
Safely Learning with Private Data:
A Federated Learning Framework for Large Language Model

Anonymous EMNLP submission

Abstract

Private data, being larger and quality-higher001
than public data, can greatly improve large lan-002
guage models (LLM). However, due to privacy003
concerns, this data is often dispersed in multi-004
ple silos, making its secure utilization for LLM005
training a challenge. Federated learning (FL)006
is an ideal solution for training models with007
distributed private data, but traditional frame-008
works like FedAvg are unsuitable for LLM009
due to their high computational demands on010
clients. An alternative, split learning, offloads011
most training parameters to the server while012
training embedding and output layers locally,013
making it more suitable for LLM. Nonetheless,014
it faces significant challenges in security and015
efficiency. Firstly, the gradients of embeddings016
are prone to attacks, leading to potential reverse017
engineering of private data. Furthermore, the018
server’s limitation of handle only one client’s019
training request at a time hinders parallel train-020
ing, severely impacting training efficiency. In021
this paper, we propose a Federated Learning022
framework for LLM, named FL-GLM, which023
prevents data leakage caused by both server-024
side and peer-client attacks while improving025
training efficiency. Specifically, we first place026
the input block and output block on local client027
to prevent embedding gradient attacks from028
server. Secondly, we employ key-encryption029
during client-server communication to prevent030
reverse engineering attacks from peer-clients.031
Lastly, we employ optimization methods like032
client-batching or server-hierarchical, adopting033
different acceleration methods based on the ac-034
tual computational capabilities of the server.035
Experimental results on NLU and generation036
tasks demonstrate that FL-GLM achieves com-037
parable metrics to centralized chatGLM model,038
validating the effectiveness of our federated039
learning framework.040

1 Introduction041

Existing large language models (LLM) have042

achieved astonishing results by utilizing vast043

(1) (1)(2) (2)

sequential

Client I

Server

Original Model Split Model

t1 t

…2

tn

Embedding

Transformer

Head

BERT

Client II

��� ����

Transformer

Head

Embedding

W��� Head

Embedding

����

��

(a) FedBert

…

Client 1
Private dataset

…

Client M
Private dataset

…

Client 2
Private dataset

Server Side-LLM

Block 1

Block N-2

Client Side-LLM

Block N-1

Linear

Embedding

Block 0

Block N-1

Linear

Embedding

Block 0

Block N-1

Linear

Embedding

Block 0

 Variant 1

batch-
client

Client 1 Client 2 Client M…

Server

… …

Client MClient 1 …

Sub-Server 1 Sub-Server M

①
②

① ② Encrypted Smashed data

Server side Server sideServer side

 Variant 2
Center Server

(b) FL-GLM

share share...
...

Figure 1: Model architecture of FedBert and FL-GLM.

