
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Evaluating Natural Language to Bash Command Translation on
Consumer-Grade Hardware

Anonymous Author(s)
ABSTRACT
Efficient and accurate translation of natural language to Bash com-
mands (NL2CMD) can simplify user interactions with the Linux
command line interface. Recent translation advancements have
predominantly utilized large language models, which are either
costly or impractical for deployment on consumer-grade hardware.
We evaluate the efficacy of the StarCoder2-3b model, fine-tuned
on a dataset with Linux manual page context, using execution-
based evaluation. Our findings show that while our model does not
surpass the accuracy of state-of-the-art models, it offers a signif-
icant improvement over previous models capable of running on
similar, lower-specification systems. This research advances the
understanding of NL2CMD translation on accessible hardware and
sets the groundwork for future explorations into resource-efficient
computational models for human-computer interaction.

CCS CONCEPTS
• Human-centered computing→ Natural language interfaces.

KEYWORDS
NL2CMD Translation, Bash CLI, Human-Computer Interaction
ACM Reference Format:
Anonymous Author(s). 2024. Evaluating Natural Language to Bash Com-
mand Translation on Consumer-Grade Hardware. In Booktitle. ACM, New
York, NY, USA, 6 pages. https://doi.org/DOI

1 INTRODUCTION
The default command-line interface (CLI) for interacting with Linux
systems is Bash. Bash commands allow computer users to control
processes, interact with the file system, and manage the network.
However, using Bash requires knowledge of numerous utilities,
each with unique parameters and complex syntax[22]. Moreover,
the reference documentation for these utilities, called manual pages,
can be cumbersome and confusing[15]. This complexity makes the
CLI a barrier for inexperienced users and increases the chance of
errors for experienced users[1].

The development of language models that convert natural lan-
guage to command-line instructions, referred to as NL2CMD Trans-
lation, offer a promising solution to this problem. These models
are well suited for CLIs as opposed to graphical user interfaces
(GUIs) because they are designed for text-based interactions. Figure

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’24, 2024, Barcelona, Spain
© 2024 Association for Computing Machinery.
ACM ISBN ISBN. . . $Price
https://doi.org/DOI

1 shows an example of natural language to Bash command transla-
tion. NL2CMD translation models can simplify human-computer in-
teractions by allowing users to interact with Linux systems through
natural language on the command line. This advancement en-
hances usability and productivity by reducing the need for syntax
memorization[23].

Input: Natural Language
Recursively remove all "*.txt" files in the
’/system’ folder and answer "y" to any prompt.

Output: Bash Command
yes y | rm -r /system/*.txt

Figure 1: Natural language to Bash command translation

NL2CMD translation is also useful for the development of auto-
mated computing systems. The development of general purpose
large language models (LLMs) has enabled the creation of au-
tonomous agents[20, 33]. These agents automate tasks, such as
online shopping or penetration testing, by using an LLM to reason
about the task’s steps and then interfacing with a computer to ac-
complish those steps[4, 16, 32]. Since these agents reason in natural
language and interact with computers using the CLI, NL2CMD
models are beneficial in the field of agentic artificial intelligence
(AI). Figure 2 displays the relationship between human, computer,
and AI interactions.

Figure 2: Diagram of human, computer, and AI interactions

The current paradigm for NL2CMD translation harnesses closed
source models through company-provided application programmer
interfaces (APIs). Two prevalent examples are Warp Terminal[24]
and ShellGPT[28], which both use OpenAI’s API for translation.

Using an API has several limitations that restrict access to these
tools. APIs may be inaccessible to developers in restricted network
environments and often come with high costs. Additionally, they
require sending data to external locations, posing a security risk.

1

https://doi.org/DOI
https://doi.org/DOI

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

KDD ’24, 2024, Barcelona, Spain Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

Closed-source models may also refuse to perform specific tasks,
and there is no opportunity for users to assess or improve the un-
derlying model. In Figure 3 we show an example of GPT-4 refusing
to translate a command for penetration testing.

Input: Natural Language Prompt
Provide a Bash command to scan an FTP server
located at 184.25.67.189 using a Metasploit
auxiliary module.

