
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MEASURING MODEL ROBUSTNESS VIA FISHER INFOR-
MATION: SPECTRAL BOUNDS, THEORETICAL GUARAN-
TEES, AND PRACTICAL ALGORITHMS

Anonymous authors
Paper under double-blind review

ABSTRACT

The robustness of deep neural networks is critical for their deployment in safety-
sensitive domains. This paper establishes a novel theoretical framework for quan-
tifying model robustness through the lens of Fisher information. We first start
with the known conclusion that maximizing the KL divergence of the posterior
probability is equivalent to minimizing half the Mahalanobis distance defined by
the Fisher Information Matrix (FIM), and further reveal that the FIM is equal to
the variance of the input Jacobian matrix. Based on this insight, we propose the
FIM’s principal eigenvalue (or its reciprocal) as a principled robustness metric. We
derive closed-form spectral bounds for common architectural components (e.g.,
ReLU, convolution) and theoretically compare the robustness of VGG, ResNet,
DenseNet, and Transformer. To enable scalable computation, we resort to efficient
algorithms, including power iteration and randomized Hutchinson, to estimate the
robustness metric. Furthermore, we propose to use Hutchinson and finite differ-
ences to achieve robust estimation in a black-box setting. Extensive experiments
validate our theoretical claims and demonstrate the metric’s utility in predicting
adversarial vulnerability. Code: https://anonymous.4open.science/r/8F4D7E6R/.

1 INTRODUCTION

As deep learning models are increasingly used in safety-sensitive areas such as autonomous driving
Shibly et al. (2023) and medical diagnosis Aggarwal et al. (2021), their robustness to adversarial
perturbations has become a critical research topic. Even imperceptible input perturbations can lead to
catastrophic prediction errors Zhou et al. (2022), exposing fundamental vulnerabilities of modern
neural architectures. Robustness means the ability to maintain consistent performance under input
perturbations, including adversarial attacks Carlini & Wagner (2017a), noise, and distribution changes.
Therefore, understanding and quantifying robustness is crucial for both theoretical development and
practical applications.

Attack-Dependent Metrics Existing robustness metrics mainly rely on the strength of adversarial
attacks (e.g., bounded perturbations of the ℓp norm Lin et al. (2020)) or empirical accuracy under
attack scenarios Madry et al. (2019). While these heuristics provide practical evaluation benchmarks,
they suffer from three major limitations: (i) metrics that rely on attacks cannot reveal the intrinsic
properties of the model; (ii) norm-based constraints (adding norm constraints to the loss function)
lack probabilistic interpretation; and (iii) most analyses focus on local behaviors without considering
global statistical characteristics.

Heuristic Theoretical Bounds Although the robustness of models has been demonstrated by
estimating the Lipschitz constant Weng et al. (2018) or studied by analyzing input sensitivity, such as
the Jacobian norm Sokolic et al. (2016) or gradient variance Agarwal et al. (2022), the connection
between these heuristic metrics and the behavior of probabilistic models remains unclear.

To address these deficiencies, we propose a unified information-theoretic framework for robust-
ness evaluation based on the geometry of deep learning input-output manifolds, which has a well-
established theoretical foundation and do not depend on any attack algorithm. Our work makes the
following contributions :

1

https://anonymous.4open.science/r/8F4D7E6R/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Theoretical foundation : We start with the known fact that maximizing the KL divergence of the
model posterior probability is approximately equivalent to minimizing half the Mahalanobis distance
defined by the Fisher Information Matrix (FIM), analyze the approximation error, and establish the
equivalence of the FIM with the variance of the input Jacobian matrix. This bridges the robustness
from the geometric (Jacobian) and statistical (FIM) perspectives. Furthermore, we theoretically
analyze the relationship between our metric and several classic metrics.

Practical Metric : We derive 1/∥F∥2 or ∥F∥2 as an interpretable and differentiable robustness
metric, where ∥F∥2 is the largest eigenvalue of the FIM. This avoids attack-specific evaluations and
provides a global robustness proof.

Architecture Analysis : We characterize the spectral properties of common layers (ReLU, convolu-
tion) and theoretically rank the robustness of VGG, ResNet, DenseNet, and Transformer architectures.