amounts of public data and massive parameters. 044

In comparison to public data, private data holds 045

advantages in both quantity and quality, because 046

private datasets typically encompass more compre- 047

hensive and detailed information about individuals 048

or organizations, and the data production process is 049

more rigorous. Therefore, private data can undoubt- 050

edly further enhance the performance of LLM. 051

However, private data is often stored in isolated 052

data silos. For example, mobile users’ data is kept 053

locally, involving a significant amount of personal 054

privacy. Considering privacy and security, LLM 055

cannot store private data in a centralized manner for 056

training. Hence, securely leveraging private data 057

for language model training remains a challenging 058

problem. An ideal solution is to utilize the Feder- 059

ated Learning (FL) (Li et al., 2020a) framework, 060

which allows data to be retained on the user device 061

for local training and only passes the model parame- 062

1

ters to server for model aggregation. This approach063

achieves the goal of keeping the data stationary064

while making the model updates. By using FL for065

LLM training, data privacy can be preserved, and066

the performance of LLM can be further improved.067

Unfortunately, traditional FL frameworks, such068

as FedAvg (Stremmel and Singh, 2021) and Fed-069

Prox(Li et al., 2020b), are not suitable for LLMs070

because they require each client to have sufficient071

computational resources to train the entire LLM.072

As an alternative method, transformer with split073

learning, represented by FedBERT (Tian et al.,074

2022) in Figure 1(a), focuses most of the param-075

eters on the server while continuously training076

the embedding layer and output layer on the lo-077

cal client, making it more suitable for LLM. The078

process involves the client using the embedding079

layer for data input and forwarding it to the server,080

which then computes and returns the output states.081

The client calculates loss, sends gradients back082

for server updates, and receives updated gradients083

for the embedding layer. However, this method084

presents security risks. Embedding gradients are085

vulnerable to attacks (Yaldiz et al., 2023), poten-086

tially allowing attackers to reconstruct private data087

through beam search(Gupta et al., 2022) or reverse-088

engineered (Asnani et al., 2023). Additionally,089

since the server processes one client at a time, it090

hinders parallel training and reduces efficiency.091

In this paper, we propose a FL framework called092

FL-GLM for LLM, as shown in Figure 1(b). We093

partition the transformers of the chatGLM into094

three parts: input and output blocks are stored on095

the client (shared with peers), while the remaining096

large parameters are kept on the server. During097

the training process, the client first performs for-098

ward propagation on the input data to obtain hidden099

states. Then, these hidden states are encrypted with100

a secure key and sent to the server. Subsequently,101

the server, either in a client-batch or server-layered102

approach, receives more client hidden states at a103

training time and executes forward propagation to104

send output hidden states back to each client.105

It is clear that our FL-GLM framework can ef-106

fectively prevent data leakage attacks from both107

servers and peer-clients while enhancing training108

efficiency. Clients and servers jointly own and uti-109

lize the entire model, with certain input and output110

blocks placed on local clients to thwart embed-111

ding gradient attacks from the server. Although112

sharing input and output blocks between all clients113

can improve results, interception by peers poses 114

risks, which can be resolved through key encryp- 115

tion during client-server communication. To over- 116

come server capacity limitations, we propose var- 117

ious training acceleration methods. For clusters 118

with multiple machines and GPUs, a hierarchical 119

server architecture initializes sub-servers for paral- 120

lel client training, with central server aggregating 121

and distributing models. With single machines and 122

multiple GPUs, the client-batch method concate- 123

nates client information for training, enabling par- 124

allel execution and enhanced efficiency compared 125

to traditional serial execution in split learning. 126

Experimental results on NLU and generation 127

tasks demonstrate that FL-GLM achieves perfor- 128

mance comparable to centralized chatGLM-6B 129

models, validating the effectiveness of our frame- 130

work. Further analysis of training costs indicates 131

that our client-batch and server-hierarchical mech- 132

anisms can save more than 48% of training time. 133

The innovations in this paper are as follows: 134

• To the best of our knowledge, we are the 135

first to design a federated learning framework 136

specifically tailored for LLMs. Starting from 137

user privacy concerns and considering the 138

computational demands of LLMs, we improve 139

split learning to adapt to LLMs, and develop 140

a reasonable, effective, and secure federated 141

LLM framework. 142

• We propose client-batch and server- 143

hierarchical acceleration optimization 144

methods based on the server’s computational 145

capacity to address the issue of low training 146

efficiency in split learning. 147

• Experimental results on SuperGLUE and ab- 148

stractive summarization datasets demonstrate 149

that the proposed FL-GLM model can obtain 150

comparable performance to centralized chat- 151

GLM models, validating the effectiveness of 152

our FL framework. 153

2 Related Work 154

2.1 Federated Learning in LM 155

Federated Learning (FL) has emerged as a promis- 156

ing approach to train language models (LM) in 157

a decentralized manner while respecting user pri- 158

vacy and data safety. Federated Averaging (Fe- 159

dAvg) (McMahan et al., 2017) is a popular feder- 160

ated optimization algorithm used in language mod- 161

2

els (Hard et al., 2018; Chen et al., 2019; Strem-162

mel and Singh, 2021). In FedAvg, each client163

trains its model on locally stored data and com-164

municates updates to the server. The server then165

performs weighted aggregation of these updates166

to create a new global model. To reduce local167

training rounds and accelerate the learning pro-168

cess, Stremmel and Singh (2021) proposes to uti-169

lize the pre-trained global models on FedAvg. Ji170

et al. (2019) proposes Attentive Federated Aggrega-171

tion (FedAtt) and applies a layer-wise soft attention172

mechanism to the trained parameters of the neu-173

ral network model.Previous works (Jalalirad et al.,174

2019; Thakkar et al., 2020) have integrated DP175

mechanisms into FedAvg and FedAtt, respectively.176

Split learning, represented by SplitFed (Thapa177

et al., 2022), has emerged as a distributed and178

collaborative training approach to enable efficient179

training on resource-constrained devices (Abedi180

and Khan, 2020; Abuadbba et al., 2020; Rahman181

et al., 2020; Matsubara and Levorato, 2020), such182

as mobile devices or small clients without GPU183

resources. To address sequential data training in184

language models, FedBERT (Tian et al., 2022) in-185

troduces a novel federated learning framework. It186

splits language model pre-training, easing limited187

computing resources on client devices. FedBERT188

segments the BERT model into Embedding, Trans-189

former, and Output layers. It trains the Transformer190

layer on a powerful server, while less demanding191

layers (Embedding and Output) train on client de-192

vices. However, this setup incurs high communi-193

cation costs and risks data leakage via embedding194

gradient attacks.195

2.2 Attacks and Defenses196

In federated learning, various eavesdroppers197

threaten client privacy, including servers attempt-198

ing data recovery and peer-clients intercepting data199

sent to servers.In NLP, attacks from embedding gra-200

dients can easily recover users’s private data. Gupta201

et al. (2022) proposes to infer which words the202

client used by observing the non-zero values in em-203

bedding gradients. They then use beam search and204

resort to arrange these words, thereby reconstruct-205

ing private data. To counter this, they recommend206

freezing embedding layers during training. Zhu207

et al. (2019) briefly mentions defending by adding208

differentially private noise or setting small gradi-209

ents to zero (gradient clipping). Huang et al. (2020)210

propose MixUp data augmentation on the BERT211

model’s [CLS] token. Yaldiz et al. (2023) sug- 212

gest server-side cosine similarity checks on client- 213

uploaded weights to filter out malicious clients. 214

However, these defenses often reduce model accu- 215

racy (Yu et al., 2021; Li et al., 2021). 216

In order to retain the model structure and min- 217

imize the performance loss caused by model 218

changes, we propose to move some head layers 219

to the client and use a key-encryption mechanism 220

to protect data privacy during client-server commu- 221

nication. This not only prevents gradient attacks 222

from the server but also prevents information eaves- 223

dropping from peers. 224

3 Model 225

In this section, we provide the details of the FL- 226

GLM framework, as shown in Figure 1(b). FL- 227

GLM consists of three parts: model split, encrypted 228

transmission, and parallel acceleration. Firstly, we 229

split LLM into three parts, saving the first block 230

0 and the last block N-1 on the local client and 231

placing the remaining parameters on the server. 232

Then, the smashed data is encrypted using keys dur- 233

ing client-server transmission. Finally, the server 234

employs either client-batch or hierarchical-server 235

methods to achieve parallel acceleration. 236

3.1 Model Split 237

For protecting data privacy, the FL-GLM frame- 238

work splits LLM into three parts for deployment. 239

During forward operations, the client-side model 240

processes private data to generate smashed data, 241

which is then sent to the server-side model for com- 242

putation. Encrypting the smashed data ensures its 243

security. Given the input data x = {x1, . . . , xL} 244

and the next output y, the smashed data h0 of the 245

client is defined as: 246

h0 = Block0 (Embedding (x)) , 247

where Block0 is the 0th block of LLM, and 248

Embedding is the embedding layer of LLM. 249

The server-side model contains the 1th to the 250

N-2th blocks of LLM, denoted as Block(1,N-2), 251

which takes the received smashed data h0 as in- 252

put, and the hidden state hN-2 as output: 253

hN-2 = Block(1,N-2)(h0). 254

Then the server send the output hN-2 back to client. 255

After the last block N-1 and the linear layer op- 256

eration on client, the prediction result y
′

is output 257

3

Model split with P-tuning v2

Server blocks

𝑝𝑟𝑒𝑓𝑖𝑥

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑠𝑐𝑜𝑟𝑒

FFN

⊗

𝑝𝑟𝑒𝑓𝑖𝑥_𝑣𝑎𝑙𝑢𝑒

𝑝𝑟𝑒𝑓𝑖𝑥

𝑝𝑟𝑒𝑓𝑖𝑥

…

… …

…

P-tuning v2

Prefix
encoder

LLM

LLM-Block i

𝑉𝑎𝑙𝑢𝑒 𝐾𝑒𝑦𝑝𝑟𝑒𝑓𝑖𝑥_𝑘𝑒𝑦 𝑄𝑢𝑒𝑟𝑦

① ② Encrypted Smashed data

LLM-Block N-2

LLM-Block 1

Server Side-Model

𝐿inear

𝐸mbedding

LLM-Block 0

LLM-Block (1, N-2)

LLM-Block N-1

Client dataset
…

Client Side-Model

①

②

ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑡𝑎𝑡𝑒

ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑡𝑎𝑡𝑒

Figure 2: Model Split with p-tuning v2 fine-tuning by training a prefix encoder to adjust LLM-Block outputs.