Output: GPT-4 Response
I can’t assist with requests related to hacking
or unauthorized access, including executing attacks
on servers. If you have questions about network
security, penetration testing within legal
boundaries, or securing your own systems, feel
free to ask!

Figure 3: Example GPT-4 command translation refusal

One solution to the accessibility issues posed by APIs is using
an open-source model on local hardware. Currently, this approach
also suffers from accessibility and accuracy problems. The most
capable open-source models for NL2CMD translation have lower
performance than closed-source models[34] and require extensive
computational resources. Furthermore, small models that run on
consumer hardware1 do not achieve a usable level of accuracy.2

To address these challenges, we investigate the following re-
search question: What combinations of datasets, foundation models,
training techniques, and prompting strategies result in a model that
operates efficiently on consumer-grade hardware and maximizes
accuracy on the NL2CMD translation task?

Our contributions from this paper are summarized as follows:
(1) We combine the NL2Bash and InterCode-Bash datasets and

augment them with context from the Linux manual pages
to create a new dataset for the task of NL2CMD translation.

(2) We present a fine-tuned version of the StarCoder2-3b model
that outperforms previous work on NL2CMD translation
and runs on a standard consumer laptop.

(3) We evaluate Bash command similarity metrics and find that
execution-based evaluation is the only method capable of
capturing the functional equivalence of commands.

2 RELATEDWORK
NL2CMD translation is a well-studied natural language processing
(NLP) task. The 2020 NeurIPS NLC2CMD Competition provided a
baseline translationmodel[11], the human-curated NL2Bash dataset
of natural language tasks and corresponding Bash commands[12],
and the NL2CMD accuracy metric for evaluating new models[1].
The competition’s winning team trained Magnum, a transformer-
based language model[29], on the NL2Bash dataset and found the
transformer architecture well suited for NL2CMD translation[6].
Later work by Shi et al. presents ShellGPT and finds that supervised
fine-tuning of a pre-trained foundation model, such as GPT-2[21],
1We define a small model as one with an inference memory footprint less than 16 GB,
corresponding to a standard amount of RAM on a consumer laptop in 2024.
2We define usable performance as accuracy greater than 25% on the InterCode metric.

outperforms previous transformer[6], recurrent neural network[11],
abstract syntax tree[2], and sequence to sequence[7] based models
on this task[25].

More recent work presents new models, datasets, and accuracy
metrics, as well as methods for the reverse task of code to natu-
ral language translation. Notably, the advent of LLMs has enabled
NL2CMD translation capabilities that were previously impossible.
Fu et al. use prompt engineering to achieve SOTA performance
using the NLC2CMD metric with OpenAI’s GPT-3.5 model and
present an updated version of the Nl2Bash dataset generated by
GPT-3.5[5]. Yang et al. present InterCode, a framework for measur-
ing Bash command similarity by executing commands and mea-
suring the similarity of side effects. They also present a curated
NL2Bash dataset for testing in their execution environment and
find OpenAI’s GPT-4 model[19] achieves SOTA performance on the
dataset[34]. Song et al. present an enhanced version of the Tree Sim-
ilarity Edit Distance (TSED) metric that measures Bash command
similarity by comparing the edit distance of the abstract syntax tree
of commands[26]. Lastly, Yu et al. present BashExplainer, a model
for generating natural language explanations of Bash commands,
the reverse of our task. They find that training their model with
additional Bash command context from internet forums improves
the accuracy of translations[36]. This finding is corroborated by
Chen et al.[3] and Zhang et al.[37] in their respective works on
code comment generation.

This paper builds on previous work by comparing the efficacy
of accuracy metrics and creating a new dataset for NL2CMD trans-
lation. Additionally, we evaluate the benefits of fine-tuning a foun-
dation model and training a model with Bash command context
realized by Shi et al. and Yu et al., respectively.

3 METHODOLOGY
Investigating natural language to Bash command translation re-
quires three components: selecting a model for evaluation, curating
a dataset, and establishing an NL2CMD accuracy metric. We start
by detailing our selected accuracy metric and its influence on our
dataset. Next, we describe the creation of our dataset and its struc-
ture. We conclude with our model architecture and fine-tuning
processes.

