
Published as a conference paper at ICLR 2025

GENERATING CAD CODE WITH VISION-LANGUAGE
MODELS FOR 3D DESIGNS

Kamel Alrashedy∗, Pradyumna Tambwekar∗ , Zulfiqar Zaidi,
Megan Langwasser, Wei Xu, Matthew Gombolay
Georgia Institute of Technology, GA, USA
{kalrashedy3,ptambwekar3,zzaidi8,mlangwasser3}@gatech.edu
{wei.xu,matthew.gombolay}@cc.gatech.edu

ABSTRACT

Generative AI has revolutionized the fields of Design and Manufacturing by provid-
ing efficient and automated methods for generating and modifying 3D objects. One
approach involves using Large Language Models (LLMs) to generate Computer-
Aided Design (CAD) scripting code, which can then be executed to render a 3D
object; however, the resulting 3D object may not meet the specified requirements.
Testing the correctness of CAD-generated code is challenging due to the structural
intricacies of 3D objects that are not discernable in code. In this paper, we introduce
CADCodeVerify, a novel approach to iteratively verify and improve the design out-
put of 3D objects generated from CAD code. Our approach provides ameliorative
feedback by prompting a Vision Language Model (VLM) to generate and answer
a set of validation questions to verify the generated object and prompt the VLM
to correct deviations. To evaluate CADCodeVerify, we introduce, CADPrompt,
the first benchmark for CAD code generation, consisting of 200 natural language
prompts paired with expert-annotated scripting code for 3D objects to benchmark
progress. Our findings show that CADCodeVerify improves VLM performance
by providing visual feedback by enhancing the structure of the 3D objects and
increasing the compile rate of the compiled program. When applied to GPT-4,
CADCodeVerify achieved a 7.30% reduction in Point Cloud distance and a 5.5%
improvement in compile rate compared to prior work. Code and data are available
at https://github.com/Kamel773/CAD_Code_Generation

1 INTRODUCTION

Generative AI, such as Large Language Models (LLMs) offers a unique opportunity to enhance
productivity, reduce costs, and increase efficiency within Design and Manufacturing sectors (Kumar
et al., 2023). These industries are critical contributors to the global economy and responsible for
creating products and infrastructure. Recent research has demonstrated that Generative AI can support
the generation, evaluation, and correction of 3D object designs (Nelson et al., 2023; Kodnongbua
et al., 2023; Makatura et al., 2023). However, while these solutions improve efficiency for designers
and engineers, they often lack effective feedback mechanisms or refinement loops to automatically
address inaccuracies in the initially generated 3D object.

Our research explores the potential of using VLMs to generate and refine Computer-Aided De-
signs (CAD), the CAD a leading approach in industrial design for creating, modifying, analyzing,
and optimizing 3D objects (Sarcar et al., 2008). Designing products with CAD software such as
FreeCAD (Riegel et al., 2016) and AutoCAD (Yarwood, 2013) generally requires substantial training
and domain expertise. CAD software often includes scripting languages that allow users to build
parametric 3D objects using code, rather than relying solely on the user interface. Leveraging the
code-generating capabilities of Generative AI enables users to bypass the complexities of traditional
CAD software by directly generating the underlying scripting code for representing 3D objects.

We define the process of generating and refining 3D objects using LLMs or VLMs, through CAD
scripting code, as CAD code generation. Designs produced by off-the-shelf VLMs or LLMs often

∗These authors contributed equally to this work

1

https://github.com/Kamel773/CAD_Code_Generation


Published as a conference paper at ICLR 2025

Figure 1: Our approach enables VLMs to automatically generate and refine 3D objects through a
CAD scripting code (e.g., CADQuery) in three steps; (1) Code Generation, where the VLM generates
CAD scripting code from a language prompt, (2) Code Execution, where the code generated by the
model is rendered as a 3D object through a compiler, and (3) Code Refinement, wherein the language
model engages in a self-initiated question-answering process to validate the generated object, with
respect to the initial prompt, to generate actionable feedback to refine the code.

deviate functionally or structurally from stakeholder specifications as these models often hallucinate
on complex, out-of-distribution tasks. Developing refinement methods to correct inaccuracies in a
generated design is a critical next step in this research. Current state-of-the-art refinement methods
are contingent on human-in-the-loop expertise (Makatura et al., 2023; Nelson et al., 2023), which can
be time- and cost-prohibitive. Instead, we propose to develop automated feedback mechanisms for
CAD code generation to reduce the barrier to entry for design and expedite lengthy design processes.

In this work, we introduce CADCodeVerify, an automated method for refining CAD code generation.
CADCodeVerify eliminates the need for human involvement by generating and answering validation
questions based on user requirements, offering feedback to refine 3D object code. This feedback is
used to iteratively refine the design. To evaluate the performance of CADCodeVerify, we introduce a
novel benchmark, CADPrompt contains 200 3D objects annotated with natural language prompts
and expert-written Python code. This multimodal benchmark enables researchers to evaluate aspects
of CAD code generation, including object quality and the syntactical correctness of the generated
code. Our experimental results demonstrate that CADCodeVerify not only enhances the quality
of generated 3D objects but also improves the performance of LLMs and VLMs by increasing the
compile rate of compiled programs. Our work presents three key contributions:

1. We propose CADCodeVerify, a novel CAD code refinement method that enables a VLM
to visually inspect generated objects and provide corrective feedback, through a question-
generation and answering process, to resolve any deviations from the user’s specifications.

2. With our benchmark, CADPrompt, we provide the first quantitative evaluation of CAD code
generation across GPT-4, Gemini 1.5 Pro, and CodeLlama.

3. We demonstrate that CADCodeVerify sets a new state-of-the-art 3D design via CAD script-
ing, achieving a 7.30% reduction in Point Cloud distance and a 5.5% increase in successful
object generation using to GPT-4, the leading VLM for CAD code generation.

2 RELATED WORK

2.1 LLMS FOR CODE GENERATION

LLMs have demonstrated impressive results in a variety of code generation applications. The most
popular application is the text-to-code task, wherein users prompt LLMs with a code description,

2



Published as a conference paper at ICLR 2025

enabling the LLM to generate the code (Rozière et al., 2023; Svyatkovskiy et al., 2020; Brown et al.,
2020; Poesia et al., 2022). Another application is the text-to-SQL task, where a database and a
question are provided to the LLMs, which then generate the corresponding SQL query (Rajkumar
et al., 2022). Building on these advances, we explore how LLMs can support non-experts and
designers in generating 3D objects via CAD code.

Prior research has demonstrated that LLMs can significantly improve the quality their generated code
by incorporating feedback (Chen et al., 2023a). One such approach involves LLMs providing their
own feedback by generating explanatory rationales for the initially generated code. These rationales
are then used as feedback, along with the initial code, to refine the output (Chen et al., 2023b).
Another approach relies on feedback from external tools, such as static code analysis (Alrashedy
et al., 2024), or a Python Interpreter (Madaan et al., 2023).

In contrast, the self-correction method (Welleck et al., 2022) trains two separate models: a generator,
which creates the initial output, and a corrector, which refines the generated code. In CAD code
refinement, one line of research introduces a basic feedback mechanism (Yuan et al., 2024), wherein
VLMs refine 3D object code based both on a script and an image. However, this method still faces
challenges in terms of feedback efficiency and refinement precision. In this work, we propose a novel
approach to generating visual feedback that improves the shapes, surfaces, and dimensions of 3D
objects through more effective code refinement.

2.2 LANGUAGE FOR AUTOMATED DESIGN AND MANUFACTURING

Learning a shared embedding space between language and 3D objects is essential for integrating
language into design and manufacturing. Recent advancements have introduced foundational multi-
modal transformers for image-text data (Radford et al., 2021; Li et al., 2023a; Liu et al., 2023) which
can be used to perform a variety of tasks. These techniques have inspired similar approaches for
incorporating 3D objects into shared embedding spaces (Zeng et al., 2023; Xue et al., 2023; Yu et al.,
2022; Guo et al., 2023), enabling a wide range of multimodal tasks such as dialogue, classification,
and evaluation involving 3D data (Hong et al., 2023; Xu et al., 2023). While successfully learning a
shared-embedding space, these approaches are not capable of generating 3D objects.

Generative modeling of 3D data has traditionally relied on probabilistic models for 3D space.
These include: Generative Adversarial Networks (GANs) (Goodfellow et al., 2014), Variational
AutoEncoders (VAEs) (Kingma & Welling, 2013), and Diffusion Models (Ho et al., 2020). While
GANs and VAEs (Wu et al., 2015; Achlioptas et al., 2018; Gadelha et al., 2018; Yang et al., 2019; Yan
et al., 2024) have been popular approaches, diffusion models have recently emerged as the state-of-
the-art for probabilistic 3D modeling (Zeng et al., 2022; Koo et al., 2023). Diffusion models enable
controllable object generation through language-guided shape generation and completion. However,
their application in producing manufacturable designs remains limited (Li et al., 2023b; Kodnongbua
et al., 2023). These models typically generate point clouds or voxels, which are non-parametric and
not easily adapted for manufacturing. As such, there is a need for methods that produce parametric
outputs suitable for manufacturing.

