
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GENERATING CAD CODE WITH VISION-LANGUAGE
MODELS FOR 3D DESIGNS

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative AI has revolutionized the fields of Design and Manufacturing by provid-
ing efficient and automated methods for generating and modifying 3D objects. One
approach involves using Large Language Models (LLMs) to generate Computer-
Aided Design (CAD) scripting code, which can then be executed to render a 3D
object; however, the resulting 3D object may not meet the specified requirements.
Testing the correctness of CAD-generated code is challenging due to the structural
intricacies of 3D objects that are not discernable in code. In this paper, we introduce
CADCodeVerify, a novel approach to iteratively verify and improve the design out-
put of 3D objects generated from CAD code. Our approach provides ameliorative
feedback by prompting a Vision Language Model (VLM) to generate and answer
a set of validation questions to verify the generated object and prompt the VLM
to correct deviations. To evaluate CADCodeVerify, we introduce, CADPrompt,
the first benchmark for CAD code generation, consisting of 200 natural language
prompts paired with expert-annotated scripting code for 3D objects to benchmark
progress. Our findings show that CADCodeVerify improves VLM performance
by providing visual feedback by enhancing the structure of the 3D objects and
increasing the compile rate of the compiled program. When applied to GPT-4,
CADCodeVerify achieved a 7.30% reduction in Point Cloud distance and a 5.5%
improvement in compile rate compared to prior work.

1 INTRODUCTION

Generative AI, such as Large Language Models (LLMs) offers a unique opportunity to enhance
productivity, reduce costs, and increase efficiency within Design and Manufacturing sectors (Kumar
et al., 2023). These industries are critical contributors to the global economy and responsible for
creating products and infrastructure. Recent research has demonstrated that Generative AI can support
the generation, evaluation, and correction of 3D object designs (Nelson et al., 2023; Kodnongbua
et al., 2023; Makatura et al., 2023). However, while these solutions improve efficiency for designers
and engineers, they often lack effective feedback mechanisms or refinement loops to automatically
address inaccuracies in the initially generated 3D object.

Our research explores the potential of using VLMs to generate and refine Computer-Aided De-
signs (CAD), the CAD a leading approach in industrial design for creating, modifying, analyzing,
and optimizing 3D objects (Sarcar et al., 2008). Designing products with CAD software such as
FreeCAD (Riegel et al., 2016) and AutoCAD (Yarwood, 2013) generally requires substantial training
and domain expertise. CAD software often includes scripting languages that allow users to build
parametric 3D objects using code, rather than relying solely on the user interface. Leveraging the
code-generating capabilities of Generative AI enables users to bypass the complexities of traditional
CAD software by directly generating the underlying scripting code for representing 3D objects.

We define the process of generating and refining 3D objects using LLMs or VLMs, through CAD
scripting code, as CAD code generation. Designs produced by off-the-shelf VLMs or LLMs often
deviate functionally or structurally from stakeholder specifications as these models often hallucinate
on complex, out-of-distribution tasks. Developing refinement methods to correct inaccuracies in a
generated design is a critical next step in this research. Current state-of-the-art refinement methods
are contingent on human-in-the-loop expertise (Makatura et al., 2023; Nelson et al., 2023), which can

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Our approach enables VLMs to automatically generate and refine 3D objects through a
CAD scripting code (e.g., CADQuery) in three steps; (1) Code Generation, where the VLM generates
CAD scripting code from a language prompt, (2) Code Execution, where the code generated by the
model is rendered as a 3D object through a compiler, and (3) Code Refinement, wherein the language
model engages in a self-initiated question-answering process to validate the generated object, with
respect to the initial prompt, to generate actionable feedback to refine the code.

be time- and cost-prohibitive. Instead, we propose to develop automated feedback mechanisms for
CAD code generation to reduce the barrier to entry for design and expedite lengthy design processes.

In this work, we introduce CADCodeVerify, an automated method for refining CAD code generation.
CADCodeVerify eliminates the need for human involvement by generating and answering validation
questions based on user requirements, offering feedback to refine 3D object code. This feedback is
used to iteratively refine the design. To evaluate the performance of CADCodeVerify, we introduce a
novel benchmark, CADPrompt contains 200 3D objects annotated with natural language prompts
and expert-written Python code. This multimodal benchmark enables researchers to evaluate aspects
of CAD code generation, including object quality and the syntactical correctness of the generated
code. Our experimental results demonstrate that CADCodeVerify not only enhances the quality
of generated 3D objects but also improves the performance of LLMs and VLMs by increasing the
compile rate of compiled programs. Our work presents three key contributions:

1. We propose CADCodeVerify, a novel CAD code refinement method that enables a VLM
to visually inspect generated objects and provide corrective feedback, through a question-
generation and answering process, to resolve any deviations from the user’s specifications.

2. With our benchmark, CADPrompt, we provide the first quantitative evaluation of CAD code
generation across GPT-4, Gemini 1.5 Pro, and CodeLlama.

3. We demonstrate that CADCodeVerify sets a new state-of-the-art 3D design via CAD script-
ing, achieving a 7.30% reduction in Point Cloud distance and a 5.5% increase in successful
object generation using to GPT-4, the leading VLM for CAD code generation.

2 RELATED WORK

2.1 LLMS FOR CODE GENERATION

LLMs have demonstrated impressive results in a variety of code generation applications. The most
popular application is the text-to-code task, wherein users prompt LLMs with a code description,
enabling the LLM to generate the code (Rozière et al., 2023; Svyatkovskiy et al., 2020; Brown et al.,
2020; Poesia et al., 2022). Another application is the text-to-SQL task, where a database and a
question are provided to the LLMs, which then generate the corresponding SQL query (Rajkumar
et al., 2022). Building on these advances, we explore how LLMs can support non-experts and
designers in generating 3D objects via CAD code.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Prior research has demonstrated that LLMs can significantly improve the quality their generated code
by incorporating feedback (Chen et al., 2023a). One such approach involves LLMs providing their
own feedback by generating explanatory rationales for the initially generated code. These rationales
are then used as feedback, along with the initial code, to refine the output (Chen et al., 2023b).
Another approach relies on feedback from external tools, such as static code analysis (Alrashedy
et al., 2024), or a Python Interpreter (Madaan et al., 2023).

In contrast, the self-correction method (Welleck et al., 2022) trains two separate models: a generator,
which creates the initial output, and a corrector, which refines the generated code. In CAD code
refinement, one line of research introduces a basic feedback mechanism (Yuan et al., 2024), wherein
VLMs refine 3D object code based both on a script and an image. However, this method still faces
challenges in terms of feedback efficiency and refinement precision. In this work, we propose a novel
approach to generating visual feedback that improves the shapes, surfaces, and dimensions of 3D
objects through more effective code refinement.

2.2 LANGUAGE FOR AUTOMATED DESIGN AND MANUFACTURING

Learning a shared embedding space between language and 3D objects is essential for integrating
language into design and manufacturing. Recent advancements have introduced foundational multi-
modal transformers for image-text data (Radford et al., 2021; Li et al., 2023a; Liu et al., 2023) which
can be used to perform a variety of tasks. These techniques have inspired similar approaches for
incorporating 3D objects into shared embedding spaces (Zeng et al., 2023; Xue et al., 2023; Yu et al.,
2022; Guo et al., 2023), enabling a wide range of multimodal tasks such as dialogue, classification,
and evaluation involving 3D data (Hong et al., 2023; Xu et al., 2023). While successfully learning a
shared-embedding space, these approaches are not capable of generating 3D objects.

Generative modeling of 3D data has traditionally relied on probabilistic models for 3D space.
These include: Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), Variational
AutoEncoders (VAEs) (Kingma & Welling, 2013), and Diffusion Models (Ho et al., 2020). While
GANs and VAEs (Wu et al., 2015; Achlioptas et al., 2018; Gadelha et al., 2018; Yang et al., 2019; Yan
et al., 2024) have been popular approaches, diffusion models have recently emerged as the state-of-
the-art for probabilistic 3D modeling (Zeng et al., 2022; Koo et al., 2023). Diffusion models enable
controllable object generation through language-guided shape generation and completion. However,
their application in producing manufacturable designs remains limited (Li et al., 2023b; Kodnongbua
et al., 2023). These models typically generate point clouds or voxels, which are non-parametric and
not easily adapted for manufacturing. As such, there is a need for methods that produce parametric
outputs suitable for manufacturing.