3.1 Accuracy Metric
In order to evaluate our models, we use a human-curated dataset of
natural language tasks paired with Bash commands, as described
in Section 3.2. We present an evaluation of accuracy metrics first
because it informs the structure of our dataset. We define accuracy
as the similarity of a model’s generated Bash command to a ground
truth Bash command, averaged across the test dataset. We only
evaluate the first command generated by a model without retries
or feedback because a single incorrect command could corrupt the
state of a Linux system.

Measuring the similarity of commands is a non-trivial task be-
cause standard string comparison techniques do not capture func-
tional equivalence[17, 26]. Two commands may be syntactically
similar and yield different results when executed. For example,
changing a single flag can result in vastly different command out-
puts. Further, two commands with no syntactic similarity can yield

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Evaluating Natural Language to Bash Command Translation on Consumer-Grade Hardware KDD ’24, 2024, Barcelona, Spain

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

identical results when executed. For example, the awk and sed utili-
ties can accomplish identical text processing tasks but use different
domain-specific languages, requiring different syntax.

Due to these challenges, we measure command similarity using
the InterCode accuracy metric[34]. This metric executes the gen-
erated command and ground truth command in identical Docker
containers[9] and records the response. The similarity of the two
commands is determined by comparing the final state of both con-
tainers. To allow for comparison with previous work, we also eval-
uate our models using conventional BLEU-2, BLEU-4, and Edit
distance metrics as well as the NL2CMD metric proposed in the
NLC2CMD competition[1]. Additionally, we experiment with the
Abstract Syntax Tree Edit Distance (TSED) metric presented by
Song et al., as well as the cosine similarity of command embed-
dings, a modern method for capturing semantic similarity.

Figure 4 summarizes our comparison of accuracy metrics. We
use the command bind -l | grep p from the test dataset as an example
ground truth command. The labels on the left are commands that
simulate model outputs for the natural language prompt list names
of bind functions containing "p". The labels across the top are the
previously discussed accuracy metrics. The first column shows
the functional equivalence of each command to the ground truth
command, with one being equivalent and zero being non-equivalent.
The remaining columns show the performance of each metric. We
scale the NL2CMD metric from its original range of [-1, 1] to [0, 1]
to simplify comparison with other metrics.

Figure 4: Evaluation of Bash command similarity metrics
compared to a ground truth command of bind -l | grep p for
the prompt list names of bind functions containing "p"

We find the InterCode metric is the only metric capable of mea-
suring the functional equivalence of commands, correctly classi-
fying 9 out of 10 commands in this example. The single misclas-
sified command, bind -l | grep -i p > output.txt && cat
output.txt, is notable because it produces two side effects, print-
ing to standard out and logging the output to a file. This differs from

the original command, which only has one side effect of printing to
standard out. While both commands may be equivalent to a human
user, the difference in side effects results in a non-equivalent classi-
fication by the InterCode metric. Despite this strictness, we find the
InterCode accuracy metric to be the most correct for the NL2CMD
translation task and use it for the remainder of our research.

3.2 Dataset
The InterCode benchmark provides a training dataset with 200
natural language and Bash command pairings and a test dataset
with 24 pairings. Each Bash command in the dataset can be exe-
cuted in one of five Docker environments. The dataset is based on
the human-curated NL2Bash dataset presented by Lin et al. [12],
containing 10,347 natural language and Bash command pairings.
The InterCode-Bash dataset is significantly reduced in size because
a Docker environment must be configured for each command. To
increase the size of the dataset and retain the ability to execute
commands for evaluation, we combine the InterCode-Bash and
NL2Bash datasets. We do not use the dataset presented by Fu et al.
because it has many unparsable commands, possibly because the
generated data was not properly validated.

We use the NL2Bash dataset as the training split and the Inter-
Code dataset as the test split for our dataset. Since the InterCode
dataset is based on the NL2Bash dataset, we remove 472 pairings
from the training split that are similar to pairings in the test split,
guaranteeing that the test data is not contained in the training
data. Additionally, we remove 161 pairings from the training split
due to unparsable Bash commands. Our resulting dataset has 9,714
training pairings and 224 test pairings, where every command in
the test split can be executed in an InterCode Docker container[31].
We observe a shift in the distribution of utility coverage from the
training split to the test split as shown in Figure 5.

