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ABSTRACT

The Gumbel-Softmax probability distribution allows learning discrete tokens in
generative learning, whereas the Gumbel-Argmax probability distribution is useful
in learning discrete structures in discriminative learning. Despite the efforts in-
vested in optimizing these models, their properties are underexplored. In this work,
we investigate their representation properties and determine for which families of
parameters these probability distributions are complete, that is, can represent any
probability distribution, and minimal, i.e., can represent a probability distribution
uniquely. We rely on convexity and differentiability to determine these conditions
and extend this framework to general probability models, denoted Perturb-Softmax
and Perturb-Argmax. We conclude the analysis by identifying two sets of pa-
rameters that satisfy these assumptions and thus admit a complete and minimal
representation. A faster convergence rate of Gaussian-Softmax in comparison
to Gumbel-Softmax further motivates our study, as the experimental evaluation
validates.

1 INTRODUCTION

Learning over discrete probabilistic models is an active research field with numerous applications.
Examples include learning probabilistic latent representations of semantic categories (Rolfe, 2017)
and beliefs (Mnih & Gregor, 2014; Salakhutdinov & Hinton, 2009). The Gumbel-Argmax and
Gumbel-Softmax probability distributions are widely applied in machine learning to model and
analyze such discrete probability distributions.

The Gumbel-Argmax is an equivalent representation of the softmax operation and plays a key role in
the “Follow The Perturb-Leader” (FTPL) family of algorithms in online learning (Hannan, 1957; Kalai
& Vempala, 2002; 2005; Rakhlin et al., 2012). Its extension to Gaussian-Argmax allows better bounds
on their gradients and consequently provides better regret bounds in linear and high-dimensional
settings (Abernethy et al., 2014; 2016; Cohen & Hazan, 2015). The argmax operation allows for
efficient sampling, making the Perturb-Argmax probability models pivotal in discriminative learning
algorithms of high-dimensional discrete structures (Berthet et al., 2020; Pogančić et al., 2020; Song
et al., 2016; Cohen Indelman & Hazan, 2021; Niculae et al., 2018). The Gumbel-Softmax (or the
Concrete distribution) probability distribution, which replaces the argmax operation with a softmax
operation is easier to optimize and therefore plays a key role in generative learning models (Jang et al.,
2017; Maddison et al., 2017; Kusner & Hernández-Lobato, 2016; Ramesh et al., 2021a). The discrete
nature of these probability models provides a natural representation of concepts, e.g., in zero-shot
text-to-image generation (Ramesh et al., 2021b). While the Gumbel-Argmax and Gumbel-Softmax
probability distributions are widely applied in machine learning, their representation properties are
still underexplored.

In this work, we investigate the representation properties of the Gumbel-Argmax and Gumbel-
Softmax probability distributions. We aim to determine for which families of parameters these
distributions are complete and minimal. A distribution is complete if it can represent any probability
distribution, and minimal if it can uniquely represent a probability distribution. A complete and
minimal distribution is also defined as identifiable. We identify the conditions that determine their
representation properties by investigating the Gumbel-Argmax and the Gumbel-Softmax probability
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𝒫Θ

Δ

𝜕𝑓

(a) An illustration of the representation properties
of the Perturb-Softmax. Its representation is com-
plete for any perturbation distribution under the
conditions in Theorem 4.1. The mapping is one-
to-one whenever the representation parameters
are not linearly constrained (full mapping), and
single-valued otherwise (green dashed mapping).

𝒫Θ

Δ

𝜕𝑓

(b) An illustration of the representation properties of
the Perturb-Argmax. Its representation is complete un-
der the conditions in Theorem 5.1. It is not identifiable
whenever the perturbations follow a discrete distribution
(dotted purple mapping), and identifiable for smooth
pdf perturbation distributions (green dashed mapping).
Moreover, under the conditions in Theorem 5.3, the
mapping is one-to-one whenever the representation pa-
rameters are not linearly constrained (full mapping).

Figure 1: Illustration of the representation properties of the Perturb-Softmax and the Perturb-Argmax.

distributions as gradients of respective convex functions over their set of parameters. The generality
of our framework allows establishing these properties for any random perturbation, for example,
Gaussian-Softmax or Gaussian-Argmax, or more broadly, Perturb-Softmax or Perturb-Argmax.
Our investigation is further motivated by practical reasons due to the differences in convergence
rates between the Gumbel-Softmax and the Gaussian-Softmax, following the theory of measure
concentration.

We begin by introducing the notation relating parameters and the relevant probability distributions in
Section 3. Subsequently, we investigate the Perturb-Softmax probability models as gradients of the
expected log-sum-exp convex function and prove their completeness by connecting their gradients
to the relative interior of the probability simplex. In Section 4, we determine the minimality of the
Perturb-Softmax by the strict convexity of the expected log-sum-exp when restricted to the respective
parameter space. We then investigate the Perturb-Argmax probability models as sub-gradients of
the expected-max convex function and establish the conditions for which their parameter space is
complete and minimal, see Section 5. Finally, we empirically demonstrate the qualities of Perturb-
Softmax extension in generative and discriminative learning settings, showing improved convergence
of Gaussian-Softmax over Gumbel-Softmax beyond the linear high-dimensional setting that was
investigated in online learning Abernethy et al. (2014); Cohen & Hazan (2015).

Our findings are illustrated in Figure 1 and summarized in Table 1.

Table 1: A summary of the representation properties of the Perturb-Softmax and Perturb-Argmax
distributions for perturbation distribution choices.

Perturb-Softmax Perturb-Argmax
Perturbation Dist. Completeness Identifiability Minimality Completeness Identifiability Minimality
Smooth unbounded

✓† ✓ ✓∗ ✓‡
✓ ✓∗

Smooth bounded ✗ ✗
Discrete ✗ ✗

† Under the conditions of Theorem 4.1. ‡ Under the conditions of Theorem 5.1. ∗ The case that the
representation parameters are not linearly constrained.

2 RELATED WORK

The exponential family realized by the softmax operation over its parameters is extensively used in
machine learning. However, sampling high-dimensional models is challenging due to its normalizing
factor (Geman & Geman, 1984; Goldberg & Jerrum, 2007). The Gumbel-Argmax probability
distribution measures the stability of the argmax operation over Gumbel random variables. It is
an equivalent representation of softmax operation, thereby enabling efficient sampling from the
exponential family (Gumbel, 1954; Luce, 1959). In the context of machine learning, the Gumbel-
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Argmax probability models underlie the FTPL online learning algorithm (Hannan, 1957; Kalai &
Vempala, 2002; 2005). The Gaussian-Argmax probability models extend the FTPL family of online
algorithms and improve their regret bounds (Rakhlin et al., 2012; Abernethy et al., 2014; 2016; Cohen
& Hazan, 2015). Our work complements these studies by exploring the properties of Gumbel-Argmax
and Gaussian-Argmax. We prove the conditions under which Perturb-Argmax probability models are
complete, making them suitable for use in machine learning, and when they are minimal, they can
uniquely identify a probability distribution from Perturb-Argmax probability models.

The Gumbel-Softmax probability models were introduced as an alternative to the exponential family
and its Gumbel-Argmax equivalent in generative learning (Maddison et al., 2017; Jang et al., 2017).
This alternative allows for efficient sampling, making it highly effective for learning with stochastic
gradient methods. The discrete nature of the Gumbel-Softmax sampling has been utilized to tokenize
the visual vocabulary in the celebrated zero-shot text-to-image generation, DALL-E (Ramesh et al.,
2021b). The Gaussian-Softmax probability models were introduced in variational auto-encoders
as their closed-form KL-divergence makes it easier to realize as regularization (Potapczynski et al.,
2020). Our work extends these works and sets the properties of Gumbel-Softmax and Gaussian-
Softmax. We also show that Gaussian-Softmax enjoys faster convergence as the Gaussian distribution
decays faster than the Gumbel distribution when approaching infinity.

Berthet et al. (2020) introduced a framework for optimizing discrete problems based on Perturb-
Argmax probability models. This framework applies to discriminative learning using the Fenchel-
Young losses and relies on convexity to propagate gradients over discrete choices. Similar to our
approach, this work adopts a general view and utilizes convexity to explore the gradient properties of
Perturb-Argmax models. Our work differs in that we use convexity and differentiability to investigate
their representation properties, specifically when these models are complete and minimal. Other
methods include blackbox differentiation based on gradients of a surrogate linearized loss (Pogančić
et al., 2020), the direct loss minimization technique (Hazan et al., 2010; Keshet et al., 2011; Song
et al., 2016; Cohen Indelman & Hazan, 2021) based on gradients of the expected discrete loss, and
entropy regularization techniques (Niculae et al., 2018; Martins & Astudillo, 2016). Unlike these
methods, we focus on studying the properties of randomized discrete probability models rather than
on optimization frameworks.

3 PRELIMINARIES

We denote by ∆ the probability simplex, i.e., the set of all probabilities over d discrete events, namely
∆ ≜ {p ∈ Rd : p(i) ≥ 0,

∑d
i=1 p(i) = 1}. A parameterized discrete probability distribution

pθ(i) ∈ ∆ is determined by its parameters θ ∈ Θd that reside in the Euclidean space Θd ⊆ Rd.