Efficient Algorithms : We resort to three algorithms including direct eigenvalue decomposition,
power iteration, and Hutchinson approximation to handle the estimation of the spectral norm λmax(F)
of various scales and guarantee convergence, making it applicable to large-scale models. Furthermore,
we propose a new algorithm based on Hutchinson and finite differences to estimate the ∥F∥2 value in
the black-box setting.

Application Potential : Our robustness metric can estimate the robustness of multiple models on the
same dataset, and can also compare the volatility of multiple data sets for a model, further helping us
use adversarial training to further improve the robustness of the model.

Our experiments verify the correlation of this metric with adversarial vulnerability across datasets
(CIFAR-10, MNIST etc.) and demonstrate its practicality in robustness-aware model selection. By
unifying geometric sensitivity and probabilistic uncertainty, this work provides a principled toolkit
for evaluating and designing robust deep learning (see App. A for more discussion).

2 RELATED WORK

2.1 ROBUSTNESS METRICS IN DEEP LEARNING

Adversarial Attack-Based Metrics Empirical robustness is usually evaluated through adversarial
attacks (e.g., PGD Madry et al. (2019) and C&W Carlini & Wagner (2017b)), which create perturba-
tions to induce misclassification. While these methods are effective in exposing vulnerabilities, they
are computationally expensive and attack-dependent — their results may not generalize to unknown
threat models or real-world noise.

Lipschitz and Jacobian Norms Theoretical approaches use Lipschitz continuity Szegedy et al.
(2014) or Jacobian matrix norms Sokolic et al. (2016) to bound model sensitivity. However, these
methods lack probabilistic interpretation and are difficult to scale to complex architectures (e.g.,
Transformer) due to fuzzy boundaries or exponential computational complexity.

Information Theoretic Perspective KL divergence and mutual information have been used to
quantify robustness Alemi et al. (2019), but previous studies have failed to link these metrics to
the geometry of the input space. Our work bridges this gap by linking KL divergence to Fisher
information, unifying probabilistic and geometric perspectives.

2.2 FISHER INFORMATION IN DEEP LEARNING

Classic Foundations The Fisher Information Matrix (FIM) is central to statistical estimation
and natural gradient descent Amari (1998). In deep learning, it has been used for optimization
and uncertainty quantification (e.g., K-FAC Martens & Grosse (2020)), but these studies focus on
parameter space properties rather than robustness in the input space.

FIM for Adversarial Robustness Recent studies have used FIM for adversarial detection Zhao et al.
(2019) or robust training Martin & Elster (2019), but none of them has established a direct relationship
between FIM eigenvalues and the inherent robustness of the model. Our key insight—that the
largest FIM eigenvalue encodes the worst-case sensitivity—provides a novel, theoretically supported
robustness metric.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.3 SPECTRAL ANALYSIS AND EFFICIENT COMPUTATION

Spectral Methods in Deep Learning Spectral normalization Miyato et al. (2018) can regulate model
complexity, but their applications are mainly limited to generative models. Different from these
studies, we analyze the spectral properties of discriminative architectures (e.g., CNN, Transformer)
from the perspective of FIM.

Randomized Algorithms Hutchinson estimator Hutchinson (1989) and power iteration Golub &
Loan (2013) are widely used for large-scale matrix computation. We adapt these algorithms to the
special structure of FIM matrices to efficiently estimate λmax(F) with provable convergence, thus
enabling scalability to modern architectures.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Robustness as KL-Divergence Maximization For any model, the cluster of posterior probability
distributions of the model output relative to the input x forms a statistical manifold

P = {p(y|x; θ)|x ∈ X}, (1)

where each input x corresponds to a point on the manifold and θ is a parameter of the model. In
adversarial training, the input sample x is mapped to a point p(y|x) on the manifold by the model,
and the perturbation x → x+ δ will correspond to a trajectory on the manifold. We try to maximize
the distance between two model output points on the manifold

x′∗ = argmax
x′

D(p(y|x; θ), p(y|x′; θ)), (2)

where D(·, ·) represents the distance between the outputs of the two distribution functions.