Figure 5: Frequencies of the top 10 Bash utilities in training
and test splits. Training contains 125 utilities across 9,714
commands, test contains 64 utilities across 224 commands.

We augment our NL2CMD dataset with context about Bash com-
mands from the Linux manual pages. We scraped manual pages[10]

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

KDD ’24, 2024, Barcelona, Spain Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

as well as community-created manual page summaries[27] to cre-
ate a dataset with 685 Bash utilities, their corresponding manual
page, and manual page summary[30]. Next, we parsed the Bash
commands in our NL2CMD dataset to create a list of utilities in
each command. Finally, using our manual page dataset, we added
columns to our NL2CMD dataset with manual page context cor-
responding to the utilities in each command. Our final dataset is
available here3. In Figure 6 we show our dataset’s prompt structure
for fine-tuning.

3.3 Model
We fine-tune two models, both based on the StarCoder2-3b founda-
tion model, using the training split of our dataset[14]. We selected
StarCoder2 as our foundation model because it was trained on over
600 programming languages and natural language from Wikipedia,
Arxiv, and GitHub for the task of code generation, which we believe
is similar to our downstream task of natural language to command
translation. The 3 billion parameter model was selected because it
has an inference memory footprint of 13 GB, small enough to run
on a standard laptop.

Our first model is fine-tuned on the datasets column with no
context, and our second model on the column with manual page
summaries as context. We do not fine-tune a model using the col-
umn with full manual pages because the entries exceed StarCoder2-
3b’s context window of 16,384 tokens. We fine-tune our models
with a learning rate of 2e-5 for 4,000 steps using one Nvidia RTX
A6000 and observe the loss converge after one epoch.

During fine-tuning, a model is provided the full contents of each
entry in the training split. During inference, a model is provided
with the contents of each entry up to the <START> tag in the test
split and generates the remaining Bash command. The generated
commands are evaluated using the accuracy metrics outlined in
Section 3.1. We evaluate the Magnum, ShellGPT, T5, GPT-2, GPT-
3.5-Turbo, and GPT-4 models on our test dataset to ensure a fair
comparison with previous work. Additionally, we use OpenAI’s
fine-tuning API to fine-tune a GPT-3.5-Turbo model on our training
dataset and evaluate it on our test dataset.

4 RESULTS
We find our models outperform previous work but do not achieve
accuracy comparable to the GPT-3.5-Turbo or GPT-4 models. Our
discussion only considers the InterCode metric because other met-
rics are misleading as discussed in Section 3.1. Our model fine-
tuned without context translates 57 out of 224 natural language
prompts in the test set, more than double StarCoder2’s baseline per-
formance. Notably, our model fine-tuned with manual page context
only translates 45 prompts, contradicting our hypothesis. Neither
of our models achieve performance comparable to OpenAI’s GPT-4
model[19], the current SOTA model for this task with 85 correct
translations. Table 1 lists our results.

Our results show that fine-tuning a foundation model on our
dataset improves NL2CMD translation over baseline model perfor-
mance. However, fine-tuning and prompting a model with manual
page context does not increase performance when compared with a
model fine-tuned and prompted without context. Despite decreased
3https://huggingface.co/datasets/westenfelder/NL2CMD-InterCode

Table 1: Comparison of our models with previous work and
SOTAmodels (* indicates fine-tuning method from Figure 6).