3.1 COMPLETENESS AND MINIMALITY OF THE SOFTMAX OPERATION

The softmax operation softmax : Rd → ∆ is the standard mapping from the set of parameters Θ to
the probability simplex ∆. Formally, we define psmθ by softmax relation

psmθ ≜ softmax(θ) ≜

(
eθ1∑d
j=1 e

θj
, ...,

eθd∑d
j=1 e

θj

)
. (1)

A parameterized family of distributions PΘ ≜ {pθ : θ ∈ Θ} is called complete if for every
p ∈ ∆ there exists θ ∈ Θ such that pθ = p. Alternatively, the mapping from the parameters to
their probabilities is onto the probability simplex (surjective). Similarly, a parameterized family
of distributions is called minimal, if there is one-to-one mapping between its parameters and their
corresponding probability distributions (injective). Formally, pθ ̸= pτ if and only if θ ̸= τ . A
complete and minimal mapping is also identifiable, i.e., for every probability p ∈ ∆ one can identify
the unique parameters θ ∈ Θ for which p = pθ.

The identifiability of the softmax mapping was explored in the context of the exponential family of
distributions (Wainwright & Jordan, 2008). One can verify that the set of parameters Θ = Rd is
complete: for every p ∈ ∆, one can set θ = log p, for which p = softmax(θ). However, the set
Θ = Rd is not minimal, as the parameter vectors θ and θ + c1 both realize the same probability,
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i.e., softmax(θ) = softmax(θ + c1). Conversely, a set of parameters Θ is minimal for the softmax
mapping if there are no θ, τ ∈ Θ for which θi = τi = c for every i = 1, ..., d.1 Consequently,
identifiable sets of parameters for the softmax operation can be Θ = {θ ∈ Rd :

∑
j θj = 0} or

Θ = {θ ∈ Rd : θ1 = 0}. In Appendix 8.2.1 we prove that these sets are both complete and minimal.

3.2 GUMBEL-SOFTMAX AND GUMBEL-ARGMAX PROBABILITY DISTRIBUTIONS

The Gumbel-Softmax probability distribution emerged as a smooth approximation of the Gumbel-
Argmax representation of psmθ . We turn to describe the Gumbel-Argmax and Gumbel-Softmax
discrete probability distributions.

The Gumbel distribution is a continuous distribution whose probability density function is ĝ(t) =
e−e−(t+c)

, where c ≈ 0.5772 is the Euler-Mascheroni constant. We denote by γ = (γ1, ..., γd)
the vector of d independent random variables that follow the Gumbel distribution law and by
g(γ) =

∏d
i=1 ĝ(γi) the probability density function (pdf) of the independent Gumbel distribution.

We denote by pgamθ the Gumbel-Argmax probability distribution, which relies on a one-hot represen-
tation of the maximal argument. The indicator function 1[condition] equals one when the condition
holds and zero otherwise. Then, the Gumbel-Argmax probability distribution takes the form:

pgamθ ≜ Eγ∼g[argmax(θ + γ)] (2)

pgamθ (i) ≜ Eγ∼g[i = argmax(θ + γ)] ≜
∫
Rd

g(γ)1[i = argmax(θ + γ)]dγ (3)

Unfortunately, the argmax operation is non-smooth and requires special treatment when used in
learning its parameters using gradient methods.

The Gumbel-Softmax probability distribution pgsmθ (i) was developed as a smooth approximation of
its Gumbel-Argmax counterpart:

pgsmθ ≜
∫
Rd

g(γ)softmax(θ + γ)dγ ≜ Eγ∼g[softmax(θ + γ)] (4)

We note that we define pgsmθ as a d-th dimensional vector, and the integral with respect to γ (or
expectation) is taken with respect to each coordinate of the softmax operation. One can verify that
the Gumbel-Softmax is indeed a probability distribution .

The fundamental theorem of extreme value statistics asserts the equivalence between the softmax
distribution in Equation 4 and the Gumbel-Argmax distribution in Equation 2, namely pgsmθ = pgamθ ,
cf. Gumbel (1954). Therefore, the representation properties of completeness and minimality of the
softmax operation are identical to the properties of the Gumbel-Argmax probability distribution.

3.3 DIFFERENTIBILITY PROPERTIES OF CONVEX FUNCTIONS

We investigate the representation properties of the Gumbel-Softmax and Gumbel-Argmax probability
models when they result from gradients of multivariate functions over their set of parameters Θ.

The softmax function is the gradient of the log-sum-exp function:

softmax(θ) = ∇ log

(
d∑

i=1

eθi

)
. (5)

As shown in Section 3.1 this gradient mapping is complete and minimal over a convex subsetset
Θ ⊂ Rd. Extending this argument to Gumbel-Softmax requires notions of convexity, covered in
Appendix 8.1.1. The (sub)differential of convex functions f(θ) is used in our study as a (multi-
valued) mapping between the convex set of the primal domain Θ and its dual domain P , which is the
Gumbel-Softmax or the Gumbel-Argmax probability model. We define the conditions for which:

1If softmax(θ) = softmax(τ), and pθ = softmax(θ), pτ = softmax(τ), then pθ(i)/pτ (i) = 1 for every
i, and log pθ(i)− log pτ (i) = 0. From the softmax mapping, this translates to θi − τi = c for every i while
c = log(

∑
j e

θj )− log(
∑

j e
τj ).
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I ∂f is a single-valued mapping, i.e., ∂f = ∇f . In this case, for every θ ∈ Θ matches a
single ∇f(θ) ∈ P . If this property does not hold then the parameters θ that generate a
probability p are not identifiable under this mapping.

II The gradient mapping ∇f(θ) is onto the probability simplex ∆. In this case, the set of
parameters Θ is complete, i.e., it can represent (and learn) any probability p ∈ ∆ using its
gradients ∇f(θ).

III The gradient mapping∇f(θ) is one-to-one. In this case, the set of parameters Θ is minimal,
i.e., there are no two parameters θ, τ that represent the same probability distribution p ∈ P .

Our framework allows for establishing these relations for any random perturbations, which we refer
to as Perturb-Softmax and Perturb-Argmax.

3.4 CONVERGENCE RATES

Learning with Perturb-Softmax or Perturb-Argmax involves minimizing the parameters θ of
a function, averaged over the perturbation random variables γ. Formally, it is of the form:
minθ Ex∼D[Eγ∼g[f(θ, x, γ)]. We denote by D the data distribution, while we consider a sam-
pled training set implicitly in this notation. The expected value Eγ∼g[f(θ, x, γ)] (or its gradient) is
approximated by a sample. It is known that Gaussian distribution γ ∼ N(0, I) enjoys fast conver-
gence (at the rate of e−t2) for functions f(·) with bounded gradient norm. For clarity, we state this
phenomena while using f(γ) and omitting x, θ:
Theorem 3.1 (Gaussian Concentration. Van Handel (2014), Theorem 3.25). Let γ ∈ Rd be indepen-
dent Gaussian random variables with zero mean and unit variance. Then

P[f(γ)− E[f(γ)] ≥ t] ≤ e−t2/2

for all t > 0, where ∥∇f(γ)∥2 ≤ σ2. In fact, f(γ) is σ2-subgaussian.

On the other hand, the convergence of the exponential family for functions with bounded gradient
norm has an exponential rate (of the form e−t).
Theorem 3.2 (Gumbel Concentration. Hazan et al. (2019), Corollary 12). Let γ ∈ Rd be independent
Gumbel randoms variables with zero mean. Then

P[f(γ)− E[f(γ)] ≥ t] ≤ e−min{ t
4σ , t2

32σ2 }

for all t > 0 where ∥∇f(γ)∥2 ≤ σ2 and σ < 1.

This strike difference implies that a faster convergence of Gaussian-Softmax in comparison to the
Gumbel-Softmax is to be expected, which further motivates our analysis for practical implications.

4 PERTURB-SOFTMAX PROBABILITY DISTRIBUTIONS

In this section, we explore the statistical representation properties of the Perturb-Softmax operation
as a generalization of the Gumbel-Softmax operation. Our exploration emerges from the connection
between the softmax operation and the log-sum-exp convex function, as described in Equation 5. We
establish a similar relation between perturb-log-sum-exp and perturb-softmax:

f(θ) = Eγ

[
log

(
d∑

i=1

eθi+γi

)]
(6)

∇f(θ) = Eγ [softmax(θ + γ)] (7)
The function f(θ) is defined for any random perturbation γ, whether γ values are from a discrete, a
bounded, or an unbounded set 2. The function f(θ) is differentiable since it is the expectation of the
differentiable log-sum-exp function and∇f(θ) is attained by the Leibniz rule for differentiation under
the integral sign3. Also, the function f(θ) is convex, as it is an expectation of convex log-sum-exp

2Formally, for unbounded random perturbations γ we restrict ourselves to probability density functions for
which f(θ) < ∞.