Fisher Information and Robustness Metric For the convenience of discussion, we ignore the model
parameter θ. We will introduce the following Theorem 1 as our starting point: The KL divergence
between any two conditional distributions p(y|x) and p(y|x′) is approximately equal to half of the
Mahalanobis distance between x and x′, where the covariance parameter matrix is the inverse of
the Fisher information matrix (FIM). App. C and D analyze the rationality of the approximation
theoretically and experimentally.

Theorem 1 For any two conditional distributions p(y|x) and p(y|x′), where x and x′ are the inputs
of the model and y is the class label of the model output, we have

KL(p(y|x), p(y|x′)) ≈ 1

2
(x′ − x)TF (x)(x′ − x) =

1

2
δTF (x)δ, (3)

where F (x) is the Fisher information matrix defined as follows

F (x) = Ep(y|x)[∇x log p(y|x)∇x log p(y|x)T]. (4)

F (x) geometrically represents the curvature of the probability distribution manifold at point x. From
Theorem 1, it is not difficult to see that the perturbation direction δ (∥δ∥2 = 1) in adversarial training
is approximately equal to the principal eigenvector of the Fisher information matrix. Furthermore,
for any deep learning structure, we have the following conclusion (see App. E for proof):

Theorem 2 For a deep learning model whose last layer uses a softmax function to implement
classification tasks, where the input vector of softmax is f(x), the Fisher information matrix is

F (x) = var(Jf (x)), (5)

where Jf (x) is the gradient matrix (Jacobian matrix) of the vector f(x) with respect to the input x
and var represents the variance of the matrix random variable.

Using Theorem 2 and the properties of variance, we immediately get 1
2δ

TF (x)δ = 1
2var(δTJf (x)).

Therefore, the KL divergence also measures the sensitivity of the model output (Jacobian projection)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

to the fluctuation of the input in the perturbation direction δ. The experimental results in App. K.1
verify how the variance of the gradient tends to the FIM matrix as the number of samples increases.

Given an input x, when δ is the principal eigenvector of F (x), the KL divergence between the two
posterior probabilities is maximum, that is, at this time δ corresponds to the worst-case perturbation
to the model, and λmax(F (x)) (or ∥F (x)∥2) bounds the worst-case perturbation impact. So for the
dataset S, we define the following robustness measure based on the spectral norm (|S| represents the
number of elements in set S):

Rspec(S) =
1

|S|
∑
x∈S

1

∥F (x)∥2
, Rnorm(S) =

1

|S|
∑
x∈S

∥F (x)∥2. (6)

App. B provides the relationship between our metric and several classical measures and further
discussion.

3.2 THEORETICAL ANALYSIS

General Analysis Given any classifier based on deep learning model, we will discuss how to estimate
the upper bound of the spectral norm ∥F (x)∥2, where the Fisher information matrix of x for the
discrete variable y is defined as (pk = p(yk|x))

F (x) =

K∑
k=1

p(yk|x)[∇x log p(yk|x)∇x log p(yk|x)T] =
K∑

k=1

pk[∇x log pk∇x log p
T
k]. (7)

For any network structures, we further estimate ∥F (x)∥2 by the following theorem, where the proof
is in App. F.

Theorem 3 For any deep network-based classifier h : x → softmax(f(x)), where softmax is the
softmax function, the spectral norm ∥F (x)∥2 of its Fisher information matrix with respect with the
input x has the following upper bound

∥F (x)∥2 = λmax(F (x)) = max
∥v∥2=1

vTF (x)v ≤ max
k

pk(1− pk)∥Jf (x)∥22, (8)

where Jf (x) is the Jacobian matrix of the output f(x) ∈ RK with respect to the input x ∈ Rd.

In a deep neural network, the model f(x) is essentially a composite of m functions

f(x) = fm ◦ fm−1 ◦ · · · ◦ f1(x), (9)

where the Jacobian matrix of each function fi : Rni → Rni+1 is Ji, then we have (by chain rule)
∂f
∂x = JmJm−1 · · · J1. Then, according to the property of the norm ∥AB∥2 ≤ ∥A∥2∥B∥2, we
immediately have ∥Jf∥2 ≤

∏m
i=1 ∥Ji∥2. Finally, we get

∥F (x)∥2 ≤ max
k

pk(1− pk)

m∏
i=1

∥Ji∥22. (10)

Therefore, the spectral norm analysis of deep network models can be reduced to the analysis of its
basic components.

