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ABSTRACT

Open-vocabulary semantic segmentation aims to assign labels to every pixel in an
image based on text labels. Existing approaches typically utilize Vision-Language
Models (VLMs), such as CLIP, for dense prediction. However, VLMs, pre-trained
on image-text pairs, are biased toward salient, object-centric regions and exhibit
two critical limitations when adapted to segmentation: (i) Foreground Bias, which
tends to ignore background regions, and (ii) Limited Spatial Localization, resulting
in blurred object boundaries. To address these limitations, we introduce DiSa, a
novel saliency-aware foreground-background disentangled framework. By explic-
itly incorporating saliency cues in our designed Saliency-aware Disentanglement
Module (SDM), DiSa separately models foreground and background ensemble
features in a divide-and-conquer manner. Additionally, we propose a Hierarchi-
cal Refinement Module (HRM) that leverages pixel-wise spatial contexts and
enables channel-wise feature refinement through multi-level updates. Extensive
experiments on six benchmark open-vocabulary semantic segmentation datasets
demonstrate that DiSa consistently outperforms current state-of-the-art methods.

1 INTRODUCTION

Open-vocabulary semantic segmentation aims to label each pixel with an unlimited range of categories
that extend beyond a pre-defined closed set, based on text labels. To this end, vision-language models
(VLMs), e.g., CLIP (Radford et al., 2021) and ALIGN (Jia et al., 2021), have been widely explored,
as they exhibit powerful zero-shot recognition capabilities via large-scale training on image-text pairs.

Despite these advances, VLMs pre-trained on image-text pairs face 2 critical limitations when adapted
to dense prediction tasks: (1) Foreground Bias: VLMs tend to overemphasize salient, foreground
regions while neglecting background context, leading to misclassification of background regions (Li
et al., 2024b). This bias stems from the object-centric nature of pre-training data, where captions
predominantly describe salient, foreground instances. This results in a fundamental misalignment
between the foreground-centric bias of VLMs and the pixel-level precision of segmentation, which
requires holistic scene understanding and accurate recognition of non-salient background regions.
As shown in row 1 of Fig. 1, VLMs pay little attention to non-salient, background buildings. (2)
Limited Spatial Localization: VLMs demonstrate limited capacity of fine-grained spatial reasoning
required for segmentation predictions. Due to insufficient dense supervision during pre-training,
these models struggle to capture precise object boundaries and reconstruct local structural details
(as shown in row 2 of Fig. 1). This poses challenges in distinguishing visually similar or spatially
overlapping categories (Lee et al., 2025), particularly for small objects and background regions that
require nuanced spatial reasoning for accurate segmentation (Zhou et al., 2022; Zhong et al., 2022).

To address these limitations, we propose foreground-background disentanglement mechanisms
to tackle various category roles across different visual contexts. Our design is motivated by the
observation that most categories exhibit context-dependent roles, e.g., cars or furniture may appear as
either foreground instances or background context depending on scene composition. This contextual
distinction highlights the importance of adaptive representation learning that captures both fine-
grained localization for foreground instances and the semantic coherence for background regions.
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(a) CLIP (b) CAT-Seg (c) DiSa

Figure 1: Visualization of correlation maps. VLMs face Foreground Bias and Limited Spatial
Localization limitations. Our proposed DiSa effectively alleviates these challenges. The first row
indicates class “building”, and the second row indicates class “animal”.

While existing approaches explore token-level or class-level disentanglement, they either fail to
preserve intra-class relationships or assume rigid taxonomies, leading to sub-optimal performance. To
overcome these limitations, we leverage saliency cues for adaptive foreground-background inter-token
decomposition for each category. Unlike prior works that merely employ saliency for computational
efficiency (Choi et al., 2024; Luo et al., 2024), our method explicitly leverages saliency to address
the aforementioned Foreground Bias challenge. Specifically, we leverage saliency maps derived
from text-image cross-attention to effectively partitions per-class visual embeddings into foreground
(salient, object-centric) and background (contextual, peripheral) regions based on their corresponding
saliency scores. This enables ensemble feature learning via foreground/background dual branches
that capture domain-specific characteristics while preserving semantic coherence.

Building on the saliency-aware disentanglement, we propose a novel framework, DiSa, which
explicitly separates foreground and background features. This decomposition enables our model
to learn distinct and complementary representations, effectively addressing the inherent imbalance
in semantic granularity between foreground and background regions. In addition, we introduce a
Hierarchical Refinement Module (HRM) that captures detailed spatial context and refines features
via multi-level updates. Specifically, it consists of (1) Pixel-wise Refinement, which enhances spatial
localization at the pixel level; (2) Category-wise Refinement, which captures channel-wise coherence
for each class; and (3) Semantic-wise Refinement, which extracts semantic consistency within broader
foreground/background groupings.

In summary, our contributions in this paper include:

• We propose DiSa, a novel Saliency-aware Foreground-background Disentangled frame-
work for open-vocabulary semantic segmentation. Our Saliency-aware Disentanglement
Module (SDM) is the first to use explicit saliency cues for adaptive intra-class foreground-
background decomposition, enabling context-dependent foreground-background assignment.
It facilitates semantic coherence especially for non-salient background regions, mitigating
Foreground Bias.

• DiSa introduces a Hierarchical Refinement Module (HRM) that captures spatial context
through Pixel-, Category-, and Semantic-wise Refinement. By incorporating spatial and
channel-level context modeling, HRM alleviates the challenge of Limited Spatial Localiza-
tion, improving fine-grained boundary localization and spatial discrimination capabilities.

• We conduct extensive evaluations across six large-scale open-vocabulary semantic seg-
mentation benchmarks. DiSa consistently outperforms state-of-the-art methods, achieving
significant performance gains that demonstrate its effectiveness and robustness.