3Formally, ∇f(θ) is finite whenever the dominant convergence theorem holds. For unbounded γ this holds

for any probability density function p(γ) for which limγ→∞ p(γ) log
(∑d

i=1 e
θi+γi

)
= 0. This happens for

Gumbel, Gaussian, and other standard probability density functions.
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functions. We exploit the convexity of f(θ) to define the conditions on the parameter space Θ for
which the Perturb-Softmax probability distributions span the probability simplex.

The gradient∇f(θ) maps parameters θ to a probability, as the softmax vector softmax(θ + γ) sums
up to unity for any γ and therefore also in expectation over γ (Corollary 8.2). In the next theorem, we
determine the conditions for which the gradient mapping spans the relative interior of the probability
simplex, i.e., the set of all possible positive probabilities.
Theorem 4.1 (Completeness of Perturb-Softmax). Let Θ ⊆ Rd be a convex set and let γ =
(γ1, ..., γd) be a vector of random variables whose cumulative distribution decays to zero as γ
approaches ±∞. Let hi(θ) = θi − maxj ̸=iθj be a continuous function over Θ. If hi(θ) are
unbounded then Θ is a complete representation of the Perturb-Softmax probability models:

ri(∆) ⊆ Eγ [softmax(θ + γ)] ⊆ ∆ (8)

Proof. The proof relies on fundamental notions of the conjugate dual function f∗(p) and
its convex domain P , cf. Equations (18, 19) in the Appendix. We begin by considering
f(θ) = Eγ [log(

∑d
i=1 e

θi+γi)] and its gradient, which is the Perturb-Softmax model ∇f(θ) =
Eγ [softmax(θ + γ)]. Equation 22 implies that its gradients, i.e., the Perturb-Softmax probability
distributions, reside in their convex domain P (cf. Equation 21), and contain its relative interior, thus:

ri(P) ⊆ {Eγ [softmax(θ + γ)] : θ ∈ Θ} ⊆ P (9)

To conclude the proof, we prove in Appendix 8.3 that the zero-one probability vectors reside in the
closure of P . Since the closure of P is a convex set, we conclude that it is the probability simplex.

The above theorem implies that the set of all Perturb-Softmax probability distribution is an almost
convex set that resides within the convex set of all probabilities ∆ and contains its relative interior,
i.e., the convex set of all positive probabilities ri(∆).

Next, we describe the conditions for which the parameter space Θ is minimal. In this case, two
different parameters θ ̸= τ result in two different Perturb-Softmax models Eγ [softmax(θ + γ)] ̸=
Eγ [softmax(τ + γ)]. Interestingly, minimality is tightly tied to strict convexity. We begin by proving
that f(θ) = Eγ [log(

∑d
i=1 e

θi+γi)] is strictly convex when restricted to Θ.

Lemma 4.2 (Strict convexity). Let Θ ⊆ Rd be a convex set and let γ = (γ1, ..., γd) be a vector of
random variables and let f(θ) = Eγ [log(

∑d
i=1 e

θi+γi)]. If Θ has no two vectors θ ̸= τ ∈ Θ that
are affine translations of each other, for which θi = τi + c for every i = 1, ..., d and some constant c
then f(θ) is strictly convex over Θ, i.e., for any θ ̸= τ ∈ Θ and any 0 < λ < 1 it holds that

f(λθ + (1− λ)τ) < λf(θ) + (1− λ)f(τ). (10)

The proof, based on Hölder’s inequality, is provided in Appendix 8.4. The condition that θ and
τ are not a translation of each other guarantees strict convexity. If τi = θi + c for every i, then
f(τ) = f(θ) + c. This linear relation implies that the convexity condition holds with equality.

The minimality theorem is a direct consequence of Lemma 4.2, as strict convexity of differentiable
function implies the gradient mapping is one-to-one (cf. Rockafellar (1970), Theorem 26.1).
Theorem 4.3 (Minimality of Perturb-Softmax). Let Θ ⊆ Rd be a convex set and let γ = (γ1, ..., γd)
be a vector of random variables. Θ is a minimal representation of the Perturb-Softmax probability
models if there are no two parameter vectors θ ̸= τ ∈ Θ that are affine translations of each other, for
which θi = τi + c for every i = 1, ..., d and some constant c.

Proof. Lemma 4.2 implies that f(θ) is strictly convex and Equation (7) implies it is differentiable.
Recall the conjugate dual function and its domain (Equations (18, 19) in the Appendix) and its
gradient mapping∇f : Θ→ P . Since f(θ) is strictly convex then the function g(θ) = ⟨p, θ⟩ − f(θ)
is strictly concave hence its maximal argument θ∗ is unique. The gradient vanishes at the maximal
argument, ∇g(θ∗) = 0 or equivalently, p = ∇f(θ∗). Since θ∗ is unique then p is unique as well.
Therefore∇f(θ) is a one-to-one mapping.

To conclude, one can use any convex set Θ ⊂ Rd that satisfies the conditions of Theorem 4.1
and Theorem 4.3. Similarly to the softmax probability model, Θ that is both complete is minimal
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can be Θ = {θ ∈ Rd :
∑

j θj = 0} or Θ = {θ ∈ Rd : θ1 = 0}. Further, this framework can be
naturally extended to include temperature scaling, such that the perturb-log-sum-exp with temperature
ft(θ) = Eγ

[
log
(∑d

i=1 e
(θi+γi)/t

)]
is related to the perturb-softmax with temperature:

∇ft(θ) = Eγ [softmax((θ + γ)/t)], (11)

when t is a non-negative temperature hyperparameter.

5 PERTURB-ARGMAX PROBABILITY DISTRIBUTIONS

In this section, we explore the statistical representation properties of the Perturb-Argmax operation
as a generalization of the Gumbel-Argmax operation. Throughout our investigation, we treat the
Perturb-Argmax probability model as the sub-gradient of the expected Perturb-Max function, which
we prove in Corollary 9.1 in the Appendix for completeness:

f(θ) = Eγ

[
max

i
{θi + γi}

]
(12)

∂f(θ) = Eγ [argmax(θ + γ)] (13)

Different than the softmax operation, the argmax operation is not continuous everywhere. This
difference arises from the fact that unlike the differentiable log-sum-exp function, the max function is
not everywhere differentiable. However, since it is a convex function, its sub-gradient always exists.
In the following, we prove that the sub-gradients span the set of all positive probability distributions,
i.e., the relative interior of the probability simplex.
Theorem 5.1 (Completeness of Perturb-Argmax). Let Θ ⊆ Rd be a convex set and let γ = (γ1, ..., γd)
be a vector of random variables. Then, Θ is a complete representation of the Perturb-Argmax
probability models:

ri(∆) ⊆ Eγ [argmax(θ + γ)] ⊆ ∆ (14)

Proof. The proof technique follows the argument of Theorem 4.1. Given the conditions on hi(θ), we
can construct a series {θ(n)}∞n=1 for which hi(θ

(n)) = n for every n ∈ N. To conclude the proof,
we prove in Appendix 9.1 that Eγ [argmax(θ(n) + γ)] approaches the zero-one probability vector
as n → ∞. This proves that the zero-one distributions are limit points of probabilities in P , i.e.,
cl(P) = ∆.

The above theorem holds for any type of random perturbation γ. Next, we show that the statistical
properties of the Perturb-Argmax probability models depend on their perturbation type. The mini-
mality of the representation of Perturb-Argmax probability models holds for non-discrete random
perturbation γ. It relies on the differentiability properties of its probability density function p(γ).
Lemma 5.2 (Differentiability of Perturb-Max). Let γ = (γ1, ..., γd) be a vector of random variables
with differentiable probability density function p(γ) =

∏d
i=1 pi(γi) and let f(θ) = Eγ [max{θ+ γ}].

Then, f(θ) is differentiable and its gradient is

∇f(θ) = Eγ [argmax(θ + γ)] (15)

The proof is provided in Appendix 9.2. Lemma 5.2 shows a single-valued mapping from the parameter
space to the probability space. In the following, we show that this mapping brings forth a minimal
representation of the Perturb-Argmax probability models under certain conditions.
Theorem 5.3 (Minimality of Perturb-Argmax). Let Θ ⊆ Rd be a convex set and let γ = (γ1, ..., γd)
be a vector of random variables whose probability density functions pi(γi) are differentiable and
positive. Θ is a minimal representation of the Perturb-Argmax probability models if there are no two
parameter vectors θ ̸= τ ∈ Θ that are affine translations of each other, for which θi = τi + c for
every i = 1, ..., d and some constant c.

The proof is provided in Appendix 9.3. It is based on showing that under these conditions, the
function f(θ) = Eγ [max{θ + γ}] is strictly convex. We rely on its one-dimensional function
g(λ) ≜ f(θ + λv) and show that g′′(λ) > 0. Since the function g(λ) is convex then g′′(λ) ≥ 0, and

7
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Figure 2: An illustration of ∂f(θ) for per-
turbations with a smooth bounded pdf γ ∼
U(−1, 1). ∂f(θ) is a single-valued map-
ping between the parameters and the Perturb-
Argmax probability.