Recent research has shown that VLMs can generate designs using parametric CAD code (Makatura
et al., 2023; Nelson et al., 2023). However, these approaches still require significant human feedback
to produce code ensure the generated codes meets the user’s specifications. In this paper, we address
this limitation by developing CADCodeVerify, which autonomously generates and refines 3D objects.

3 CAD CODE GENERATION

As shown in Figure 1, we employ a three-step process: (1) code generation (§3.1), (2) code execution
(§3.2), and (3) code refinement via CADCodeVerify for CAD code generation(§3.3).

3.1 CODE GENERATION

We prompt the VLM to generate initial CAD script code, y0, based on a natural language description
of the 3D object, x, along with task specifications. For the few-shot experiment, we incorporate a
set of few-shot demonstrations, Eg, in the prompt (see Appendix B.4). We utilize CADQuery, a
Python-based parametric CAD language with a built-in compiler that interprets code and renders
parametric 3D object. This CAD code generation can be broadly formulated as per Eq. 1.

y0 ∼ PLM (y0|x,Eg). (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.2 CODE EXECUTION

The generated CAD code, y0, is subsequently executed by the CADQuery compiler, ψ, to produce
the initial CAD design, d0, in the Standard Triangle Language (STL) format,1 where 0 indicates the
initial version of both the generated code and CAD design. We denote this process as d0 = ψ(y0).
Occasionally, the models generate code that fails to compile, usually due to syntax errors in the
Python code. We leverage insights from previous work on code repair (Chen et al., 2023b) and adapt
similar techniques for CAD code generation. To resolve syntactical issues in the code, we leverage
the CADQuery compiler error as feedback, Ferr, for the VLM (see Appendix Figure 12, for the
prompt employed in code repair). This process is repeated until a 3D object, dk, is successfully
rendered by ψ(yk), or the maximum number of iterations, N , is reached as per Eq. 2.

yk ∼ {PLM (yk|x, yk−1, Ferr)}Nk=1. (2)

3.3 CODE REFINEMENT VIA CADCODEVERIFY

To address discrepancies in the generated design, we use a feedback loop to further refine the CAD
code, Fref , to further refine yk as described by Eq. 3, where M is the number of refinement iterations.
Optionally, we include a set of four reference images of the generated object, captured from different
angles (0, 90, 180, and 270 degrees), Iref = {I0l , I90l , I180l , I270l }.

yM ∼ {PLM (yl+1|x, yl, Fref , Iref)}N+M
l=N . (3)

The key innovation of CADCodeVerify is its feedback loop, which uses a VLM to generate visual
feedback automatically, without human intervention or the need for external tools like geometric
solvers (Makatura et al., 2023) (see §5.1). CADCodeVerify is a two-step process consisting of
question-answer generation and feedback generation.

(1) Question-Answer Generation: CADCodeVerify first generates a set of binary “Yes/No” verifi-
cation questions, Q = {q1, q2, . . . , qn}, based on the language description, x, and a set of few-shot
example questions, Eq, i.e., Q ∼ PLM (Q|x,Eq). CADCodeVerify generates between two to five
questions per example (see Figure 11 in the Appendix). To answer these questions, CADCodeVerify
uses the reference images of the generated 3D object, Iref , the generated questions, Q, and the
language description x. CADCodeVerify then answers each question as described in Eq. 4.

A ∼ PLM (A|x,Q, Iref). (4)

CADCodeVerify generates the answers, A = (a1, a2, . . . , an), using Chain-of-Thought (Wei et al.,
2022), where each answer is accompanied by supporting reasoning (see Figure 13 in the Appendix).
Furthermore, CADCodeVerify is directed to respond with "Unclear" if it determines that there is
insufficient information to answer the question.

(2) Feedback Generation: The question-answer pairs are then used to generate ameliorative
feedback to further refine the 3D object as per Eq. 5.

Fref ∼ PLM (Fref |Q,A). (5)

feedback, Fref , is then applied to refine the code, as described Eq. (3). During this step, we omit any
questions for which the answer is “Yes” to allow the model to focus on addressing any unresolved
issues. If all questions are answered “Yes” we assume no further refinement is necessary. The full
feedback generation process is provided in Figure 14 in the Appendix. Additionally, two examples of
full interactions with GPT-4 for a single iteration of CADCodeVerify are included in the Appendix (
Figures 9 and 10).

1Standard Triangle Language is also referred to as “Standard Tessellation Language”. The STL (STere-
oLithography) file format is an openly documented format for describing the surface of an object as a triangular
mesh, that is, as a representation of a 3-dimensional surface in triangular facets.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 2: Examples of 3D objects generated by GPT4 after utilizing each feedback method for code
refinement from our CADPrompt dataset.

Table 1: Statistics of the CADPrompt dataset, including the vertex and face counts of ground truth 3D
objects, as well as the lengths of language descriptions and Python code (§4.3).

Structural Complexity of 3D Object Natural Language Descriptions Python Code Total

Category Vertices Faces Words Sentences Lines of Code Tokens Datapoints
min max avg. min max avg. min max avg. min max avg. min max avg. min max avg.

Simple 6 108 25.6 8 212 47.2 9 18 13.4 1 1 1.0 6 18 8.6 18 48 26.5 17
Moderate 6 344 78.6 8 684 155.0 9 87 30.6 1 5 2.2 7 21 12.6 22 60 35.2 39
Complex 8 540 93.1 12 1092 184.8 13 104 53.9 1 7 3.6 7 32 16.9 25 82 47.3 87
Very Complex 12 531 108.0 20 1070 214.4 13 188 68.5 1 11 4.5 6 46 21.3 18 117 53.6 57

All 6 540 88.8 8 1092 175.7 9 188 50.13 1 11 3.4 6 46 16.6 18 117 45.0 200

4 CADPrompt DATASET

For evaluating CADCodeVerify on CAD code generation, we introduce a new benchmark the
CADPrompt, which consists of 200 3D objects, represented both in images and STL. Each object in
CADPrompt is annotated with ground truth code, and a natural language prompt.

4.1 PROMPT CREATION

To construct CADPrompt dataset, we first selected 200 3D objects from a collection of modular CAD
objects from previous work (Wu et al., 2021). Each object was manually annotated with a natural
language prompt. For difficult-to-describe objects, two annotators independently provided prompts.
An independent third annotator then selected the more suitable prompt. Finally, a fourth independent
reviewer, not involved in the original annotation, verified and refined each of the 200 prompts to
ensure accuracy and grammatical correctness. Table 1 provides the statistics of CADPrompt.

4.2 CODE ANNOTATION

We recruited a CAD Design expert to annotate CADPrompt with ground truth code for each object.
The CAD design expert was provided with the language description of the 3D object, the object in
STL format, and its geometric properties generated by the geometric solver (Figure 6). We then used
Blender (Flavell, 2011) to validate the 3D objects produced by the expert’s Python code against the
ground truth and to evaluate their geometric properties (Figure 18). In cases where discrepancies
were identified, the Python code was returned to the CAD expert for additional refinement. Figures
16 and 17 provide examples of Python code from CADPrompt.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4.3 DATA STRATIFICATION

We stratify CADPrompt examples by mesh complexity, semantic complexity and compilation diffi-
culty to gain insights into model performance (§6).

Mesh complexity: We define “mesh complexity” as the total number of faces and vertices of an
object. The ground truth of the 3D object is represented in mesh file formats, which consist of a
collection of vertices, edges, and faces (x, y, z) used to create the 3D object in the STL format.
Objects with more faces and vertices are classified as more complex, while those with fewer faces and
vertices are considered simple (Table 1). We split the dataset into two groups based on the median
complexity: (i) Simple (those with fewer faces and vertices than the median) and (ii) Complex objects
(those with more).

Compilation difficulty: We define “compilation difficulty” to be a measure of how difficult it is for
a set of three language models (i.e., GPT-4, Gemini, and CodeLlama) to generate code for a given 3D
object across two prompting methods (i.e., zero- and few-shot prompting), for a total of six attempts
to generate compilable code. 3D objects were labeled then as either (i) Easy (at least four of six
methods generated compilable code) and (ii) Hard (otherwise). See Appendix Figure 15.

Figure 3: Examples of 3D objects
from the CADPrompt dataset.