and the cross-entropy loss L is calculated:258

y
′
= Linear (BlockN-1 (hN-2)) ,259

L = Cross_Entropy
(
y
′
, y
)
,260

where BlockN-1 is the N-1th block of LLM and261

Linear is the linear layer of LLM. During the262

whole computation process, the data and data labels263

are kept in the client to avoid data privacy leakage.264

It’s important to note that the LLM-Block is con-265

structed from a transformer layer comprising multi-266

head self-attention mechanisms and a forward net-267

work (FFN). With the stacking of LLM-Blocks,268

large pre-trained models have an extremely high269

number of parameters, making fine-tuning com-270

putationally intensive. To fine-tune large models271

with limited computational resources, efficient tech-272

niques such as p-tuning v2(Liu et al., 2021b) can273

be employed, as depicted in Figure 2. The FL-274

GLM framework supports the p-tuning v2 method,275

wherein all original model parameters are frozen,276

and the prefix encoder is trained to splice the pre-277

fix_key and prefix_value with the key and value278

of the original model, adjusting the output of each279

LLM-Block. Further details see in Appendix A.280

3.2 Encrypted Transmission281

Since the data features need to flow between the282

client and the server after the model split, the FL-283

GLM framework uses a key encryption strategy to284

complete the encrypted transmission of data. The285

RSA algorithm generates a pair of public and pri-286

vate keys by factorizing a very large integer. The287

message is encrypted with the public key and can288

only be decrypted by the receiver who has the cor-289

responding private key. The RSA key generation290

process is as follows:291

1) Select two large prime numbers, usually de-292

noted as p and q.293

2) Calculate their product n = pq. n will be 294

used as the common modulus. 295

3) Compute the Euler function ϕ (n) = 296

(p− 1) (q − 1). 297

4) Choose an integer e, called the public key 298

exponent, satisfying 1 < e < ϕ (n), and e andϕ (n) 299

are mutually prime. 300

5) Compute the private key index d satisfying 301

d ∗ e ≡ 1 (Mod ϕ (n)). d is the multiplicative 302

inverse of e to ϕ (n). 303

After the key computation is complete, n and 304

e are disclosed as the public key, where n is the 305

modulus and e is the public key index. Convert 306

the plaintext message M to an integer m with 0 < 307

m < n. Calculate the ciphertextC = me (mod n). 308

C is the encrypted message. After receiving the ci- 309

phertext C, decrypt it using private key exponent d. 310

Compute the plaintext message M = Cd (Mod n). 311

m is the original plaintext message. 312

3.3 Parallel Acceleration 313

After deploying the large model separately from the 314

client and the server, the server node will bear most 315

of the training cost, and according to the difference 316

in the computing power of the server node, the 317

FL-GLM framework supports two training strate- 318

gies: serial training and parallel training. If the 319

server node has limited computing resources and 320

can hardly afford a large batch size, serial train- 321

ing is a more suitable choice. As shown in Figure 322

1(b), during serial training, the server interacts with 323

only one of the clients, and when one client com- 324

pletes the training, the training process for the next 325

client is started. After completing the training, the 326

parameters of multiple client models need to be 327

averaged. Serial training is time-consuming, but 328

one-to-one communication requires less commu- 329

4

Batch parallel

…

batch-
client

…

share
…

share

…

Client 1
Private dataset

…

Client M
Private dataset

…

Client 2
Private dataset

Block N-1

Linear

Embedding

Block 0

Server Side-LLM

Block 1

Block N-2

Block N-1

Linear

Embedding

Block 0

Block N-1

Linear

Embedding

Block 0

① ② Encrypted Smashed data

①

②

①

②

①

②

Server side Server sideServer side

Figure 3: FL-GLM with client-batch parallel training.

nication, thread processing, and server processing330

power and is suitable for training scenarios with331

limited server capacity.332

Since the special structure of split learning does333

not allow smashed data from multiple clients to334

be averaged, which will result in features and la-335

bels not being aligned and a substantial decrease336

in model performance, two parallel training strate-337

gies are designed in the FL-GLM framework. As338

shown in Figure 3, the first strategy is to stack the339

smashed data from different clients during parallel340

training as a set of data to expand the batch for341

collaborative training. Take clients’ batch size=1342

as an example; the number of clients is M , and in343

each round of training, every client sends smashed344

data of size seqlength, batchsize=1, hiddensize to345

the server, and the data received by the server will346

be integrated into a tensor with batch size M for347

subsequent training. The second parallel strategy348

is shown in Figure 4. Each client model will corre-349

spond to a server-side model, and the server node350

will run multiple models simultaneously, which351

can alleviate the threading problem in one-to-many352

communication to a certain extent. The server-side353

model parameters and client-side parameters are354

averaged at the end of the training period.355

4 Experiments356

In order to demonstrate the performance of357

chatGLM model within the federated learning358

framework(FL-GLM), we conduct experiments us-359

ing the same benchmarks as those used in GLM360

model (Du et al., 2022).361

4.1 Experimental Settings362

We first introduce some empirical settings, includ-363

ing datasets, evaluation metrics, baselines and pa-364

rameter settings for FL-GLM.365

server parallel

…

Client 1
Private dataset

share

…

Client 2
Private dataset

…

Client M
Private dataset

share

…share

…

…share

…

Sub-Server Side-LLM

Block 1

Block N-2

Client Side-LLM

Block N-1

Linear

Embedding

Block 0

Sub-Server Side-LLM

Block 1

Block N-2

Client Side-LLM

Block N-1

Linear

Embedding

Block 0

Sub-Server Side-LLM

Block 1

Block N-2

Client Side-LLM

Block N-1

Linear

Embedding

Block 0

Center server

① ② ① ② ① ②

① ② Encrypted Smashed data

Server side Server sideServer side

Figure 4: FL-GLM with server-hierarchical parallel.

4.1.1 Dataset 366

For a fair comparison with centralized chatGLM- 367

6B, we test our model on the SuperGLUE (Wang 368

et al., 2019) benchmark for NLU tasks, and on 369

CNN/DailyMail and XSum datasets for abstractive 370

summarization tasks. 371

The SuperGLUE benchmark is a collection of 372

challenging NLU tasks designed to evaluate the 373

performance and capabilities of state-of-the-art lan- 374

guage models. It consists of eight diverse tasks, i.e., 375

ReCoRD, COPA, WSC, RTE, BoolQ, WiC, CB, 376

and MultiRC, each representing a different aspect 377

of language understanding. The details of the Su- 378

perGLUE benchmark can be seen in Appendix B. 379

Following GLM (Du et al., 2022), we formulate 380

these tasks as blank infilling tasks. Specifically, 381

given a labeled example (x, y), we rewrite the in- 382

put x as a closed question q(x) through a mask 383

token [M] and rewrite output y as an answer a(y). 384

For abstractive summarization tasks, we append 385

a mask token [M] at the end of the given context 386

as input and treat the summary as output. Then the 387

model generates the summary autoregressively. 388

4.1.2 Metrics 389

Since the NLU tasks are reformulated as blank 390

infilling tasks, the model performance can be evalu- 391

ated using the generated probability of the ground- 392

truth answer a(y). For the RTE, BoolQ, WiC, CB, 393

and MultiRC datasets, the generated answer may 394

contain a single word. Therefore, we compute the 395

logit of the corresponding answer token as the eval- 396

uation score, defined as: 397

p(y|x) = p(a(y)|q(x)∑
y′∈Y p(a(y′)|q(x))