Spectral Norm ∥Ji∥2 of Basic Components We theoretically analyze the upper bounds of the
spectral norms of the basic components of deep neural networks in Table 1 (see App. G for details).
We can see that 1) The spectral norm of ReLU and Max Pooling is strictly 1, indicating that they have
equidistant propagation of input perturbations; 2) The spectral return of Average Pooling decreases
as the kernel increases, which has a certain gradient smoothing effect; 3) BN and LN can actively
amplify or suppress perturbations through scaling factors; 4) When the spectral norm of Softmax is
close to 0, it may suppress the propagation of perturbations, and the spectral norm of the concatenation
operation is proportional to the sum of the squares of the spectral norms of the input tensor, which may
implicitly introduce gradient expansion; 5) The spectral norm of the linear change layer (convolution
or full connection) is the main source of perturbation amplification.

Analysis of Deep Neural Networks We analyzed the following four classic deep network structures,
including VGG, Densenet, Resnet and Transformer (ViT), and the specific results are as shown in

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Table 1: Spectral norm of the basic components

Name Function ∥J∥2
ReLU max(0, x) = 1
Max Pooling max(m,n)∈Nk(i,j) xm,n,c = 1
Average Pooling 1

k2

∑
(m,n)∈Nk(i,j)

xm,n,c = 1
k

Convolutional
∑k−1

i=0

∑k−1
j=0

∑Cin
c=1 Wi,j,c,c′Xh′+i,w′+j,c ≈ ∥W∥2

Fully Connected Wx+ b = ∥W∥2
Batch Normalization γ(c) x(c)−µ(c)√

(σ(c))2+ϵ
+ β(c) = maxc

|γ(c)|√
(σ(c))2+ϵ

Layer Normalization γ ⊙ x−µ√
σ2+ϵ

+ β ≤ maxi
|γ(i)|√
σ2+ϵ

Softmax σ(x)i =
exi∑n

j=1 exj ≤ 2maxk σ(x)k(1− σ(x)k)

Concatenation [X1 · · · Xn] ≤
√∑n

i=1 ∥Xi∥22

Table 2: Analysis of spectral norm of deep network structure (h is the number of attention heads)

DNN Estimation of Upper bound of ∥J∥2 Structural complexity

VGG
∏L

i=1 ∥Wi∥2 ·
∏M

j=1 ∥Uj∥2 O(L+M)

ResNet 1
2∥Wcov∥2

∏L
l=1(1 + ∥Wl,1∥2∥Wl,2∥2)∥U∥2 O(L)

DenseNet ∥WL∥2
∏L−1

k=1 (1 + ∥Wk∥2) O(L)

Transformer
∏L

l=1(1 +
√
hmaxi ∥WV

i ∥2∥WO∥2 + ∥Wl1∥2∥Wl2∥2) O(L)

Table 2 (see App. H for more details). In Table 1, since the spectral norm of the linear change layer
(convolution or fully connected) is the main source of perturbation amplification, we only estimate
the upper bound in the form of the spectral norm of the convolution or fully connected layer.

Analyzing the results in Table 2, we conclude that: 1) The spectral norm of VGG is the product of the
spectral norms of each layer, which grows exponentially with the network depth; 2) The introduction
of the residual structure in Resnet makes the (1 + ∥Wl,1∥2∥Wl,2∥2) term make the upper bound
grow linearly, especially when ∥Wl,1∥2∥Wl,2∥2 < 1; 3) DenseNet has a linear growth similar to
Resnet, but has more cross-layer links and the network weights of each layer are reused; 4) The terms
referenced by the attention mechanism in Transformer may significantly increase the upper bound.

We take the most classic models among the four models to compare their structural complexity:
VGG16 (L = 13,M = 3), DenseNet121 (L = 59), ResNet18 (L = 12), ViT-B-16 (L = 12).
Therefore, we roughly conclude that the robustness ranking of the models is

DenseNet121 < VGG16 < ResNet18 ≤ ViT-B-16. (11)

3.3 PRACTICAL ALGORITHMS WITH WHITE-BOX SETTINGS

Since in the theoretical analysis, we only approximately estimated the upper bound of the model,
ignoring the actual spectral norm values of each component, and we also ignored the fact that
the spectral norm also depends on the input of the model. Therefore, below we will evaluate the
robustness of the model on a certain data set by solving the spectral norm of F (x).