Figure 3: An illustration of the sub-differential of
f(θ) w.r.t. θ1 for discrete random variables γi ∈
{1,−1} that are uniformly distributed. Notably, the
Perturb-Argmax probability is a multi-valued map-
ping in its overlapping segments, e.g., for θ1 = θ2,

it is enough to show that g′(λ) depends on λ, for which it follows that g′′(λ) ̸= 0 and consequently
g′′(λ) > 0.

Our theorem conditions require the probability density function to be positive, to ensure that the
second derivative is positive as it always accounts for a change in the perturbation space.

5.1 NON-MINIMAL REPRESENTATION FOR BOUNDED PERTURBATIONS

In the following, we analyze an example of a Perturb-Argmax distribution when the probability
density function of the perturbation is differentiable almost everywhere but bounded. In this case,
one can construct a non-minimal representation.

Proposition 5.4. Let θ ∈ R2, and consider i.i.d. random variables with a smooth bounded probability
density function γ ∼ U(1,−1). A single-valued mapping exists between f(θ) and the Perturb-Argmax
probability distribution. However, a one-to-one mapping does not exist.

Proof. The perturb-max function f(θ) can be expressed as

f(θ) = θ2 + Eγ1,γ2 [max{θ1 − θ2 + γ1 − γ2, 0}] , (16)

when the distribution of γ is omitted for brevity. We can express f(θ) by the pdf of the random
variable γ1 − γ2 (Equation 103 in the appendix). Since f(θ) is a smooth function, a single-valued
mapping exists (Theorem 26.1 Rockafellar (1970)). However, f(θ) is not strictly convex, hence a
one-to-one mapping does not exist and it can be concluded that Θ is not a minimal representation
of the Perturb-Argmax probability. The derivatives of f(θ), corresponding to the probabilities of
argmax, are illustrated in Figure 2. We defer all details to Section 9.5 in the appendix.

5.2 DISCRETE PERTURBATIONS AND IDENTIFIABLITY

We next analyze the identifiability of the Perturb-Argmax distribution representation. Since the
max function is not always differentiable, the Perturb-Max function f(θ) (Equation 12) is not
always differentiable. However, since the max function is convex, its sub-differential ∂f(θ) exists.
Unfortunately, the function ∂f(θ) is a multi-valued function, i.e., for some parameters θ ∈ Θ there
exist p ̸= q ∈ P that both are its sub-gradient. Thus, the probability cannot be identified from
the parameters when the perturbation is discrete. This property is demonstrated in the following
proposition:

Proposition 5.5. Let Θ = R2 and γ = (γ1, γ2) be a vector of discrete random variables γi ∈ {1,−1}
that are uniformly distributed: P[γi = 1] = P[γi = −1] = 1

2 . Then, the Perturb-Argmax probability
distribution is not identifiable.

8
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The proof is provided in Appendix 9.4, and it is based on computing the function f(θ) = Eγ [max{θ+
γ}] analytically by taking the expectation w.r.t. γ. The function f(θ), illustrated in Figure 6 in the
appendix, is continuous and differentiable almost everywhere. However, in its overlapping segments,
the function is not differentiable, i.e., it has a sub-differential ∂f(θ) which is a set of sub-gradients.
To prove that the Perturb-Argmax probability model is unidentifiable, we show that ∂f(θ) is a
multi-valued mapping when θ1 = θ2. The sub-differential mapping is illustrated in Figure 3.

6 EXPERIMENTS

In this section, we demonstrate the advantage of the Gaussian-Softmax over the commonly used
Gumbel-Softmax. Experiments in density estimation and variational inference exhibit that, com-
pared to the Gumbel-Softmax, the Gaussian-Softmax enjoys a faster convergence rate and better
approximate discrete distributions.

6.1 APPROXIMATING DISCRETE DISTRIBUTIONS

We compare the Gumbel-Softmax and the Normal-Softmax in approximating discrete distributions.
The L1 objective function is minimized between the Perturb-Softmax function applied between
the fitted and the target discrete distribution pdf, when the latter is denoted by p0. Following the
experiment in Potapczynski et al. (2020), we consider two target discrete distributions with finite
support: a binomial distribution with parameters n = 12, p = 0.3, and a discrete distribution with
p = ( 1068 ,

3
68 ,

4
68 ,

5
68 ,

10
68 ,

10
68 ,

3
68 ,

4
68 ,

5
68 ,

10
68 ). Figures 4 and 9a show that the Normal-Softmax better

approximates both distributions and exhibits faster convergence than the Gumbel-Softmax. We also
consider discrete distributions with countably infinite support: a Poisson distribution with λ = 50,
and a negative binomial distribution with r = 50, p = 0.6. The results show similar benefits to
those with discrete distributions with finite support (Figures 9b, 9c). Moreover, results show that
Normal-Softmax has similar benefits to the Invertible Gaussian Reparameterization (IGR) method
(Potapczynski et al., 2020), however, unlike our method, the interpretability of the parameters is lost
with the IGR method.

Table 2 shows the mean and standard deviation of the L1 objective corresponding to the target
discrete distributions of the Gumbel-Softmax and the Normal-Softmax models after 300 iterations,
computed over the dimension d of the fitted models. The approximation based on the Normal-Softmax
probability model achieves better results in all cases. See more details in Appendix 10.1.

Table 2: L1 mean and standard deviation between the target and approximated probability den-
sity function of various target discrete distributions of the Normal-Softmax and Gumbel-Softmax
probability models. The best results are in bold.

Target Distribution Normal-Softmax Gumbel-Softmax
Discrete 0.026 ± 0.002 0.027±0.002
Binomial 0.036±0.003 0.177 ±0.014
Poisson 0.090±0.001 0.618 ±0.007
Negative Binomial 0.083 ± 0.001 0.417 ± 0.004

6.2 VARIATIONAL INFERENCE

We compared the training ELBO-based loss of categorical Variational-Autoencoders for N = 10
variables, each is a K-dimensional categorical variable, K ∈ [10, 30, 50] on the binarized MNIST
LeCun & Cortes (2005), the Fashion-MNIST (Xiao et al., 2017), and the Omniglot (Lake et al., 2015)
datasets for different smooth perturbation distributions. The architecture consists of an encoder of
X → FC(300)→ ReLU→ N ∗K, and a matching decoder N ∗K → FC(300)→ ReLU→ X .
The loss is the traditional composition of the reconstruction error and the KL divergence. See more
details in Appendix 10.2

A fair comparison between Perturb-Softmax models with different perturbation distributions requires
temperature selection for each model. The temperature is a hyperparameter that affects the models’

9
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Figure 4: Gumbel-Softmax and Normal-Softmax approximation with dimension d=10 of a target
discrete distribution p0. The L1 objective over learning iterations is depicted on the right.

performance and, thus should be chosen with cross-validation. We compare the loss obtained
by these Pertub-Softmax with temperature model (refer to Equation 11) models for a range of
temperatures = {0.01, 0.03, 0.07, 0.1, 0.25, 0.4, 0.5, 0.67, 0.85, 1.0}. The test set loss is calculated
for each temperature with the model achieving the lowest loss on the validation set. Results show that
by comparing the best-performing temperature-based models, the Normal-Softmax model consistently
achieves the lowest test set loss for all datasets. The results are summarized in Table 3 in the Appendix.

Next, we analyze the training convergence when propagating gradients with the Normal-Softmax or
the Gumbel-Softmax of these models for temperature equals 1. Results show that the former achieves
better and faster learning convergence in all experiments (Figures 5 and 10 in the appendix).
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Figure 5: Categorical VAE with Perturb-Softmax training loss on the Omniglot dataset with a K-
dimensional categorical variable, K ∈ [10, 30, 50].

7 CONCLUSIONS AND LIMITATIONS

Our main contribution is a theoretical study of the representation properties of Gumbel-Softmax
and Gumbel-Argmax probability models. Our results provide a theoretical justification that for
fitting probabilities one need not limit oneself to Gumbel random perturbations, as the representation
properties with any smooth probability density perturbation distribution are the same. In particular,
the Gumbel-Softmax distribution has no representation benefits over the Normal-Softmax distribu-
tion. Moreover, we show that the representation of the Perturb-Argmax probability distribution is
unidentifiable whenever the perturbations follow a discrete distribution, hence one may fail in fitting
probabilities from parameters since the Perturb-Argmax probabilities are multi-valued mappings
from parameters. Though our analysis shows that Gaussian-Softmax and Gaussian-Argmax share the
same representation properties, the Gaussian distribution enjoys faster convergence in probabilistic
estimation. These advantages are demonstrated in our experiments.

As our framework extends the Gumbel-Softmax and Gumbel-Argmax probability models, it suffers
the same limitations as these models. Specifically, these models cannot be efficiently applied to
probability spaces for which the softmax function is too expensive to be computed. Further, our
investigation does not easily apply to high-dimensional probability distributions (e.g., the Gumbel-
Sinkhorn distribution that manifests in learning latent matching representations (Mena et al., 2018)),
and the investigation of such distributions’ properties is left for future work.
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ETHICS STATEMENT

In this study, we revisit the widely applied discrete probability models and study their representation
characteristics to understand their properties better. To our knowledge, this study has no negative
implications or applications.

