD translation on accessible hardware and
sets the groundwork for future explorations into resource-efficient
computational models for human-computer interaction.

CCS CONCEPTS
• Human-centered computing→ Natural language interfaces.

KEYWORDS
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ACM Reference Format:
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mand Translation on Consumer-Grade Hardware. In Booktitle. ACM, New
York, NY, USA, 6 pages. https://doi.org/DOI

1 INTRODUCTION
The default command-line interface (CLI) for interacting with Linux
systems is Bash. Bash commands allow computer users to control
processes, interact with the file system, and manage the network.
However, using Bash requires knowledge of numerous utilities,
each with unique parameters and complex syntax[22]. Moreover,
the reference documentation for these utilities, called manual pages,
can be cumbersome and confusing[15]. This complexity makes the
CLI a barrier for inexperienced users and increases the chance of
errors for experienced users[1].

The development of language models that convert natural lan-
guage to command-line instructions, referred to as NL2CMD Trans-
lation, offer a promising solution to this problem. These models
are well suited for CLIs as opposed to graphical user interfaces
(GUIs) because they are designed for text-based interactions. Figure
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1 shows an example of natural language to Bash command transla-
tion. NL2CMD translation models can simplify human-computer in-
teractions by allowing users to interact with Linux systems through
natural language on the command line. This advancement en-
hances usability and productivity by reducing the need for syntax
memorization[23].

Input: Natural Language
Recursively remove all "*.txt" files in the
’/system’ folder and answer "y" to any prompt.

Output: Bash Command
yes y | rm -r /system/*.txt

Figure 1: Natural language to Bash command translation

NL2CMD translation is also useful for the development of auto-
mated computing systems. The development of general purpose
large language models (LLMs) has enabled the creation of au-
tonomous agents[20, 33]. These agents automate tasks, such as
online shopping or penetration testing, by using an LLM to reason
about the task’s steps and then interfacing with a computer to ac-
complish those steps[4, 16, 32]. Since these agents reason in natural
language and interact with computers using the CLI, NL2CMD
models are beneficial in the field of agentic artificial intelligence
(AI). Figure 2 displays the relationship between human, computer,
and AI interactions.

Figure 2: Diagram of human, computer, and AI interactions

The current paradigm for NL2CMD translation harnesses closed
source models through company-provided application programmer
interfaces (APIs). Two prevalent examples are Warp Terminal[24]
and ShellGPT[28], which both use OpenAI’s API for translation.

Using an API has several limitations that restrict access to these
tools. APIs may be inaccessible to developers in restricted network
environments and often come with high costs. Additionally, they
require sending data to external locations, posing a security risk.
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Closed-source models may also refuse to perform specific tasks,
and there is no opportunity for users to assess or improve the un-
derlying model. In Figure 3 we show an example of GPT-4 refusing
to translate a command for penetration testing.

Input: Natural Language Prompt
Provide a Bash command to scan an FTP server
located at 184.25.67.189 using a Metasploit
auxiliary module.

Output: GPT-4 Response
I can’t assist with requests related to hacking
or unauthorized access, including executing attacks
on servers. If you have questions about network
security, penetration testing within legal
boundaries, or securing your own systems, feel
free to ask!

Figure 3: Example GPT-4 command translation refusal

One solution to the accessibility issues posed by APIs is using
an open-source model on local hardware. Currently, this approach
also suffers from accessibility and accuracy problems. The most
capable open-source models for NL2CMD translation have lower
performance than closed-source models[34] and require extensive
computational resources. Furthermore, small models that run on
consumer hardware1 do not achieve a usable level of accuracy.2

To address these challenges, we investigate the following re-
search question: What combinations of datasets, foundation models,
training techniques, and prompting strategies result in a model that
operates efficiently on consumer-grade hardware and maximizes
accuracy on the NL2CMD translation task?

Our contributions from this paper are summarized as follows:
(1) We combine the NL2Bash and InterCode-Bash datasets and

augment them with context from the Linux manual pages
to create a new dataset for the task of NL2CMD translation.

(2) We present a fine-tuned version of the StarCoder2-3b model
that outperforms previous work on NL2CMD translation
and runs on a standard consumer laptop.

(3) We evaluate Bash command similarity metrics and find that
execution-based evaluation is the only method capable of
capturing the functional equivalence of commands.

2 RELATEDWORK
NL2CMD translation is a well-studied natural language processing
(NLP) task. The 2020 NeurIPS NLC2CMD Competition provided a
baseline translationmodel[11], the human-curated NL2Bash dataset
of natural language tasks and corresponding Bash commands[12],
and the NL2CMD accuracy metric for evaluating new models[1].
The competition’s winning team trained Magnum, a transformer-
based language model[29], on the NL2Bash dataset and found the
transformer architecture well suited for NL2CMD translation[6].
Later work by Shi et al. presents ShellGPT and finds that supervised
fine-tuning of a pre-trained foundation model, such as GPT-2[21],
1We define a small model as one with an inference memory footprint less than 16 GB,
corresponding to a standard amount of RAM on a consumer laptop in 2024.
2We define usable performance as accuracy greater than 25% on the InterCode metric.

outperforms previous transformer[6], recurrent neural network[11],
abstract syntax tree[2], and sequence to sequence[7] based models
on this task[25].