Let qk = ∇x log p(yk|x) and λk = p(yk|x), we can write the Fisher information matrix in a more
compressed form

F (x) = QΛQT , (12)

where Q = [q1 q2 · · · qK] and Λ = diag(λ1, λ2, · · · , λK).

Direct Eigendecomposition Considering the properties of the spectral norm ∥AB∥2 = ∥BA∥2, we
can get ∥F (x)∥2 = ∥P∥2, where P = Λ1/2QTQΛ1/2 is a symmetric matrix. The time complexity
and space complexity of solving ∥P∥2 directly through eigenvalue decomposition are O(dK2 +K3)
and O(dK) respectively, which is suitable for cases where K is small.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Power Iteration The power iteration algorithm (as shown in Algorithm 1 of App. J) is a simple
algorithm for finding the leading eigenvalue of a matrix and its associated eigenvector. Although the
most time-consuming operation of the algorithm is the matrix multiplication, the matrix F (x) has a
special form of eigenvalue decomposition, and we can calculate F (x)bt very efficiently. Note that the
initial value is set to the approximate value to accelerate the iterative algorithm’s convergence process.
Due to the special structure of QΛQT , we can obtain the time complexity and space complexity of
the power iteration algorithm as O(TdK) and O(dK) respectively. Note that when the iteration error
∥λt − λprev∥)/∥λt∥2 < ϵ, where ϵ is a given threshold, the algorithm will exit midway.

Hutchinson Approximation Algorithm We adopt Hutchinson algorithm (as shown in Alg. 2 of the
App. J) Hutchinson (1989) to estimate the principal eigenvalue of the matrix λmax

∥F (x)∥2 = λmax(F (x)) ≈ max
i

zTi F (x)zi
zTi zi

, (13)

where zi is a random vector (such as a Rademacher vector with elements of ±1) or a Gaussian
variable.

Theorem 4 Hutchinson (1989) Let R(A, xi) =
xT
i Axi

xT
i xi

, given M independent random vec-

tors x1, · · · , xM (Rademacher vectors or Gaussian variables), when M → ∞, then λ̂max =
maxmi=1 R(A, xi) will converge to λmax(A) with high probability. For any given δ value, when

M ≥
log 1

δ

pϵ
, (14)

then
P (λ̂max ≥ λ(A)− ϵ) = 1− (1− pϵ)

M ≥ 1− δ, (15)
where pϵ = P (R(A, xi) ≥ λmax(A)− ϵ).

Theorem 2 shows that even if the probability pϵ of a single sample falling into the target interval is
very low, we can still ensure high probability convergence to λmax(A) by moderately increasing M .

Theorem 5 Hutchinson (1989) Let u, v ∈ Rn, where u is a random unit vector and v is a fixed unit
vector (such as the principal eigenvector of a matrix), then the probability that u is aligned with v
decays exponentially with n. Specifically, we have

P (|uT v| ≥ t) ≤ 2 exp
(
−cnt2

)
, (16)

where c is a universal constant.

Theorem 5 shows that when the dimension of the random vector grows, the probability of the
random vector aligning with λmax will decay exponentially. If the random vector generated by
F (x) = QΛQT as the input of Hutchinson is in a high-dimensional space of d dimensions, then the
probability of it aligning with the spectral norm will be very low. Therefore, as with direct eigenvalue
decomposition, we also consider using P = Λ1/2QTQΛ1/2 as the input of Hutchinson. The time
complexity of Hutchinson algorithm for calculating the spectral norm of FIM is O(MdK), and
Hutchinson algorithm can be highly parallelized since each random vector is independent of each
other.

The theoretical analysis in Appendix J and experimental verification in Appendix K show that we
can significantly reduce the space complexity and approximation error of the model by indirectly
estimating ∥F∥2 through P .