2 RELATED WORK

2.1 OPEN-VOCABULARY SEMANTIC SEGMENTATION

With the advance of VLMs, researchers have started to explore their powerful visual-text alignment
capabilities to provide semantically rich and aligned multimodal representations in this task. SegCLIP
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(Liu et al., 2024) integrates CLIP with Vision Transformers (ViT) (Dosovitskiy et al., 2020) through
a semantic group module that aggregates patches with learnable centers. It additionally introduces
two auxiliary losses, one is a reconstruction loss for recovering the masked patches, and another is a
superpixel-based KL divergence loss. CAT-Seg (Cho et al., 2024) estimates cost volumes from CLIP
image-text similarities, followed by spatial and class aggregation to improve localization accuracy.
The cost volumes serve as visual groundings for class-specific predictions. SCAN (Liu et al., 2024)
presents a Semantic-assisted Calibration Network to mitigate misalignment between visual contents
and text semantics by calibrating the mask proposals and reducing domain bias in CLIP. ESC-Net
(Lee et al., 2025) leverages CLIP-derived image-text correlations as pseudo-supervision for SAM,
generating accurate predictions through the powerful segmentation capabilities of foundation models.

A parallel line of research investigates saliency for computational efficiency. SBAM (Choi et al., 2024)
proposes an adaptive masking mechanism based on saliency-driven importance scores to enhance
pre-training efficiency. PnP-OVSS (Luo et al., 2024) introduces a novel token pruning strategy that
constructs class-agnostic saliency maps by aggregating category-specific attention, gradually pruning
less discriminative tokens. However, these approaches merely focus on computational optimization
rather than leveraging saliency information to address critical limitations in foreground-background
disambiguation and spatial localization inherent in VLMs.

2.2 FOREGROUND-BACKGROUND DISENTANGLEMENT

Recent works identified Foreground Bias (Li et al., 2024b) as a fundamental limitation in VLMs,
where pre-training on object-centric image-text pairs introduces systematic biases toward salient
regions while neglecting holistic scene understanding. To address this issue, researchers explored
foreground-background decomposition strategies for ensemble modeling of background regions.

One research direction focuses on decomposing visual embeddings into foreground and background
regions at the token level. Panoptic SegFormer (Li et al., 2022b) presents a query decoupling strategy
to adaptively separate visual tokens into thing and stuff queries. OpenSeeD (Zhang et al., 2023)
employs language guidance to select foreground queries, which subsequently interact with learnable
background queries through decoupled cross-attention blocks in the decoder. FOUND (Siméoni
et al., 2023) extracts high-confident “seed” tokens to generate coarse background masks through
attention maps, enhancing fine-grained object localization. ClearCLIP (Lan et al., 2024) decomposes
CLIP vision encoder outputs to attention output and residual connections, learning more robust object
recognition. FOCUS (You et al., 2025) leverages two pre-defined prompts to generate foreground and
background masks and further calculates the contrastive loss for improved foreground localization.

Alternative approaches perform disentanglement at the class level, separating all classes into fore-
ground and background taxonomies. DenseVLM (Li et al., 2024b) designs a novel VLM that
mitigates background imbalance by generating pseudo labels for unlabeled regions using frozen
VLM and then applying separate alignment objectives for pre-defined foreground and background
categories. Talk2DINO (Barsellotti et al., 2024) designs a Background Cleaning Procedure that
re-weights class scores based on the self-attention maps, highlighting the foreground regions while
suppressing background interference. LBP (Li et al., 2024a) enhances background understanding for
open-vocabulary object detection by learning background prompts from other images, effectively
incorporating implicit background knowledge and achieving superior performance.

Despite these advances, existing disentanglement approaches suffer from several limitations. Token-
level disentanglement fails to preserve intra-class relationships that are crucial for dense predictions.
Class-level disentanglement assumes rigid foreground-background taxonomies, ignoring that in-
stances of each class may appear as either foreground or background depending on scene composition.
Furthermore, learnable disentanglement modules without any prior knowledge lack explicit guidance
and are sub-optimal. In contrast to these approaches, our method leverages explicit saliency supervi-
sion to perform adaptive, class-specific foreground-background disentanglement, developing semantic
coherence among ensemble representations while addressing the Foreground Bias in VLMs.

3 METHODOLOGY

3.1 MOTIVATION

Our approach is motivated by the observation that the challenges of open-vocabulary semantic
segmentation lie in the inherent asymmetry between foreground objects (salient, instance-centric
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Figure 2: Overview of the DiSa Framework. DiSa consists of a Saliency-aware Disentanglement
Module (SDM) and a Hierarchical Refinement Module (HRM), followed by an upsampling decoder.

elements) and background regions (contextual, peripheral environments), which are often entangled
within shared feature spaces. To be more specific, in real-world images, the role of a category can
vary based on scene composition (e.g., a train in focus vs. a train in the far background). This aligns
with how humans parse visual scenes: we don’t always treat “train” in different scenes with equal
attention — it depends on salience, size, occlusion, etc.

While existing methods treat all regions uniformly, we argue that the inherent differences between
foreground and background semantics reveal the benefits of a more principled decomposition strategy.
This allows both foreground and background features to learn specialized representations and learning
objectives, aligning with the “Seek common ground while reserving differences” design ideology
(Li et al., 2022b). Even for stuff classes, the foreground refers to the most semantically informative
or attribute-rich sub-regions. This behavior aligns with our above motivation: even within the same
semantic category, different regions may contribute differently to the textual concept. For example,
in classes like wall or sky, the textured parts of a wall and the cloud structures in the sky provide
relatively stronger visual cues, while others serve as contextual or peripheral background.

To this end, we propose a divide-and-conquer formulation that leverages saliency cues to structurally
decompose the segmentation task into two complementary sub-problems: foreground object localiza-
tion and background region understanding. This separation not only improves robustness to dynamic
scene compositions but also enhances holistic scene understanding by improving disambiguation.