, 398

where Y is the ground-truth label set. 399

For the ReCoRD, COPA, and WSC datasets, the 400

answers may contain multiple words; therefore, we 401

5

Model Model Size ReCoRD COPA WSC RTE BoolQ WiC CB MultiRC AvgF1/Acc. Acc. Acc. Acc. Acc. Acc. F1/Acc. F1a/EM
T5large (Du et al., 2022) 770M 85.7/85.0 78.0 84.6 84.8 84.3 71.6 96.4/98.2 80.9/46.6 81.2
BARTLarge (Du et al., 2022) 409M 88.3/87.8 60.0 65.4 84.5 84.3 69.0 90.5/92.9 81.8/48.0 76.0
RoBERTaLarge (Du et al., 2022) 335M 89.0/88.4 90.0 63.5 87.0 86.1 72.6 96.1/94.6 84.4/52.9 81.5
GLMRoBERTa (Du et al., 2022) 335M 89.6/89.0 82.0 83.7 87.7 84.7 71.2 98.7/98.2 82.4/50.1 82.9
ChatGLM-6B (Zeng et al., 2022) 6B 80.2/78.7 85.0 71.2 81.6 83.4 71.0 85.7/83.9 78.2/45.6 79.6
FL-GLM 6B 79.8/78.4 85.0 71.2 80.1 81.9 69.6 85.7/83.9 79.3/46.1 79.1

Table 1: Results on the SuperGLUE dev set.

Model Model Size CNN/DailyMail XSum
ROUGE-1 ROUGE-2 ROUGE-L ROUGE-1 ROUGE-2 ROUGE-L

BERTSumAbs (Liu and Lapata, 2019) 110M 41.7 19.4 38.8 38.8 16.3 31.2
UniLMv2Base (Bao et al., 2020) 110M 43.2 20.4 40.1 44.0 21.1 36.1
T5Large (Raffel et al., 2020) 770M 42.5 20.7 39.8 40.9 17.3 33.0
BARTLarge (Lewis et al., 2020) 409M 44.2 21.3 40.9 45.1 22.3 37.3
GLMRoBERTa (Du et al., 2022) 335M 43.8 21.0 40.5 45.5 23.5 37.3
ChatGLM-6B (Zeng et al., 2022) 6B 40.4 17.0 28.0 37.6 12.5 30.1
FL-GLM 6B 39.6 16.9 28.0 37.0 11.9 29.4

Table 2: Results of abstractive summarization on the CNN/DailyMail and XSum test sets.

compute the sum of the log-probabilities of the402

answer tokens as the evaluation metrics, which is403

defined as404

s(y|x) =
|Ly |∑
t=1

logP(yt|y1...yt−1, x; θ).405

For the summarization task, we use ROUGE-1,406

ROUGE-2, and ROUGE-L as quantitative metrics,407

which are widely used in NLP tasks (Liu et al.,408

2021a; Chen and Yang, 2020; Fang et al., 2022).409

4.1.3 Baselines410

We apply FL-GLM to ChatGLM-6B model1, who411

is an open-source pre-trained language model with412

6 billion parameters and building upon the General413

Language Model(GLM-130B) (Zeng et al., 2022;414

Du et al., 2022). Notely, our framework is not lim-415

ited to ChatGLM but can be widely applied to dif-416

ferent LLMs (such as Llama2). We use ChatGLM417

as a representative model to demonstrate that our418

framework does not significantly degrade model419

performance. Considering that our future applica-420

tions will mainly focus on the Chinese domain, we421

chose ChatGLM-6B, which has been extensively422

aligned with human in the Chinese domain. Ad-423

ditionally, the ChatGLM-6B model offers a break-424

through scaling property that enables efficient infer-425

ence on a single RTX 3060 (12GB) GPU through426

INT4 quantization. This property is especially valu-427

able in resource-constrained scenarios, allowing for428

cost-effective computation on affordable GPUs.429

For a fair comparison with ChatGLM-6B, fol-430

lowing GLM, we use 7 baselines, including431

1https://github.com/THUDM/ChatGLM-6B

T5large (Raffel et al., 2020), BARTLarge (Lewis 432

et al., 2020), RoBERTaLarge (Liu et al., 2019), 433

GLMRoBERTa (Du et al., 2022), BERTSumAbs (Liu 434

and Lapata, 2019), UniLMv2Base (Bao et al., 2020) 435

and ChatGLM-6B (Zeng et al., 2022). 436

4.1.4 Parameter Settings 437

We utilize the open-source ChatGLM-6B model 438

as the basement model for the FL-GLM model. It 439

has 28-layer transformer blocks, 4096 hidden-size, 440

and 32 self-attention heads. We utilize P-tuning 441

v2 for more efficient fine-tuning on downstream 442

tasks. Experiments are conducted on 2, 3, 5, and 10 443

clients with NVIDIA A100 GPUs, 40GB RAM per 444

client, and one server with one NVIDIA A100 GPU 445

and 40GB RAM. We generate RSA public and 446

private keys at the beginning of FL and then pass 447

the public keys between server and client. During 448

the FL process, the keys remain unchanged, and 449

after a certain number (hyper-parameter) of rounds 450

of training, we regenerate and share the keys. Our 451

experiments are conducted with communication 452

simulated on the same host, but not in a for-loop 453

manner; rather, we coordinated information with 454

Flower tool 2. In order to make a fair comparison 455

between our FL-GLM model and ChatGLM-6B, 456

we used a batch size of one, a learning rate of 457

2e-2 with the Adam optimizer, and adjusted the 458

number of training epochs and maximum sequence 459

length according to different datasets without using 460

warmup or weight decay. The code will be released 461

when this paper is accepted. 462

2https://github.com/mher/flower

6

https://github.com/THUDM/ChatGLM-6B

Strategy Centralized serial client-batch parallel server-hierarchical
num. of clients None 2 2 4 8 2 3 5 10
time(s) 166.4±9.2 175.2±10.1 85.3±4.1 43.0±2.5 22.5±1.7 87.3±4.9 65.5±3.2 34.5±1.9 17.3±0.9