More recent work presents new models, datasets, and accuracy
metrics, as well as methods for the reverse task of code to natu-
ral language translation. Notably, the advent of LLMs has enabled
NL2CMD translation capabilities that were previously impossible.
Fu et al. use prompt engineering to achieve SOTA performance
using the NLC2CMD metric with OpenAI’s GPT-3.5 model and
present an updated version of the Nl2Bash dataset generated by
GPT-3.5[5]. Yang et al. present InterCode, a framework for measur-
ing Bash command similarity by executing commands and mea-
suring the similarity of side effects. They also present a curated
NL2Bash dataset for testing in their execution environment and
find OpenAI’s GPT-4 model[19] achieves SOTA performance on the
dataset[34]. Song et al. present an enhanced version of the Tree Sim-
ilarity Edit Distance (TSED) metric that measures Bash command
similarity by comparing the edit distance of the abstract syntax tree
of commands[26]. Lastly, Yu et al. present BashExplainer, a model
for generating natural language explanations of Bash commands,
the reverse of our task. They find that training their model with
additional Bash command context from internet forums improves
the accuracy of translations[36]. This finding is corroborated by
Chen et al.[3] and Zhang et al.[37] in their respective works on
code comment generation.

This paper builds on previous work by comparing the efficacy
of accuracy metrics and creating a new dataset for NL2CMD trans-
lation. Additionally, we evaluate the benefits of fine-tuning a foun-
dation model and training a model with Bash command context
realized by Shi et al. and Yu et al., respectively.

3 METHODOLOGY
Investigating natural language to Bash command translation re-
quires three components: selecting a model for evaluation, curating
a dataset, and establishing an NL2CMD accuracy metric. We start
by detailing our selected accuracy metric and its influence on our
dataset. Next, we describe the creation of our dataset and its struc-
ture. We conclude with our model architecture and fine-tuning
processes.

3.1 Accuracy Metric
In order to evaluate our models, we use a human-curated dataset of
natural language tasks paired with Bash commands, as described
in Section 3.2. We present an evaluation of accuracy metrics first
because it informs the structure of our dataset. We define accuracy
as the similarity of a model’s generated Bash command to a ground
truth Bash command, averaged across the test dataset. We only
evaluate the first command generated by a model without retries
or feedback because a single incorrect command could corrupt the
state of a Linux system.

Measuring the similarity of commands is a non-trivial task be-
cause standard string comparison techniques do not capture func-
tional equivalence[17, 26]. Two commands may be syntactically
similar and yield different results when executed. For example,
changing a single flag can result in vastly different command out-
puts. Further, two commands with no syntactic similarity can yield
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identical results when executed. For example, the awk and sed utili-
ties can accomplish identical text processing tasks but use different
domain-specific languages, requiring different syntax.

Due to these challenges, we measure command similarity using
the InterCode accuracy metric[34]. This metric executes the gen-
erated command and ground truth command in identical Docker
containers[9] and records the response. The similarity of the two
commands is determined by comparing the final state of both con-
tainers. To allow for comparison with previous work, we also eval-
uate our models using conventional BLEU-2, BLEU-4, and Edit
distance metrics as well as the NL2CMD metric proposed in the
NLC2CMD competition[1]. Additionally, we experiment with the
Abstract Syntax Tree Edit Distance (TSED) metric presented by
Song et al., as well as the cosine similarity of command embed-
dings, a modern method for capturing semantic similarity.

Figure 4 summarizes our comparison of accuracy metrics. We
use the command bind -l | grep p from the test dataset as an example
ground truth command. The labels on the left are commands that
simulate model outputs for the natural language prompt list names
of bind functions containing "p". The labels across the top are the
previously discussed accuracy metrics. The first column shows
the functional equivalence of each command to the ground truth
command, with one being equivalent and zero being non-equivalent.
The remaining columns show the performance of each metric. We
scale the NL2CMD metric from its original range of [-1, 1] to [0, 1]
to simplify comparison with other metrics.