3.2 ARCHITECTURE OVERVIEW

Fig. 2 provides an overview of our proposed framework, DiSa. Our model consists of 4 core
components: a CLIP image encoder, a CLIP text encoder, a Saliency-aware Disentanglement Module
(SDM) for foreground-background disentanglement, and a Hierarchical Refinement Module (HRM)
for integrating multi-level fine-grained details. We follow existing works (Xian et al., 2019; Bucher
et al., 2019) for the task design, e.g., the input and output formats. Given an input image I and a set
of text labels T = {Ti, i = 1, 2, ..., NC}, where NC is the number of all C classes, we utilize CLIP
as vision-language encoders to extract image Fv ∈ RH×W×D and text embeddings Ft ∈ RNC×D,
where D is the dimension size.

Our proposed pipeline begins by processing image Fv and text embeddings Ft to extract cross-
attention maps A ∈ RHW×NC through SDM. These attention maps are then sharpened by Image-
Text Matching (ITM) loss (Li et al., 2021) gradients and the outputs are saliency maps S1:NC

∈
RH×W×NC . Meanwhile, DiSa generates correlation maps C1:NC

∈ RH×W×NC×D between image
Fv and text embeddings Ft through cosine similarity and projection layers. All correlation tokens
from C are then divided into a Foreground and a Background Branch based on their corresponding
saliency scores S. The details of SDM are explained in Section 3.3. Subsequently, we propose a three-
stage Hierarchical Refinement Module (HRM) to further enhance the fine-grained localization and
semantic precision of disentangled correlation maps Cf and Cb separately via Pixel-wise, Category-
wise, and Semantic-wise Refinement. Detailed explanations of HRM are in Section 3.4. Afterwards,
the refined features (C ′′

f and C ′′
b ) from the foreground and background branches are integrated through

a weighted feature aggregation block to produce aggregated correlation maps C̃ ∈ RH×W×NC×D.
Finally, it produces the final mask predictions ŷ through an upsampling decoder.
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3.3 SALIENCY-AWARE DISENTANGLEMENT MODULE

We design the SDM to address the inherent Foreground Bias in VLMs. It uses GradCAM (Selvaraju
et al., 2017) to generate per-class saliency maps from cross-attention. Traditional saliency-based
methods merely focus on improving model efficiency through token pruning. However, we incorporate
saliency as an additional visual cue to perform complementary feature learning. The saliency is
consistent with prior work that reflects semantic contribution but with a slight modification: we obtain
saliency maps for each class instead of a single saliency map for all classes. In our method, saliency
therefore represents regions of semantic details and informative structures, not merely regions of
model confidence. Saliency provides a scalar importance score for disentanglement. It captures where
meaningful evidence appears, while correlation encodes the semantic cues present in that region. The
gradient-based saliency generation is essential for robust disentanglement.

Saliency Map Generation. Given image Fv and text embeddings Ft, we employ cross-attention
layers where text embeddings serve as the query and image embeddings serve as the key/value. The
intermediate attention map A captures image-text correspondences; however, the attentions typically
exhibit scattered and spatially diffuse activations due to their overly broad receptive fields, which are
inherent in global modeling (Wang et al., 2025). To address this limitation, we selectively suppress
less-relevant regions within the attention map A and enhance its spatial precision via gradient-based
reweighting. This objective is achieved through an auxiliary Image-Text Matching (ITM) loss Litm (Li
et al., 2021) that provides explicit supervision for localization. Specifically, we append an auxiliary
regression head to classify whether each image-text pair is matched. The ITM loss is formulated as:

Litm = E(v,t)∼DH(ŷitm
(v,t),y

itm) (1)

where H is the cross-entropy loss, and the ground-truth labels yitm are one-hot vectors obtained
from segmentation masks. During inference, we use the regressed image-text matching scores yitm
to generate gradients, so no ground truth or class labels are required, thereby avoiding any risk of
data leakage. Afterwards, we compute the gradient of Litm and let the attention maps narrowly focus
on the most discriminative regions through GradCAM-style re-weighting to produce the saliency
map Sn for the n-th class:

Sn = max

(
0,

∂Litm

∂An

)
⊗An (2)

where ⊗ represents element-wise multiplication. Note that we rely on the above image-text attention
maps A, which provide robust localization cues and are continuously optimized during training
through segmentation objectives, thereby stabilizing and enhancing their quality even if the auxiliary
ITM supervision is imperfect.

Foreground/Background Token Selection. Unlike traditional approaches that treat all visual tokens
uniformly, we propose a dual-branch mechanism to disentangle all visual tokens into the Foreground
and Background Branches by saliency-aware feature decomposition. It enables the model to explicitly
distinguish between foreground and background regions, focusing on the distinctive characteristics of
both features. This architectural decoupling directly mitigates Foreground Bias in VLMs caused
by their object-centric focus during pre-training. It enables each branch to develop domain-specific
representations.

Specifically, for the n-th class, we select the top-k visual tokens in the correlation maps Cn corre-
sponding to their saliency scores Sn through a binary mask as foreground correlation maps Cf,n

while the remaining are designated as background correlation maps Cb,n. These disentangled maps
are then processed through two specialized branches: a Foreground Branch that models salient
foreground features, and a Background Branch that captures contextual background information.

3.4 HIERARCHICAL REFINEMENT MODULE

Existing SOTA methods often struggle with effectively capturing the semantic boundary details
in complex scenes. To address this challenge, we perform hierarchical refinement to update the
correlation maps C across three distinct levels: (1) Pixel-wise Refinement, which focuses on achiev-
ing precise spatial localization; (2) Category-wise Refinement, aimed at enhancing channel-wise
coherence for each class; and (3) Semantic-wise Refinement, which captures semantic consistency
within broader foreground/background groupings. The hierarchical design preserves fine-grained
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Figure 3: Illustration of Hierarchical Refinement Module (HRM).

spatial details while capturing cross-channel context, leading to improved segmentation precision in
complex visual environments.

Pixel-wise Refinement. As shown in Fig. 3, Pixel-wise Refinement takes foreground correlation
maps Cf and background correlation maps Cb as input. The Pixel-wise Refinement block is applied
for spatial aggregation based on the Swin Transformer (Liu et al., 2021) block with key modifications.
Instead of performing cross-attention across all tokens, we utilize masked embeddings in two branches
to focus solely on foreground and background embeddings, respectively. It consists of 2 blocks: the
first block implements self-attention within a local window, while the second block employs shifted
window-based self-attention to enhance global context integration. The outputs are well-refined
correlation maps (C ′

f and C ′
b) after pixel-wise spatial aggregation, effectively suppressing noise in

image-text correlations.