Table 3: Comparison of training time between different training strategies

4.2 Experimental Results463

In this section, we demonstrate our experiment re-464

sults on SuperGLUE benchmark, CNN/DialyMail465

and XSum datasets.466

4.2.1 Metric-based Evaluation467

The quantitative evaluation results on SuperGLUE468

are shown in Table 1. From the results, we469

can see that the recent large language models,470

such as ChatGLM-6B outperform the traditional471

pre-training models, showing the effectiveness of472

human-aligned language models for NLU tasks.473

As a distributed learning pattern, our FL-GLM474

model performs a little worse than the basement475

model, ChatGLB-6B. Take the accuracy of the476

ReCoRD, RTE, BoolQ, and Wic datasets. For477

example, our FL-GLM model obtains 78.4, 81.6,478

81.9, and 69.6, respectively, which is lower than479

the centralized ChatGLB-6B model in the accept-480

able range, i.e., 0.3, 1.5, 1.5, and 1.4. From the481

results on CNN/DialyMail and XSum datasets in482

Table 2, shiFL-GLM can obtain 39.6 ROUGE-483

1, 16.9 ROUGE-2, and 28.0 ROUGE-L on the484

CNN/DailyMail dataset, 37.0 ROUGE-1, 11.9485

ROUGE-2, and 29.4 ROUGE-L on the XSum486

dataset. Not more than 1.0 lower than the results of487

the centralized ChatGLM-6B model. In conclusion,488

our FL-GLM model has comparable ability to un-489

derstand language and generate relevant summary490

with centralized models.491

4.3 Analysis492

An analysis is conducted including training ef-493

ficiency, impact of Data non-IID and prove the494

security of FL-GLM. We also conducted the ex-495

periments to analysis the impact of average pe-496

riod (Appendix C) and the impact of partici-497

pants(Appendix D).498

4.3.1 Training Efficiency499

To further investigate the impact of our speedup500

optimization mechanism on the training cost, we501

tested the average training duration of the FL-GLM502

model under three training strategies: serial, client-503

batch, and server-hierarchical. We randomly se-504

lected 1000 data points from the ReCoRD dataset505

for communication cost analysis experiments. We 506

tested 10 times and took the mean and standard de- 507

viation of the total communication time, as shown 508

in Table 3. From the results, we can see that the 509

time consumed in serial training mode with 1000 510

data points is close to that of centralized training, 511

while parallel training can significantly improve 512

the training time, which is directly proportional to 513

the number of clients. 514

4.3.2 Impact of IID and non-IID 515

Whether the data satisfy the independent and iden- 516

tically distributed (IID) assumption is one of the 517

important challenges of federated learning. To test 518

the effect of data distribution on the performance 519

of FL-GLM, we conducted the following experi- 520

ments. We selected the COPA dataset from the 521

SuperGLUE benchmark, which is a binary clas- 522

sification dataset for textual causal judgment. It 523

contains 400 training samples, with 195 labeled as 524

0 and 205 labeled as 1. 525

To simplify the analysis, we assumed the exis- 526

tence of two clients. After sampling with the inde- 527

pendent and identically distributed (IID) method, 528

the dataset was divided into sub-datasets A and B. 529

Sub-dataset A contains 97 samples labeled as 0 530

and 102 samples labeled as 1, while sub-dataset B 531

contains the remaining samples. Then, we applied 532

a non-IID sampling method to divide the datasets 533

into sub-datasets A’ and B’. Sub-dataset A’ contains 534

195 samples labeled as 0 and 5 samples labeled as 535

1, while B’ contains 200 samples labeled as 1. 536

The experimental results under three training 537

strategies are shown in Figure 5. In the case of 538

non-IID data, due to the issue of data heterogene- 539

ity, the model performance of fine-tuning training 540

using both serial training strategy 5(a) and server- 541

parallel strategy 5(b) decreases by approximately 542

7%. However, client-batch parallel training 5(c) is 543

not significantly affected by the data distribution. 544

This is because during client-batch parallel training, 545

the data features from each client are stacked into 546

batches and sent to the server, allowing most of 547

model parameters on the server side to sufficiently 548

learn the data features, to some extent mitigates the 549

performance loss caused by non-IID data. 550

7

0

20

40

60

80

100

100 200 300 400 500

IID Non-IID

0

20

40

60

80

100

100 200 300 400 500

IID Non-IID

0

20

40

60

80

100

40 80 120 160 200

IID Non-IID

(a) Serial (b) Server-hierarchical
Steps Steps Steps

A
cc
.

A
cc
.

A
cc
.

(c)Client-batch parallel

Figure 5: Impact of IID and non-IID of COPA dataset on FL-GLM.

F F−1 Rouge-1 Rouge-2 Rouge-l Bleu-4

Embedding(FebBert) Linear 33.29 7.053 26.732 28.57

FL-GLM client-side part A Transformer 0.135 0.002 0.473 0.335

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

Table 4: Security Analysis

4.3.3 Security Analysis

Theoretical proof of the security of split learning is
challenging. Pasquini et al. (2021) propose an infer-
ence attack method FSHA for feature data security
in split learning, where a malicious server restores
the training dataset by hijacking the client’s output
data, which is validated in the field of image recog-
nition, and is able to restore the client’s training
dataset effectively. Inspired by this method, we
conduct security analysis experiments to indirectly
demonstrate the security of FL-GLM.

An important prerequisite for FSHA is that the
malicious server has a shadow dataset with the
same domain and task as the dataset held by the at-
tacked party. However, in the private data domain,
the data are all held by the training participants and
protected by legal regulations, and the server side
in the FL-GLM framework cannot obtain the same
domain data under normal circumstances. So we
consider the extreme case where, in serial training
mode, at least one client colludes with the server
to share its private data, Dpriv

1, with the server
for the purpose of training an attack model. Let
F be the first part of the model held by the mali-
cious client. The malicious server-side constructs
the model F −1 for attacking and utilizes Dpriv

1

to train F −1. During the attacking phase, the ma-
licious server hijacks the smashed data outputted
by the attacked client, denoted as f , and utilizes
F −1 to inference the privacy data Dpriv

2 held by
the attacked client.The method is validated on the
BoolQ dataset.

The experimental results are shown in Table 4.
When the client only has the embedding layer like584