Semantic complexity: We enlisted a CAD design expert to
evaluate the “semantic complexity” of each object in CAD-
Prompt. Each object was assigned one of the following levels:
(i) Simple: the object is basic, with few features. It may consist
of one geometric shape; (ii) Moderate: the object has a moder-
ate amount of detail, with a few distinct features or components;
(iii) Complex: the object has many interconnected parts, fine
details, or intricate shapes; and (v) Very Complex: the object
is highly intricate, with many components, detailed textures,
or complex shapes. It may have a large number of fine details,
interlocking parts, or unique geometric features (Figure 3).

5 EXPERIMENTAL SETUP

5.1 BASELINES

We compare our approach, CADCodeVerify, with two baseline
methods for feedback generation: (i) 3D-Premise, and (ii) Geometric solver feedback.

3D Premise (Yuan et al., 2024): 3D-Premise facilitates code refinement by providing GPT-4 with
both the image of a generated object and its original description. GPT-4 is then prompted to correct
any discrepancies between the original description and generated objects. To establish a baseline for
comparison, we supply the VLM with an image of the generated object and use the same prompts as
used in the original work. Note that this baseline is not applicable for approaches lacking multimodal
capabilities, such as CodeLlama.

Geometric solver feedback (this work): We develop a novel baseline that leverages FreeCAD, an
open-source geometric solver, to provide information about the geometric dimensions and structure of
the generated 3D object, dg . However, our proposed baseline, which computes geometric properties
feedback using the geometric solver, requires access to the ground truth 3D objects, dgt in STL
format. Specifically, the feedback, FGS , consists of numerical values across thirteen categories, S,
each representing a unique geometric dimension or component of the object, such as width, height,
number of faces, number of vertices, and volume. Formally, this feedback process is shown in Eq. 6
and 7. We compute FGS for both the generated design, dg, and ground truth, dgt. In summary, we
can describe the role of the geometric solver as follows:

FGS(dg) = {(s,GS(s, dg)),∀s ∈ S} (6)
Fr = FGS(dg)⊕ FGS(dgt) (7)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The feedback from the geometric solver consists of numerical values across thirteen categories of
geometric information. An example of this feedback, FGS , is shown in Appendix (see Figure 6). This
feedback method acts as an upper bound for CAD code refinement, as it conveys the exact geometric
differences between the generated 3D object and the ground truth.

5.2 EVALUATION METRICS

This evaluates how accurately VLMs generate and refine 3D objects through CAD code. We use
three evaluation metrics to compare the quality of the generated 3D object against the ground truth:
(i) Point Cloud distance, (ii) Hausdorff distance, and (iii) Intersection over the Ground Truth (IoGT).
We apply the Iterative Closest Point (ICP) algorithm to rotate and translate the generated 3D object
for optimal alignment with the ground truth object (Besl & McKay, 1992). Finally, each point cloud
is normalized to fit within a unit cube, as per prior work (Zheng et al., 2023). We also report the
percentage of successfully compiled code as the “compile rate”. The formulas for the evaluation
metrics are described as follows:

Point Cloud distance: Point Cloud distance D(P,Q) is shown in Eq. 8, where dp,q = ∥p− q∥2.

D(P,Q) =
1

2|P |
∑
p∈P

min
q∈Q

dp,q +
1

2|Q|
∑
p∈Q

min
p∈P

dp,q (8)

Hausdorff distance: Hausdorff distance, H(P,Q), is given by Eq. 9, where sup and inf represent
the supremum and infimum operators, respectively (Beauchemin et al., 1998).

H(P,Q) = max{sup
p∈P

inf
q∈Q

dp,q, sup
q∈Q

inf
p∈P

dq,p} (9)

Intersection over the Ground Truth (IoGT): This metric used to evaluate how closely the
generated 3D object P aligns with the ground truth Q. As shown in Eq. 10, it calculates the ratio of
the intersection area between P and Q to the area of Q.

IoGT =
|P ∩Q|
|Q| (10)

Point Cloud distance and Hausdorff distance are based on the geometric properties (e.g., height, width,
and volume) of 3D objects, while the IoGT measures the overlap of the bounding boxes between the
generated and ground truth 3D objects. If any generation fails to compile, we set the distance (Point
Cloud and Hausdroff) to

√
3 (the largest possible distance between two points in a unit cube) and

an IoGT value of zero (the worse possible IoGT value between two 3D objects) to maximally and
uniformly penalize unsuccessful 3D object generations.

6 EXPERIMENT RESULTS

We utilize CADPrompt to quantitatively evaluate the capabilities of CADCodeVerify approach across
various VLMs. In the rest of this section, we refer to the three stages of the CAD code generation
process as “Generate” “Refine-1” and “Refine-2” “Generated” refers to the object generated by the
LLM after the Code-Execution Step. “Refine-1” refers to the object after the first step of refinement,
and Refine-2 refers to the object after the second step of refinement. Our key findings are as follows:

GPT-4 demonstrates the highest capacity to generate compilable code CADPrompt. We present
our primary results in Table 2, comparing the distance and success-rate across three LLMs and three
refinement methods. Regarding compile rate, GPT-4 shows superior performance at 96.5% on the
CADPrompt benchmark, compared to Gemini at 85% and CodeLlama at 73.5%. While previous
studies have provided valuable qualitative insights into GPT-4’s ability to produce compilable
code (Makatura et al., 2023), our analysis using CADPrompt offers a concrete evaluation of each
LLM’s CAD code generation capability.

CADCodeVerify demonstrates superior performance on more challenging data. Figure 4
shows the compile rates for each feedback mechanism at the generation and refinement stages, using
the difficulty and complexity splits of CADPrompt. For "Easy" data, the performance across all

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: This table reports the median (IQR) benchmarking results for baselines across metrics. The
* symbol indicates that the geometric solver accesses the ground truth to compute the geometric
differences between the ground truth and the generated 3D object.

Model Feedback Mechanism IoGT ↑ Point Cloud dist. ↓ Hausdorff dist. ↓ Compile Rate ↑

GPT-4: Zero-shot

Generated 0.935 (0.043) 0.153 (0.146) 0.484 (0.405) 92.0%

3D-Premise 0.939 (0.034) 0.150 (0.143) 0.440 (0.372) 91.5%
CADCodeVerify (Ours) 0.941 (0.034) 0.132 (0.137) 0.455 (0.354) 94.0%
Geometric solver* 0.943 (0.037) 0.102 (0.159) 0.378 (0.434) 91.5%

GPT-4: Few-shot

Generated 0.939 (0.030) 0.155 (0.140) 0.494 (0.368) 96.0%

3D-Premise 0.942 (0.033) 0.137 (0.155) 0.446 (0.396) 91.0%
CADCodeVerify (Ours) 0.944 (0.028) 0.127 (0.135) 0.419 (0.356) 96.5%
Geometric solver* 0.944 (0.031) 0.103 (0.152) 0.399 (0.433) 95.5%

Gemini: Zero-shot

Generated 0.905 (0.088) 0.159 (0.180) 0.531 (0.451) 85.0%

3D-Premise 0.911 (0.079) 0.150 (0.180) 0.496 (0.431) 83.5%
CADCodeVerify (Ours) 0.914 (0.082) 0.138 (0.165) 0.497 (0.384) 84.5%
Geometric solver* 0.917 (0.070) 0.113 (0.188) 0.416 (0.458) 83.5%

Gemini: Few-shot

Generated 0.933 (0.061) 0.171 (0.174) 0.521 (0.426) 85.0%

3D-Premise 0.939 (0.070) 0.169 (0.184) 0.521 (0.516) 81.5%
CADCodeVerify (Ours) 0.939 (0.052) 0.147 (0.160) 0.492 (0.358) 85.0%
Geometric solver* 0.944 (0.060) 0.104 (0.146) 0.386 (0.470) 84.5%

CodeLlama: Zero-shot

Generated 0.920 (0.943) 0.237 (1.591) 0.731 (1.270) 64.5%

CADCodeVerify (Ours) 0.930 (0.955) 0.211 (1.599) 0.641 (1.309) 70.0%
Geometric solver* 0.888 (0.941) 0.280 (1.595) 0.823 (1.258) 55.5%

CodeLlama: Few-shot

Generated 0.927 (0.949) 0.224 (1.597) 0.657 (1.294) 67.0%

CADCodeVerify (Ours) 0.935 (0.957) 0.185 (1.620) 0.582 (1.366) 73.5%
Geometric solver* 0.906 (0.949) 0.239 (1.606) 0.727 (1.301) 60.5%