Category-wise Refinement. Subsequent to Pixel-wise Refinement, Category-wise Refinement is
applied to consider category-specific cross-covariance across feature channels. Given the pixel-refined
correlation maps C ′

f and C ′
b, we apply 2D global average pooling and max pooling in parallel to

extract both the spatial extent of target objects and discriminative clues across channel dimensions.
The resulting pooled features are independently processed by 2 MLPs, and their outputs are combined
through element-wise addition to generate the category prototype P c ∈ RH×W×NC×D. Note that
the P c is class-specific, and P c

f,n and P c
b,n represent the category prototype for the Foreground and

Background Branches of the n-th class.

Semantic-wise Refinement. While Category-wise Refinement enhances channel-wise coherence,
it is class-specific and may overlook broader contextual cues, e.g., surrounding environments or
the overall scene among all classes. To improve semantic understanding of the relationship among
all salient objects for the Foreground Branch and all semantic regions in the environments for the
Background Branch, we design the Semantic-wise Refinement. This additional refinement block
considers coarse-grained scene context across all classes, leading to more robust and generalized
representations.

Similar to Category-wise Refinement, we apply 1D global average pooling and max pooling layers
among category prototypes of all classes {P c

i , i = 1, 2, ..., Nc} to extract semantic prototypes P s.
Note that P s

f and P s
b are class-agnostic and shared among all classes within the Foreground and

Background Branches. After extracting both category P c and semantic prototypes P s, we update
the pixel-refined correlation maps C ′

f and C ′
b by aggregating these channel-wise cues. Specifically,

for the n-th class, we fuse both P c
n and P s by concatenation. Note that the semantic prototype used

is selected based on the branch: P s
f for the Foreground Branch and P s

b for the Background Branch.
This fused output is then element-wise multiplied by the pixel-refined correlation embeddings C ′,
followed by a sigmoid activation as follows:

C ′′
f,i = C ′

f,i ⊗ σ(MLP(Concate(P c
f,i + P s

f ))) (3)

C ′′
b,i = C ′

b,i ⊗ σ(MLP(Concate(P c
b,i + P s

b ))) (4)

where i = 1, 2, ..., NC , Concate is concatenation, σ(·) denotes sigmoid function, and ⊗ refers to
element-wise multiplication.
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Model VLM Additional Backbone Training Dataset Additional Dataset A-847 PC-459 A-150 PC-59 PAS-20 PAS-20b

LSeg [arXiv21] CLIP ViT-B/32 ResNet-101 PASCAL VOC-15 ✗ - - - - 47.4 -
LSeg+ [ECCV22] ALIGN ResNet-101 COCO-Stuff ✗ 2.5 5.2 13.0 36 - 59.0
ZegFormer [CVPR22] CLIP ViT-B/16 ResNet-101 COCO-Stuff-156 ✗ 4.9 9.1 16.9 42.8 86.2 62.7
ZegFormer [CVPR22] CLIP ViT-B/16 ResNet-101 COCO-Stuff ✗ 5.6 10.4 18.0 45.5 89.5 65.5
ZSseg [ECCV22] CLIP ViT-B/16 ResNet-101 COCO-Stuff ✗ 7.0 - 20.5 47.7 88.4 -
OpenSeg [ECCV22] ALIGN ResNet-101 COCO Panoptic ✓ 4.4 7.9 17.5 40.1 - 63.8
OVSeg [CVPR23] CLIP ViT-B/16 ResNet-101 COCO-Stuff ✓ 7.1 11.0 24.8 53.3 92.6 -
ZegCLIP [CVPR23] CLIP ViT-B/16 - COCO-Stuff-156 ✗ - - - 41.2 93.6 -
SAN [CVPR23] CLIP ViT-B/16 - COCO-Stuff ✗ 10.1 12.6 27.5 53.8 94.0 -
EBSeg [CVPR24] CLIP ViT-B/16 - COCO-Stuff ✗ 11.1 17.3 30.0 56.7 94.6 -
SED [CVPR24] ConvNeXt-B - COCO-Stuff ✗ 11.4 18.6 31.6 57.3 94.4 -
CAT-Seg [CVPR24] CLIP ViT-B/16 - COCO-Stuff ✗ 12.0 19.0 31.8 57.5 94.6 77.3
DPSeg [CVPR25] CLIP ViT-B/16 - COCO-Stuff ✗ 12.0 19.5 32.9 58.1 96.0 -
DiSa CLIP ViT-B/16 - COCO-Stuff ✗ 12.6 20.3 33.7 59.3 97.0 79.9

(+0.6) (+0.8) (+0.8) (+1.2) (+1.0) (+2.6)
LSeg [arXiv21] CLIP ViT-B/32 ViT-L/16 PASCAL VOC-15 ✗ - - - - 52.3 -
OpenSeg [ECCV22] ALIGN Eff-B7 COCO Panoptic ✓ 8.1 11.5 26.4 44.8 - 70.2
OVSeg [CVPR23] CLIP ViT-L/14 Swin-B COCO-Stuff ✓ 9.0 12.4 29.6 55.7 94.5 -
SAN [CVPR23] CLIP ViT-L/14 - COCO-Stuff ✗ 12.4 15.7 32.1 57.7 94.6 -
ODISE [CVPR23] CLIP ViT-L/14 Stable Diffusion COCO-Stuff ✗ 11.1 14.5 29.9 57.3 - -
SCAN [CVPR24] CLIP ViT-L/14 - COCO-Stuff ✗ 14.0 16.7 33.5 59.3 97.2 -
EBSeg [CVPR24] CLIP ViT-L/14 - COCO-Stuff ✗ 13.7 21.0 32.8 60.2 96.4 -
SED [CVPR24] ConvNeXt-L - COCO-Stuff ✗ 13.9 22.6 35.2 60.6 96.1 -
CAT-Seg [CVPR24] CLIP ViT-L/14 - COCO-Stuff ✗ 16.0 23.8 37.9 63.3 97.0 82.5
DPSeg [CVPR25] CLIP ViT-L/14 - COCO-Stuff ✗ 14.9 23.5 36.4 62.0 97.4 -
DiSa CLIP ViT-L/14 - COCO-Stuff ✗ 16.3 24.9 38.9 64.7 98.7 84.7

(+0.3) (+1.1) (+1.0) (+1.4) (+1.3) (+2.2)

Table 1: Quantitative results on 6 benchmarks. The best-performing results are presented in bold,
while the second-best results are underlined. Improvements over the second-best are in bold.