REPRODUCIBILITY STATEMENT

To promote the reproducibility of the results in this paper, we took the following measures: 1. Experi-
ments are based on previous research, and the experiment settings, optimization, and hyperparameters
are detailed in the main text and appendix. 2. Code will be made public. 3. The statistics of results
for approximating discrete distributions are reported. 4. The theoretical results are illustrated (refer to
Figures 2, 3) and complete proofs are detailed in the main text and the appendix.
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8 APPENDIX

8.1 RELATED WORK

8.1.1 CONVEXITY

We consider convex functions f : Θ → R over its convex domain Θ = dom(f) and follow the
notation in Rockafellar (1970). A function over a domain Θ is convex if for every θ, τ ∈ Θ and
0 ≤ λ ≤ 1 it holds that f(λθ + (1 − λ)τ) ≤ λf(θ) + (1 − λ)f(τ). A function is strictly convex
if for every θ ̸= τ ∈ Θ and 0 < λ < 1, it holds that f(λθ + (1 − λ)τ) < λf(θ) + (1 − λ)f(τ).
Whenever f(θ) is twice differentiable, a function is strictly convex if its Hessian is positive definite.

Convexity is a one-dimensional property. A function f : Θ → R is convex if and only if its one-
dimensional reduction g(λ) ≜ f(θ + λv) is convex in every admissible direction v, i.e., whenever
θ, θ + λv ∈ Θ. A twice differentiable function f(θ) is strictly convex if the second derivative of
g(λ) is positive in every admissible direction v. In this case, we denote g′(λ) by∇vf(θ) and call it a
directional derivative:

∇vf(θ) ≜ lim
ϵ→0

f(θ + ϵv)− f(θ)

ϵ
(17)

A multivariate function is differentiable if its directional derivative is the same in every direction
v ∈ Rd, namely∇f(θ) = ∇vf(θ) for every v ∈ Rd.

Convexity admits duality correspondence. Any primal convex function f(θ) has a dual conjugate
function f∗(p)

f∗(p) = max
θ∈Θ
{⟨p, θ⟩ − f(θ)} (18)

P ≜ dom(f∗) ≜ {p : f∗(p) <∞} (19)

Since f∗(p) is a convex function, its domain P is a convex set.

A sub-gradient p ∈ ∂f(θ) satisfies f(τ) ≥ f(θ) + ⟨p, τ − θ⟩ for every τ ∈ Θ. The sub-gradient is
intimately connected to directional derivatives. Theorem 23.2 in Rockafellar (1970) states that

p ∈ ∂f(θ) iff ∇vf(θ) ≥ ⟨p, v⟩, ∀ admissible v. (20)

The vector v is admissible if θ + ϵv ∈ Θ for small enough ϵ.

The set of all sub-gradients is called sub-differential at θ and is denoted by ∂f(θ). A convex function
is differentiable at θ when ∂f(θ) consists of a single vector, and it is denoted by ∇f(θ). The
sub-differential is a multi-valued mapping between the primal parameters and dual parameters, i.e.,

∂f : Θ→ P (21)

One can establish with this property the definition of sub-gradient at the optimal point θ∗ =
argmaxθ{⟨p, θ⟩ − f(θ)}. In this case, 0 ∈ ∂ (⟨p, θ∗⟩ − f(θ∗)), where the sub-gradient is taken
with respect to θ at the maximal argument θ∗. From the linearity of the sub-gradient, there holds:
p ∈ ∂f(θ∗), or equivalently, {∂f(θ) : θ ∈ Θ} ⊆ P . Using the connection between sub-gradients
and directional derivatives, one can show that whenever directional derivatives exist, one can infer a
sub-gradient, i.e., the set of all sub-gradients contains the relative interior of P, cf. Theorem 23.4
Rockafellar (1970):

ri(P) ⊆ {∂f(θ) : θ ∈ Θ} ⊆ P (22)

8.2 PERTURB-SOFTMAX PROBABILITY DISTRIBUTIONS

8.2.1 COMPLETENESS AND MINIMALITY OF THE SOFTMAX OPERATION

Theorem 8.1. The representation of the softmax distribution defined over θ ∈ Rd is complete. It is
minimal when the corresponding log-sum-exp

f(θ) = log(

d∑
i=1

eθi) (23)

is a strictly convex function (A paraphrase of Wainwright & Jordan (2008), Proposition 3.1).
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Proof. First, we note that the derivatives of f(θ) (Eq. 23),
∂f(θ)

∂θj
= softmax(θ), (24)

correspond to the softmax probabilities psmθ (Eq. 1). psmθ is a Gibbs model, hence the representation
is complete.

Let θ, τ ∈ Rd and denote eθi = ui, eτi = vi. Then, for λ ∈ (0, 1)

f(λθ + (1− λ)τ) = log(

d∑
i=1

eλθi+(1−λ)τi) (25)

= log(

d∑
i=1

uλ
i v

1−λ
i ). (26)

Applying Hölder’s inequality to Equation 26 :

log

(
d∑

i=1

uλ
i v

1−λ
i

)
≤ log(

d∑
i=1

u
λ 1

λ
i )λ(

d∑
i=1

v
(1−λ) 1

1−λ

i )1−λ) (27)

= λ log(

d∑
i=1

ui) + (1− λ) log(

d∑
i=1

vi) (28)

= λf(θ) + (1− λ)f(τ). (29)
Therefore, it holds that

f(λθ + (1− λ)τ) ≤ λf(θ) + (1− λ)f(τ), (30)
proving that f(θ) is convex.

Hölder’s inequality holds with equality if and only if there exists a constant c ∈ R such that

|v1−λ
i | = c|uλ

i |
1
λ−1 ∀i (31)

e(1−λ)τi = ceλθi(
1
λ−1) ∀i (32)

τi =
log(c)

1− λ
+ θi ∀i, (33)

in which case θ and τ are linearly constrained and there exists some α ∈ R2, α ̸= 0 such that
α1θ + α2τ = const. Therefore, when the representation of f(θ) is minimal f(θ) is strictly convex.

Then, consider any θ, τ ∈ Θd, such that Θ = {θ ∈ Rd : θ1 = 0}. Hölder’s inequality holds strictly
as there can not exist a constant c such that Equation 33 holds for all i if d > 1, proving that the
representation of Θ = {θ ∈ Rd : θ1 = 0} is minimal.

Consider Θ = {θ ∈ Rd :
∑

j θj = 0}. Then, let θ, τ ∈ Rd :
∑

i θi = 0,
∑

i τi = 0, and denote
pi ∝ eθi and qi ∝ eτi . The proof requires showing that if there exists i : pi ̸= qi such that θi ̸= τi+c.
Equivalently, it requires proving that if it holds that θi − τi = 0 for any i, then pi = qi for all i.
Explicitly,

pi =
eθi∑
j e

θ
j

(34)

qi =
eτi∑
j e

τ
j

. (35)

Then, by marginalization it holds that

log(pi) = log(qi) ←→ θi − log(
∑
j

eθj ) = τi − log(
∑
j

eτj ) (36)

←→
∑
i

θi −
∑
i

log(
∑
j

eθj ) =
∑
i

τi −
∑
i

log(
∑
j

eτj ) (37)

←→ d log(
∑
j

eθj ) = d log(
∑
j

eτj ), (38)
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which concludes the proof.

Θ = {θ ∈ Rd :
∑

j θj = 0} is complete by the conditions of our completeness theorems by setting
n at the ith positions and −a/d everywhere else.

Θ = {θ ∈ Rd : θ1 = 0} is complete by the conditions of our completeness theorems by setting n at
the 1st positions and 0 everywhere else.

Corollary 8.2. The derivative of the expected log-sum-exp f(θ) (Equation 6) is a probability function.

Proof. Denote pγ,j =
∂f(θ)
∂θj

, then

d∑
j=1

pγ,j =

d∑
j=1

Eγ

[
eθj+γj∑d
i=1 e

θi+γi

]
(39)

= Eγ

 d∑
j=1

eθj+γj∑d
i=1 e

θi+γi

 = 1. (40)

Also,

Eγ

[
eθj+γj∑d
i=1 e

θi+γi

]
≥ 0 ∀j. (41)

8.3 SUPPORTING PROOF FOR THEOREM 4.1

First, we prove that f(θ) (Equation 6) is a closed proper convex function and is also essentially
smooth. f(θ) is a convex function as a maximum of convex (linear) functions. Then, f(θ) is proper
as its effective domain is nonempty and it never attains the value−∞, since θ ∈ Rd. f(θ) is infinitely
differentiable throughout the domain, therefore it is a smooth function throughout its domain. f(θ)
is a smooth convex function on Rd, therefore it is in particular essentially smooth. The smoothness
of f(θ) guarantees its continuity, and since Rd can be considered a closed set, then f(θ) is a closed
function.

Given the conditions of the theorem on hi(θ), we can construct a series {θ(n)}∞n=1 for which
hi(θ

(n)) = n for every n ∈ N. We prove that Eγ [argmax(θ(n) + γ)] approaches the zero-one
probability vector as n→∞.