Recent research has shown that VLMs can generate designs using parametric CAD code (Makatura
et al., 2023; Nelson et al., 2023). However, these approaches still require significant human feedback
to produce code ensure the generated codes meets the user’s specifications. In this paper, we address
this limitation by developing CADCodeVerify, which autonomously generates and refines 3D objects.

3 CAD CODE GENERATION

As shown in Figure 1, we employ a three-step process: (1) code generation (§3.1), (2) code execution
(§3.2), and (3) code refinement via CADCodeVerify for CAD code generation(§3.3).

3.1 CODE GENERATION

We prompt the VLM to generate initial CAD script code, y0, based on a natural language description
of the 3D object, x, along with task specifications. For the few-shot experiment, we incorporate a
set of few-shot demonstrations, Eg, in the prompt (see Appendix B.4). We utilize CADQuery, a
Python-based parametric CAD language with a built-in compiler that interprets code and renders

3



Published as a conference paper at ICLR 2025

parametric 3D object. This CAD code generation can be broadly formulated as per Eq. 1.

y0 ∼ PLM (y0|x,Eg). (1)

3.2 CODE EXECUTION

The generated CAD code, y0, is subsequently executed by the CADQuery compiler, ψ, to produce
the initial CAD design, d0, in the Standard Triangle Language (STL) format,1 where 0 indicates the
initial version of both the generated code and CAD design. We denote this process as d0 = ψ(y0).
Occasionally, the models generate code that fails to compile, usually due to syntax errors in the
Python code. We leverage insights from previous work on code repair (Chen et al., 2023b) and adapt
similar techniques for CAD code generation. To resolve syntactical issues in the code, we leverage
the CADQuery compiler error as feedback, Ferr, for the VLM (see Appendix Figure 12, for the
prompt employed in code repair). This process is repeated until a 3D object, dk, is successfully
rendered by ψ(yk), or the maximum number of iterations, N , is reached as per Eq. 2.

yk ∼ {PLM (yk|x, yk−1, Ferr)}Nk=1. (2)

3.3 CODE REFINEMENT VIA CADCODEVERIFY

To address discrepancies in the generated design, we use a feedback loop to further refine the CAD
code, Fref , to further refine yk as described by Eq. 3, where M is the number of refinement iterations.
Optionally, we include a set of four reference images of the generated object, captured from different
angles (0, 90, 180, and 270 degrees), Iref = {I0l , I90l , I180l , I270l }.

yM ∼ {PLM (yl+1|x, yl, Fref , Iref )}N+M
l=N . (3)

The key innovation of CADCodeVerify is its feedback loop, which uses a VLM to generate visual
feedback automatically, without human intervention or the need for external tools like geometric
solvers (Makatura et al., 2023) (see §5.1). CADCodeVerify is a two-step process consisting of
question-answer generation and feedback generation.

(1) Question-Answer Generation: CADCodeVerify first generates a set of binary “Yes/No” verifi-
cation questions, Q = {q1, q2, . . . , qn}, based on the language description, x, and a set of few-shot
example questions, Eq, i.e., Q ∼ PLM (Q|x,Eq). CADCodeVerify generates between two to five
questions per example (see Figure 11 in the Appendix). To answer these questions, CADCodeVerify
uses the reference images of the generated 3D object, Iref , the generated questions, Q, and the
language description x. CADCodeVerify then answers each question as described in Eq. 4.

A ∼ PLM (A|x,Q, Iref). (4)

CADCodeVerify generates the answers, A = (a1, a2, . . . , an), using Chain-of-Thought (Wei et al.,
2022), where each answer is accompanied by supporting reasoning (see Figure 13 in the Appendix).
Furthermore, CADCodeVerify is directed to respond with "Unclear" if it determines that there is
insufficient information to answer the question.

(2) Feedback Generation: The question-answer pairs are then used to generate ameliorative
feedback to further refine the 3D object as per Eq. 5.

Fref ∼ PLM (Fref |Q,A). (5)

feedback, Fref , is then applied to refine the code, as described Eq. (3). During this step, we omit any
questions for which the answer is “Yes” to allow the model to focus on addressing any unresolved
issues. If all questions are answered “Yes” we assume no further refinement is necessary. The full
feedback generation process is provided in Figure 14 in the Appendix. Additionally, two examples of
full interactions with GPT-4 for a single iteration of CADCodeVerify are included in the Appendix (
Figures 9 and 10).

1Standard Triangle Language is also referred to as “Standard Tessellation Language”. The STL (STere-
oLithography) file format is an openly documented format for describing the surface of an object as a triangular
mesh, that is, as a representation of a 3-dimensional surface in triangular facets.

4



Published as a conference paper at ICLR 2025

(Simple, Hard) 

Ground Truth Natural Language Descriptions (Prompt) Generated Refine-1 Refine-2

(Complex, Hard) 

Feedback

3D-Premise 

CADCodeVerify 
(Ours) 

Geometric
Solver 

3D-Premise 

CADCodeVerify 
(Ours) 

Geometric
Solver 

Write Python code using CADQuery to generate a
CAD model for a 3D object. Sketch a large rectangle
whose height is about 2/3rd its width. Now create a
square cutout from the rectangle, it should be about

1/3rd the rectangles size. This square cutout is
placed such that its top edge is coincident with the
center of the top edge of the first rectangle. This

square cutout extends downward to about the center
of the rectangle. Now extrude the remaining shape to

get the final 3D object. 

Write Python code using CADQuery to create a 3D
object that resembles a square baking mold. First,

draw a sketch of a square with rounded corners, and
then extrude this sketch. Next, draw another sketch of
a slightly smaller square with rounded edges, centered
at the same point of the original square, on the surface
of the first object. Negatively extrude this object by the
same amount as the first extrusion to create a hole in

the original object. 

Figure 2: Examples of 3D objects generated by GPT4 after utilizing each feedback method for code
refinement from our CADPrompt dataset.

Table 1: Statistics of the CADPrompt dataset, including the vertex and face counts of ground truth 3D
objects, as well as the lengths of language descriptions and Python code (§4.3).

Structural Complexity of 3D Object Natural Language Descriptions Python Code Total

Category Vertices Faces Words Sentences Lines of Code Tokens Datapoints
min max avg. min max avg. min max avg. min max avg. min max avg. min max avg.

Simple 6 108 25.6 8 212 47.2 9 18 13.4 1 1 1.0 6 18 8.6 18 48 26.5 17
Moderate 6 344 78.6 8 684 155.0 9 87 30.6 1 5 2.2 7 21 12.6 22 60 35.2 39
Complex 8 540 93.1 12 1092 184.8 13 104 53.9 1 7 3.6 7 32 16.9 25 82 47.3 87
Very Complex 12 531 108.0 20 1070 214.4 13 188 68.5 1 11 4.5 6 46 21.3 18 117 53.6 57

All 6 540 88.8 8 1092 175.7 9 188 50.13 1 11 3.4 6 46 16.6 18 117 45.0 200

4 CADPrompt DATASET

For evaluating CADCodeVerify on CAD code generation, we introduce a new benchmark the
CADPrompt, which consists of 200 3D objects, represented both in images and STL. Each object in
CADPrompt is annotated with ground truth code, and a natural language prompt.

4.1 PROMPT CREATION

To construct CADPrompt dataset, we first selected 200 3D objects from a collection of modular CAD
objects from previous work (Wu et al., 2021). Each object was manually annotated with a natural
language prompt. For difficult-to-describe objects, two annotators independently provided prompts.
An independent third annotator then selected the more suitable prompt. Finally, a fourth independent
reviewer, not involved in the original annotation, verified and refined each of the 200 prompts to
ensure accuracy and grammatical correctness. Table 1 provides the statistics of CADPrompt.

4.2 CODE ANNOTATION

We recruited a CAD Design expert to annotate CADPrompt with ground truth code for each object.
The CAD design expert was provided with the language description of the 3D object, the object in
STL format, and its geometric properties generated by the geometric solver (Figure 6). We then used
Blender (Flavell, 2011) to validate the 3D objects produced by the expert’s Python code against the
ground truth and to evaluate their geometric properties (Figure 18). In cases where discrepancies
were identified, the Python code was returned to the CAD expert for additional refinement. Figures
16 and 17 provide examples of Python code from CADPrompt.

5



Published as a conference paper at ICLR 2025

4.3 DATA STRATIFICATION

We stratify CADPrompt examples by mesh complexity, geometric complexity and compilation
difficulty to gain insights into model performance (§6).