By hierarchically refining correlation maps across pixel-, category-, and semantic-levels, HRM makes
the saliency-aware correlation representations more informative and enhances the accuracy, leading
to fine-grained spatial precision in downstream segmentation tasks.

3.5 FOREGROUND AND BACKGROUND AGGREGATION

To uniformly model all pixels after capturing foreground- and background-specific features, we
aggregate the disentangled refined correlation maps (C ′′

f,n and C ′′
b,n) for the n-th class using the previ-

ous binary mask. We further employ a Swin Transformer block to mitigate potential misalignment
between dual branches, and the aggregated correlation maps are denoted as C̃. Finally, C̃ serves as
visual guidance and are fed into an upsampling decoder, along with image embeddings Fv from the
CLIP image encoder, to generate the final mask predictions ŷ.

4 EXPERIMENTS

4.1 DATASETS

Our experiments are trained on COCO-Stuff (Caesar et al., 2018) and evaluated on 6 large-scale
semantic segmentation datasets . ADE20K (Zhou et al., 2019) is a large-scale benchmark for semantic
segmentation with 2000 validation images, supporting two evaluation protocols: ADE-150 with 150
categories, and ADE-847 with extended 847 classes. PASCAL-VOC (Everingham et al., 2010) is
a widely used dataset containing 1,500 validation images with 20 foreground categories, referred
as PAS-20. Another evaluation protocol PAS-20b (Ghiasi et al., 2022) with one extra class for
background is also included. PASCAL-Context (Mottaghi et al., 2014) extends PASCAL VOC,
supporting 2 evaluation protocols: PC-59 with 59 labeled classes and PC-459 with 459 categories.

4.2 IMPLEMENTATION DETAILS

We implement our work using PyTorch (Paszke, 2019) and Detectron2 (Wu et al., 2019). The loss
function is a weighted sum of cross-entropy loss and the ITM loss. We set D = 128, and downsample
the feature maps to H

4 × W
4 resolution. The k parameter for selecting foreground tokens is 96. The

decoder consists of 2 transposed convolution layers that take C̃ and Fv as inputs. Following CAT-Seg
(Cho et al., 2024), we fine-tune query and key projections in attention layers of CLIP image and text
encoders. We train the model using the AdamW optimizer (Loshchilov & Hutter, 2017) with batch
size 2. The learning rate is 2e-4 for our designed modules and 2e-6 for CLIP encoders. We use 2
NVIDIA RTX A5000 GPUs for training. All of the models are trained for 80,000 iterations.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Im
a
g
e

O
u
rs

C
A
T
-S
e
g

G
T

Figure 4: Qualitative results compared to CAT-Seg. DiSa produces more accurate predictions of
small objects and visually-similar regions compared to existing SOTA methods. More qualitative
results are in the Appendix.

4.3 QUANTITATIVE RESULTS

Table 1 demonstrates quantitative results on standard open-vocabulary semantic segmentation datasets
(Zhou et al., 2019; Everingham et al., 2010; Mottaghi et al., 2014). We compare existing works,
LSeg (Li et al., 2022a), LSeg+ (Ghiasi et al., 2022), ZegFormer (Ding et al., 2022), ZSseg (Xu et al.,
2022), OpenSeg (Ghiasi et al., 2022), OVSeg (Liang et al., 2023), ZegCLIP (Zhou et al., 2023), SAN
(Xu et al., 2023b), ODISE (Xu et al., 2023a), SCAN (Liu et al., 2024), EBSeg (Shan et al., 2024),
SED (Xie et al., 2024), CAT-Seg (Cho et al., 2024), and DPSeg (Zhao et al., 2025) with similar-scale
VLMs. Note that we adopt the DPSeg (Zhao et al., 2025) inference I model for fair comparison.
Unlike some prior works, our model does not leverage any additional datasets or backbones.

Our method, DiSa, achieves consistent and significant gains across all benchmarks, in both base-VLM
and large-VLM settings. As shown in Table 1, in the base-VLM configuration, DiSa outperforms
prior SOTA approaches with the improvements of +0.6%, +0.8%, +0.8%, +1.2%, +1.0%, and +2.6%
mIoU (with an average performance gain of +1.2% mIoU), on A-847, PC-459, A-150, PC-59,
PAS-20, and PAS-20b, respectively. For the large-VLM configuration, DiSa outperforms DPSeg
by +0.3%, +1.1%, +1.0%, +1.4%, +1.3%, and +2.2% mIoU with an average gain of 1.2% mIoU
among all datasets. Note that DiSa has the most significant relative performance gains on PAS-20b,
demonstrating that it effectively mitigates Foreground Bias in VLMs. These gains are not only
statistically meaningful but also practically significant given the performance saturation observed in
open-vocabulary segmentation tasks. Model efficiency analysis is in the Appendix.

We attribute the leading performance of DiSa to two factors: (1) Our proposed Saliency-aware
Disentanglement enhances context-aware features while preserving semantic coherence. It effectively
mitigates Foreground Bias, as demonstrated by significant improvements on PAS-20b, which includes
background classes. (2) Hierarchical Refinement Module yields accurate and robust boundaries via
multi-level refinement, contributing to consistent performance gains across all datasets.