Generated Refine 1 Refine 2
Difficulty: Easy

50

60

70

80

90

100

Co
m

pi
le

 R
at

e
(%

)

Generated Refine 1 Refine 2
Difficulty: Hard

50

60

70

80

90

100

Generated Refine 1 Refine 2
Mesh Complexity: Simple

50

60

70

80

90

100

Generated Refine 1 Refine 2
Mesh Complexity: Complex

50

60

70

80

90

100

3D-Premise CADCodeVerify (Ours) Geometric solver

Figure 4: Compile rate comparison across different feedback mechanisms, categorized by difficulty
and mesh complexity. Each figure corresponds to a specific subset of the CADPrompt dataset,
covering both generated and refined objects. The plots for the “Hard” and “Complex” splits indicate
that the feedback approach from 3D-Premise reduces GPT-4’s compile rate in object generation.

baselines is relatively similar. However, results on the "Hard" data underscore the effectiveness of
CADCodeVerify, which is the only refinement approach that enhances the compile rate of object
generation, achieving approximately a 9% increase at the Refine-1 stage. In contrast, 3D-Premise
struggles to provide effective feedback for "Hard" data, resulting in a 20% drop in compile rate
at Refine-1, bringing it down to 62%. Real-world data in design and manufacturing is likely to
align more closely with the “Complex” and “Hard” data splits, underscoring the value of CADCode.
Our findings underscore the value of CADCodeVerify in delivering feedback that can be applied to
real-world product design.

CADCodeVerify generates model-agnostic feedback to improve 3D object generation. Table 2
presents the distance measure from the ground truth at the generation and refinement stages. Since
CodeLlama lacks multimodal capabilities, we employ GPT-4 to execute CADCodeVerify and generate
refinement feedback. Our results indicate that CADCodeVerify improves the quality of the generated
object across all three LLMs/VLMs as measured by IoGT, Point Cloud distance and Hausdorff
distance. CADCodeVerify also increases both GPT-4 and CodeLlama’s “compile rate” in producing
compilable CAD code. This result highlights the model-agnostic nature of the multimodal “assess

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

and reason” analysis induced by our CADCodeVerify refinement process, to universally provides
actionable feedback for correcting object generation errors.

Table 3: Median (IQR) results from our ablation study conducted on a randomly selected subset of
100 samples.

Ablation Study IoGT ↑ PLC distances ↓ Hausdorff dist. ↓ Compile Rate ↑
Generated 0.909 (0.062) 0.156 (0.150) 0.491 (0.348) 96.5%

Refine without images 0.914 (0.058) 0.153 (0.123) 0.451 (0.321) 96.0%

Zero-shot QA generation 0.919 (0.049) 0.141 (0.112) 0.471 (0.280) 98.0%
CADCodeVerify (Ours) 0.919 (0.045) 0.126 (0.122) 0.444 (0.308) 97.5%

CADCodeVerify outperforms 3D-Premise across VLMs. In Table 2, we quantitatively compare
our CADCodeVerify approach to a refinement method proposed in prior work, 3D-Premise. Since
3D-Premise requires directly uploading an image of the generated object to the VLM, this approach
cannot be applied to the unimodal CodeLlama model. For GPT-4 and Gemini, CADCodeVerify is
shown to refine objects more accurately than 3D-Premise for objects in the CADPrompt dataset (> 7%
reduction in point cloud distance for GPT-4 and Gemini). This finding establishes CADCodeVerify
as the new state-of-the-art for CAD code refinement. Next, we compare our proposed refinement
approach to an upper benchmark that uses a geometric solver to provide parametric feedback on
specific geometric differences relative to the target object, as per § 5. Our results show that through
CADCodeVerify, we can achieve comparable performance without requiring access to the target
object, which is typically unavailable in real-world applications.

Ablation analysis. We conduct an ablation to evaluate the effectiveness of each independent
component of CADCodeVerify (see Table 2). This analysis is performed using GPT-4 with a few-shot
prompt on 100 randomly selected examples from CADPrompt. First, we test the effect of removing
the few-shot example questions in the question-generation component (see Eq. 3). The results indicate
that zero-shot QA generation increases the distance between the ground truth and refined 3D objects
from 0.126 to 0.141 in Point Cloud distance and from 0.444 to 0.471 in Hausdorff distance. Our
second ablation measures the impact of the reference images, Iref , during the code refinement step of
Eq. 3. Excluding the reference images worsens the Point Cloud and Hausdorff distances from 0.126
and 0.444 to 0.153 and 0.451, respectively, emphasizing the importance of the reference images.

Table 4: Performance Comparison of CADCodeVerify and Human-in-the-Loop (HITL) approaches
on a subset of 50 examples from the GPT-4 few-shot setting.

Model Feedback Mechanism IoGT ↑ Point Cloud dist. ↓ Hausdorff dist. ↓ Compile Rate ↑

GPT-4: Few-shot

Generated 0.930 (0.043) 0.156 (0.138) 0.495 (0.287) 98.5%

CADCodeVerify 0.948 (0.036) 0.137 (0.136) 0.445 (0.302) 98.5%

Human-in-the-Loop 0.944 (0.032) 0.120 (0.140) 0.397 (0.354) 99.0%

Gold-Standard human feedback outperforms CADCodeVerify slightly. This experiment evaluates
the performance of CADCodeVerify compared to a human-in-the-loop approach, where instead of
using CADCodeVerify for code refinement, we provide gold standard language feedback which
includes the exact changes that need to be made to the object. We performed this experiment on a
randomly selected subset of 50 examples using the GPT-4 few-shot setting. The experiment involves
two steps: (1) a human participant selects the image with the best viewing angle of the 3D object
from four options (see Eq. 3), and (2) the human provides written feedback. The results indicate that
the human-in-the-loop approach led to a slight improvement in Point Cloud distance and Hausdorff
distance, with performance increasing from 0.137 and 0.445 to 0.120 and 0.397, respectively (see
Table 4). The result of the human-in-the-loop contextualizes the performance of CADCodeVerify
with respect to a method which injects domain-expertise to provide the best possible feedback. While
CADCodeVerify makes significant strides in refining 3D objects, without any requiring domain
expertise, some improvements are still needed to reach the level of a human expert.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 5: An example of a subset of questions and answers generated by CADCodeVerify.

Accuracy of generated answers. In the Question-Answering phase, CADCodeVerify is prompted
to respond with “Yes,” “No” or “Unclear,” in situations when there is insufficient information (See
Figure 5). To evaluate the accuracy of these answers, we randomly selected a subset of 50 examples
from the GPT-4 few-shot setting, then manually validated the answers for both refinement stages.
The results indicate that CADCodeVerify provides correct answers with an accuracy of 64.6% for
refine 1 and 68.2% for refine 2 (see Table 9). To reduce hallucinations from the LLMs, we instructed
it to respond with "Unclear" whenever it lacked confidence in its answers. In future work, we aim to
explore how LLMs can interpret 3D objects and investigate methods to teach LLMs to self-verify
their generated responses.

7 LIMITATIONS

It is essential to recognize that Point Cloud distance and Hausdorff distance are noisy metrics,
measuring only the spatial similarity between two 3D objects. While they provide a broad estimate of
similarity, a more granular metric is needed to capture structural differences between objects. For
instance, a desk and a desk with small gaps between the legs and surface might have a low distance
measure, but these gaps represent critical logical or structural issues that should be captured in the
evaluation. In future work, we plan to investigate evaluation methods for CAD code generation that
incorporate logical design principles.

The quality of generated objects and the likelihood of successful code compilation are influenced
by the user’s initial prompt. Due to the flexibility of natural language, the interpretation of 3D
objects can vary, resulting in multiple valid but functionally different descriptions for the same object.
For example, one could describe a desk could be described functionally as “Draw a desk with four
legs,” or more geometrically as “Draw an object with a flat rectangular top supported by four long
rectangular prisms at each corner”. In our approach, we incorporated review procedures to improve
data quality, though it was not feasible to exhaustively explore all possible annotation methods.
Future research could delve deeper into this prompt sensitivity and explore strategies for identifying
the most effective prompts for specific VLMs.