Mesh complexity: We define “mesh complexity” as the total number of faces and vertices of an
object. The ground truth of the 3D object is represented in mesh file formats, which consist of a
collection of vertices, edges, and faces (x, y, z) used to create the 3D object in the STL format.
Objects with more faces and vertices are classified as more complex, while those with fewer faces and
vertices are considered simple (Table 1). We split the dataset into two groups based on the median
complexity: (i) Simple (those with fewer faces and vertices than the median) and (ii) Complex objects
(those with more).

Compilation difficulty: We define “compilation difficulty” to be a measure of how difficult it is for
a set of three language models (i.e., GPT-4, Gemini, and CodeLlama) to generate code for a given 3D
object across two prompting methods (i.e., zero- and few-shot prompting), for a total of six attempts
to generate compilable code. 3D objects were labeled then as either (i) Easy (at least four of six
methods generated compilable code) and (ii) Hard (otherwise). See Appendix Figure 15.

Figure 3: Examples of 3D objects
from the CADPrompt dataset.

Geometric complexity: We enlisted a CAD design expert to
evaluate the “geometric complexity” of each object in CAD-
Prompt. Each object was assigned one of the following levels:
(i) Simple: the object is basic, with few features. It may consist
of one geometric shape; (ii) Moderate: the object has a moder-
ate amount of detail, with a few distinct features or components;
(iii) Complex: the object has many interconnected parts, fine
details, or intricate shapes; and (iv) Very Complex: the object
is highly intricate, with many components, detailed textures,
or complex shapes. It may have a large number of fine details,
interlocking parts, or unique geometric features (Figure 3).

5 EXPERIMENTAL SETUP

5.1 BASELINES

We compare our approach, CADCodeVerify, with two baseline
methods for feedback generation: (i) 3D-Premise, and (ii) Geometric solver feedback.

3D Premise (Yuan et al., 2024): 3D-Premise facilitates code refinement by providing GPT-4 with
both the image of a generated object and its original description. GPT-4 is then prompted to correct
any discrepancies between the original description and generated objects. To establish a baseline for
comparison, we supply the VLM with an image of the generated object and use the same prompts as
used in the original work. Note that this baseline is not applicable for approaches lacking multimodal
capabilities, such as CodeLlama.

Geometric solver feedback (this work): We develop a novel baseline that leverages FreeCAD, an
open-source geometric solver, to provide information about the geometric dimensions and structure of
the generated 3D object, dg . However, our proposed baseline, which computes geometric properties
feedback using the geometric solver, requires access to the ground truth 3D objects, dgt in STL
format. Specifically, the feedback, FGS , consists of numerical values across thirteen categories, S,
each representing a unique geometric dimension or component of the object, such as width, height,
number of faces, number of vertices, and volume. Formally, this feedback process is shown in Eq. 6
and 7. We compute FGS for both the generated design, dg, and ground truth, dgt. In summary, we
can describe the role of the geometric solver as follows:

FGS(dg) = {(s,GS(s, dg)),∀s ∈ S} (6)
Fr = FGS(dg)⊕ FGS(dgt) (7)

6



Published as a conference paper at ICLR 2025

The feedback from the geometric solver consists of numerical values across thirteen categories of
geometric information. An example of this feedback, FGS , is shown in Appendix (see Figure 6). This
feedback method acts as an upper bound for CAD code refinement, as it conveys the exact geometric
differences between the generated 3D object and the ground truth.

5.2 EVALUATION METRICS

This evaluates how accurately VLMs generate and refine 3D objects through CAD code. We use
three evaluation metrics to compare the quality of the generated 3D object against the ground truth:
(i) Point Cloud distance, (ii) Hausdorff distance, and (iii) Intersection over the Ground Truth (IoGT).
We apply the Iterative Closest Point (ICP) algorithm to rotate and translate the generated 3D object
for optimal alignment with the ground truth object (Besl & McKay, 1992). Finally, each point cloud
is normalized to fit within a unit cube, as per prior work (Zheng et al., 2023). We also report the
percentage of successfully compiled code as the “compile rate”. The formulas for the evaluation
metrics are described as follows:

Point Cloud distance: Point Cloud distance D(P,Q) is shown in Eq. 8, where dp,q = ∥p− q∥2.

D(P,Q) =
1

2|P |
∑
p∈P

min
q∈Q

dp,q +
1

2|Q|
∑
p∈Q

min
p∈P

dp,q (8)

Hausdorff distance: Hausdorff distance, H(P,Q), is given by Eq. 9, where sup and inf represent
the supremum and infimum operators, respectively (Beauchemin et al., 1998).

H(P,Q) = max{sup
p∈P

inf
q∈Q

dp,q, sup
q∈Q

inf
p∈P

dq,p} (9)

Intersection over the Ground Truth (IoGT): This metric used to evaluate how closely the
generated 3D object P aligns with the ground truth Q. As shown in Eq. 10, it calculates the ratio of
the intersection area between P and Q to the area of Q.

IoGT =
|P ∩Q|
|Q| (10)

Point Cloud distance and Hausdorff distance are based on the geometric properties (e.g., height, width,
and volume) of 3D objects, while the IoGT measures the overlap of the bounding boxes between the
generated and ground truth 3D objects. If any generation fails to compile, we set the distance (Point
Cloud and Hausdroff) to

√
3 (the largest possible distance between two points in a unit cube) and

an IoGT value of zero (the worse possible IoGT value between two 3D objects) to maximally and
uniformly penalize unsuccessful 3D object generations.

6 EXPERIMENT RESULTS

We utilize CADPrompt to quantitatively evaluate the capabilities of CADCodeVerify approach across
various VLMs. In the rest of this section, we refer to the three stages of the CAD code generation
process as “Generate” “Refine-1” and “Refine-2” “Generated” refers to the object generated by the
LLM after the Code-Execution Step. “Refine-1” refers to the object after the first step of refinement,
and Refine-2 refers to the object after the second step of refinement. Our key findings are as follows:

GPT-4 demonstrates the highest capacity to generate compilable code CADPrompt. We present
our primary results in Table 2, comparing the distance and success-rate across three LLMs and three
refinement methods. Regarding compile rate, GPT-4 shows superior performance at 96.5% on the
CADPrompt benchmark, compared to Gemini at 85% and CodeLlama at 73.5%. While previous
studies have provided valuable qualitative insights into GPT-4’s ability to produce compilable
code (Makatura et al., 2023), our analysis using CADPrompt offers a concrete evaluation of each
LLM’s CAD code generation capability.

CADCodeVerify demonstrates superior performance on more challenging data. Figure 4
shows the compile rates for each feedback mechanism at the generation and refinement stages, using
the difficulty and complexity splits of CADPrompt. For "Easy" data, the performance across all

7



Published as a conference paper at ICLR 2025

Table 2: This table reports the median (IQR) benchmarking results for baselines across metrics. The
* symbol indicates that the geometric solver accesses the ground truth to compute the geometric
differences between the ground truth and the generated 3D object.

Model Feedback Mechanism IoGT ↑ Point Cloud dist. ↓ Hausdorff dist. ↓ Compile Rate ↑

GPT-4: Zero-shot

Generated 0.935 (0.043) 0.153 (0.146) 0.484 (0.405) 92.0%

3D-Premise 0.939 (0.034) 0.150 (0.143) 0.440 (0.372) 91.5%
CADCodeVerify (Ours) 0.941 (0.034) 0.132 (0.137) 0.455 (0.354) 94.0%
Geometric solver* 0.943 (0.037) 0.102 (0.159) 0.378 (0.434) 91.5%

GPT-4: Few-shot

Generated 0.939 (0.030) 0.155 (0.140) 0.494 (0.368) 96.0%

3D-Premise 0.942 (0.033) 0.137 (0.155) 0.446 (0.396) 91.0%
CADCodeVerify (Ours) 0.944 (0.028) 0.127 (0.135) 0.419 (0.356) 96.5%
Geometric solver* 0.944 (0.031) 0.103 (0.152) 0.399 (0.433) 95.5%

Gemini: Zero-shot

Generated 0.905 (0.088) 0.159 (0.180) 0.531 (0.451) 85.0%

3D-Premise 0.911 (0.079) 0.150 (0.180) 0.496 (0.431) 83.5%
CADCodeVerify (Ours) 0.914 (0.082) 0.138 (0.165) 0.497 (0.384) 84.5%
Geometric solver* 0.917 (0.070) 0.113 (0.188) 0.416 (0.458) 83.5%

Gemini: Few-shot

Generated 0.933 (0.061) 0.171 (0.174) 0.521 (0.426) 85.0%

3D-Premise 0.939 (0.070) 0.169 (0.184) 0.521 (0.516) 81.5%
CADCodeVerify (Ours) 0.939 (0.052) 0.147 (0.160) 0.492 (0.358) 85.0%
Geometric solver* 0.944 (0.060) 0.104 (0.146) 0.386 (0.470) 84.5%

CodeLlama: Zero-shot

Generated 0.920 (0.943) 0.237 (1.591) 0.731 (1.270) 64.5%

CADCodeVerify (Ours) 0.930 (0.955) 0.211 (1.599) 0.641 (1.309) 70.0%
Geometric solver* 0.888 (0.941) 0.280 (1.595) 0.823 (1.258) 55.5%