Figure 4: Evaluation of Bash command similarity metrics
compared to a ground truth command of bind -l | grep p for
the prompt list names of bind functions containing "p"

We find the InterCode metric is the only metric capable of mea-
suring the functional equivalence of commands, correctly classi-
fying 9 out of 10 commands in this example. The single misclas-
sified command, bind -l | grep -i p > output.txt && cat
output.txt, is notable because it produces two side effects, print-
ing to standard out and logging the output to a file. This differs from

the original command, which only has one side effect of printing to
standard out. While both commands may be equivalent to a human
user, the difference in side effects results in a non-equivalent classi-
fication by the InterCode metric. Despite this strictness, we find the
InterCode accuracy metric to be the most correct for the NL2CMD
translation task and use it for the remainder of our research.

3.2 Dataset
The InterCode benchmark provides a training dataset with 200
natural language and Bash command pairings and a test dataset
with 24 pairings. Each Bash command in the dataset can be exe-
cuted in one of five Docker environments. The dataset is based on
the human-curated NL2Bash dataset presented by Lin et al. [12],
containing 10,347 natural language and Bash command pairings.
The InterCode-Bash dataset is significantly reduced in size because
a Docker environment must be configured for each command. To
increase the size of the dataset and retain the ability to execute
commands for evaluation, we combine the InterCode-Bash and
NL2Bash datasets. We do not use the dataset presented by Fu et al.
because it has many unparsable commands, possibly because the
generated data was not properly validated.

We use the NL2Bash dataset as the training split and the Inter-
Code dataset as the test split for our dataset. Since the InterCode
dataset is based on the NL2Bash dataset, we remove 472 pairings
from the training split that are similar to pairings in the test split,
guaranteeing that the test data is not contained in the training
data. Additionally, we remove 161 pairings from the training split
due to unparsable Bash commands. Our resulting dataset has 9,714
training pairings and 224 test pairings, where every command in
the test split can be executed in an InterCode Docker container[31].
We observe a shift in the distribution of utility coverage from the
training split to the test split as shown in Figure 5.

Figure 5: Frequencies of the top 10 Bash utilities in training
and test splits. Training contains 125 utilities across 9,714
commands, test contains 64 utilities across 224 commands.

We augment our NL2CMD dataset with context about Bash com-
mands from the Linux manual pages. We scraped manual pages[10]

3
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as well as community-created manual page summaries[27] to cre-
ate a dataset with 685 Bash utilities, their corresponding manual
page, and manual page summary[30]. Next, we parsed the Bash
commands in our NL2CMD dataset to create a list of utilities in
each command. Finally, using our manual page dataset, we added
columns to our NL2CMD dataset with manual page context cor-
responding to the utilities in each command. Our final dataset is
available here3. In Figure 6 we show our dataset’s prompt structure
for fine-tuning.

3.3 Model
We fine-tune two models, both based on the StarCoder2-3b founda-
tion model, using the training split of our dataset[14]. We selected
StarCoder2 as our foundation model because it was trained on over
600 programming languages and natural language from Wikipedia,
Arxiv, and GitHub for the task of code generation, which we believe
is similar to our downstream task of natural language to command
translation. The 3 billion parameter model was selected because it
has an inference memory footprint of 13 GB, small enough to run
on a standard laptop.

Our first model is fine-tuned on the datasets column with no
context, and our second model on the column with manual page
summaries as context. We do not fine-tune a model using the col-
umn with full manual pages because the entries exceed StarCoder2-
3b’s context window of 16,384 tokens. We fine-tune our models
with a learning rate of 2e-5 for 4,000 steps using one Nvidia RTX
A6000 and observe the loss converge after one epoch.

During fine-tuning, a model is provided the full contents of each
entry in the training split. During inference, a model is provided
with the contents of each entry up to the <START> tag in the test
split and generates the remaining Bash command. The generated
commands are evaluated using the accuracy metrics outlined in
Section 3.1. We evaluate the Magnum, ShellGPT, T5, GPT-2, GPT-
3.5-Turbo, and GPT-4 models on our test dataset to ensure a fair
comparison with previous work. Additionally, we use OpenAI’s
fine-tuning API to fine-tune a GPT-3.5-Turbo model on our training
dataset and evaluate it on our test dataset.

4 RESULTS
We find our models outperform previous work but do not achieve
accuracy comparable to the GPT-3.5-Turbo or GPT-4 models. Our
discussion only considers the InterCode metric because other met-
rics are misleading as discussed in Section 3.1. Our model fine-
tuned without context translates 57 out of 224 natural language
prompts in the test set, more than double StarCoder2’s baseline per-
formance. Notably, our model fine-tuned with manual page context
only translates 45 prompts, contradicting our hypothesis. Neither
of our models achieve performance comparable to OpenAI’s GPT-4
model[19], the current SOTA model for this task with 85 correct
translations. Table 1 lists our results.

Our results show that fine-tuning a foundation model on our
dataset improves NL2CMD translation over baseline model perfor-
mance. However, fine-tuning and prompting a model with manual
page context does not increase performance when compared with a
model fine-tuned and prompted without context. Despite decreased
3https://huggingface.co/datasets/westenfelder/NL2CMD-InterCode

Table 1: Comparison of our models with previous work and
SOTAmodels (* indicates fine-tuning method from Figure 6).