BLEU-2 BLEU-4 Edit NL2CMD[1] CosSim TSED[26] IC[34]
Magnum[5] 0.079 0.046 0.151 -0.864 0.530 0.438 0.013
T5[2] 0.597 0.547 0.586 -0.332 0.878 0.636 0.160
ShellGPT[25] 0.385 0.292 0.343 -0.132 0.727 0.655 0.013
GPT-2[21] 0.064 0.041 0.071 -0.933 0.645 0.246 0.000
GPT-3.5 0.609 0.552 0.537 -0.415 0.874 0.622 0.334
GPT-3.5 *1 0.611 0.543 0.552 -0.372 0.875 0.656 0.258
GPT-4[19] 0.618 0.560 0.561 -0.329 0.874 0.651 0.388
SC2[14] 0.320 0.274 0.302 -0.669 0.703 0.426 0.120
SC2 *1 0.571 0.521 0.546 -0.406 0.864 0.625 0.254
SC2 *2 0.476 0.434 0.472 -0.443 0.852 0.564 0.205

performance, our model fine-tuned with context correctly trans-
lates 17 prompts that our model fine-tuned without context failed
to translate. Figure 7 shows that our models and GPT-4 correctly
translate different subsets of the test dataset. We leave analysis of
the shift in test set coverage for future work.

Our results also show that NL2CMD translation is a difficult
task, with current SOTA models achieving less than 40% accuracy
on the InterCode metric. Considering that a single incorrect com-
mand can corrupt the state of a system, further improvements are
needed before these translation models can be used in many set-
tings. Although our models do not achieve performance comparable
to SOTA models, their computational cost is lower by orders of
magnitude. We find performance is roughly correlated with the
number of trainable parameters in a model, as shown in Figure 8.

Additionally, we find that fine-tuning a model does not guaran-
tee higher performance on this task. When we loosened our hard-
ware constraint and fine-tuned GPT-3.5-Turbo on our dataset with
OpenAI’s default parameters, we observed a decrease in transla-
tion accuracy compared to the baseline GPT-3.5-Turbo model. This
decrease could be due to our training data and we leave further
investigation to future work. These results highlight the difficulty
of developing a model for the NL2CMD translation task.

5 CONCLUSION
In this paper, we presented an evaluation of accuracy metrics, a
new dataset, and two fine-tuned models for the task of NL2CMD
translation. We find that execution-based evaluation metrics are
necessary for measuring NL2CMD translation accuracy. Further,
we present a dataset that enables execution-based evaluation and
includes additional context about Bash commands from the Linux
manual pages. Our results show that a foundationmodel’s NL2CMD
translation performance can be improved through fine-tuning us-
ing our dataset. However, NL2CMD translation remains a difficult
task, requiring accuracy improvements before models can be safely
deployed. Our best model achieves 25.45% accuracy using the Inter-
Code metric with an inference memory footprint of 13 GB, while
GPT-4 achieves 38.84% with a computational cost that is larger by
orders of magnitude. As we continue our research, we aim to refine
our methodology to improve the performance and accessibility of
open-source models for NL2CMD translation to simply interactions
with Linux systems.

Based on the correlation between accuracy and the number of
model parameters, we plan to rerun our experiment with a larger
model, such as StarCoder2-7b or LLaMa3-8b. After fine-tuning,

4

https://huggingface.co/datasets/westenfelder/NL2CMD-InterCode

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Evaluating Natural Language to Bash Command Translation on Consumer-Grade Hardware KDD ’24, 2024, Barcelona, Spain

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Fine-tuning Method 1 Fine-tuning Method 2 Fine-tuning Method 3
Context No additional context Linux manual page summaries Linux manual pages
Prompt
Structure

Output a Bash command to accomplish the
following task.
Task: {Natural Language Prompt}
Command:<START>{Bash Command}<END>

Use the provided context to output a Bash
command that accomplishes the following task.
Context: {Manual Page Summaries}
Task: {Natural Language Prompt}
Command:<START>{Bash Command}<END>

Use the provided context to output a Bash
command that accomplishes the following task.
Context: {Manual Pages}
Task: {Natural Language Prompt}
Command:<START>{Bash Command}<END>

Mean Length 62.76 tokens 885.49 tokens 17427.33 tokens

Figure 6: Prompt structures for fine-tuning methods with different context levels

Figure 7: Overlap of correct command translations between
GPT-4 and our fine-tuned models on the test dataset

Figure 8: Comparison of computational cost and perfor-
mance. GPT-3.5 and GPT-4 parameter counts are rumored.

we can quantize these models to reduce the inference memory
footprint[8]. We aim to determine if our observed decrease in accu-
racy from fine-tuning with context was due to our methodology
or due to a limitation with the underlying model. We also plan

to evaluate models using more complex prompting and reasoning
strategies[13, 18, 35] to determine the maximum performance of
SOTA models on this task.