8 CONCLUSION

In this work, we formally define a novel task, CAD code generation, wherein VLMs are employed to
generate code for 3D parametric models. We compiled a novel CADPrompt dataset, comprising 200
3D objects paired with corresponding language descriptions and Python code. Next, we introduce a
novel approach for code refinement within CAD code generation, called CADCodeVerify, which
enables a VLM to validate and correct its generated object to address any errors in the output.
We compare CADCodeVerify to two other relevant approaches for code refinement in CAD code
generation, highlighting the strengths and limitations of each method. Our approach represents a
substantial improvement over previous CAD code generation methods, which primarily relied on
manual human feedback through language interactions with VLMs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning representations
and generative models for 3d point clouds. In International conference on machine learning, pp.
40–49. PMLR, 2018.

Kamel Alrashedy, Vincent J. Hellendoorn, and Alessandro Orso. Learning defect prediction from
unrealistic data. Proceedings of the IEEE International Conference on Software Analysis, Evolution
and Reengineering, 2024.

Mario Beauchemin, Keith P. B. Thomson, and Geoffrey Edwards. On the hausdorff distance used for
the evaluation of segmentation results. Canadian Journal of Remote Sensing, 24:3–8, 1998. URL
https://api.semanticscholar.org/CorpusID:13813367.

Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In Sensor fusion IV: control
paradigms and data structures, volume 1611, pp. 586–606. Spie, 1992.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam Girish Sastry, Amanda Askell, Sandhini Agarwa, l Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Clemens Winter Jeffrey Wu, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. 2020. doi: 877-1901.

Hailin Chen, Amrita Saha, Steven Hoi, and Shafiq Joty. Personalised distillation: Empowering
open-sourced llms with adaptive learning for code generation. arXiv preprint arXiv:2310.18628,
2023a.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. 2023b.

Lance Flavell. Beginning blender: open source 3d modeling, animation, and game design. Apress,
2011.

Matheus Gadelha, Rui Wang, and Subhransu Maji. Multiresolution tree networks for 3d point cloud
processing. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 103–118,
2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Ziyu Guo, Renrui Zhang, Xiangyang Zhu, Yiwen Tang, Xianzheng Ma, Jiaming Han, Kexin Chen,
Peng Gao, Xianzhi Li, Hongsheng Li, et al. Point-bind & point-llm: Aligning point cloud
with multi-modality for 3d understanding, generation, and instruction following. arXiv preprint
arXiv:2309.00615, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and Chuang
Gan. 3d-llm: Injecting the 3d world into large language models. arXiv preprint arXiv:2307.12981,
2023.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Milin Kodnongbua, Benjamin T Jones, Maaz Bin Safeer Ahmad, Vladimir G Kim, and Adriana
Schulz. Reparamcad: Zero-shot cad program re-parameterization for interactive manipulation.
2023.

Juil Koo, Seungwoo Yoo, Minh Hieu Nguyen, and Minhyuk Sung. Salad: Part-level latent diffu-
sion for 3d shape generation and manipulation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 14441–14451, 2023.

11

https://api.semanticscholar.org/CorpusID:13813367

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sachin Kumar, T Gopi, N Harikeerthana, Munish Kumar Gupta, Vidit Gaur, Grzegorz M Krolczyk,
and ChuanSong Wu. Machine learning techniques in additive manufacturing: a state of the art
review on design, processes and production control. Journal of Intelligent Manufacturing, 34(1):
21–55, 2023.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597,
2023a.

Muheng Li, Yueqi Duan, Jie Zhou, and Jiwen Lu. Diffusion-sdf: Text-to-shape via voxelized diffusion.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12642–12651, 2023b.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. arXiv
preprint arXiv:2304.08485, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. arXiv preprint arXiv:2303.17651, 2023.

Liane Makatura, Michael Foshey, Bohan Wang, Felix HähnLein, Pingchuan Ma, Bolei Deng, Megan
Tjandrasuwita, Andrew Spielberg, Crystal Elaine Owens, Peter Yichen Chen, et al. How can large
language models help humans in design and manufacturing? arXiv preprint arXiv:2307.14377,
2023.

Matt D Nelson, Brady L Goenner, and Bruce K Gale. Utilizing chatgpt to assist cad design for
microfluidic devices. Lab on a Chip, 23(17):3778–3784, 2023.

Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and
Sumit Gulwani. Synchromesh: Reliable code generation from pre-trained language models. arXiv
preprint arXiv:2201.11227, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bahdanau. Evaluating the text-to-sql capabilities of
large language models. arXiv preprint arXiv:2204.00498, 2022.

Juergen Riegel, Werner Mayer, and Yorik van Havre. Freecad. Freecadspec2002. pdf, 2016.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,
Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade
Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. Code llama: Open foundation models for code. 2023.

MMM Sarcar, K Mallikarjuna Rao, and K Lalit Narayan. Computer aided design and manufacturing.
PHI Learning Pvt. Ltd., 2008.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. Intellicode compose:
Code generation using transformer. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp.
1433–1443, 2020.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. Generating sequences by learning to self-correct. arXiv preprint arXiv:2211.00053, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A deep generative network for computer-
aided design models. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 6772–6782, October 2021.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1912–1920, 2015.

Runsen Xu, Xiaolong Wang, Tai Wang, Yilun Chen, Jiangmiao Pang, and Dahua Lin. Pointllm:
Empowering large language models to understand point clouds. arXiv preprint arXiv:2308.16911,
2023.

Le Xue, Mingfei Gao, Chen Xing, Roberto Martín-Martín, Jiajun Wu, Caiming Xiong, Ran Xu,
Juan Carlos Niebles, and Silvio Savarese. Ulip: Learning a unified representation of language,
images, and point clouds for 3d understanding. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 1179–1189, 2023.

Xiaoliang Yan, Reed Williams, Elena Arvanitis, and Shreyes Melkote. Deep learning-based semantic
segmentation of machinable volumes for cyber manufacturing service. Journal of Manufacturing
Systems, 72:16–25, 2024. ISSN 0278-6125. doi: https://doi.org/10.1016/j.jmsy.2023.11.005. URL
https://www.sciencedirect.com/science/article/pii/S0278612523002285.

Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath Hariharan.
Pointflow: 3d point cloud generation with continuous normalizing flows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 4541–4550, 2019.

Alf Yarwood. Introduction to AutoCAD 2004. Routledge, 2013.

Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu. Point-bert: Pre-
training 3d point cloud transformers with masked point modeling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 19313–19322, 2022.

Zeqing Yuan, Haoxuan Lan, Qiang Zou, and Junbo Zhao. 3d-premise: Can large language models
generate 3d shapes with sharp features and parametric control? arXiv preprint arXiv:2401.06437,
2024.

Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, and Karsten Kreis.
Lion: Latent point diffusion models for 3d shape generation. arXiv preprint arXiv:2210.06978,
2022.

Yihan Zeng, Chenhan Jiang, Jiageng Mao, Jianhua Han, Chaoqiang Ye, Qingqiu Huang, Dit-Yan
Yeung, Zhen Yang, Xiaodan Liang, and Hang Xu. Clip2: Contrastive language-image-point
pretraining from real-world point cloud data. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 15244–15253, 2023.

Shen Zheng, Jinqian Pan, Changjie Lu, and Gaurav Gupta. Pointnorm: Dual normalization is all
you need for point cloud analysis. In 2023 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8. IEEE, 2023.

A ETHICS DISCUSSION

As our approach utilizes VLMs, we need to be cognizant of the potential pitfalls of utilizing these
approaches. VLMs are capable of hallucinations to produce context that is unrelated or unhelpful
to the desired context. These hallucinations may also include harmful propagation of the inherent
stereotypes within the datasets utilized to train these models. While these concerns are important to
note for any VLM-based approach, the potential downstream impact on users via our approach is
minimal. Since our approach is employed to produce 3D objects, there is limited harm which may be
incurred by any potential hallucinations via our approach. However, a malicious user may choose to
leverage our method to generate a 3D object of a weapon or harmful item such as guns, knives, etc.
While there are many steps between the process of generating a design and procuring the item, we
encourage readers to exercise caution in identifying and reporting any misuse of this approach.

13

https://www.sciencedirect.com/science/article/pii/S0278612523002285

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

B ADDITIONAL METHODOLOGY DETAILS

B.1 WHY CADQUERY?

CADQuery is one of several open-source CAD scripting languages, alongside tools like FreeCAD and
OpenSCAD. Previous work has primarily used OpenSCAD for CAD code generation. However, we
chose to use CADQuery as our parametric CAD programming language instead of OpenSCAD, which
has been the dominant language for generating 3D objects. Our decision to switch to CADQuery
was based on two key reasons: (1) CADQuery is built in Python, making it more suitable for
LLM-generated code, given the vast amount of Python code available online. (2) CADQuery’s
"design-intent" approach allows it to generate more concise code for complex objects compared to
OpenSCAD.