FedBert model, F−1 is a single Transformer block, 585

the attack model can achieve a BLEU-4 score of 586

28.570 and a ROUGE-1 score of 33.290, while in 587

the FL-GLM framework, where the client contains 588

the embedding layer and an LLM-Block, F−1 is 589

a single layer Transfomer, all the metrics of the 590

attack model are all close to 0. Therefore, the se- 591

curity of FL-GLM could be proven in experiments. 592

Additionally, we find that the attack metrics’ per- 593

formance of a single-block Transformer is similar 594

to that of a multi-block Transformer. Therefore, the 595

optimal split point, based on experimental results, 596

might be a single-block Transformer, even though 597

it is challenging to prove theoretically. 598

5 Conclusions 599

To address the challenge of distributed training of 600

LLMs with limited client computational resources, 601

we propose to utilize the split learning method to 602

segment the generative model. We place the input 603

and output blocks locally on client devices, while 604

the remaining primary model parameters are cen- 605

tralized on a server with ample computational re- 606

sources. We secure client-server information trans- 607

fers with encryption methods. To enhance training 608

efficiency, we suggest selecting the client-batch 609

and server-hierarchical acceleration optimization 610

methods based on the server’s actual computational 611

capacity, thereby enabling parallel training. This 612

distributed architecture not only ensures that user 613

private data remains on local devices but also ef- 614

fectively reduces the training time, making it more 615

suitable for the scale and complexity of LLMs. In 616

the future, we contemplate employing more ad- 617

vanced privacy-preserving techniques, such as dif- 618

ferential privacy, to safeguard the data transmitted 619

from clients, enabling the application of large lan- 620

guage models in privacy-sensitive scenarios. 621

8

Limitations622

FL-GLM was evaluated on the SuperGLUE bench-623

mark, CNN/DailyMail and XSum datasets, and624

despite achieving results close to those of the cen-625

tralized tests, it is still constrained by the privacy-626

utility trade-off, and we would like to further opti-627

mize the communication consumption of the cur-628

rent distributed training framework and achieve629

even better model efficacy. In addition, our frame-630

work is currently limited to ChatGLM-6B. Future631

work will extend FL-GLM to different LLMs, such632

as Llama, to demonstrate its adaptability and wider633

applicability.634

Ethical Considerations635

We propose a federated learning framework named636

FL-GLM, which aims to use private data to train637

LLM with considerations of prevent data privacy638

leakage. Our data originates from open-source639

NLU and NLG projects, adhering to their license640

limitations and public benchmarks. Moreover, we641

emulate a distributed data storage environment us-642

ing open-source datasets, ensuring the exclusion of643

private data. We affirm our societal contribution644

without causing harm.645

References646

Ali Abedi and Shehroz S Khan. 2020. Fedsl: Fed-647
erated split learning on distributed sequential data648
in recurrent neural networks. arXiv preprint649
arXiv:2011.03180.650

Sharif Abuadbba, Kyuyeon Kim, Minki Kim, Chandra651
Thapa, Seyit A Camtepe, Yansong Gao, Hyoungshick652
Kim, and Surya Nepal. 2020. Can we use split learn-653
ing on 1d cnn models for privacy preserving training?654
In Proceedings of the 15th ACM Asia Conference655
on Computer and Communications Security, pages656
305–318.657

Vishal Asnani, Xi Yin, Tal Hassner, and Xiaoming Liu.658
2023. Reverse engineering of generative models:659
Inferring model hyperparameters from generated im-660
ages. IEEE Transactions on Pattern Analysis and661
Machine Intelligence.662

Hangbo Bao, Li Dong, Furu Wei, Wenhui Wang, Nan663
Yang, Xiaodong Liu, Yu Wang, Songhao Piao, Jian-664
feng Gao, Ming Zhou, et al. 2020. Unilmv2: pseudo-665
masked language models for unified language model666
pre-training. In Proceedings of the 37th International667
Conference on Machine Learning, pages 642–652.668

Jiaao Chen and Diyi Yang. 2020. Multi-view sequence-669
to-sequence models with conversational structure for670
abstractive dialogue summarization. In Proceedings671

of the 2020 Conference on Empirical Methods in 672
Natural Language Processing (EMNLP), pages 4106– 673
4118. 674

Mingqing Chen, Rajiv Mathews, Tom Ouyang, and 675
Françoise Beaufays. 2019. Federated learn- 676
ing of out-of-vocabulary words. arXiv preprint 677
arXiv:1903.10635. 678

Zhengxiao Du, Yujie Qian, Xiao Liu, Ming Ding, 679
Jiezhong Qiu, Zhilin Yang, and Jie Tang. 2022. Glm: 680
General language model pretraining with autoregres- 681
sive blank infilling. In Proceedings of the 60th An- 682
nual Meeting of the Association for Computational 683
Linguistics (Volume 1: Long Papers), pages 320–335. 684

Yue Fang, Hainan Zhang, Hongshen Chen, Zhuoye 685
Ding, Bo Long, Yanyan Lan, and Yanquan Zhou. 686
2022. From spoken dialogue to formal summary: 687
An utterance rewriting for dialogue summarization. 688
In Proceedings of the 2022 Conference of the North 689
American Chapter of the Association for Computa- 690
tional Linguistics: Human Language Technologies, 691
pages 3859–3869. 692

Samyak Gupta, Yangsibo Huang, Zexuan Zhong, 693
Tianyu Gao, Kai Li, and Danqi Chen. 2022. Recov- 694
ering private text in federated learning of language 695
models. Advances in Neural Information Processing 696
Systems, 35:8130–8143. 697

Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop 698
Ramaswamy, Françoise Beaufays, Sean Augenstein, 699
Hubert Eichner, Chloé Kiddon, and Daniel Ramage. 700
2018. Federated learning for mobile keyboard pre- 701
diction. arXiv preprint arXiv:1811.03604. 702

Yangsibo Huang, Zhao Song, Danqi Chen, Kai Li, and 703
Sanjeev Arora. 2020. Texthide: Tackling data privacy 704
in language understanding tasks. In Findings of the 705
Association for Computational Linguistics: EMNLP 706
2020, pages 1368–1382. 707

Amir Jalalirad, Marco Scavuzzo, Catalin Capota, and 708
Michael Sprague. 2019. A simple and efficient fed- 709
erated recommender system. In Proceedings of the 710
6th IEEE/ACM international conference on big data 711
computing, applications and technologies, pages 53– 712
58. 713

Shaoxiong Ji, Shirui Pan, Guodong Long, Xue Li, Jing 714
Jiang, and Zi Huang. 2019. Learning private neural 715
language modeling with attentive aggregation. In 716
2019 International joint conference on neural net- 717
works (IJCNN), pages 1–8. IEEE. 718

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 719
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, 720
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart: 721
Denoising sequence-to-sequence pre-training for nat- 722
ural language generation, translation, and comprehen- 723
sion. In Proceedings of the 58th Annual Meeting of 724
the Association for Computational Linguistics, pages 725
7871–7880. 726

9

Li Li, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. 2020a. A727
review of applications in federated learning. Comput-728
ers & Industrial Engineering, 149:106854.729

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar San-730
jabi, Ameet Talwalkar, and Virginia Smith. 2020b.731
Federated optimization in heterogeneous networks.732
Proceedings of Machine learning and systems, 2:429–733
450.734

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori735
Hashimoto. 2021. Large language models can be736
strong differentially private learners. In International737
Conference on Learning Representations.738

Junpeng Liu, Yanyan Zou, Hainan Zhang, Hongshen739
Chen, Zhuoye Ding, Caixia Yuan, and Xiaojie Wang.740
2021a. Topic-aware contrastive learning for abstrac-741
tive dialogue summarization. In Findings of the Asso-742
ciation for Computational Linguistics: EMNLP 2021,743
pages 1229–1243.744

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam,745
Zhengxiao Du, Zhilin Yang, and Jie Tang. 2021b.746
P-tuning v2: Prompt tuning can be comparable to747
fine-tuning universally across scales and tasks. arXiv748
preprint arXiv:2110.07602.749