REFERENCES
[1] Mayank Agarwal, Tathagata Chakraborti, Quchen Fu, David Gros, Xi Victoria

Lin, Jaron Maene, Kartik Talamadupula, Zhongwei Teng, and Jules White. 2021.
NeurIPS 2020 NLC2CMD Competition: Translating Natural Language to Bash
Commands. arXiv:2103.02523 [cs.CL]

[2] Shikhar Bharadwaj and Shirish Shevade. 2021. Explainable Natural Language to
Bash Translation using Abstract Syntax Tree. In Proceedings of the 25th Conference
on Computational Natural Language Learning, Arianna Bisazza and Omri Abend
(Eds.). Association for Computational Linguistics, Online, 258–267. https://doi.
org/10.18653/v1/2021.conll-1.20

[3] Zhongqi Chen, Neng Zhang, Pengyue Si, Qinde Chen, Chao Liu, and Zibin Zheng.
2023. ShellFusion: An Answer Generator for Shell Programming Tasks via
Knowledge Fusion. In 2023 IEEE/ACM 45th International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion). 93–97. https://doi.org/
10.1109/ICSE-Companion58688.2023.00032

[4] Gelei Deng, Yi Liu, Víctor Mayoral-Vilches, Peng Liu, Yuekang Li, Yuan Xu,
Tianwei Zhang, Yang Liu, Martin Pinzger, and Stefan Rass. 2023. PentestGPT: An
LLM-empowered Automatic Penetration Testing Tool. arXiv:2308.06782 [cs.SE]

[5] Quchen Fu, Zhongwei Teng, Marco Georgaklis, Jules White, and Douglas C
Schmidt. 2023. NL2CMD: An Updated Workflow for Natural Language to Bash
Commands Translation. arXiv preprint arXiv:2302.07845 (2023).

[6] Quchen Fu, Zhongwei Teng, Jules White, and Douglas C. Schmidt. 2021. A
Transformer-based Approach for Translating Natural Language to Bash Com-
mands. In 2021 20th IEEE International Conference on Machine Learning and Ap-
plications (ICMLA). 1245–1248. https://doi.org/10.1109/ICMLA52953.2021.00202

[7] David Gros. 2019. AInix: An open platform for natural language interfaces to shell
commands. http://www.cs.utexas.edu/users/ai-labpub-view.php?PubID=127814
Undergraduate Honors Thesis, Computer Science Department, University of
Texas at Austin.

[8] Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Compress-
ing Deep Neural Networks with Pruning, Trained Quantization and Huffman
Coding. arXiv:1510.00149 [cs.CV]

[9] Docker Inc. 2023. Docker: Empowering App Development for Developers. https:
//www.docker.com. Accessed: 2024-05-09.

[10] Michael Kerrisk. 2024. man7.org. https://man7.org/. Accessed: 2024-05-09.
[11] Xi Victoria Lin. 2017. Program Synthesis from Natural Language Using Recurrent

Neural Networks. https://api.semanticscholar.org/CorpusID:3809743
[12] Xi Victoria Lin, Chenglong Wang, Luke Zettlemoyer, and Michael D. Ernst. 2018.

NL2Bash: A Corpus and Semantic Parser for Natural Language Interface to the
Linux Operating System. arXiv:1802.08979 [cs.CL]

[13] Chao Liu, Xuanlin Bao, Hongyu Zhang, Neng Zhang, Haibo Hu, Xiaohong
Zhang, and Meng Yan. 2023. Improving ChatGPT Prompt for Code Generation.
arXiv:2305.08360 [cs.SE]