B.2 GEOMETRIC SOLVER VERBALIZATION

As an intermediate step, we utilize an LLM to verbalize this feedback, offering detailed insights
into how the generated design dg differs from the ground truth design dgt. Verbalization has been
demonstrated to enhance the model’s understanding and response accuracy (Madaan et al., 2023).

B.3 EXPERIMENTAL PARAMETERS

We performed the experiments using GPT-4 ("gpt-v4") via the OpenAI API and Gemini ("gemini-
1.5-flash-latest") through the Google API, with the temperature set to 0 for code generation and
refinement. In cases where the generated code had bugs or failed to compile, we resubmitted both the
code and the compiler error message to the model, adjusting the temperature to 1. For CodeLlama
B70, we utilized the Replicate API2, setting the temperature to 0.8 for code generation, refinement,
and bug fixing. Other hyperparameters, such as top_k = 10, top_p = 0.9, and repeat_penalty = 1.1,
were kept at their default values. The total cost for running the experiments was approximately $1000:
$450 for GPT-4, $5 for Gemini, and $150 for CodeLlama. Experiments were conducted from 06
JAN to 15 FEB, 2024, and May 15 to August 15, 2024. In all our experiments, we set the number
of refinements to 2, as no improvement was observed beyond the second refinement. This setting
is consistent with prior work on refinement for code generation (Madaan et al., 2023; Chen et al.,
2023a).

To compute distance measures, we converted the generated STL files into point clouds rendered with
1000 points. We used the Open3D and Pandas libraries to calculate the Point Cloud Distance.

B.4 FEW-SHOT PROMPT

We design a few-shot prompt to enable VLMs to adeptly perform CAD code generation. The prompt,
p ∼ y1 ⊕ y2 . . . ⊕ yk, where the y is CAD code and is comprised of a set of k examples. We can
formulate the few shot learning as P ∼ {(yi)}ki=1. Each example, (yi) is sourced from a memory
of code samples, D, collected from the CADQuery documentation with a total of 40 examples. We
include a text-description of the object or additional comments describing the code, in each code
snippet, if it is available in the documentation.

B.5 GEOMETRIC SOLVER FEEDBACK

An example of the geometric solver’s feedback for both generated and ground truth 3D objects is
shown in Figure 6.

C QUALITATIVE ANALYSIS

We conduct a qualitative analysis on the outputs of CADCodeVerify on a randomly selected set of
50 examples to provide further insights for two salient questions: (1) What types of feedback does
CADCodeVerify generate? (2) What kinds of errors are present in the generated 3D objects?

2https://replicate.com/

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 6: This figure presents an example of the feedback generated by the geometric solver, which
calculates the geometric properties between the generated and ground truth 3D objects, requiring
access to the ground truth.

52.0%

20.0%

8.0%

16.0%
4.0%

Refine 1

38.0%

26.0%

8.0%

24.0%

4.0%

Refine 2

Structural Feedback
Dimensional Feedback
Positional Feedback

No Feedback
Failure Rate

Figure 7: Analysis of the types of feedback produced by CADCodeVerify.

C.1 TYPES OF FEEDBACK GENERATED BY CADCODEVERIFY.

The feedback produced by CADCodeVerify is designed to enhance LLMs in refining the generated
3D objects. To understand the nature of the feedback generated by CADCodeVerify, we conducted
a qualitative analysis and manually categorized the feedback into three main types: (i) Structural
Feedback: the feedback is to correct the structure of the object (e.g., “make cylindrical or adjust
corner shape); (ii) Dimensional Feedback: the feedback is an instructions related to size and scale of
objects (e.g., increase height and reduce width); and (iii) Positional Feedback: the feedback focuses
on the alignment of the objects (e.g., center object and align with base). illustrated in Figure 7, the
percentage of Structural Feedback for generated objects starts at 52.0% in Refine 1 and decreases to
38.0% in Refine 2, demonstrating CADCodeVerify’ ability to correct structural errors in the generated
3D objects. Meanwhile, Dimensional Feedback increases from 20% to 26%, likely due to some
previously resolved structural errors being recategorized as dimensional issues. In future work, we

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

48.0%

16.0%

18.0%

12.0%
6.0%

Distribution of Error Types in Generated 3D Objects

Structural
 Configuration

 Error

Logical Error Spatial Precision
 Error

Error Types in Generated 3D objects

0.00

0.05

0.10

0.15

0.20

0.25

Po
in

t C
lo

ud
 D

ist
an

ce

Distances of Generated and Refined 3D Objects
 for Each Error Type

Generated 3D Objects
Refined 3D Objects

Structural Configuration Error
Spatial Precision Error
Logical Error

Correct
Failure Rate

Figure 8: Analysis of errors in the generated and refined 3D objects by CADCodeVerify.

aim to explore the impact of feedback types and investigate the extent to which LLMs can refine
objects based on the specific type of feedback provided.

C.2 ERRORS ANALYSIS

We conduct an in-depth analysis to categorize the types of errors present in the generated 3D objects
and evaluate how much CADCodeVerify improves these objects in terms of Point Cloud distance.
Following the approach in (Yuan et al., 2024), we identified five types of errors: (i) Structural
Configuration Error: errors where the structure of the 3D object is incorrectly arranged; (ii) Spatial
Precision Error: a minor error related to spatial parameters (e.g., height, width, and volume); (iii)
Logical Error: implausible configurations of 3D objects that do not resemble real-world contexts;
(iv) Correct: objects without errors; and (v) Failure Rate: objects that failed to generate due to a
compile error. To identify these errors, three annotators independently categorized them, with the
final annotation determined by majority vote. Figure 8 illustrates the findings: a pie chart shows that
the largest proportion of errors 48% are due to Structural Configuration Errors, followed by Logical
Errors at 18%. Additionally, a bar graph compares the Point Cloud distance for generated and refined
3D objects across each error type, highlighting the improvements achieved by CADCodeVerify.

D ALL THE RESULTS

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 5: We present our results for GPT-4 using the median Point Cloud distance, Hausdorff distance,
and Intersection over Ground Truth (IoGT), along with the interquartile range (IQR) and compile
rates. Table 2 reports the Best Refine results. The * symbol indicates that the geometric solver
accesses the ground truth to compute the geometric differences between the ground truth and the
generated 3D object.

Model Feedback Mechanism Iterations IoGT ↑ Point Cloud dist. ↓ Hausdorff dist. ↓ Compile Rate ↑

GPT-4: Zero-shot

Generated – 0.935 (0.043) 0.153 (0.146) 0.484 (0.405) 92.0%

3D-Premise
Refine_1 0.934 (0.035) 0.164 (0.154) 0.478 (0.383) 91.5%
Refine_2 0.935 (0.037) 0.170 (0.171) 0.493 (0.436) 89.5%

Best Refine 0.939 (0.034) 0.150 (0.143) 0.440 (0.372) 91.5%

CADCodeVerify (Ours)
Refine_1 0.936 (0.032) 0.146 (0.134) 0.491 (0.362) 94.0%
Refine_2 0.936 (0.039) 0.159 (0.151) 0.497 (0.389) 93.5%

Best Refine 0.941 (0.034) 0.132 (0.137) 0.455 (0.354) 94.0%

Geometric solver*
Refine_1 0.939 (0.039) 0.119 (0.170) 0.427 (0.470) 91.5%
Refine_2 0.940 (0.047) 0.125 (0.172) 0.439 (0.457) 91.0%

Best Refine 0.943 (0.037) 0.102 (0.159) 0.378 (0.434) 91.5%

GPT-4: Few-shot

Generated – 0.939 (0.030) 0.155 (0.140) 0.494 (0.368) 96.0%

3D-Premise
Refine_1 0.937 (0.032) 0.156 (0.176) 0.486 (0.424) 91.0%
Refine_2 0.939 (0.039) 0.154 (0.192) 0.467 (0.414) 88.5%

Best Refine 0.942 (0.033) 0.137 (0.155) 0.446 (0.396) 91.0%

CADCodeVerify (Ours)
Refine_1 0.941 (0.030) 0.147 (0.148) 0.470 (0.378) 96.5%
Refine_2 0.941 (0.028) 0.137 (0.139) 0.460 (0.365) 95.5%

Best Refine 0.944 (0.028) 0.127 (0.135) 0.419 (0.356) 96.5%

Geometric solver*
Refine_1 0.938 (0.037) 0.120 (0.162) 0.429 (0.436) 95.5%
Refine_2 0.941 (0.043) 0.110 (0.162) 0.432 (0.448) 94.5%

Best Refine 0.944 (0.031) 0.103 (0.152) 0.399 (0.433) 95.5%

Table 6: We present our results for Gemini using the median Point Cloud distance, Hausdorff distance,
and Intersection over Ground Truth (IoGT), along with the interquartile range (IQR) and compile
rates. Table 2 reports the Best Refine results. The * symbol indicates that the geometric solver
accesses the ground truth to compute the geometric differences between the ground truth and the
generated 3D object.