4.4 QUALITATIVE RESULTS

We evaluate qualitative results of our method with CAT-Seg (Cho et al., 2024) using default settings
in Fig. 4. We present diverse scenarios, including crowded background (columns 1&5) and visually
similar classes (rows 2-4). CAT-Seg struggles to handle complex foreground-background relations
and locate accurate boundaries. For example, in column 1, the background is misclassified as
“train”. Similarly, in columns 2&4, CAT-Seg produces ambiguous boundaries between visually
similar categories (e.g., “snow” and “grass”), reflecting its limited capacity for fine-grained spatial

8
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(a) Ground Truth (b) Prediction

(c) Foreground saliency (d) Foreground tokens

Figure 5: Qualitative comparison between
saliency and predictions.

Model # Params. (M) GFLOPs Inference time (s)
ZegFormer 531.2 19,425.6 3.10
ZSseg 530.8 22,302.1 3.11
OVSeg 532.6 19,345.6 2.98
CAT-Seg 433.7 2,121.1 0.78
ESC-Net 451.3 2,203.5 0.76

Ours 456.2 2,287.3 0.69

Table 2: Model complexity comparison. We
use CLIP ViT-B/16 for VLM and one single
A6000 GPU for fair comparison.

Decomposition A-847 PC-459 A-150 PC-59 PAS-20 PAS-20b

(I) DiSa w/o SDM 11.4 18.8 30.9 56.3 94.5 76.1
(II) Token-level 12.1 19.9 32.6 58.2 94.5 78.9
(III) Class-level 11.5 19.5 31.1 58.2 95.1 78.5

(IV) DiSa w/o HRM 11.7 18.7 31.2 57.7 95.3 78.5
(V) (IV) + Pixel 12.4 19.5 32.3 58.8 95.9 78.9
(VI) (IV) + Category 11.8 19.1 32.0 57.9 95.4 78.3
(VII) (V) + Category 12.5 19.8 33.1 59.0 96.6 79.1

(VIII) Ours 12.6 20.3 33.7 59.3 97.0 79.9

Table 3: Ablation study for various design choices. CLIP ViT-B/16 is used as VLM for ablation.

localization. In contrast, DiSa preserves object integrity in crowded scenes, demonstrating superior
robustness in challenging scenarios.

We present visualizations of foreground saliency and image tokens of a specific class “cow” in Fig. 5.
We observe that foreground and background tokens of the partially occluded cow are identified and
not suppressed by other categories. It is consistent with our design, yielding sharper boundaries.

4.5 MODEL EFFICIENCY ANALYSIS

We further conduct the model efficiency analysis (parameter size and GFLOPS) on all 6 datasets
in Table 2. Notably, ZegFormer (Ding et al., 2022), ZSseg (Xu et al., 2022), and OVSeg (Liang
et al., 2023) rely on large-scale backbones and complex vision-language fusion modules, with more
than 530M parameters and 19k GFLOPs. In contrast, our model significantly reduces inference
cost to 2k GFLOPs while maintaining a competitive parameter count of 456M. Although slightly
larger than CAT-Seg (Cho et al., 2024) and ESC-Net (Lee et al., 2025), our framework achieves
comparable efficiency and remains lightweight compared to other CLIP-based methods. These results
demonstrate that DiSa dual-branch design and hierarchical refinement modules introduce minimal
overhead while delivering strong performance, highlighting its efficiency in balancing performance
with computational costs.

4.6 ABLATION STUDY

Design choices for disentanglement. To validate the impact of our saliency-aware disentanglement,
we compare our (I) baseline (DiSa without SDM) with 2 other designs in Table 3: (II) token-level,
following PraNet (Hu et al., 2025) to decouple foreground/background features, (III) class-level,
leveraging Large Language Models (Achiam et al., 2023) for a pre-defined taxonomy and separating
all classes into 2 branches. As shown in the table, token-level disentanglement (II) achieves marginal
improvements over the baseline (with an average gain of 0.66%). Class-level disentanglement (III)
slightly improves on some benchmarks, likely due to its rigidity in adapting to varying scene contexts.
In contrast, our proposed saliency-aware disentanglement (VIII) consistently outperforms other
decompositions by 1.1% (token-level) and 1.5% (class-level) on average, demonstrating its efficacy.
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Notably, it yields a substantial improvement (2.6%) on PAS-20b, effectively alleviating Foreground
Bias.

Component analysis for HRM. To validate the effectiveness of HRM, we further evaluate the
performance gain of four variants (IV-VII) by gradually adding their components to the baseline in
Table 3. Specifically, they are: (IV) baseline (DiSa without HRM), (V) adding Pixel-wise Refinement
to (IV), (VI) adding Category-wise Refinement to (IV), (VII) adding Category-wise Refinement to
(V), and (VIII) employing all designed components. Introducing Pixel-wise Refinement (V) improves
the average mIoU by 0.78%. Adding Category-wise Refinement (VII) further boosts performance by
capturing channel-wise category semantics, with an average gain of 1% over the baseline. Finally,
incorporating Semantic-wise Refinement (VIII) yields the highest overall performance (1.62% on
average). It demonstrates that HRM and multi-level refinement are essential for mitigating Limited
Spatial Localization and semantic coherence.

5 CONCLUSION

In this paper, we propose DiSa, a novel Saliency-aware Foreground-background Disentangled
framework for open-vocabulary semantic segmentation. To address the Foreground Bias and Limited
Spatial Localization limitations in VLMs, we propose a Saliency-aware Disentanglement Module
(SDM), which performs adaptive foreground-background decomposition based on saliency cues,
enabling context-dependent ensemble feature learning. Additionally, by integrating a Hierarchical
Refinement Module (HRM), DiSa yields fine-grained spatial localization through Pixel-, Category-
, and Semantic-wise Refinement. Extensive experimental evaluations on six large-scale datasets
demonstrate the effectiveness of our model. Our observations and novel design shift the paradigm
and suggest a promising direction for future research.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Luca Barsellotti, Lorenzo Bianchi, Nicola Messina, Fabio Carrara, Marcella Cornia, Lorenzo Baraldi,
Fabrizio Falchi, and Rita Cucchiara. Talking to dino: Bridging self-supervised vision backbones
with language for open-vocabulary segmentation. arXiv preprint arXiv:2411.19331, 2024.