3.4 PRACTICAL ALGORITHMS WITH BLACK-BOX SETTINGS

Below we will use Hutchinson’s algorithm and finite differences to estimate the robustness measure
∥F (x)∥2 in a black-box setting.

For any Gaussian random vector v ∼ N(0, I), the directional derivative of the gradient ∇x log p(y|x)
can be approximated by symmetric difference (u = v/∥v∥2)

uT∇x log p(y|x) ≈
log p(y|x+ hu)− log p(y|x− hu)

2h
, (17)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

where h is a small positive constant (such as 10−3). The quadratic form uTF (x)u of FIM can be
decomposed into

uTF (x)u = uTEp(y|x)[∇x log p(y|x)∇x log p(y|x)T]u = Ep(y|x)[(u
T∇x log p(y|x))2], (18)

where uT∇x log p(y|x) can be estimated using first-order finite differences (Eqn. (17)).

4 EXPERIMENTS

4.1 DATASETS AND SETTINGS

To estimate the robustness of the model, we use the basic models of four classic models, including
VGG16, ResNet18, DenseNet121, and ViT B 16, and train them on three different styles of datasets
(CIFAR10, MNIST, and Tiny-ImageNet). For unified processing, the images in the three datasets
are resized to 224×224 size images during training. The optimizer uses the AdamW optimizer in
PyTorch, where the learning rate is uniformly set to 3e-5. The model obtained by using only the
training set (without using any pre-trained model) for all models is called the clean model Mclean.
Subsequently, the model we obtain through the two adversarial training algorithms, CW or PGD, is
the adversarial model, denoted as MCW or MPGD. We also validate the effectiveness of our metrics
on large-scale datasets like CIFAR100, ImageNet, and special types of data such as medical data 1.

4.2 EVALUATION METRICS AND SETTINGS

Assume that the model M is tested on the test set D, and a(x) represents the perturbation sample
generated by the clean input x. We will mainly use the spectral norm robustness ∥F (x)∥2, Lipschitz
constant, CLEVER score, and robustness metrics based on adversarial attacks including PGD Madry
et al. (2018) and C&W Carlini & Wagner (2017a).

PGD and CW Below we introduce the two metrics PGD and CW, which are two classic adversarial
attack methods. We often use the attack success rate under PGD and CW attacks as an indicator to
evaluate the robustness of the model, where the attack success rate (ASR) is defined as follows:

ASR =
|{(x, y)|M(a(x)) ̸= y, (x, y) ∈ D}|
|{(x, y)|M(x) = y, (x, y) ∈ D}

. (19)

In the experiments, we use torchattacks 2 to calculate PGD and CW values. In PGD, the maximum
perturbation ϵ is set to 8/255, the step size α is 2/255, the number of attack steps is 20 and
random initialization is performed. CW uses the following parameters: box constraint parameter
c = 1, confidence κ = 0, the number of attack steps is 20 and the learning rate lr = 0.01 of the
Adam optimizer. It is worth noting that PGD contains random factors, while CW does not contain
randomness.

CLEVER score The maximum perturbation radius in the CLEVER algorithm is set to 0.1, and
the distance norm in the neighborhood definition and the norm in the gradient both use the 2-norm.
When the CLEVER algorithm estimates the Lipschitz constant at each data point x, 100 points are
sampled in the neighborhood of point x to find the maximum value of the gradient norm.

Rspec and Lipschitz constant We approximate the Lipschitz constant of the model f(x) by the
gradient at point x, where the gradient is implemented by automatic differentiation in pytorch. When
calculating the robustness based on the spectral norm, we also count the average value of ∥F (x)∥2
and the average value of 1/∥F (x)∥2. The former is positively correlated with other metrics, while
the latter corresponds to Rspec and is negatively correlated with other metrics.

4.3 REASONABLENESS OF OUR ROBUSTNESS METRIC

We use the clean model Mclean (ResNet18) as the benchmark and use CW adversarial training to
obtain a model MCW. Based on our intuition, MCW should be more robust than Mclean. Since the

1https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
2https://adversarial-attacks-pytorch.readthedocs.io/en/latest/attacks.htmlmodule-torchattacks.attacks.pgd

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Lipschitz constant L(x), CLEVER, CW, PGD and spectral norm ∥F (x)∥2 are positively correlated,
the value of MCW on the above indicators should be smaller than the corresponding value of M . We
counted the percentage reduction of the metric on the model MCW compared to the metric on Mclean,
and the results are shown in Table 3 with 500 samples.