Model Feedback Mechanism Iterations IoGT ↑ Point Cloud dist. ↓ Hausdorff dist. ↓ Compile Rate ↑

Gemini: Zero-shot

Generated – 0.905 (0.088) 0.159 (0.180) 0.531 (0.451) 85.0%

3D-Premise
Refine_1 0.903 (0.083) 0.167 (0.192) 0.541 (0.431) 83.5%
Refine_2 0.906 (0.082) 0.163 (0.190) 0.548 (0.440) 83.5%

Best Refine 0.911 (0.079) 0.150 (0.180) 0.496 (0.431) 83.5%

CADCodeVerify (Ours)
Refine_1 0.909 (0.091) 0.162 (0.188) 0.527 (0.479) 84.5%
Refine_2 0.906 (0.092) 0.152 (0.170) 0.529 (0.392) 84.5%

Best Refine 0.914 (0.082) 0.138 (0.165) 0.497 (0.384) 84.5%

Geometric solver*
Refine_1 0.907 (0.083) 0.146 (0.220) 0.479 (0.523) 83.5%
Refine_2 0.910 (0.085) 0.139 (0.203) 0.468 (0.499) 82.5%

Best Refine 0.917 (0.070) 0.113 (0.188) 0.416 (0.458) 83.5%

Gemini: Few-shot

Generated – 0.933 (0.061) 0.171 (0.174) 0.521 (0.426) 85.0%

3D-Premise
Refine_1 0.934 (0.067) 0.180 (0.193) 0.555 (0.472) 81.5%
Refine_2 0.935 (0.063) 0.182 (0.237) 0.576 (0.480) 81.0%

Best Refine 0.939 (0.070) 0.169 (0.184) 0.521 (0.516) 81.5%

CADCodeVerify (Ours)
Refine_1 0.935 (0.060) 0.166 (0.173) 0.541 (0.408) 85.0%
Refine_2 0.932 (0.062) 0.178 (0.187) 0.543 (0.413) 83.0%

Best Refine 0.939 (0.052) 0.147 (0.160) 0.492 (0.358) 85.0%

Geometric solver*
Refine_1 0.938 (0.067) 0.124 (0.193) 0.433 (0.452) 84.5%
Refine_2 0.937 (0.064) 0.124 (0.208) 0.432 (0.537) 82.5%

Best Refine 0.944 (0.060) 0.104 (0.146) 0.386 (0.470) 84.5%

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 7: We present our results for CodeLLama using the median Point Cloud distance, Hausdorff
distance, and Intersection over Ground Truth (IoGT), along with the interquartile range (IQR) and
compile rates. Table 2 reports the Best Refine results. The * symbol indicates that the geometric
solver accesses the ground truth to compute the geometric differences between the ground truth and
the generated 3D object.

Model Feedback Mechanism Iterations IoGT ↑ Point Cloud dist. ↓ Hausdorff dist. ↓ Compile Rate ↑

Zero-shot CodeLlama

Generated – 0.92 (0.943) 0.237 (1.591) 0.731 (1.270) 64.5%

CADCodeVerify (Ours)
Refine_1 0.928 (0.949) 0.223 (1.590) 0.685 (1.281) 70.0%
Refine_2 0.000 (0.939) 1.730 (1.553) 1.730 (1.168) 47.0%

Best Refine 0.930 (0.955) 0.211 (1.599) 0.641 (1.309) 70.0%

Geometric solver
Refine_1 0.888 (0.939) 0.286 (1.590) 0.794 (1.250) 55.5%
Refine_2 0.000 (0.915) 1.730 (1.477) 1.730 (0.946) 30.5%

Best Refine 0.888 (0.941) 0.280 (1.595) 0.823 (1.258) 55.5%

Few-shot CodeLlama

Generated – 0.927 (0.949) 0.224 (1.597) 0.657 (1.294) 67.0%

CADCodeVerify (Ours)
Refine_1 0.928 (0.950) 0.212 (1.608) 0.630 (1.324) 73.5%
Refine_2 0.924 (0.946) 0.260 (1.591) 0.714 (1.290) 65.0%

Best Refine 0.935 (0.957) 0.185 (1.620) 0.582 (1.366) 73.5%

Geometric solver
Refine_1 0.903 (0.948) 0.250 (1.604) 0.765 (1.298) 60.5%
Refine_2 0.000 (0.889) 1.730 (1.474) 1.730 (1.018) 31.0%

Best Refine 0.906 (0.949) 0.239 (1.606) 0.727 (1.301) 60.5%

Table 8: We present our results for the GPT-4 few-shot setting, stratified by object complexity (simple
and complex), as discussed in §4.3. The results are reported using the median and interquartile range
(IQR). The * symbol indicates that the geometric solver accesses the ground truth to compute the
geometric differences between the ground truth and the generated 3D object.

Complexity Feedback Mechanism IoGT ↑ PLC distances ↓ Hausdorff dist. ↓ Compile Rate ↑

Simple

Generated 0.941 (0.017) 0.168 (0.174) 0.373 (0.322) 100.0%
3D-Premise 0.943 (0.018) 0.114 (0.112) 0.310 (0.298) 100.0%
CADCodeVerify (Ours) 0.944 (0.026) 0.119 (0.144) 0.329 (0.291) 100.0%
Geometric solver* 0.953 (0.021) 0.035 (0.075) 0.081 (0.336) 100.0%

Moderate Complex

Generated 0.936 (0.052) 0.146 (0.109) 0.465 (0.392) 97.4%

3D-Premise 0.942 (0.047) 0.102 (0.107) 0.341 (0.331) 100.0%
CADCodeVerify (Ours) 0.943 (0.035) 0.114 (0.124) 0.416 (0.332) 97.4%
Geometric solver* 0.937 (0.049) 0.085 (0.082) 0.311 (0.319) 97.4%

Complex

Generated 0.938 (0.024) 0.157 (0.184) 0.504 (0.387) 94.3%

3D-Premise 0.939 (0.029) 0.154 (0.228) 0.469 (0.427) 87.4%
CADCodeVerify (Ours) 0.942 (0.022) 0.114 (0.133) 0.412 (0.297) 96.6%
Geometric solver* 0.946 (0.027) 0.110 (0.159) 0.429 (0.447) 94.3%

Very Complex

Generated 0.941 (0.038) 0.165 (0.140) 0.541 (0.273) 96.5%

3D-Premise 0.946 (0.030) 0.156 (0.198) 0.498 (0.478) 87.7%
CADCodeVerify (Ours) 0.954 (0.039) 0.144 (0.123) 0.475 (0.359) 94.7%
Geometric solver* 0.943 (0.047) 0.114 (0.152) 0.465 (0.330) 94.7%

Table 9: Accuracy of answers generated by CADCodeVerify on a subset of 50 examples in the GPT-4
few-shot setting.

Answers Refine 1 Refine 2 Description

Total answers 219 176 Total number of responses evaluated

Correct answers 64.6% 68.2% We evaluate each answer as either “Yes” or “No” and calculate the
percentage of these responses, including incorrect and “Unclear”
answers. For Refine 1: Out of 214 answers labeled as “Yes” or “No,”
only 19 were incorrect, resulting in an accuracy rate of 91%. For
Refine 2: Out of 176 answers labeled as “Yes” or “No,” 22 were
incorrect, yielding an accuracy rate of 87.5%.

Incorrect answers 8.8% 12.5% The percentage of incorrect answers where the CADCodeVerify
response was "Yes" or "No," but the answer was incorrect.