CodeLlama: Few-shot

Generated 0.927 (0.949) 0.224 (1.597) 0.657 (1.294) 67.0%

CADCodeVerify (Ours) 0.935 (0.957) 0.185 (1.620) 0.582 (1.366) 73.5%
Geometric solver* 0.906 (0.949) 0.239 (1.606) 0.727 (1.301) 60.5%

Generated Refine 1 Refine 2
Difficulty: Easy

50

60

70

80

90

100

Co
m

pi
le

 R
at

e 
(%

)

Generated Refine 1 Refine 2
Difficulty: Hard

50

60

70

80

90

100

Generated Refine 1 Refine 2
Mesh Complexity: Simple

50

60

70

80

90

100

Generated Refine 1 Refine 2
Mesh Complexity: Complex

50

60

70

80

90

100

3D-Premise CADCodeVerify  (Ours) Geometric solver

Figure 4: Compile rate comparison across different feedback mechanisms, categorized by difficulty
and mesh complexity. Each figure corresponds to a specific subset of the CADPrompt dataset,
covering both generated and refined objects. The plots for the “Hard” and “Complex” splits indicate
that the feedback approach from 3D-Premise reduces GPT-4’s compile rate in object generation.

baselines is relatively similar. However, results on the "Hard" data underscore the effectiveness of
CADCodeVerify, which is the only refinement approach that enhances the compile rate of object
generation, achieving approximately a 9% increase at the Refine-1 stage. In contrast, 3D-Premise
struggles to provide effective feedback for "Hard" data, resulting in a 20% drop in compile rate
at Refine-1, bringing it down to 62%. Real-world data in design and manufacturing is likely to
align more closely with the “Complex” and “Hard” data splits, underscoring the value of CADCode.
Our findings underscore the value of CADCodeVerify in delivering feedback that can be applied to
real-world product design.

CADCodeVerify generates model-agnostic feedback to improve 3D object generation. Table 2
presents the distance measure from the ground truth at the generation and refinement stages. Since
CodeLlama lacks multimodal capabilities, we employ GPT-4 to execute CADCodeVerify and generate
refinement feedback. Our results indicate that CADCodeVerify improves the quality of the generated
object across all three LLMs/VLMs as measured by IoGT, Point Cloud distance and Hausdorff
distance. CADCodeVerify also increases both GPT-4 and CodeLlama’s “compile rate” in producing
compilable CAD code. This result highlights the model-agnostic nature of the multimodal “assess

8



Published as a conference paper at ICLR 2025

and reason” analysis induced by our CADCodeVerify refinement process, to universally provides
actionable feedback for correcting object generation errors.

Table 3: Median (IQR) results from our ablation study conducted on a randomly selected subset of
100 samples.

Ablation Study IoGT ↑ PLC distances ↓ Hausdorff dist. ↓ Compile Rate ↑
Generated 0.909 (0.062) 0.156 (0.150) 0.491 (0.348) 96.5%

Refine without images 0.914 (0.058) 0.153 (0.123) 0.451 (0.321) 96.0%

Zero-shot QA generation 0.919 (0.049) 0.141 (0.112) 0.471 (0.280) 98.0%
CADCodeVerify (Ours) 0.919 (0.045) 0.126 (0.122) 0.444 (0.308) 97.5%

CADCodeVerify outperforms 3D-Premise across VLMs. In Table 2, we quantitatively compare
our CADCodeVerify approach to a refinement method proposed in prior work, 3D-Premise. Since
3D-Premise requires directly uploading an image of the generated object to the VLM, this approach
cannot be applied to the unimodal CodeLlama model. For GPT-4 and Gemini, CADCodeVerify is
shown to refine objects more accurately than 3D-Premise for objects in the CADPrompt dataset (> 7%
reduction in point cloud distance for GPT-4 and Gemini). This finding establishes CADCodeVerify
as the new state-of-the-art for CAD code refinement. Next, we compare our proposed refinement
approach to an upper benchmark that uses a geometric solver to provide parametric feedback on
specific geometric differences relative to the target object, as per § 5. Our results show that through
CADCodeVerify, we can achieve comparable performance without requiring access to the target
object, which is typically unavailable in real-world applications.

Ablation analysis. We conduct an ablation to evaluate the effectiveness of each independent
component of CADCodeVerify (see Table 2). This analysis is performed using GPT-4 with a few-shot
prompt on 100 randomly selected examples from CADPrompt. First, we test the effect of removing
the few-shot example questions in the question-generation component (see Eq. 3). The results indicate
that zero-shot QA generation increases the distance between the ground truth and refined 3D objects
from 0.126 to 0.141 in Point Cloud distance and from 0.444 to 0.471 in Hausdorff distance. Our
second ablation measures the impact of the reference images, Iref , during the code refinement step of
Eq. 3. Excluding the reference images worsens the Point Cloud and Hausdorff distances from 0.126
and 0.444 to 0.153 and 0.451, respectively, emphasizing the importance of the reference images.

Table 4: Performance Comparison of CADCodeVerify and Human-in-the-Loop (HITL) approaches
on a subset of 50 examples from the GPT-4 few-shot setting.

Model Feedback Mechanism IoGT ↑ Point Cloud dist. ↓ Hausdorff dist. ↓ Compile Rate ↑

GPT-4: Few-shot

Generated 0.930 (0.043) 0.156 (0.138) 0.495 (0.287) 98.5%

CADCodeVerify 0.948 (0.036) 0.137 (0.136) 0.445 (0.302) 98.5%

Human-in-the-Loop 0.944 (0.032) 0.120 (0.140) 0.397 (0.354) 99.0%

Gold-Standard human feedback outperforms CADCodeVerify slightly. This experiment evaluates
the performance of CADCodeVerify compared to a human-in-the-loop approach, where instead of
using CADCodeVerify for code refinement, we provide gold standard language feedback which
includes the exact changes that need to be made to the object. We performed this experiment on a
randomly selected subset of 50 examples using the GPT-4 few-shot setting. The experiment involves
two steps: (1) a human participant selects the image with the best viewing angle of the 3D object
from four options (see Eq. 3), and (2) the human provides written feedback. The results indicate that
the human-in-the-loop approach led to a slight improvement in Point Cloud distance and Hausdorff
distance, with performance increasing from 0.137 and 0.445 to 0.120 and 0.397, respectively (see
Table 4). The result of the human-in-the-loop contextualizes the performance of CADCodeVerify
with respect to a method which injects domain-expertise to provide the best possible feedback. While
CADCodeVerify makes significant strides in refining 3D objects, without any requiring domain
expertise, some improvements are still needed to reach the level of a human expert.

9



Published as a conference paper at ICLR 2025

Figure 5: An example of a subset of questions and answers generated by CADCodeVerify.

Accuracy of generated answers. In the Question-Answering phase, CADCodeVerify is prompted
to respond with “Yes,” “No” or “Unclear,” in situations when there is insufficient information (See
Figure 5). To evaluate the accuracy of these answers, we randomly selected a subset of 50 examples
from the GPT-4 few-shot setting, then manually validated the answers for both refinement stages. The
results indicate that CADCodeVerify provides correct answers with an accuracy of 64.6% for Refine
1 and 68.2% for Refine 2 (see Table 9). To reduce hallucinations from the LLMs, we instructed it
to respond with "Unclear" whenever it lacked confidence in its answers. In future work, we aim to
explore how LLMs can interpret 3D objects and investigate methods to teach LLMs to self-verify
their generated responses.

7 LIMITATIONS

It is essential to recognize that Point Cloud distance and Hausdorff distance are noisy metrics,
measuring only the spatial similarity between two 3D objects. While they provide a broad estimate of
similarity, a more granular metric is needed to capture structural differences between objects. For
instance, a desk and a desk with small gaps between the legs and surface might have a low distance
measure, but these gaps represent critical logical or structural issues that should be captured in the
evaluation. In future work, we plan to investigate evaluation methods for CAD code generation that
incorporate logical design principles.

The quality of generated objects and the likelihood of successful code compilation are influenced
by the user’s initial prompt. Due to the flexibility of natural language, the interpretation of 3D
objects can vary, resulting in multiple valid but functionally different descriptions for the same object.
For example, one could describe a desk could be described functionally as “Draw a desk with four
legs,” or more geometrically as “Draw an object with a flat rectangular top supported by four long
rectangular prisms at each corner”. In our approach, we incorporated review procedures to improve
data quality, though it was not feasible to exhaustively explore all possible annotation methods.
Future research could delve deeper into this prompt sensitivity and explore strategies for identifying
the most effective prompts for specific VLMs.