Maxime Bucher, Tuan-Hung Vu, Matthieu Cord, and Patrick Pérez. Zero-shot semantic segmentation.
Advances in Neural Information Processing Systems, 32, 2019.

Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-stuff: Thing and stuff classes in context. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1209–1218,
2018.

Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexander Kirillov, and Rohit Girdhar. Masked-
attention mask transformer for universal image segmentation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 1290–1299, 2022.

Seokju Cho, Heeseong Shin, Sunghwan Hong, Anurag Arnab, Paul Hongsuck Seo, and Seungryong
Kim. Cat-seg: Cost aggregation for open-vocabulary semantic segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4113–4123, 2024.

Hyesong Choi, Hyejin Park, Kwang Moo Yi, Sungmin Cha, and Dongbo Min. Salience-based
adaptive masking: revisiting token dynamics for enhanced pre-training. In European Conference
on Computer Vision, pp. 343–359. Springer, 2024.

Jian Ding, Nan Xue, Gui-Song Xia, and Dengxin Dai. Decoupling zero-shot semantic segmentation.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
11583–11592, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman. The
pascal visual object classes (voc) challenge. International journal of computer vision, 88:303–338,
2010.

Golnaz Ghiasi, Xiuye Gu, Yin Cui, and Tsung-Yi Lin. Scaling open-vocabulary image segmentation
with image-level labels. In European conference on computer vision, pp. 540–557. Springer, 2022.

Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. A closer look
at deep learning heuristics: Learning rate restarts, warmup and distillation. arXiv preprint
arXiv:1810.13243, 2018.

Bo-Cheng Hu, Ge-Peng Ji, Dian Shao, and Deng-Ping Fan. Pranet-v2: Dual-supervised reverse
attention for medical image segmentation. arXiv preprint arXiv:2504.10986, 2025.

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung,
Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with
noisy text supervision. In International conference on machine learning, pp. 4904–4916. PMLR,
2021.

Mengcheng Lan, Chaofeng Chen, Yiping Ke, Xinjiang Wang, Litong Feng, and Wayne Zhang.
Clearclip: Decomposing clip representations for dense vision-language inference. In European
Conference on Computer Vision, pp. 143–160. Springer, 2024.

Minhyeok Lee, Suhwan Cho, Jungho Lee, Sunghun Yang, Heeseung Choi, Ig-Jae Kim, and Sangyoun
Lee. Effective sam combination for open-vocabulary semantic segmentation. In Proceedings of
the Computer Vision and Pattern Recognition Conference, pp. 26081–26090, 2025.

Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen Koltun, and René Ranftl. Language-driven
semantic segmentation. arXiv preprint arXiv:2201.03546, 2022a.

Jiaming Li, Jiacheng Zhang, Jichang Li, Ge Li, Si Liu, Liang Lin, and Guanbin Li. Learning
background prompts to discover implicit knowledge for open vocabulary object detection. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16678–16687, 2024a.

Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven
Chu Hong Hoi. Align before fuse: Vision and language representation learning with momentum
distillation. Advances in neural information processing systems, 34:9694–9705, 2021.

Yunheng Li, Yuxuan Li, Quansheng Zeng, Wenhai Wang, Qibin Hou, and Ming-Ming Cheng.
Densevlm: A retrieval and decoupled alignment framework for open-vocabulary dense prediction.
arXiv preprint arXiv:2412.06244, 2024b.

Zhiqi Li, Wenhai Wang, Enze Xie, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, Ping Luo,
and Tong Lu. Panoptic segformer: Delving deeper into panoptic segmentation with transformers.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
1280–1289, 2022b.

Feng Liang, Bichen Wu, Xiaoliang Dai, Kunpeng Li, Yinan Zhao, Hang Zhang, Peizhao Zhang,
Peter Vajda, and Diana Marculescu. Open-vocabulary semantic segmentation with mask-adapted
clip. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
7061–7070, 2023.

Yong Liu, Sule Bai, Guanbin Li, Yitong Wang, and Yansong Tang. Open-vocabulary segmentation
with semantic-assisted calibration. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 3491–3500, 2024.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the
IEEE/CVF international conference on computer vision, pp. 10012–10022, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jiayun Luo, Siddhesh Khandelwal, Leonid Sigal, and Boyang Li. Emergent open-vocabulary
semantic segmentation from off-the-shelf vision-language models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 4029–4040, 2024.

Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee, Sanja Fidler, Raquel
Urtasun, and Alan Yuille. The role of context for object detection and semantic segmentation in
the wild. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
891–898, 2014.

A Paszke. Pytorch: An imperative style, high-performance deep learning library. arXiv preprint
arXiv:1912.01703, 2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based local-
ization. In Proceedings of the IEEE international conference on computer vision, pp. 618–626,
2017.

Xiangheng Shan, Dongyue Wu, Guilin Zhu, Yuanjie Shao, Nong Sang, and Changxin Gao. Open-
vocabulary semantic segmentation with image embedding balancing. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 28412–28421, 2024.

Oriane Siméoni, Chloé Sekkat, Gilles Puy, Antonín Vobeckỳ, Éloi Zablocki, and Patrick Pérez.
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APPENDIX OVERVIEW

In this Appendix, we provide additional details of the paper, including other model details (Section A),
other implementation details (Section B), additional ablation study (Section C), additional qualitative
results (Section D), and limitations of proposed method (Section F).

A OTHER MODEL DETAILS

A.1 UPSAMPLING DECODER

We adopt a lightweight upsampling decoder following the design in (Cho et al., 2024). Specifically, we
extract intermediate visual embeddings from the 4-th and 8-th layers (Dosovitskiy et al., 2020) of the
CLIP ViT-L/14 image encoder (or the 8-th and 16-th layers of CLIP ViT-L/14) for higher-resolution
guidance. The decoder consists of two identical transposed convolution layers that progressively
upsample the feature maps. It takes the correlation maps with a resolution of 24 × 24 as input, and
outputs predictions at a resolution of 96 × 96.