Eγ

 eθ
(n)
i +γi∑d

j=1 e
θ
(n)
j +γj

 = Eγ

 1∑d
j=1 e

θ
(n)
j +γj−θ

(n)
i −γi

 (42)

= Eγ

 1

1 +
∑

j ̸=i e
θ
(n)
j −θ

(n)
i +γj−γi

 (43)

≥ Eγ

[
1

1 +
∑

j ̸=i e
−n+γj−γi

]
n→∞
→ 1 (44)

The limit argument holds since the probability of γ1, ..., γd decay as they tend to infinity. This proves
that the zero-one distributions are limit points of probabilities in P , i.e., cl(P) = ∆.

8.4 PROOF OF LEMMA 4.2

In the following, we prove the strict convexity of the expected log-sum-exp of Lemma 4.2.

Proof. Let θ, τ ∈ Rd and 0 < λ < 1. Then

f(λθ + (1− λ)τ) = Eγ

[
log

(
d∑

i=1

eλ(θi+γi)+(1−λ)(τi+γi)

)]
= Eγ

[
log

(
d∑

i=1

uivi

)]
, (45)
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where ui ≜ eλ(θi+γi) and vi ≜ e(1−λ)(τi+γi). Applying Hölder’s inequality ⟨u, v⟩ ≤ ∥v∥1/λ ·
∥u∥1/(1−λ) we obtain the convexity condition of the log-sum-exp function:

f(λθ + (1− λ)τ) ≤ λf(θ) + (1− λ)f(τ). (46)

To prove strict convexity we note that Hölder’s inequality for non-negative vectors ui, vi holds with

equality if and only if there exists a constant α ∈ R such that vi = αu
1−λ
λ

i for every i = 1, ..., d, or
equivalently:

e(1−λ)(τi+γi) =
(
eλ(θi+γi)

) 1−λ
λ ←→ τi = θi + c (47)

Where c = logα
1−λ . Therefore, if τ ̸= θ + c, then ⟨u, v⟩ < ∥v∥1/λ · ∥u∥1/(1−λ) for every γ and

consequently it also holds when applying the logarithm function and taking an expectation with
respect to γ.

9 PERTURB-ARGMAX PROBABILITY DISTRIBUTIONS

Corollary 9.1. We prove that the derivative of the expected maximizer is the probability of the
argmax. Namely, that ∂

∂θEγ∼g [maxi{θi + γi}] = Pγ (argmaxi{θi + γi} = i).

Proof. First, by differentiating under the integral:

∂Eγ [max{θ + γ}] = Eγ [∂max{θ + γ}] (48)

Writing a subgradient of the max-function using an indicator function (an application of Danskin’s
Theorem):

∂max
i
{θi + γi} = 1[argmax

i
(θi + γi) = i] (49)

The proof then follows by applying the expectation to both sides of Equation 49.

9.1 SUPPORTING PROOF FOR THEOREM 5.1

Given the conditions on hi(θ), we can construct a series {θ(n)}∞n=1 for which hi(θ
(n)) = n for every

n ∈ N. We show that Eγ [argmax(θ(n) + γ)] approaches the zero-one probability vector as n→∞.

P[i = argmax(θ(n) + γ) = P
[
θ
(n)
i + γi ≥ max

j ̸=i
{θ(n)j + γj}

]
(50)

≥ P
[
θ
(n)
i + γi ≥ max

j ̸=i
{θ(n)j }+max

j ̸=i
{γj}

]
(51)

≥ P
[
γi ≥ −n+max

j ̸=i
{γj}

]
n→∞
→ 1

The limit argument holds since the probability of γ1, ..., γd decay as they tend to infinity.

Corollary 9.2. The convex conjugate of f(θ) takes the following values:

f∗ (λ) =

{
−Eγ∼g [γî] if λ = λ∗

∞ otherwise,
(52)

where γî denotes γi for which argmaxi{θi + γi} = î.
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Proof. Then, the convex conjugate of f(θ), when λ∗
i is denoted by pi is

f∗ (λ) =
∑
i

θipi − Eγ∼g

[
max

i
{θi + γi}

]
(53)

=
∑
i

θipi − Eγ

∑
î

1argmaxi{θi+γi}=î

max
i
{θi + γi}

 (54)

=
∑
i

θipi −
∑
î

Eγ

[
1argmaxi{θi+γi}=î max

i
{θi + γi}

]
(55)

=
∑
i

θipi −
∑
î

Eγ

[
1argmaxi{θi+γi}=î(θî + γî)

]
(56)

=
∑
i

θipi −
∑
î

Eγ

[
1argmaxi{θi+γi}=îθî

]
−
∑
î

Eγ

[
1argmaxi{θi+γi}=îγî

]
(57)

=
∑
i

θipi −
∑
î

pîθî −
∑
î

Eγ

[
1argmaxi{θi+γi}=îγî

]
(58)

= −
∑
î

Eγ

[
1argmaxi{θi+γi}=îγî

]
(59)

= −
∑
î

pîEγ [γî] (60)

= −Eγ [γî] (61)

where γî denotes γi for which argmaxi{θi + γi} = î.

9.2 PROOF OF LEMMA 5.2

Proof. By reparameterization

f(θ) =

∫
Rd

p(γ)max{θ + γ}dγ =

∫
Rd

p(θ − γ)max{γ}dγ (62)

The proof concludes by differentiating under the integral sign while noting that p(θ − γ) is differen-
tiable.

9.3 PROOF OF THEOREM 5.3

In what follows we prove the minimality of the Perturb-Argmax of Theorem 5.3.

Proof. Similarly to the Perturb-Softmax setting, we prove that under these conditions the function
f(θ) = Eγ [max{θ + γ}] is strictly convex. For this we rely on its one dimensional function
g(λ) ≜ f(θ + λv) and show that g′′(λ) > 0. Since the function g(λ) is convex then g′′(λ) ≥ 0, and
it is enough to show that g′(λ) depends on λ, for which it follows that g′′(λ) ̸= 0 and consequently
g′′(λ) > 0.

g′(λ) is the directional derivative∇vf(θ) in every admissible direction v = τ − θ, for τ, θ ∈ Θ. The
theorem conditions assert that v is not the constant vector, i.e., v ̸= c1, where c is some constant and
1 = (1, ..., 1) is the all-one vector.

We assume, without loss of generality, that max{θ + γ} ≜ maxi=1,...,d{θi + γi} is chosen between
two indexes, namely max{θ + γ} = max{θ1 + γ1, θj + γj}. This is possible as we treat j to be
j = argmaxi ̸=1{θj + γj}. We denote by p1(γ1) the differentiable probability density function of
γ1. We denote remaining random variables as γ−1 ≜ (γ2, ..., γd), their probability density function
by their measure dµ(γ−1).
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We analyze g′(λ) = limϵ→0
1
ϵ (g(λ+ ϵ)− g(λ))

g(λ) = Eγ [max{θ1 + λv1 + γ1, θj + λvj + γj}] (63)

=

∫
dµ(γ−1)

∫ α(γj)

−∞
p1(γ1)(θj + λvj + γj)dγ1 +

∫
dµ(γ−1)

∫ ∞

α(γj)

p1(γ1)(θ1 + λv1 + γ1)dγ1

α(γj) is the threshold for which γ1 shifts the maximal value to θ1 + λv1 + γ1, namely α(γj) =
θj + λvj + γj − θ1 − λv1.

With this notation, g(λ+ ϵ) =∫
dµ(γ−1)

∫ α(γj)+ϵ(vj−v1)

−∞
p1(γ1)(θj +(λ+ ϵ)vj +γj)dγ1+

∫
dµ(γ−1)

∫ ∞

α(γj)+ϵ(vj−v1)

p1(γ1)(θ1+(λ+ ϵ)v1+γ1)dγ1

(64)

Their difference is composed of four terms:

g(λ+ ϵ)− g(λ) =∫
dµ(γ−1)

∫ α(γj)+ϵ(vj−v1)

−∞
p1(γ1)ϵvjdγ1 +

∫
dµ(γ−1)

∫ ∞

α(γj)+ϵ(vj−v1)

p1(γ1)ϵv1dγ1

+

∫
dµ(γ−1)

∫ α(γj)+ϵ(vj−v1)

α(γj)

p1(γ1)(θj + (λ+ ϵ)vj + γj)dγ1

−
∫

dµ(γ−1)

∫ α(γj)+ϵ(vj−v1)

α(γj)

p1(γ1)(θ1 + (λ+ ϵ)v1 + γ1)dγ1

Taking the limit to zero limϵ→0
1
ϵ (g(λ+ ϵ)− g(λ), the last two terms cancel out, since when taking

the limit then γ1 = α(γj) and α(γj) = θj + λvj + γj − θ1 − λv1 by definition, or equivalently,
α(γj) + θ1 + λv1 = θj + λvj + γj . Therefore

g′(λ) =

∫
dµ(γ−1)

∫ α(γj)

−∞
p1(γ1)vjdγ1 +

∫
dµ(γ−1)

∫ ∞

α(γj)

p1(γ1)v1dγ1 (65)

We conclude that by the conditions of the theorem α(γj) = θj+λvj+γj−θ1−λv1 is a function of λ
since there exists j for which vj−v1 ̸= 0 and the probability density function p1(γ1) > 0 therefore it
assigns mass on the intervals [−∞, α(γj)] and [α(γj),∞]. Therefore g′(λ) is non-constant function
of λ and g′′(λ) ̸= 0.