8 CONCLUSION

In this work, we formally define a novel task, CAD code generation, wherein VLMs are employed to
generate code for 3D parametric models. We compiled a novel CADPrompt dataset, comprising 200
3D objects paired with corresponding language descriptions and Python code. Next, we introduce a
novel approach for code refinement within CAD code generation, called CADCodeVerify, which
enables a VLM to validate and correct its generated object to address any errors in the output.
We compare CADCodeVerify to two other relevant approaches for code refinement in CAD code
generation, highlighting the strengths and limitations of each method. Our approach represents a
substantial improvement over previous CAD code generation methods, which primarily relied on
manual human feedback through language interactions with VLMs.

10



Published as a conference paper at ICLR 2025

9 ACKNOWLEDGMENT

This work was supported by the National Science Foundation under grant number CMMI-2229260.
We extend our gratitude to Jamie Adams, a CAD design expert, for annotating our dataset using
Python code.

REFERENCES

Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning representations
and generative models for 3d point clouds. In International conference on machine learning, pp.
40–49. PMLR, 2018.

Kamel Alrashedy, Vincent J. Hellendoorn, and Alessandro Orso. Learning defect prediction from
unrealistic data. Proceedings of the IEEE International Conference on Software Analysis, Evolution
and Reengineering, 2024.

Mario Beauchemin, Keith P. B. Thomson, and Geoffrey Edwards. On the hausdorff distance used for
the evaluation of segmentation results. Canadian Journal of Remote Sensing, 24:3–8, 1998. URL
https://api.semanticscholar.org/CorpusID:13813367.

Paul J Besl and Neil D McKay. Method for registration of 3-d shapes. In Sensor fusion IV: control
paradigms and data structures, volume 1611, pp. 586–606. Spie, 1992.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam Girish Sastry, Amanda Askell, Sandhini Agarwa, l Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler,
Clemens Winter Jeffrey Wu, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott
Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-shot learners. 2020. doi: 877-1901.

Hailin Chen, Amrita Saha, Steven Hoi, and Shafiq Joty. Personalised distillation: Empowering
open-sourced llms with adaptive learning for code generation. arXiv preprint arXiv:2310.18628,
2023a.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. 2023b.

Lance Flavell. Beginning blender: open source 3d modeling, animation, and game design. Apress,
2011.

Matheus Gadelha, Rui Wang, and Subhransu Maji. Multiresolution tree networks for 3d point cloud
processing. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 103–118,
2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Ziyu Guo, Renrui Zhang, Xiangyang Zhu, Yiwen Tang, Xianzheng Ma, Jiaming Han, Kexin Chen,
Peng Gao, Xianzhi Li, Hongsheng Li, et al. Point-bind & point-llm: Aligning point cloud
with multi-modality for 3d understanding, generation, and instruction following. arXiv preprint
arXiv:2309.00615, 2023.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Yining Hong, Haoyu Zhen, Peihao Chen, Shuhong Zheng, Yilun Du, Zhenfang Chen, and Chuang
Gan. 3d-llm: Injecting the 3d world into large language models. arXiv preprint arXiv:2307.12981,
2023.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

11

https://api.semanticscholar.org/CorpusID:13813367


Published as a conference paper at ICLR 2025

Milin Kodnongbua, Benjamin T Jones, Maaz Bin Safeer Ahmad, Vladimir G Kim, and Adriana
Schulz. Reparamcad: Zero-shot cad program re-parameterization for interactive manipulation.
2023.

Juil Koo, Seungwoo Yoo, Minh Hieu Nguyen, and Minhyuk Sung. Salad: Part-level latent diffu-
sion for 3d shape generation and manipulation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pp. 14441–14451, 2023.

Sachin Kumar, T Gopi, N Harikeerthana, Munish Kumar Gupta, Vidit Gaur, Grzegorz M Krolczyk,
and ChuanSong Wu. Machine learning techniques in additive manufacturing: a state of the art
review on design, processes and production control. Journal of Intelligent Manufacturing, 34(1):
21–55, 2023.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large language models. arXiv preprint arXiv:2301.12597,
2023a.

Muheng Li, Yueqi Duan, Jie Zhou, and Jiwen Lu. Diffusion-sdf: Text-to-shape via voxelized diffusion.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12642–12651, 2023b.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. arXiv
preprint arXiv:2304.08485, 2023.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. arXiv preprint arXiv:2303.17651, 2023.

Liane Makatura, Michael Foshey, Bohan Wang, Felix HähnLein, Pingchuan Ma, Bolei Deng, Megan
Tjandrasuwita, Andrew Spielberg, Crystal Elaine Owens, Peter Yichen Chen, et al. How can large
language models help humans in design and manufacturing? arXiv preprint arXiv:2307.14377,
2023.

Matt D Nelson, Brady L Goenner, and Bruce K Gale. Utilizing chatgpt to assist cad design for
microfluidic devices. Lab on a Chip, 23(17):3778–3784, 2023.

Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and
Sumit Gulwani. Synchromesh: Reliable code generation from pre-trained language models. arXiv
preprint arXiv:2201.11227, 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Nitarshan Rajkumar, Raymond Li, and Dzmitry Bahdanau. Evaluating the text-to-sql capabilities of
large language models. arXiv preprint arXiv:2204.00498, 2022.

Juergen Riegel, Werner Mayer, and Yorik van Havre. Freecad. Freecadspec2002. pdf, 2016.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton,
Manish Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade
Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel
Synnaeve. Code llama: Open foundation models for code. 2023.

MMM Sarcar, K Mallikarjuna Rao, and K Lalit Narayan. Computer aided design and manufacturing.
PHI Learning Pvt. Ltd., 2008.

Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. Intellicode compose:
Code generation using transformer. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp.
1433–1443, 2020.

12



Published as a conference paper at ICLR 2025

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and Yejin
Choi. Generating sequences by learning to self-correct. arXiv preprint arXiv:2211.00053, 2022.

Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A deep generative network for computer-
aided design models. In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 6772–6782, October 2021.

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang, and Jianxiong
Xiao. 3d shapenets: A deep representation for volumetric shapes. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1912–1920, 2015.

Runsen Xu, Xiaolong Wang, Tai Wang, Yilun Chen, Jiangmiao Pang, and Dahua Lin. Pointllm:
Empowering large language models to understand point clouds. arXiv preprint arXiv:2308.16911,
2023.

Le Xue, Mingfei Gao, Chen Xing, Roberto Martín-Martín, Jiajun Wu, Caiming Xiong, Ran Xu,
Juan Carlos Niebles, and Silvio Savarese. Ulip: Learning a unified representation of language,
images, and point clouds for 3d understanding. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 1179–1189, 2023.

Xiaoliang Yan, Reed Williams, Elena Arvanitis, and Shreyes Melkote. Deep learning-based semantic
segmentation of machinable volumes for cyber manufacturing service. Journal of Manufacturing
Systems, 72:16–25, 2024. ISSN 0278-6125. doi: https://doi.org/10.1016/j.jmsy.2023.11.005. URL
https://www.sciencedirect.com/science/article/pii/S0278612523002285.

Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge Belongie, and Bharath Hariharan.
Pointflow: 3d point cloud generation with continuous normalizing flows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 4541–4550, 2019.

Alf Yarwood. Introduction to AutoCAD 2004. Routledge, 2013.

Xumin Yu, Lulu Tang, Yongming Rao, Tiejun Huang, Jie Zhou, and Jiwen Lu. Point-bert: Pre-
training 3d point cloud transformers with masked point modeling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 19313–19322, 2022.

Zeqing Yuan, Haoxuan Lan, Qiang Zou, and Junbo Zhao. 3d-premise: Can large language models
generate 3d shapes with sharp features and parametric control? arXiv preprint arXiv:2401.06437,
2024.

Xiaohui Zeng, Arash Vahdat, Francis Williams, Zan Gojcic, Or Litany, Sanja Fidler, and Karsten Kreis.
Lion: Latent point diffusion models for 3d shape generation. arXiv preprint arXiv:2210.06978,
2022.

Yihan Zeng, Chenhan Jiang, Jiageng Mao, Jianhua Han, Chaoqiang Ye, Qingqiu Huang, Dit-Yan
Yeung, Zhen Yang, Xiaodan Liang, and Hang Xu. Clip2: Contrastive language-image-point
pretraining from real-world point cloud data. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 15244–15253, 2023.

Shen Zheng, Jinqian Pan, Changjie Lu, and Gaurav Gupta. Pointnorm: Dual normalization is all
you need for point cloud analysis. In 2023 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8. IEEE, 2023.

A ETHICS DISCUSSION

As our approach utilizes VLMs, we need to be cognizant of the potential pitfalls of utilizing these
approaches. VLMs are capable of hallucinations to produce context that is unrelated or unhelpful
to the desired context. These hallucinations may also include harmful propagation of the inherent

13

https://www.sciencedirect.com/science/article/pii/S0278612523002285


Published as a conference paper at ICLR 2025

stereotypes within the datasets utilized to train these models. While these concerns are important to
note for any VLM-based approach, the potential downstream impact on users via our approach is
minimal. Since our approach is employed to produce 3D objects, there is limited harm which may be
incurred by any potential hallucinations via our approach. However, a malicious user may choose to
leverage our method to generate a 3D object of a weapon or harmful item such as guns, knives, etc.
While there are many steps between the process of generating a design and procuring the item, we
encourage readers to exercise caution in identifying and reporting any misuse of this approach.