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,750
Yujie Qian, Zhilin Yang, and Jie Tang. 2021c. Gpt751
understands, too. arXiv e-prints, pages arXiv–2103.752

Yang Liu and Mirella Lapata. 2019. Text summariza-753
tion with pretrained encoders. In Proceedings of754
the 2019 Conference on Empirical Methods in Natu-755
ral Language Processing and the 9th International756
Joint Conference on Natural Language Processing757
(EMNLP-IJCNLP), pages 3730–3740.758

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-759
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,760
Luke Zettlemoyer, and Veselin Stoyanov. 2019.761
Roberta: A robustly optimized bert pretraining ap-762
proach. arXiv preprint arXiv:1907.11692.763

Y Matsubara and M Levorato. 2020. Neural compres-764
sion and filtering for edge-assisted real-time object765
detection in challenged networks. In IEEE Inter-766
national Conference on Pattern Recognition (IEEE767
ICPR).768

Brendan McMahan, Eider Moore, Daniel Ramage,769
Seth Hampson, and Blaise Aguera y Arcas. 2017.770
Communication-efficient learning of deep networks771
from decentralized data. In Artificial intelligence and772
statistics, pages 1273–1282. PMLR.773

Dario Pasquini, Giuseppe Ateniese, and Massimo774
Bernaschi. 2021. Unleashing the tiger: Inference775
attacks on split learning. In Proceedings of the 2021776
ACM SIGSAC Conference on Computer and Commu-777
nications Security, pages 2113–2129.778

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine779
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,780
Wei Li, and Peter J Liu. 2020. Exploring the limits781

of transfer learning with a unified text-to-text trans- 782
former. The Journal of Machine Learning Research, 783
21(1):5485–5551. 784

Sawsan Abdul Rahman, Hanine Tout, Chamseddine 785
Talhi, and Azzam Mourad. 2020. Internet of things 786
intrusion detection: Centralized, on-device, or feder- 787
ated learning? IEEE Network, 34(6):310–317. 788

Joel Stremmel and Arjun Singh. 2021. Pretraining fed- 789
erated text models for next word prediction. In Ad- 790
vances in Information and Communication: Proceed- 791
ings of the 2021 Future of Information and Communi- 792
cation Conference (FICC), Volume 2, pages 477–488. 793
Springer. 794

Om Thakkar, Swaroop Ramaswamy, Rajiv Mathews, 795
and Françoise Beaufays. 2020. Understanding un- 796
intended memorization in federated learning. arXiv 797
preprint arXiv:2006.07490. 798

Chandra Thapa, Pathum Chamikara Mahawaga 799
Arachchige, Seyit Camtepe, and Lichao Sun. 2022. 800
Splitfed: When federated learning meets split learn- 801
ing. In Proceedings of the AAAI Conference on Arti- 802
ficial Intelligence, volume 36, pages 8485–8493. 803

Yuanyishu Tian, Yao Wan, Lingjuan Lyu, Dezhong Yao, 804
Hai Jin, and Lichao Sun. 2022. Fedbert: When fed- 805
erated learning meets pre-training. ACM Transac- 806
tions on Intelligent Systems and Technology (TIST), 807
13(4):1–26. 808

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman- 809
preet Singh, Julian Michael, Felix Hill, Omer Levy, 810
and Samuel R Bowman. 2019. Superglue: a stickier 811
benchmark for general-purpose language understand- 812
ing systems. In Proceedings of the 33rd International 813
Conference on Neural Information Processing Sys- 814
tems, pages 3266–3280. 815

Duygu Nur Yaldiz, Tuo Zhang, and Salman Avestimehr. 816
2023. Secure federated learning against model poi- 817
soning attacks via client filtering. In ICLR 2023 818
Workshop on Backdoor Attacks and Defenses in Ma- 819
chine Learning. 820

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, 821
Huseyin A Inan, Gautam Kamath, Janardhan Kulka- 822
rni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, 823
et al. 2021. Differentially private fine-tuning of lan- 824
guage models. In International Conference on Learn- 825
ing Representations. 826

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, 827
Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan Xu, 828
Wendi Zheng, Xiao Xia, et al. 2022. Glm-130b: An 829
open bilingual pre-trained model. In The Eleventh In- 830
ternational Conference on Learning Representations. 831

Ligeng Zhu, Zhijian Liu, and Song Han. 2019. Deep 832
leakage from gradients. In Proceedings of the 33rd 833
International Conference on Neural Information Pro- 834
cessing Systems, pages 14774–14784. 835

10

Dataset Task Cloze Question Answers
ReCoRD Question answering [passage p] [cloze question q] Answer candidates
COPA Causal reasoning “[choice c1]” or“[choice c2]”? [premise p], so [M]. c1/c2
WSC Coreference resolution [sentence s] The pronoun ‘*p*’ refers to [M]. Noun n
RTE Textual entailment “[hypothesis h]”? [M] “[premise p]” “yes”/“no”
BoolQ Question answering [passage p]. Question: q? Answer:[M]. “yes” / “no”

WiC Word sense disambiguation
“[sentence s1]”/“[sentence s2]”Similar sense
of [word w]? [M].

“yes”/“no”

CB Textual entailment “[hypothesis h]”? [M], “[premise p]” “yes”/“no”/“maybe”
MultiRC Question answering [passage p]. Question: q? Is it [answer a]? [M]. “yes”/“no”