9.4 PROOF OF PROPOSITION 5.5

Let θ ∈ R2, and consider i.i.d. random variables γ ∈ {1,−1}, such that P (γ = 1) = P (γ = −1) =
1
2 . Let f(θ) = Eγ [maxi{θi + γi}] denote the expected perturbed maximum over the domain Rd. Let
f(θ) take values over the extended real domain R ∪ {±∞}. Clearly, P (1 = argmaxi{θi + γi}) =
P (θ1 + γ1 ≥ θ2 + γ2).

Then, f(θ) can be explicitly expressed as:

f(θ) = Eγ

[
max

i
{θi + γi}

]
(66)

= P (γ1 = 1, γ2 = 1) (1 + max{θ1, θ2}) + P (γ1 = −1, γ2 = −1) (max{θ1, θ2} − 1)

+ P (γ1 = 1, γ2 = −1) (max{θ1 + 1, θ2 − 1}) + P (γ1 = −1, γ2 = 1) (max{θ1 − 1, θ2 + 1})

=
1

2
(max{θ1, θ2}) + P (γ1 = 1, γ2 = −1) (max{θ1 + 1, θ2 − 1}) + P (γ1 = −1, γ2 = 1) (max{θ1 − 1, θ2 + 1})

=
1

2
(max{θ1, θ2}) +

1

2

(
max{θ1 + 1, θ2 − 1}

2
+

max{θ1 − 1, θ2 + 1}
2

)
Equation 67 suggests that f(θ) takes the following form:
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Figure 6: An illustration of the function f(θ) (Equation 67) and the direction vector v : v1 ≥ v2 at
θ = (0, 0).

f(θ) =


θ1 if θ1 ≥ θ2 + 2
3
4θ1 +

1
4θ2 +

1
2 if θ2 + 2 ≥ θ1 ≥ θ2

3
4θ2 +

1
4θ1 +

1
2 if θ2 − 2 ≤ θ1 ≤ θ2

θ2 if θ1 ≤ θ2 − 2

(67)

Recall, that we aim to prove that the Perturb-Argmax probability model is unidentifiable. The function
f(θ), illustrated in Figure 6 in the appendix, is continuous and differentiable almost everywhere.
However, in its overlapping segments, i.e., when θ1 = θ2 + 2, θ1 = θ2 and θ1 + 2 = θ2, the function
is not differentiable, i.e., it has a sub-differential ∂f(θ) which is a set of sub-gradients. To prove
that the Perturb-Argmax probability model is unidentifiable, we show that ∂f(θ) is a multi-valued
mapping when θ1 = θ2. In particular, we show that every probability distribution p = (p1, p2) with
p1 ∈ [ 14 ,

3
4 ] satisfies p ∈ ∂f(θ).

For this task, we recall the connection between sub-gradients and directional derivatives: p ∈ ∂f(θ)
if ∇vf(θ) ≥ ⟨p, v⟩ for every v ∈ R2. When θ1 = θ2 = c, then f(θ) = c + 1

2 , thus for the
direction v = (v1, v2) for which v1 ≥ v2 holds ∇vf(θ) = 3

4v1 +
1
4v2. Recall that p ∈ ∂f(θ) if

3
4v1 +

1
4v2 ≥ ⟨p, v⟩ for every v1 ≥ v2. Thus we conclude that p must satisfy p1 ≤ 3

4 . Since the
same holds to v2 ≥ v1 then p1 ≥ 1

4 . Taking both these conditions, p ∈ ∂f(θ) when 1
4 ≤ p1 ≤ 3

4 .
Therefore, ∂f(θ) is multi-valued mapping, or equivalently, the parameters θ = (θ1, θ2) are not
identifying probability distributions. The sub-differential mapping is

(∂f(θ))1 =



1 if θ1 > θ2 + 2

[ 34 , 1] if θ1 = θ2 + 2
3
4 if θ2 + 2 > θ1 > θ2
[ 14 ,

3
4 ] if θ1 = θ2

1
4 if θ2 − 2 < θ1 < θ2
[0, 1

4 ] if θ1 = θ2 − 2

0 if θ1 < θ2 − 2.

, (68)

as illustrated in Figure 3.

9.5 PROOF OF PROPOSITION 5.4

The perturb-max function f(θ) can be expressed as

f(θ) = Eγ1,γ2∼[−1,1]

[
max

i
{θi + γi}

]
(69)

= Eγ1,γ2 [max{θ1 + γ1, θ2 + γ2}]− Eγ2 [γ2] (70)
= Eγ1,γ2

[max{θ1 + γ1, θ2 + γ2} − γ2] (71)
= Eγ1,γ2

[max{θ1 + γ1 − γ2, θ2}+ θ2 − θ2] (72)
= θ2 + Eγ1,γ2 [max{θ1 − θ2 + γ1 − γ2, 0}] , (73)

when the second equation holds since Eγ2∼[−1,1] [γ2] = 0, and the distribution of γ is omitted for
brevity.
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Define θ = θ1 − θ2 and Z = γ1 − γ2. Then, the random variable Z has a triangular distribution. The
random variable Z has the following cdf:

FZ(z) = P (γ1 − γ2 ≤ z) (74)

=


0 if z < −2
1
4
(2+z)2

2 if 0 > z ≥ −2
1
4 (4−

(2−z)2

2 ) if 2 ≥ z ≥ 0

0 if z > 2

(75)

Figure 7: Simulation of the density of the difference between 1M iid uniform(-1,1) random variables.

The random variable Z has the following pdf, also verified in simulation of the density of the
difference between 1M iid U(−1, 1) random variables (Figure 7):

fZ(z) =


1
4 (2 + z) if 0 > z ≥ −2
1
4 (2− z) if 2 ≥ z ≥ 0

0 otherwise
(76)

With the pdf of the random variable Z (Equation 76) consider f(θ) the appropriate range of θ.

1. Case: −θ < −2
In this case θ1 − θ2 > 2, therefore

f(θ) = Eγ1,γ2∼[−1,1]

[
max

i
{θi + γi}

]
(77)

= Eγ1∼[−1,1] [θ1 + γ1 ] (78)

= θ1 + Eγ1∼[−1,1] [γ1 ] (79)

= θ1 (80)

2. Case: 0 ≤ −θ ≤ 2

f(θ) = θ2 + Ez [max{θ + z, 0}] (81)

= θ2 +

∫ 2

−θ

fZ(z)(θ + z)dz (82)

= θ2 +

∫ 2

−θ

1

4
(2− z)(θ + z)dz (83)

= θ2 +
1

2

∫ 2

−θ

θdz +
1

2

∫ 2

−θ

zdz − 1

4

∫ 2

−θ

zθdz − 1

4

∫ 2

−θ

z2dz (84)

=
1

4

(
4

3
+ 2(θ1 + θ2) + (θ1 − θ2)

2 +
1

6
(θ1 − θ2)

3

)
(85)

3. Case: −2 ≤ −θ ≤ 0

f(θ) = θ2 + Ez [max{θ + z, 0}] (86)
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= θ2 +

∫ 0

−θ

fZ(z)(θ + z)dz +

∫ 2

0

fZ(z)(θ + z)dz (87)

= θ2 +

∫ 0

−θ

1

4
(2 + z)(θ + z)dz +

∫ 2

0

1

4
(2− z)(θ + z)dz (88)

= θ2 +
1

4
(θ2 − 1

6
θ3) +

1

4
(2θ +

4

3
) (89)

=
1

4

(
4

3
+ 2(θ1 + θ2) + (θ1 − θ2)

2 − 1

6
(θ1 − θ2)

3

)
(90)

∫ 0

−θ

1

4
(2 + z)(θ + z)dz =

1

2

∫ 0

−θ

θdz +
1

2

∫ 0

−θ

zdz +
1

4

∫ 0

−θ

zθdz +
1

4

∫ 0

−θ

z2dz (91)

=
1

2
[θz]

0
−θ +

1

2

[
z2

2

]0
−θ

+
1

4

[
z2θ

2

]0
−θ

+
1

4

[
z3

3

]0
−θ

(92)

=
1

4
(θ2 − 1

6
θ3) (93)

∫ 2

0

1

4
(2− z)(θ + z)dz =

∫ 2

0

1

4
(2θ + 2z − zθ − z2)dz (94)

=
1

2

∫ 2

0

θdz +
1

2

∫ 2

0

zdz − 1

4

∫ 2

0

zθdz − 1

4

∫ 2

0

z2dz (95)

=
1

2
[θz]

2
0 +

1

2

[
z2

2

]2
0

− 1

4

[
z2θ

2

]2
0

− 1

4

[
z3

3

]2
0

(96)

=
1

4
(2θ +

4

3
) (97)

4. Case: −θ > 2

In this case θ1 − θ2 < −2, therefore

f(θ) = Eγ1,γ2∼[−1,1]

[
max

i
{θi + γi}

]
(98)

= Eγ2∼[−1,1] [θ2 + γ2 ] (99)