Answers with “Unclear” 26.6% 19.3% To minimize hallucinations from the LLM, we instructed it to re-
spond with "Unclear" when it lacked confidence in its answer. Any
response labeled as "Unclear" was sent back to the LLM during the
refinement phase for further evaluation.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 9: This figure provides an example (1) of one step of CADCodeVerify, via GPT-4V, for a
prompt from CADPrompt

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 10: This figure provides an example (2) of one step of CADCodeVerify, via GPT-4V, for a
prompt from CADPrompt

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Prompt for generating questions.

You will be given a description of how a human-designer would describe the design of a
3D object. Your job is to provide between 2-5 (Yes or No) questions that I can use to verify
how similar the generated object is to the description generated by a human. The questions
should be framed such that answering “No” implies that there is a change that needs to be
made to the object regarding the verification question. Here are some important points to
note for this task;
(1) Do not make up questions if you cannot generate 5 questions based on the description
provided.
(2) Ensure that your questions only reference entities mentioned within the description.
(3) Try not to reference orientation the components of the 3D object. Your generated
questions should not ask whether a component is on the "right" or "left" side as this
orientation is relative.
I will give you two examples with a language description followed by the appropriate
verification questions. Please reference these examples while generating your verification
questions.

Example 1
Description:
Extrude a cylindrical plate with a rectangular hole in the middle of it.

Generated Questions:
1. Is the object cylindrical in shape?
2. Does the object have a rectangular hole in the center?
3. Is the object extruded in one dimension?

Example 2
Description:
Design a 3D object that resembles a cone. First draw a sketch of a square and extrude it to
create the base of the cone. Next, draw a sketch of a circle centered at the center of the
square base. Extrude this sketch vertically into a conical shape, such that the diameter of the
circle decreases as the height increases. Finally cutout the tip of the cone, such that the tip
of the cone is now rectangular in shape.

Generated Questions:
1- Does the object resemble a cone?
2- Is the base of the object square-shaped?
3- Is the circular base of the cone centered at the same point as the center of the square base?
4- Is the tip of the cone rectangular?
5- Does the diameter of the cone decrease as the height increases?

Figure 11: In the CADCodeVerify approach, we utilize this prompt with two examples to generate
the verification questions.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Prompt for code repair.

You will be provided with a piece of Python code and a compiler error message, and then
your task will be to fix the bugs and rewrite the code.

Compiler error messages:
In line 20:
.vertices().fillet(cutout_radius))
raise ValueError(
ValueError: Cannot find a solid on the stack or in the parent chain

Python Code:
import cadquery as cq

Dimensions
plate_length = 100
plate_width = 50
plate_thickness = 3
cutout_size = 15
cutout_radius = 5

Create the base plate
plate = (cq.Workplane("XY")
.rect(plate_length, plate_width)
.extrude(plate_thickness))

Create the cutout sketch with rounded corners
cutout_sketch = (cq.Workplane("XY")
.moveTo(cutout_size/2, cutout_size/2)
.rect(cutout_size, cutout_size, forConstruction=True)
.vertices().fillet(cutout_radius))
Cutouts at two corners cutout1 = (plate.workplane()
.placeSketch(cutout_sketch)
.extrude(-plate_thickness))

cutout2 = (plate.workplane()
.workplane(offset=plate_length - cutout_size)
.placeSketch(cutout_sketch)
.extrude(-plate_thickness))

Combine the base plate and cutouts
final_object = plate.cut(cutout1).cut(cutout2)

Export the result to an STL file
This line caused the error. ".val()" is removed
final_object.exportStl("Generated.stl")

Figure 12: If the generated CAD code fails to compile due to a compiler error, we pass both the error
and the generated CAD code to LLMs for correction.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Prompt for generating answer.

Your job is to answer this set of questions with respect to the object I have shared with you.
I will be providing 4 images of the object from different orientations so that you can get a
complete picture of the 3D object. Here are some important points to note regarding your
task:
(1) Remember that these images are all of the same object from different angles.
(2) The answer to each of these questions should always be one of three options which are
“Yes” or “No” or “Unclear.”
(3) Your answer should be “Unclear” in situations where you are unsure of the answer or do
not have enough information to answer the question.
Make sure to provide reasoning supporting all your answers.

Your answer should follow the same format as below:
1. **Question?**
- **Answer:**
- **Reasoning:**

2. **Question?**
- **Answer:**
- **Reasoning:**

Figure 13: In the CADCodeVerify approach, we use this prompt along with images to generate the
answer and reasoning for each question.

Prompt for generating feedback.

These were the answers to the questions I asked to validate a generated 3D object. Can
you utilize the answers to these questions to generate actionable feedback that will help the
model to correct the mistakes in the 3D object? Your job is to summarize these answers into
practical corrections that need to be made to the 3D object. Please note the following while
generating your feedback:
(1) The corrections should be such that the answers to all questions provided will become
yes upon applying the suggested corrections.
(2) Your corrections should not change the object such that any of the answers that are
already, "Yes" become "No."
(3) You only want to change the object such that the answers which are "No" or "Unclear"
become "Yes." The summary should be specific and only a few sentences long.
(4) Your corrections should not be regarding the quality or orientation of the images.
(5) Your feedback should not attempt to fix issues in the scale. DO NOT ask for the addition
of additional scale or reference objects.
(6) Do not ask for details regarding the size or dimensions of the object.
(7) Your corrections should be constructed such that a human designer can use your feedback
to update the 3D object such that all questions have "Yes" as the answer.

Figure 14: In the CADCodeVerify approach, we use this prompt to generate feedback from the
generated question-answer set.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Each example (generated code) is sorted in descending order by difficulty.0

1

2

3

4

5

6

To
ta

l n
um

be
r

of
 c

om
pi

le
d

co
de

 fo
r

ea
ch

 o
bj

ec
t a

cr
os

s
si

x
ex

pe
ri

m
en

ts

Easy
split

Hard
split

Figure 15: We conducted six experiments across three LLMs—GPT-4, Gemini, and CodeLlama—and
in both zero-shot and few-shot settings for CADPrompt, which contains 200 examples. Some of
these experiments did not generate compiled code that produced valid 3D objects for some of the
examples. We calculated the total compiled code for each example across all experiments, where
Max = 6 means the example was generated in all experiments, and Min = 0 indicates that the example
was not generated by any experiment. We then sorted them based on difficulty and split the dataset
into "Easy" and "Hard" categories as discussed in §4.3

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Write Python code using CADQuery to create a triangular 3D object. First, draw a sketch of
an equilateral triangle, pointing downwards. Next, cutout a semicircle from the bottom corner
of the triangle. The diameter of this semicircular cutout should be approximately 2/3rd of the
length of each side of the triangle. Finally, extrude this sketch to create a 3D object.

(a) The natural language descriptions of the 3D object.

(b) 3D object

(c) Python Code

Figure 16: An example from the CADPrompt dataset, showing (a) the prompt, (b) the corresponding
3D object, and (c) the human-annotated Python code used to generate the 3D object.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Write Python code using CADQuery to create an inverted desk, with hexagonal legs. First,
draw a rectangular sketch, and cutout four small, right-angle triangles from each corner of the
rectangle to create an octagonal surface. Next, extrude this sketch by a small amount. Draw
two large, regular hexagons, placed symmetrically on opposite ends of the octagonal surface.
The hexagons should be the same size and should align perfectly with each end of the surface.
Finally, extrude these hexagons outwards to give the appearance of two hexagonal columns
protruding from a horizontal surface.

(a) The natural language descriptions of the 3D object.

(b) 3D object

(c) Python Code

Figure 17: An example from the CADPrompt dataset, showing (a) the prompt, (b) the corresponding
3D object, and (c) the human-annotated Python code used to generate the 3D object.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

(a) Lamp (b) Rectangle cut semi Circle

(c) Shelf (d) Bobbin

Figure 18: Comparison of the ground truth 3D object with the 3D object generated by Python code
written by a human CAD design expert.

27

	Introduction
	Related Work
	LLMs for Code Generation
	Language for Automated Design and Manufacturing

	CAD Code Generation
	Code Generation
	Code Execution
	Code Refinement via CADCodeVerify

	CADPrompt dataset
	Prompt Creation
	Code Annotation
	Data Stratification

	Experimental Setup
	Baselines
	Evaluation Metrics

	Experiment Results
	Limitations
	Conclusion
	Ethics Discussion
	Additional Methodology Details
	Why CADQuery?
	Geometric Solver Verbalization
	Experimental Parameters
	Few-Shot Prompt
	Geometric solver feedback

	Qualitative Analysis
	Types of feedback generated by CADCodeVerify.
	Errors Analysis

	All the results