[14] Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-
Poirier, Nouamane Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei,
Tianyang Liu, Max Tian, Denis Kocetkov, Arthur Zucker, Younes Belkada, Zijian
Wang, Qian Liu, Dmitry Abulkhanov, Indraneil Paul, Zhuang Li, Wen-Ding Li,
Megan Risdal, Jia Li, Jian Zhu, Terry Yue Zhuo, Evgenii Zheltonozhskii, Nii
Osae Osae Dade, Wenhao Yu, Lucas Krauß, Naman Jain, Yixuan Su, Xuanli He,
MananDey, Edoardo Abati, Yekun Chai, NiklasMuennighoff, Xiangru Tang,Muh-
tasham Oblokulov, Christopher Akiki, Marc Marone, Chenghao Mou, Mayank
Mishra, Alex Gu, Binyuan Hui, Tri Dao, Armel Zebaze, Olivier Dehaene, Nicolas
Patry, Canwen Xu, Julian McAuley, Han Hu, Torsten Scholak, Sebastien Paquet,
Jennifer Robinson, Carolyn Jane Anderson, Nicolas Chapados, Mostofa Patwary,
Nima Tajbakhsh, Yacine Jernite, Carlos Muñoz Ferrandis, Lingming Zhang, Sean
Hughes, ThomasWolf, Arjun Guha, Leandro vonWerra, and Harm de Vries. 2024.
StarCoder 2 and The Stack v2: The Next Generation. arXiv:2402.19173 [cs.SE]

[15] The Linux man-pages project. 2024. Linux Manual Pages. https://man7.org/
linux/man-pages/index.html. Accessed: 2024-05-09.

5

https://arxiv.org/abs/2103.02523
https://doi.org/10.18653/v1/2021.conll-1.20
https://doi.org/10.18653/v1/2021.conll-1.20
https://doi.org/10.1109/ICSE-Companion58688.2023.00032
https://doi.org/10.1109/ICSE-Companion58688.2023.00032
https://arxiv.org/abs/2308.06782
https://doi.org/10.1109/ICMLA52953.2021.00202
http://www.cs.utexas.edu/users/ai-labpub-view.php?PubID=127814
https://arxiv.org/abs/1510.00149
https://www.docker.com
https://www.docker.com
https://man7.org/
https://api.semanticscholar.org/CorpusID:3809743
https://arxiv.org/abs/1802.08979
https://arxiv.org/abs/2305.08360
https://arxiv.org/abs/2402.19173
https://man7.org/linux/man-pages/index.html
https://man7.org/linux/man-pages/index.html

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

KDD ’24, 2024, Barcelona, Spain Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

[16] Stephen Moskal, Sam Laney, Erik Hemberg, and Una-May O’Reilly. 2023. LLMs
Killed the Script Kiddie: How Agents Supported by Large Language Models
Change the Landscape of Network Threat Testing. arXiv:2310.06936 [cs.CR]

[17] Atharva Naik. 2024. On the Limitations of Embedding Based Methods for Mea-
suring Functional Correctness for Code Generation. arXiv:2405.01580 [cs.SE]

[18] Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin Deng, Kensen Shi, Charles
Sutton, and Pengcheng Yin. 2024. NExT: Teaching Large Language Models to
Reason about Code Execution. arXiv:2404.14662 [cs.LG]

[19] OpenAI. 2024. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[20] Joon Sung Park, Joseph C. O’Brien, Carrie J. Cai, Meredith Ringel Morris, Percy

Liang, and Michael S. Bernstein. 2023. Generative Agents: Interactive Simulacra
of Human Behavior. arXiv:2304.03442 [cs.HC]

[21] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. https:
//api.semanticscholar.org/CorpusID:160025533

[22] Chet Ramey and Brian Fox. 2024. Bash: GNU Project’s Shell. Accessed: 2024-05-09.
[23] Jean E. Sammet. 1966. The use of English as a programming language. Commun.

ACM 9, 3 (mar 1966), 228–230. https://doi.org/10.1145/365230.365274
[24] Warp Information Services. 2024. Warp: Your terminal, reimagined. https:

//www.warp.dev/. Accessed: 2024-05-09.
[25] Jie Shi, Sihang Jiang, Bo Xu, Jiaqing Liang, Yanghua Xiao, and Wei Wang. 2023.