= θ2 + Eγ2∼[−1,1] [γ2 ] (100)

= θ2 (101)

To conclude,

f(θ) =


θ1 if − θ < −2
1
4

(
4
3 + 2(θ1 + θ2) + (θ1 − θ2)

2 + 1
6 (θ1 − θ2)

3
)

if 0 ≤ −θ ≤ 2
1
4

(
4
3 + 2(θ1 + θ2) + (θ1 − θ2)

2 − 1
6 (θ1 − θ2)

3
)

if − 2 ≤ −θ ≤ 0

θ2 if − θ > 2

(102)

Alternatively, one writes

f(θ) =


θ1 if θ > 2
1
4

(
4
3 + 2(θ1 + θ2) + (θ1 − θ2)

2 − 1
6 (θ1 − θ2)

3
)

if 2 ≥ θ ≥ 0
1
4

(
4
3 + 2(θ1 + θ2) + (θ1 − θ2)

2 + 1
6 (θ1 − θ2)

3
)

if 0 ≥ θ ≥ −2
θ2 if θ < −2

(103)

The derivative of f(θ) (Equation 102), ∂
∂θf(θ) = ( ∂

∂θ1
f(θ), ∂

∂θ2
f(θ)) corresponds to the probabilities

of the arg max, (Pγ (argmaxi{θi + γi} = 1) , Pγ (argmaxi{θi + γi} = 2)) :
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∂

∂θ
f(θ) =


(1, 0) if − θ < −2
( 12 + 1

2θ +
1
8θ

2, 1
2 −

1
2θ −

1
8θ

2) if 0 ≤ −θ ≤ 2

( 12 + 1
2θ −

1
8θ

2, 1
2 −

1
2θ +

1
8θ

2) if − 2 ≤ −θ ≤ 0

(0, 1) if − θ > 2

(104)

∂

∂θ
f(θ) =


(1, 0) if θ > 2

( 12 + 1
2θ −

1
8θ

2, 1
2 −

1
2θ +

1
8θ

2) if 2 ≥ θ ≥ 0

( 12 + 1
2θ +

1
8θ

2, 1
2 −

1
2θ −

1
8θ

2) if 0 ≥ θ ≥ −2
(0, 1) if θ < −2

(105)

Then, the partial derivatives ∂
∂θf(θ) ∈ [0, 1] and sum to 1, as expected.

∂

∂θ1
f(θ) +

∂

∂θ2
f(θ) = 1 (106)

1. Case: 0 ≤ −θ ≤ 2

∂

∂θ
f(θ) = (

1

4
(2 + 2θ1 − 2θ2 +

3θ21 − 6θ1θ2 + 3θ22
6

),
1

4
(2 + 2θ2 − 2θ1 +

−3θ21 + 6θ1θ2 − 3θ22
6

))

(107)

= (
1

2
+

1

2
θ +

1

8
θ2,

1

2
− 1

2
θ − 1

8
θ2) (108)

The global minimum of the derivative f(θ) w.r.t. θ1, min ∂
∂θ1

f(θ) = 0 for θ = −2, since

∂ 1
4 (2 + 2θ1 − 2θ2 +

3θ2
1−6θ1θ2+3θ2

2

6 )

∂θ1
=

1

4
(2 + θ1 − θ2), (109)

in which case ∂
∂θ2

f(θ) = 1. The global maximum of the derivative f(θ) w.r.t. θ1,
max ∂

∂θ1
f(θ) = 1

2 for −θ = 0, in which case ∂
∂θ2

f(θ) = 1
2 .

The global maximum of the derivative f(θ) w.r.t. θ2, max ∂
∂θ2

f(θ)) = 1 for θ2 = θ1 + 2,
since

∂ 1
4 (2 + 2θ2 − 2θ1 +

−3θ2
1+6θ1θ2−3θ2

2

6 ))

∂θ2
=

1

4
(2 + θ1 − θ2), (110)

in which case ∂
∂θ1

f(θ) = 0. The global minimum of the derivative f(θ) w.r.t. θ2,
max ∂

∂θ2
f(θ) = 1

2 for −θ = 0, in which case ∂
∂θ1

f(θ) = 1
2 .

10 EXPERIMENTS

We use a 16GB 6-Core Intel Core i7 CPU in both experiments.

10.1 APPROXIMATING DISCRETE DISTRIBUTIONS

Our experiments are based on the publicly available code of Potapczynski et al. (2020). In all
experiments, a thousand samples from a target distribution p0 are sampled to approximate its
probability density function parameters, based on the L1 objective function. Optimization is based
on the Adam optimizer (Kingma & Ba, 2017) with a learning rate 1.e − 2. The fitted parameters
are initialized uniformly, as visualized in Figure 8. Figure 9 shows results for fitting discrete
distributions with countably infinite support: a Poisson distribution with λ = 50, and a negative
binomial distribution with r = 50, p = 0.6 respectively. The Normal-Softmax distribution better
approximates both distributions and exhibits faster convergence than the Gaussian-Softmax.
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(a) a binomial distribution
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(b) a discrete distribution
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Figure 8: Visualization of the uniform initialization of the fitted Gumbel-Softmax (top row) and
Normal-Softmax (bottom row) for the target discrete distributions: (8a) a target binomial distribution
p0 with n = 12, p = 0.3, (8b) a discrete distribution with p = ( 1068 ,

3
68 ,

4
68 ,

5
68 ,

10
68 ,

10
68 ,

3
68 ,

4
68 ,

5
68 ,

10
68 ),

(8c) a Poisson distribution with λ = 50, and (8d) a negative binomial distribution with r = 50, p =
0.6.

10.2 VARIATIONAL INFERENCE

This experiment is based on the publicly available implementation of the Gumbel-Softmax-based
implementation of the discrete VAE in Direct-VAE. Optimization is based on the Adam optimizer
(Kingma & Ba, 2017) with a learning rate of 1.e−3. Batch size is set to 100. We use the regular train/
test splits and follow previous research splits (e.g., as in Lorberbom et al. (2019)). The MNIST and the
Fashion-MNIST datasets’ training set comprises 60, 000 images, and the test set comprises 10, 000
images. For the Omniglot, the training set comprises 24, 345 images, and the test set comprises 8, 070
images. We consider a range of temperatures = {0.01, 0.03, 0.07, 0.1, 0.25, 0.4, 0.5, 0.67, 0.85, 1.0}
and select the best-performing models. Comparing the best-performing temperature-based models
reveals that the Normal-Perturb models achieve lower test set results on all three datasets (Table 3).

Figure 10 shows the training performance of the variational inference experiment for the Fashion-
MNIST dataset (Xiao et al., 2017) with N = 10 discrete variables, each is a K-dimensional categori-
cal variable, K ∈ [10, 30, 50], when temperature is set to 1, demonstrating favorable convergence of
Normal-Softmax models for all categorical variable dimensions.

MNIST dataset

Temp. Best test set loss
Gumbel-Softmax

Best test set loss
Normal-Softmax

0.01 117.29 114.26
0.03 109.72 107.73
0.07 105.51 103.87
0.10 105.79 102.89
0.25 104.4 101.15
0.40 104.63 112.45
0.50 105.94 135.16
0.67 123.04 186.53
0.85 168.01 244.31
1.00 215.42 302.01

Fashion- MNIST dataset
Best test set loss

Gumbel-Softmax
Best test set loss
Normal-Softmax

176.68 175.94
158.04 153.04
148.61 145.72
146.53 142.73
144.71 141.04
145.62 143.17
144.89 153.05
149.73 170.55
174.65 219.68
200.74 252.86

Omniglot dataset
Best test set loss

Gumbel-Softmax
Best test set loss
Normal-Softmax

135.87 130.77
132.71 130.55
132.13 133.32
133.6 132.52
137.19 233.04
134.88 172.1
136.34 141.29
139.75 132.73
158.47 132.07
179.59 208.08

Table 3: Summary of the best test set VAE loss for Normal-Softmax and Gaussian-Softmax model for
various temperatures on the MNIST, Fashion-MNIST, and Omniglot datasets. The best-performing
temperature-based models are in bold.
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(a) Approximation with dimension d=12 of a binomial distribution.

0 10 20 30 40 50 60 70
 0.00

 0.02

 0.04

 0.06

 0.08

 0.10
p0
Gumbel-Softmax with d = 100

0 10 20 30 40 50 60 70
 0.00

 0.02

 0.04

 0.06

 0.08

 0.10
p0
Normal-Softmax with d = 100

(b) Approximation of a Poisson distribution.
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(c) Approximation of a negative binomial distribution.

Figure 9: Gumbel-Softmax and Normal-Softmax approximation with a finite dimension of target
distributions p0. Top row: approximation with dimension d = 12 of a binomial distribution (with
finite support). Middle and bottom tow: approximation with dimension d = 100 of a Poisson and a
negative binomial distribution (both with countably infinite support), respectively. The L1 objective
over learning iterations is depicted on the right.
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Figure 10: Categorical VAE with Perturb-Softmax training loss on the MNIST (top row), and Fashion-
MNIST (bottom row) datasets with a K-dimensional categorical variable, K ∈ [10, 30, 50].
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