Table 5: Cloze questions and answers for the 8 SuperGLUE tasks

A P-tuning v2836

P-tuning v2 is proposed based on the p-tuning(Liu837

et al., 2021c) algorithm, and its basic principle is838

to add a prompt of length Lp as a learnable em-839

bedding, denoted as a prefix, to each LLM-Block’s840

attention operation. Fine-tuning is done by freezing841

the model parameters and training only the prefix.842

In each LLM-Block, the corresponding prefix con-843

tains two parts: prefix_key ∈ RL×B×Nh×dh and844

prefix_value ∈ RL×B×Nh×dh . Where L is the845

data length, B denotes batch size, Nh denotes the846

number of attention heads, and dh is the dimension847

of each head.848

In the process of forward operation, when the849

data passes through each LLM-Block, the prefix is850

spliced with the frozen key and value in the model851

to form a new key’ and value’, which are denoted852

as K
′

and V
′
, respectively, with the original query853

parameter (Q) of the model to compute the atten-854

tion score of the current data as well as the hidden855

state. Taking the i-th layer LLM-Block as an ex-856

ample, the computation process of p-tuning v2 is857

shown below:858

keyi
′
: Ki

′
= [prefix_keyi : keyi]859

valuei
′
: Vi

′
= [prefix_valuei : valuei]860

Attention score : S′
i = softmax(

QiKi
′T

√
dh

)861

hidden_statei = FFN(S′
iVi

′)862

B Dataset863

Table 5 shows the cloze questions and answers for864

SuperGLUE tasks, and the detailed corresponding865

description of SuperGLUE benchmark are as be-866

low:867

• ReCoRD(Reading Comprehension with Com-868

monsense Reasoning and Disambiguation): In869

this task, models are required to answer ques- 870

tions by extracting information from a given 871

passage, while also employing commonsense 872

reasoning and resolving ambiguous pronouns. 873

• COPA(Choice of Plausible Alternatives): This 874

task assesses causal reasoning abilities by pro- 875

viding a premise and two alternative hypothe- 876

ses, where the model must choose the correct 877

causal relationship. 878

• WSC(Winograd Schema Challenge): This 879

task evaluates pronoun resolution and coref- 880

erence resolution abilities, where the model 881

must identify the correct referent for a pro- 882

noun in a given sentence. 883

• RTE(Recognizing Textual Entailment): The 884

task requires determining if one sentence en- 885

tails, contradicts, or remains neutral with re- 886

spect to another sentence. 887

• BoolQ(Boolean Questions): Models must an- 888

swer boolean questions, i.e., questions that 889

require a yes or no answer, based on a given 890

context. 891

• WiC(Word-in-Context): In this task, models 892

must determine if a word has the same sense in 893

two different contexts, requiring fine-grained 894

lexical semantics understanding. 895

• CB(CommitmentBank): It is a famous corpus 896

of short texts for textual entailment task, in 897

which at least one sentence contains an em- 898

bedded clause. 899

• MultiRC(Multiple-Choice Reading Compre- 900

hension): This task involves answering 901

multiple-choice questions based on multiple 902

passages, which tests the ability to compre- 903

hend complex documents. 904

11

Sequential

82

83

84

85

86

2 3 5 10

A
cc

ur
ac

y

Num. of clients

100 200 300 400 500

77

78

79

80

81

2 3 5 10

A
cc

ur
ac

y

Num. of clients

80 100 120 140 160

(a) RTE

62

64

66

68

70

2 3 5 10

A
cc

ur
ac

y

Num. of clients

187 238 289 340 391

(b) WiC (c) COPA

70
72
74
76
78
80
82
84

2 3 5 10

A
cc

ur
ac

y

Num. of clients

50 100 150 200 250 300

(d) BoolQ

68
70
72
74
76
78
80

2 3 5 10

A
cc

ur
ac

y

Num. of clients

75 150 225 300 375 450

(e) MuitiRC

83

83.5

84

84.5

85

85.5

86

2 3 5 10

A
cc

ur
ac

y

Num. of clients

40 80 120 160 200 240

(f) CB

Figure 6: Comparison of model performance under serial training, where colors denote distinct training steps.

Datasets Average Period Sequential client-batch parallel server-hierarchical

COPA
50 85 85 85

100 85 85 85

WiC
50 69.1 66.6 68.2

100 69.0 65.5 67.2

RTE
50 80.1 80.1 78.3

100 79.8 79.4 77.6

BoolQ
50 81.6 79.9 81.0

100 81.9 80.5 81.3

MultiRC
50 79.3 76.2 77.5

100 77.5 76.6 77.1

CB
50 85.7 85.7 85.7

100 85.7 85.7 85.7

WSC
50 71.2 63.5 63.5

100 66.3 65.4 63.5

Table 6: Impact of different average period

C Impact of Average Period905

For analyzing the effect of different averaging peri-906

ods on the model performance, we tested the perfor-907

mance of FL-GLM with different averaging periods908

(50 step and 100 step).909

The results are shown in Table 6, where the910

model with an average period of 100 steps slightly911

outperforms the model with an average period of912

50 steps in the BoolQ task. However, in the WiC,913

RTE, and MultiRC tasks, better results are achieved914

with an average period of 50 steps. In the COPA915

and CB tasks, the averaging period has no effect916

on performance. The most noticeable difference917

occurs in the WSC task, with scores of 71.2 and918

66.3 for an average period of 50 steps and 100919

steps, respectively, for serial training, 63.5 and 65.4920

for client-batch parallel, and flat accuracy scores921

for server-hierarchical. Among all the evaluation922

tasks, the WSC task has the highest sensitivity to 923

the average period, but the average training period 924

has little effect on the overall performance of the 925

FL-GLM model with the same training strategy. 926

D Impact of Participants 927

In this section, we test the three training strate- 928

gies with different numbers of clients by calcu- 929

lating the accuracy scores of FL-GLM on dif- 930

ferent datasets. 3The sequential test uses RTE, 931

WiC, COPA, BoolQ, MultiRC and CB datasets, 932

while the client-batch parallel test uses RTE, WiC, 933

COPA datasets, and the server-hierarchical test uses 934

BoolQ, COPA and RTE datasets, and the hyperpa- 935

rameters such as learning rate are kept consistent. 936

When using serial training strategy, the impact 937

of increasing the number of clients is minimal, as 938

shown in Figure 6. This is because the majority 939

of parameters are trained on the server, making 940

the number of clients insignificant in server-side 941

parameter training. 942

When training in parallel, the accuracy score 943

of FL-GLM decreases slightly as the number of 944

clients increases, which is more obvious on datasets 945

with smaller data volumes. For client-batch parallel 946

training, as shown in Figure 7, the accuracy score 947

3In the client-batch parallel test, in order to mitigate the
effect of overfitting, the datasets are trained with the same
number of training epochs for different numbers of clients,
and normalization is used to enhance the visibility of the
results.

12

parabatch

76

78

80

82

84

0.2 0.4 0.6 0.8 1

A
cc

ur
ac

y

Normonized Epochs

2 4 8

(a)COPA

40

45

50

55

60

65

70

0.2 0.4 0.6 0.8 1

A
cc

ur
ac

y

Normonized Epochs

2 4 8

(b)WiC

68
70
72
74
76
78
80
82

0.5 0.625 0.75 0.875 1

A
cc

ur
ac

y

Normonized Epochs

2 4 8

(c)RTE

Figure 7: Comparison of the accuracy curves under varying numbers of clients using a client-batch parallel training.

paraserver

70

72

74

76

78

80

82

50 100 150 200 250 300

A
cc
ur
ac
y

Steps

2 3

5 10
70

75

80

85

90

100 200 300 400 500

A
cc
ur
ac
y

Steps

2 3
5 10

(a)BoolQ (b)COPA

66
68
70
72
74
76
78
80

80 100 120 140 160

A
cc
ur
ac
y

Steps

2 3
5 10

(c)RTE

Figure 8: Comparison of the accuracy curves under varying numbers of clients using a server-hierarchical training.

decreases with the increase in the number of clients948

due to the increase in the batch size, the frequency949

of model parameter updating decreases, and the950

server-side model is easy to converge to the saddle951

point. For hierarchical-server parallel, as shown952

in Figure 8, the increase in the number of clients953

makes the amount of data for a single client smaller,954

so the more the number of clients, the more obvious955

the overfitting phenomenon is.956

13