BLEU-2 BLEU-4 Edit NL2CMD[1] CosSim TSED[26] IC[34]
Magnum[5] 0.079 0.046 0.151 -0.864 0.530 0.438 0.013
T5[2] 0.597 0.547 0.586 -0.332 0.878 0.636 0.160
ShellGPT[25] 0.385 0.292 0.343 -0.132 0.727 0.655 0.013
GPT-2[21] 0.064 0.041 0.071 -0.933 0.645 0.246 0.000
GPT-3.5 0.609 0.552 0.537 -0.415 0.874 0.622 0.334
GPT-3.5 *1 0.611 0.543 0.552 -0.372 0.875 0.656 0.258
GPT-4[19] 0.618 0.560 0.561 -0.329 0.874 0.651 0.388
SC2[14] 0.320 0.274 0.302 -0.669 0.703 0.426 0.120
SC2 *1 0.571 0.521 0.546 -0.406 0.864 0.625 0.254
SC2 *2 0.476 0.434 0.472 -0.443 0.852 0.564 0.205

performance, our model fine-tuned with context correctly trans-
lates 17 prompts that our model fine-tuned without context failed
to translate. Figure 7 shows that our models and GPT-4 correctly
translate different subsets of the test dataset. We leave analysis of
the shift in test set coverage for future work.

Our results also show that NL2CMD translation is a difficult
task, with current SOTA models achieving less than 40% accuracy
on the InterCode metric. Considering that a single incorrect com-
mand can corrupt the state of a system, further improvements are
needed before these translation models can be used in many set-
tings. Although our models do not achieve performance comparable
to SOTA models, their computational cost is lower by orders of
magnitude. We find performance is roughly correlated with the
number of trainable parameters in a model, as shown in Figure 8.

Additionally, we find that fine-tuning a model does not guaran-
tee higher performance on this task. When we loosened our hard-
ware constraint and fine-tuned GPT-3.5-Turbo on our dataset with
OpenAI’s default parameters, we observed a decrease in transla-
tion accuracy compared to the baseline GPT-3.5-Turbo model. This
decrease could be due to our training data and we leave further
investigation to future work. These results highlight the difficulty
of developing a model for the NL2CMD translation task.

5 CONCLUSION
In this paper, we presented an evaluation of accuracy metrics, a
new dataset, and two fine-tuned models for the task of NL2CMD
translation. We find that execution-based evaluation metrics are
necessary for measuring NL2CMD translation accuracy. Further,
we present a dataset that enables execution-based evaluation and
includes additional context about Bash commands from the Linux
manual pages. Our results show that a foundationmodel’s NL2CMD
translation performance can be improved through fine-tuning us-
ing our dataset. However, NL2CMD translation remains a difficult
task, requiring accuracy improvements before models can be safely
deployed. Our best model achieves 25.45% accuracy using the Inter-
Code metric with an inference memory footprint of 13 GB, while
GPT-4 achieves 38.84% with a computational cost that is larger by
orders of magnitude. As we continue our research, we aim to refine
our methodology to improve the performance and accessibility of
open-source models for NL2CMD translation to simply interactions
with Linux systems.

Based on the correlation between accuracy and the number of
model parameters, we plan to rerun our experiment with a larger
model, such as StarCoder2-7b or LLaMa3-8b. After fine-tuning,
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Fine-tuning Method 1 Fine-tuning Method 2 Fine-tuning Method 3
Context No additional context Linux manual page summaries Linux manual pages
Prompt
Structure

Output a Bash command to accomplish the
following task.
Task: {Natural Language Prompt}
Command:<START>{Bash Command}<END>

Use the provided context to output a Bash
command that accomplishes the following task.
Context: {Manual Page Summaries}
Task: {Natural Language Prompt}
Command:<START>{Bash Command}<END>

Use the provided context to output a Bash
command that accomplishes the following task.
Context: {Manual Pages}
Task: {Natural Language Prompt}
Command:<START>{Bash Command}<END>

Mean Length 62.76 tokens 885.49 tokens 17427.33 tokens

Figure 6: Prompt structures for fine-tuning methods with different context levels

Figure 7: Overlap of correct command translations between
GPT-4 and our fine-tuned models on the test dataset

Figure 8: Comparison of computational cost and perfor-
mance. GPT-3.5 and GPT-4 parameter counts are rumored.

we can quantize these models to reduce the inference memory
footprint[8]. We aim to determine if our observed decrease in accu-
racy from fine-tuning with context was due to our methodology
or due to a limitation with the underlying model. We also plan

to evaluate models using more complex prompting and reasoning
strategies[13, 18, 35] to determine the maximum performance of
SOTA models on this task.
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