B ADDITIONAL METHODOLOGY DETAILS

B.1 WHY CADQUERY?

CADQuery is one of several open-source CAD scripting languages, alongside tools like FreeCAD and
OpenSCAD. Previous work has primarily used OpenSCAD for CAD code generation. However, we
chose to use CADQuery as our parametric CAD programming language instead of OpenSCAD, which
has been the dominant language for generating 3D objects. Our decision to switch to CADQuery
was based on two key reasons: (1) CADQuery is built in Python, making it more suitable for
LLM-generated code, given the vast amount of Python code available online. (2) CADQuery’s
"design-intent" approach allows it to generate more concise code for complex objects compared to
OpenSCAD.

B.2 GEOMETRIC SOLVER VERBALIZATION

As an intermediate step, we utilize an LLM to verbalize this feedback, offering detailed insights
into how the generated design dg differs from the ground truth design dgt. Verbalization has been
demonstrated to enhance the model’s understanding and response accuracy (Madaan et al., 2023).

B.3 EXPERIMENTAL PARAMETERS

We performed the experiments using GPT-4 ("gpt-v4") via the OpenAI API and Gemini ("gemini-
1.5-flash-latest") through the Google API, with the temperature set to 0 for code generation and
refinement. In cases where the generated code had bugs or failed to compile, we resubmitted both the
code and the compiler error message to the model, adjusting the temperature to 1. For CodeLlama
B70, we utilized the Replicate API2, setting the temperature to 0.8 for code generation, refinement,
and bug fixing. Other hyperparameters, such as top_k = 10, top_p = 0.9, and repeat_penalty = 1.1,
were kept at their default values. The total cost for running the experiments was approximately $1000:
$450 for GPT-4, $5 for Gemini, and $150 for CodeLlama. Experiments were conducted from 06
JAN to 15 FEB, 2024, and May 15 to August 15, 2024. In all our experiments, we set the number
of refinements to 2, as no improvement was observed beyond the second refinement. This setting
is consistent with prior work on refinement for code generation (Madaan et al., 2023; Chen et al.,
2023a).

To compute distance measures, we converted the generated STL files into point clouds rendered with
1000 points. We used the Open3D and Pandas libraries to calculate the Point Cloud Distance.

B.4 FEW-SHOT PROMPT

We design a few-shot prompt to enable VLMs to adeptly perform CAD code generation. The prompt,
p ∼ y1 ⊕ y2 . . . ⊕ yk, where the y is CAD code and is comprised of a set of k examples. We can
formulate the few shot learning as P ∼ {(yi)}ki=1. Each example, (yi) is sourced from a memory
of code samples, D, collected from the CADQuery documentation with a total of 40 examples. We
include a text-description of the object or additional comments describing the code, in each code
snippet, if it is available in the documentation.

2https://replicate.com/

14



Published as a conference paper at ICLR 2025

B.5 GEOMETRIC SOLVER FEEDBACK

An example of the geometric solver’s feedback for both generated and ground truth 3D objects is
shown in Figure 6.

Figure 6: This figure presents an example of the feedback generated by the geometric solver, which
calculates the geometric properties between the generated and ground truth 3D objects, requiring
access to the ground truth.

C QUALITATIVE ANALYSIS

We conduct a qualitative analysis on the outputs of CADCodeVerify on a randomly selected set of
50 examples to provide further insights for two salient questions: (1) What types of feedback does
CADCodeVerify generate? (2) What kinds of errors are present in the generated 3D objects?

C.1 TYPES OF FEEDBACK GENERATED BY CADCODEVERIFY.

The feedback produced by CADCodeVerify is designed to enhance LLMs in refining the generated
3D objects. To understand the nature of the feedback generated by CADCodeVerify, we conducted
a qualitative analysis and manually categorized the feedback into three main types: (i) Structural
Feedback: the feedback is to correct the structure of the object (e.g., “make cylindrical or adjust
corner shape); (ii) Dimensional Feedback: the feedback is an instructions related to size and scale of
objects (e.g., increase height and reduce width); and (iii) Positional Feedback: the feedback focuses
on the alignment of the objects (e.g., center object and align with base). illustrated in Figure 7, the
percentage of Structural Feedback for generated objects starts at 52.0% in Refine 1 and decreases to
38.0% in Refine 2, demonstrating CADCodeVerify’ ability to correct structural errors in the generated
3D objects. Meanwhile, Dimensional Feedback increases from 20% to 26%, likely due to some
previously resolved structural errors being recategorized as dimensional issues. In future work, we
aim to explore the impact of feedback types and investigate the extent to which LLMs can refine
objects based on the specific type of feedback provided.

15



Published as a conference paper at ICLR 2025

52.0%

20.0%

8.0%

16.0%
4.0%

Refine 1

38.0%

26.0%

8.0%

24.0%

4.0%

Refine 2

Structural Feedback
Dimensional Feedback
Positional Feedback

No Feedback
Failure Rate

Figure 7: Analysis of the types of feedback produced by CADCodeVerify.

48.0%

16.0%

18.0%

12.0%
6.0%

Distribution of Error Types in Generated 3D Objects

Structural
 Configuration

 Error

Logical Error Spatial Precision
 Error

Error Types in Generated 3D objects

0.00

0.05

0.10

0.15

0.20

0.25

Po
in

t C
lo

ud
 D

ist
an

ce

Distances of Generated and Refined 3D Objects
 for Each Error Type

Generated 3D Objects
Refined 3D Objects

Structural Configuration Error
Spatial Precision Error
Logical Error

Correct
Failure Rate

Figure 8: Analysis of errors in the generated and refined 3D objects by CADCodeVerify.

C.2 ERRORS ANALYSIS

We conduct an in-depth analysis to categorize the types of errors present in the generated 3D objects
and evaluate how much CADCodeVerify improves these objects in terms of Point Cloud distance.
Following the approach in (Yuan et al., 2024), we identified five types of errors: (i) Structural
Configuration Error: errors where the structure of the 3D object is incorrectly arranged; (ii) Spatial
Precision Error: a minor error related to spatial parameters (e.g., height, width, and volume); (iii)
Logical Error: implausible configurations of 3D objects that do not resemble real-world contexts;
(iv) Correct: objects without errors; and (v) Failure Rate: objects that failed to generate due to a
compile error. To identify these errors, three annotators independently categorized them, with the
final annotation determined by majority vote. Figure 8 illustrates the findings: a pie chart shows that
the largest proportion of errors 48% are due to Structural Configuration Errors, followed by Logical
Errors at 18%. Additionally, a bar graph compares the Point Cloud distance for generated and refined
3D objects across each error type, highlighting the improvements achieved by CADCodeVerify.

D ALL THE RESULTS

16



Published as a conference paper at ICLR 2025

Table 5: We present our results for GPT-4 using the median Point Cloud distance, Hausdorff distance,
and Intersection over Ground Truth (IoGT), along with the interquartile range (IQR) and compile
rates. Table 2 reports the Best Refine results. The * symbol indicates that the geometric solver
accesses the ground truth to compute the geometric differences between the ground truth and the
generated 3D object.

Model Feedback Mechanism Iterations IoGT ↑ Point Cloud dist. ↓ Hausdorff dist. ↓ Compile Rate ↑

GPT-4: Zero-shot

Generated – 0.935 (0.043) 0.153 (0.146) 0.484 (0.405) 92.0%

3D-Premise
Refine_1 0.934 (0.035) 0.164 (0.154) 0.478 (0.383) 91.5%
Refine_2 0.935 (0.037) 0.170 (0.171) 0.493 (0.436) 89.5%

Best Refine 0.939 (0.034) 0.150 (0.143) 0.440 (0.372) 91.5%

CADCodeVerify (Ours)
Refine_1 0.936 (0.032) 0.146 (0.134) 0.491 (0.362) 94.0%
Refine_2 0.936 (0.039) 0.159 (0.151) 0.497 (0.389) 93.5%

Best Refine 0.941 (0.034) 0.132 (0.137) 0.455 (0.354) 94.0%

Geometric solver*
Refine_1 0.939 (0.039) 0.119 (0.170) 0.427 (0.470) 91.5%
Refine_2 0.940 (0.047) 0.125 (0.172) 0.439 (0.457) 91.0%

Best Refine 0.943 (0.037) 0.102 (0.159) 0.378 (0.434) 91.5%

GPT-4: Few-shot

Generated – 0.939 (0.030) 0.155 (0.140) 0.494 (0.368) 96.0%

3D-Premise
Refine_1 0.937 (0.032) 0.156 (0.176) 0.486 (0.424) 91.0%
Refine_2 0.939 (0.039) 0.154 (0.192) 0.467 (0.414) 88.5%

Best Refine 0.942 (0.033) 0.137 (0.155) 0.446 (0.396) 91.0%

CADCodeVerify (Ours)
Refine_1 0.941 (0.030) 0.147 (0.148) 0.470 (0.378) 96.5%
Refine_2 0.941 (0.028) 0.137 (0.139) 0.460 (0.365) 95.5%

Best Refine 0.944 (0.028) 0.127 (0.135) 0.419 (0.356) 96.5%

Geometric solver*
Refine_1 0.938 (0.037) 0.120 (0.162) 0.429 (0.436) 95.5%
Refine_2 0.941 (0.043) 0.110 (0.162) 0.432 (0.448) 94.5%

Best Refine 0.944 (0.031) 0.103 (0.152) 0.399 (0.433) 95.5%

Table 6: We present our results for Gemini using the median Point Cloud distance, Hausdorff distance,
and Intersection over Ground Truth (IoGT), along with the interquartile range (IQR) and compile
rates. Table 2 reports the Best Refine results. The * symbol indicates that the geometric solver
accesses the ground truth to compute the geometric differences between the ground truth and the
generated 3D object.