ShellGPT: Generative Pre-trained Transformer Model for Shell Language Un-
derstanding. In 2023 IEEE 34th International Symposium on Software Reliability
Engineering (ISSRE). 671–682. https://doi.org/10.1109/ISSRE59848.2023.00082

[26] Yewei Song, Cedric Lothritz, Daniel Tang, Tegawendé F. Bissyandé, and Jacques
Klein. 2024. Revisiting Code Similarity Evaluation with Abstract Syntax Tree
Edit Distance. arXiv:2404.08817 [cs.CL]

[27] The tldr pages project. 2024. tldr pages. https://tldr.sh/. Accessed: 2024-05-09.
[28] TheR1D. 2024. ShellGPT: A command-line productivity tool powered by AI large

language models like GPT-4. https://github.com/TheR1D/shell_gpt. Accessed:

2024-05-09.
[29] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2023. Attention Is All
You Need. arXiv:1706.03762 [cs.CL]

[30] Finn Westenfelder. 2024. Linux-Manual-Pages-TLDR. https://huggingface.co/
datasets/westenfelder/Linux-Manual-Pages-TLDR. Accessed: 2024-05-09.

[31] Finn Westenfelder. 2024. NL2CMD-InterCode. https://huggingface.co/datasets/
westenfelder/NL2CMD-InterCode. Accessed: 2024-05-09.

[32] Jiacen Xu, Jack W. Stokes, Geoff McDonald, Xuesong Bai, David Marshall,
Siyue Wang, Adith Swaminathan, and Zhou Li. 2024. AutoAttacker: A
Large Language Model Guided System to Implement Automatic Cyber-attacks.
arXiv:2403.01038 [cs.CR]

[33] Hui Yang, Sifu Yue, and Yunzhong He. 2023. Auto-GPT for Online Decision
Making: Benchmarks and Additional Opinions. arXiv:2306.02224 [cs.AI]

[34] John Yang, Akshara Prabhakar, Karthik Narasimhan, and Shunyu Yao. 2023.
InterCode: Standardizing and Benchmarking Interactive Coding with Execution
Feedback. arXiv:2306.14898 [cs.CL]

[35] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao,
and Karthik Narasimhan. 2023. Tree of Thoughts: Deliberate Problem Solving
with Large Language Models. arXiv:2305.10601 [cs.CL]

[36] Chi Yu, Guang Yang, Xiang Chen, Ke Liu, and Yanlin Zhou. 2022. BashExplainer:
Retrieval-Augmented Bash Code Comment Generation based on Fine-tuned
CodeBERT. In 2022 IEEE International Conference on Software Maintenance and
Evolution (ICSME). 82–93. https://doi.org/10.1109/ICSME55016.2022.00016

[37] Rui Zhang, Ziyue Qiao, Chenghao Zhang, and Jianjun Yu. 2024. KFCC: A
differentiation-aware and keyword-guided fine-grain code comment gener-
ation model. Expert Systems with Applications 251 (2024), 123946. https:
//doi.org/10.1016/j.eswa.2024.123946

6

https://arxiv.org/abs/2310.06936
https://arxiv.org/abs/2405.01580
https://arxiv.org/abs/2404.14662
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2304.03442
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://doi.org/10.1145/365230.365274
https://www.warp.dev/
https://www.warp.dev/
https://doi.org/10.1109/ISSRE59848.2023.00082
https://arxiv.org/abs/2404.08817
https://tldr.sh/
https://github.com/TheR1D/shell_gpt
https://arxiv.org/abs/1706.03762
https://huggingface.co/datasets/westenfelder/Linux-Manual-Pages-TLDR
https://huggingface.co/datasets/westenfelder/Linux-Manual-Pages-TLDR
https://huggingface.co/datasets/westenfelder/NL2CMD-InterCode
https://huggingface.co/datasets/westenfelder/NL2CMD-InterCode
https://arxiv.org/abs/2403.01038
https://arxiv.org/abs/2306.02224
https://arxiv.org/abs/2306.14898
https://arxiv.org/abs/2305.10601
https://doi.org/10.1109/ICSME55016.2022.00016
https://doi.org/10.1016/j.eswa.2024.123946
https://doi.org/10.1016/j.eswa.2024.123946

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Accuracy Metric
	3.2 Dataset
	3.3 Model

	4 Results
	5 Conclusion
	References