The effectiveness of this simple decoder stems from our saliency-aware disentanglement and hierar-
chical refinement, which models rich contexts while preserving accurate object boundaries, thereby
enhancing feature extraction qualities.

B OTHER IMPLEMENTATION DETAILS

Training details. We use pre-trained CLIP ViT-B/16 (Radford et al., 2021) as our base-VLM and
CLIP ViT-L/14 (Radford et al., 2021) as our large-VLM, following the same setting as in most of
the recent SOTA models (Cho et al., 2024). We train three attention layers for generating saliency
maps following the empirical experience and ablation studies in PnP-OVSS (Luo et al., 2024). For
the Pixel-Wise Refinement and subsequent Swin Transformer (Liu et al., 2021) used for aggregation,
we adopt the commonly used structure: one non-shifted window attention layer, followed by a shifted
window attention layer. Some other training details include Warmup Cosine Learning Rate scheduler
(Gotmare et al., 2018) and 1e-4 weight decay.

Data preprocessing. The data augmentation used in our work includes random cropping, and
photometric distortion, following (Cheng et al., 2022). During training, saturation, hue, and contrast
are randomly adjusted for robustness. The training resolution is set to be 384 × 384.

Text template. We utilize the commonly used prompt template for text labels, which is "A photo of
a class", without relying on cutting-edge templates. We do not incorporate any LLM-generated or
handcrafted prompts in our work.

Evaluation metrics. We use mean Intersection over Union (mIoU) to measure segmentation perfor-
mance. For model efficiency analysis, we use parameter size and GFLOPs.

C ADDITIONAL ABLATION STUDY

Design choices of foreground selection k. To further validate the impact of foreground selection
hyperparameter, we leverage different k to evaluate our model’s robustness in Table 4: (I) k=16 (3%
ratio of all tokens), (II) k=48 (8% ratio of all tokens), (III) k=96 (17% ratio of all tokens). Overall,
performance gradually improves with increasing k, and it yields small but consistent gains when k=96,
achieving a good balance between expressiveness (for small k) and noise (for large k). PC-459 and
A-847 improve the most across k, suggesting they benefit significantly from foreground-background
disentanglement. Results on PAS-20 are relatively robust, which reveals that our disentanglement
design captures complex scenario understanding and mitigates Foreground Bias.

D ADDITIONAL QUALITATIVE RESULTS

To further validate our model, we present more visualizations of qualitative results on A-150 (Zhou
et al., 2019) in Fig. 7, A-847 (Zhou et al., 2019) in Fig. 8, PC-59 (Everingham et al., 2010) in Fig. 9,
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k A-847 PC-459 A-150 PC-59 PAS-20 PAS-20b

(I) 16 11.4 18.7 32.6 57.8 96.3 78.0
(II) 48 12.0 19.8 34.1 58.3 97.1 78.6

(IV) 96 12.6 20.3 33.7 59.3 97.0 79.9

Table 4: Ablation study for foreground selection hyperparameter k.

(a) Foreground saliency (b) Foreground tokens (c) Prediction

Figure 6: Failure Case with imprecise foreground/background disentanglement.

and PC-459 (Everingham et al., 2010) in Fig. 10. DiSa consistently produces accurate and robust
predictions in complex scenarios, demonstrating its efficacy.

We additionally present the comparison of qualitative results on PAS-20b (Ghiasi et al., 2022) between
DiSa and one previous SOTA approach, CAT-Seg (Cho et al., 2024), in Fig. 11. Note that PAS-20b has
one extra “background” class, and the results clearly illustrate our identified limitations and motiva-
tions. Specifically, CAT-Seg struggles to (i) separate foreground and background areas (e.g., window
in row 1, potted plant in row 2, and sofa in row 5), and (ii) define accurate boundaries between objects
(e.g., TV monitor in row 3 and bicycle in row 4). These two limitations correspond to the Foreground
Bias and Limited Spatial Localization inherent in VLMs, respectively. In contrast, DiSa improves
foreground-background contexts and generates more precise object boundaries, demonstrating DiSa’s
ability to tackle challenging scenarios and mitigate the aforementioned limitations.

E FAILURE CASES

We additionally provide a failure case of imperfect foreground/background separation in Fig. 6. In
this crowded scene, some salient regions of the class "person" are not assigned as the foreground. It
demonstrates that, for objects that vary widely in size, the disentanglement might become unstable,
leading to inaccurate or ambiguous foreground/background separation. However, the ensemble nature
of our dual branches provides robustness by preserving complementary cues in the alternative branch
compensate for such errors, leading to more reliable fused predictions.

F LIMITATION

Following prior state-of-the-art works (Cho et al., 2024; Tang et al., 2024), we evaluate our model
on standard open-vocabulary semantic segmentation datasets such as COCO-Stuff (Caesar et al.,
2018) and ADE20K (Zhou et al., 2019). However, these datasets contain incorrect or ambiguous
ground-truth annotations, raising concerns about the reliability of evaluation. This highlights the need
for building a new, high-quality dataset for the task.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to improve the writings. It was used to check typos, grammar and style issues, and
resolve minor notation inconsistencies. It also suggested alternative phrasings for clarity. The LLM
did not contribute to research ideas and model design. All suggested edits were reviewed by the
authors before incorporation.
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Figure 7: Qualitative results on ADE20K with 150 classes.
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Figure 8: Qualitative results on ADE20K with 847 classes.
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Figure 9: Qualitative results on PASCAL Context with 59 classes.
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Figure 10: Qualitative results on PASCAL Context with 459 classes.
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(a) CAT-Seg (b) Ours (b) GT

Figure 11: Comparison of Qualitative results on PAS-20b. We compare DiSa with CAT-Seg.
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