Model Feedback Mechanism Iterations IoGT ↑ Point Cloud dist. ↓ Hausdorff dist. ↓ Compile Rate ↑

Gemini: Zero-shot

Generated – 0.905 (0.088) 0.159 (0.180) 0.531 (0.451) 85.0%

3D-Premise
Refine_1 0.903 (0.083) 0.167 (0.192) 0.541 (0.431) 83.5%
Refine_2 0.906 (0.082) 0.163 (0.190) 0.548 (0.440) 83.5%

Best Refine 0.911 (0.079) 0.150 (0.180) 0.496 (0.431) 83.5%

CADCodeVerify (Ours)
Refine_1 0.909 (0.091) 0.162 (0.188) 0.527 (0.479) 84.5%
Refine_2 0.906 (0.092) 0.152 (0.170) 0.529 (0.392) 84.5%

Best Refine 0.914 (0.082) 0.138 (0.165) 0.497 (0.384) 84.5%

Geometric solver*
Refine_1 0.907 (0.083) 0.146 (0.220) 0.479 (0.523) 83.5%
Refine_2 0.910 (0.085) 0.139 (0.203) 0.468 (0.499) 82.5%

Best Refine 0.917 (0.070) 0.113 (0.188) 0.416 (0.458) 83.5%

Gemini: Few-shot

Generated – 0.933 (0.061) 0.171 (0.174) 0.521 (0.426) 85.0%

3D-Premise
Refine_1 0.934 (0.067) 0.180 (0.193) 0.555 (0.472) 81.5%
Refine_2 0.935 (0.063) 0.182 (0.237) 0.576 (0.480) 81.0%

Best Refine 0.939 (0.070) 0.169 (0.184) 0.521 (0.516) 81.5%

CADCodeVerify (Ours)
Refine_1 0.935 (0.060) 0.166 (0.173) 0.541 (0.408) 85.0%
Refine_2 0.932 (0.062) 0.178 (0.187) 0.543 (0.413) 83.0%

Best Refine 0.939 (0.052) 0.147 (0.160) 0.492 (0.358) 85.0%

Geometric solver*
Refine_1 0.938 (0.067) 0.124 (0.193) 0.433 (0.452) 84.5%
Refine_2 0.937 (0.064) 0.124 (0.208) 0.432 (0.537) 82.5%

Best Refine 0.944 (0.060) 0.104 (0.146) 0.386 (0.470) 84.5%

17



Published as a conference paper at ICLR 2025

Table 7: We present our results for CodeLLama using the median Point Cloud distance, Hausdorff
distance, and Intersection over Ground Truth (IoGT), along with the interquartile range (IQR) and
compile rates. Table 2 reports the Best Refine results. The * symbol indicates that the geometric
solver accesses the ground truth to compute the geometric differences between the ground truth and
the generated 3D object.

Model Feedback Mechanism Iterations IoGT ↑ Point Cloud dist. ↓ Hausdorff dist. ↓ Compile Rate ↑

Zero-shot CodeLlama

Generated – 0.92 (0.943) 0.237 (1.591) 0.731 (1.270) 64.5%

CADCodeVerify (Ours)
Refine_1 0.928 (0.949) 0.223 (1.590) 0.685 (1.281) 70.0%
Refine_2 0.000 (0.939) 1.730 (1.553) 1.730 (1.168) 47.0%

Best Refine 0.930 (0.955) 0.211 (1.599) 0.641 (1.309) 70.0%

Geometric solver
Refine_1 0.888 (0.939) 0.286 (1.590) 0.794 (1.250) 55.5%
Refine_2 0.000 (0.915) 1.730 (1.477) 1.730 (0.946) 30.5%

Best Refine 0.888 (0.941) 0.280 (1.595) 0.823 (1.258) 55.5%

Few-shot CodeLlama

Generated – 0.927 (0.949) 0.224 (1.597) 0.657 (1.294) 67.0%

CADCodeVerify (Ours)
Refine_1 0.928 (0.950) 0.212 (1.608) 0.630 (1.324) 73.5%
Refine_2 0.924 (0.946) 0.260 (1.591) 0.714 (1.290) 65.0%

Best Refine 0.935 (0.957) 0.185 (1.620) 0.582 (1.366) 73.5%

Geometric solver
Refine_1 0.903 (0.948) 0.250 (1.604) 0.765 (1.298) 60.5%
Refine_2 0.000 (0.889) 1.730 (1.474) 1.730 (1.018) 31.0%

Best Refine 0.906 (0.949) 0.239 (1.606) 0.727 (1.301) 60.5%

Table 8: We present our results for the GPT-4 few-shot setting, stratified by object complexity (simple
and complex), as discussed in §4.3. The results are reported using the median and interquartile range
(IQR). The * symbol indicates that the geometric solver accesses the ground truth to compute the
geometric differences between the ground truth and the generated 3D object.

Complexity Feedback Mechanism IoGT ↑ PLC distances ↓ Hausdorff dist. ↓ Compile Rate ↑

Simple

Generated 0.941 (0.017) 0.168 (0.174) 0.373 (0.322) 100.0%
3D-Premise 0.943 (0.018) 0.114 (0.112) 0.310 (0.298) 100.0%
CADCodeVerify (Ours) 0.944 (0.026) 0.119 (0.144) 0.329 (0.291) 100.0%
Geometric solver* 0.953 (0.021) 0.035 (0.075) 0.081 (0.336) 100.0%

Moderate Complex

Generated 0.936 (0.052) 0.146 (0.109) 0.465 (0.392) 97.4%

3D-Premise 0.942 (0.047) 0.102 (0.107) 0.341 (0.331) 100.0%
CADCodeVerify (Ours) 0.943 (0.035) 0.114 (0.124) 0.416 (0.332) 97.4%
Geometric solver* 0.937 (0.049) 0.085 (0.082) 0.311 (0.319) 97.4%

Complex

Generated 0.938 (0.024) 0.157 (0.184) 0.504 (0.387) 94.3%

3D-Premise 0.939 (0.029) 0.154 (0.228) 0.469 (0.427) 87.4%
CADCodeVerify (Ours) 0.942 (0.022) 0.114 (0.133) 0.412 (0.297) 96.6%
Geometric solver* 0.946 (0.027) 0.110 (0.159) 0.429 (0.447) 94.3%

Very Complex

Generated 0.941 (0.038) 0.165 (0.140) 0.541 (0.273) 96.5%

3D-Premise 0.946 (0.030) 0.156 (0.198) 0.498 (0.478) 87.7%
CADCodeVerify (Ours) 0.954 (0.039) 0.144 (0.123) 0.475 (0.359) 94.7%
Geometric solver* 0.943 (0.047) 0.114 (0.152) 0.465 (0.330) 94.7%

Table 9: Accuracy of answers generated by CADCodeVerify on a subset of 50 examples in the GPT-4
few-shot setting.

Answers Refine 1 Refine 2 Description

Total answers 219 176 Total number of responses evaluated

Correct answers 64.6% 68.2% We evaluate each answer as either “Yes” or “No” and calculate the
percentage of these responses, including incorrect and “Unclear”
answers. For Refine 1: Out of 214 answers labeled as “Yes” or “No,”
only 19 were incorrect, resulting in an accuracy rate of 91%. For
Refine 2: Out of 176 answers labeled as “Yes” or “No,” 22 were
incorrect, yielding an accuracy rate of 87.5%.

Incorrect answers 8.8% 12.5% The percentage of incorrect answers where the CADCodeVerify
response was "Yes" or "No," but the answer was incorrect.

Answers with “Unclear” 26.6% 19.3% To minimize hallucinations from the LLM, we instructed it to re-
spond with "Unclear" when it lacked confidence in its answer. Any
response labeled as "Unclear" was sent back to the LLM during the
refinement phase for further evaluation.

18



Published as a conference paper at ICLR 2025

Figure 9: This figure provides an example (1) of one step of CADCodeVerify, via GPT-4V, for a
prompt from CADPrompt

19



Published as a conference paper at ICLR 2025

Figure 10: This figure provides an example (2) of one step of CADCodeVerify, via GPT-4V, for a
prompt from CADPrompt

20



Published as a conference paper at ICLR 2025

Prompt for generating questions.

You will be given a description of how a human-designer would describe the design of a
3D object. Your job is to provide between 2-5 (Yes or No) questions that I can use to verify
how similar the generated object is to the description generated by a human. The questions
should be framed such that answering “No” implies that there is a change that needs to be
made to the object regarding the verification question. Here are some important points to
note for this task;
(1) Do not make up questions if you cannot generate 5 questions based on the description
provided.
(2) Ensure that your questions only reference entities mentioned within the description.
(3) Try not to reference orientation the components of the 3D object. Your generated
questions should not ask whether a component is on the "right" or "left" side as this
orientation is relative.
I will give you two examples with a language description followed by the appropriate
verification questions. Please reference these examples while generating your verification
questions.

### Example 1 ###
Description:
Extrude a cylindrical plate with a rectangular hole in the middle of it.

Generated Questions:
1. Is the object cylindrical in shape?
2. Does the object have a rectangular hole in the center?
3. Is the object extruded in one dimension?

### Example 2 ###
Description:
Design a 3D object that resembles a cone. First draw a sketch of a square and extrude it to
create the base of the cone. Next, draw a sketch of a circle centered at the center of the
square base. Extrude this sketch vertically into a conical shape, such that the diameter of the
circle decreases as the height increases. Finally cutout the tip of the cone, such that the tip
of the cone is now rectangular in shape.

Generated Questions:
1- Does the object resemble a cone?
2- Is the base of the object square-shaped?
3- Is the circular base of the cone centered at the same point as the center of the square base?
4- Is the tip of the cone rectangular?
5- Does the diameter of the cone decrease as the height increases?

Figure 11: In the CADCodeVerify approach, we utilize this prompt with two examples to generate
the verification questions.

21



Published as a conference paper at ICLR 2025

Prompt for code repair.

You will be provided with a piece of Python code and a compiler error message, and then
your task will be to fix the bugs and rewrite the code.

#### Compiler error messages:
In line 20:
.vertices().fillet(cutout_radius))
raise ValueError(
ValueError: Cannot find a solid on the stack or in the parent chain

#### Python Code:
import cadquery as cq

# Dimensions
plate_length = 100
plate_width = 50
plate_thickness = 3
cutout_size = 15
cutout_radius = 5

# Create the base plate
plate = (cq.Workplane("XY")
.rect(plate_length, plate_width)
.extrude(plate_thickness))

# Create the cutout sketch with rounded corners
cutout_sketch = (cq.Workplane("XY")
.moveTo(cutout_size/2, cutout_size/2)
.rect(cutout_size, cutout_size, forConstruction=True)
.vertices().fillet(cutout_radius))
# Cutouts at two corners cutout1 = (plate.workplane()
.placeSketch(cutout_sketch)
.extrude(-plate_thickness))

cutout2 = (plate.workplane()
.workplane(offset=plate_length - cutout_size)
.placeSketch(cutout_sketch)
.extrude(-plate_thickness))

# Combine the base plate and cutouts
final_object = plate.cut(cutout1).cut(cutout2)

# Export the result to an STL file
# This line caused the error. ".val()" is removed
final_object.exportStl("Generated.stl")

Figure 12: If the generated CAD code fails to compile due to a compiler error, we pass both the error
and the generated CAD code to LLMs for correction.

22



Published as a conference paper at ICLR 2025

Prompt for generating answer.

Your job is to answer this set of questions with respect to the object I have shared with you.
I will be providing 4 images of the object from different orientations so that you can get a
complete picture of the 3D object. Here are some important points to note regarding your
task:
(1) Remember that these images are all of the same object from different angles.
(2) The answer to each of these questions should always be one of three options which are
“Yes” or “No” or “Unclear.”
(3) Your answer should be “Unclear” in situations where you are unsure of the answer or do
not have enough information to answer the question.
Make sure to provide reasoning supporting all your answers.

# Your answer should follow the same format as below:
1. **Question?**
- **Answer:**
- **Reasoning:**

2. **Question?**
- **Answer:**
- **Reasoning:**

Figure 13: In the CADCodeVerify approach, we use this prompt along with images to generate the
answer and reasoning for each question.

Prompt for generating feedback.

These were the answers to the questions I asked to validate a generated 3D object. Can
you utilize the answers to these questions to generate actionable feedback that will help the
model to correct the mistakes in the 3D object? Your job is to summarize these answers into
practical corrections that need to be made to the 3D object. Please note the following while
generating your feedback:
(1) The corrections should be such that the answers to all questions provided will become
yes upon applying the suggested corrections.
(2) Your corrections should not change the object such that any of the answers that are
already, "Yes" become "No."
(3) You only want to change the object such that the answers which are "No" or "Unclear"
become "Yes." The summary should be specific and only a few sentences long.
(4) Your corrections should not be regarding the quality or orientation of the images.
(5) Your feedback should not attempt to fix issues in the scale. DO NOT ask for the addition
of additional scale or reference objects.
(6) Do not ask for details regarding the size or dimensions of the object.
(7) Your corrections should be constructed such that a human designer can use your feedback
to update the 3D object such that all questions have "Yes" as the answer.

Figure 14: In the CADCodeVerify approach, we use this prompt to generate feedback from the
generated question-answer set.

23



Published as a conference paper at ICLR 2025

Each example (generated code) is sorted in descending order by difficulty.0

1

2

3

4

5

6

To
ta

l n
um

be
r 

of
 c

om
pi

le
d 

co
de

 fo
r 

ea
ch

 o
bj

ec
t a

cr
os

s 
si

x 
ex

pe
ri

m
en

ts

Easy
split

Hard
split

Figure 15: We conducted six experiments across three LLMs—GPT-4, Gemini, and CodeLlama—and
in both zero-shot and few-shot settings for CADPrompt, which contains 200 examples. Some of
these experiments did not generate compiled code that produced valid 3D objects for some of the
examples. We calculated the total compiled code for each example across all experiments, where
Max = 6 means the example was generated in all experiments, and Min = 0 indicates that the example
was not generated by any experiment. We then sorted them based on difficulty and split the dataset
into "Easy" and "Hard" categories as discussed in §4.3

24



Published as a conference paper at ICLR 2025

Write Python code using CADQuery to create a triangular 3D object. First, draw a sketch of
an equilateral triangle, pointing downwards. Next, cutout a semicircle from the bottom corner
of the triangle. The diameter of this semicircular cutout should be approximately 2/3rd of the
length of each side of the triangle. Finally, extrude this sketch to create a 3D object.

(a) The natural language descriptions of the 3D object.

(b) 3D object

(c) Python Code

Figure 16: An example from the CADPrompt dataset, showing (a) the prompt, (b) the corresponding
3D object, and (c) the human-annotated Python code used to generate the 3D object.

25



Published as a conference paper at ICLR 2025

Write Python code using CADQuery to create an inverted desk, with hexagonal legs. First,
draw a rectangular sketch, and cutout four small, right-angle triangles from each corner of the
rectangle to create an octagonal surface. Next, extrude this sketch by a small amount. Draw
two large, regular hexagons, placed symmetrically on opposite ends of the octagonal surface.
The hexagons should be the same size and should align perfectly with each end of the surface.
Finally, extrude these hexagons outwards to give the appearance of two hexagonal columns
protruding from a horizontal surface.

(a) The natural language descriptions of the 3D object.

(b) 3D object

(c) Python Code

Figure 17: An example from the CADPrompt dataset, showing (a) the prompt, (b) the corresponding
3D object, and (c) the human-annotated Python code used to generate the 3D object.

26



Published as a conference paper at ICLR 2025

(a) Lamp (b) Rectangle cut semi Circle

(c) Shelf (d) Bobbin

Figure 18: Comparison of the ground truth 3D object with the 3D object generated by Python code
written by a human CAD design expert.

27


	Introduction
	Related Work
	LLMs for Code Generation
	Language for Automated Design and Manufacturing

	CAD Code Generation
	Code Generation
	Code Execution
	Code Refinement via CADCodeVerify

	CADPrompt dataset
	Prompt Creation
	Code Annotation
	Data Stratification

	Experimental Setup
	Baselines
	Evaluation Metrics

	Experiment Results
	Limitations
	Conclusion
	Acknowledgment
	Ethics Discussion
	Additional Methodology Details
	Why CADQuery?
	Geometric Solver Verbalization
	Experimental Parameters
	Few-Shot Prompt
	Geometric solver feedback

	Qualitative Analysis
	Types of feedback generated by CADCodeVerify.
	Errors Analysis

	All the results