As can be seen from Table 3, the reduction value of our spectral norm metric ∥F (x)∥2 is very close to
the CW estimate. It is worth noting that the attack success rate on PGD decreases the least, because
we use CW to perform adversarial attacks in training, but use PGD to implement attacks in testing,
which shows that the CW metric is not transferable. At the same time, the estimated values of L(x)
and CLEVER are relatively close.

Table 3: Robustness comparison using adversarial training model MCW and clean model Mclean

Model L(x) CLEVER CW PGD Rnorm Rspec

None-Attack (Mclean) 0.50 3.52 93.64 99.24 2.38 46.46
CW-Attack (MCW) 0.29 2.02 29.60 86.67 0.82 186.46
Reduction (%) 42.00 42.61 68.39 12.67 65.55 -

Comparing the results in Table 3, we can see that the estimated values of ∥F (x)∥2, L(x), and
CLEVER are very stable when the size of the data set changes, while the fluctuations of CW and
PGD are relatively large. This is because CW and PGD are essentially discrete functions of the input
x, where accuracy functions are not differentiable with respect to the input.

4.4 ROBUSTNESS OF DIFFERENT MODELS ON THE SAME DATASET

We use CIFAR10 as a benchmark to analyze how the six metrics rank the models (as shown in Table
4). We sort the four metrics in descending order of L(x), and we can see that our spectral norm
∥F (x)∥2 obtains the same ranking results as L(x) and CLEVER, while the results of CW are exactly
the same as our Rspec. This shows that the two metrics ∥F (x)∥2 and Rspec we proposed can replace
CLEVER and CW respectively to some extent. PGD uses different attack methods in training and
testing, so the results are not referenceable (See App. K.4 for more comparisons on large-scale
datasets).

Table 4: Comparison of ranking results of 4 models on 6 metrics on the CIFAR10 dataset

Models L(x) CLEVER CW PGD Rnorm Rspec

DenseNet121 0.47 2.93 54.55 94.81 2.18 5.16
ResNet18 0.29 1.99 22.97 89.19 0.77 124.61
ViT B 16 0.25 1.35 39.39 96.97 0.61 77.36
VGG16 0.07 1.11 14.29 55.95 0.09 97685.6

4.5 ROBUSTNESS OF THE SAME MODEL ON DIFFERENT DATASETS

Comparing the robustness of the same model across multiple datasets (in Tab. 25) shows that our
metrics and other metrics produce consistent results for Medical Data and CIFAR100: CIFAR100 >
Medical Data. However, the data distribution in ImageNet varies significantly, leading to inconsistent
results when compared with other datasets. The results show that ImageNet is as difficult to attack as
CIFAR100.

Table 5: Comparison of robustness ranking results of ResNet18 using 6 metrics on 3 datasets

Dataset L(x) CLEVER CW PGD Rnorm ↓ Rspec

Medical Data 0.57 5.43 37.08 98.88 5.95 36.28
ImageNet 0.17 2.29 95.24 100.0 1.11 1.44
CIFAR100 0.29 1.81 62.07 94.83 0.73 5.69

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.6 ROBUSTNESS COMPARISON BETWEEN BLACK-BOX SETTING AND WHITE-BOX SETTING

To compare the robustness metrics under two different settings, we use only the model output p(yk|x)
in the black-box setting and explicitly use the model gradient ∇ log p(yk|x) in the white-box setting.
The results for both settings are shown in Table 6. We can draw the following conclusions: 1) Since
the dimensionality of the vectors in the black-box setting is higher than that in the white-box setting
(data comparison coefficient), and since we indirectly compute the matrix P in the white-box setting,
the estimated eigenvalues are an order of magnitude lower than those in the white-box setting; 2)
Our metrics yield consistent conclusions in both settings: for the ResNet-18 model, the robustness
comparison across datasets is CIFAR100 > Medical Data.

Table 6: Comparison of robustness ranking results of ResNet18 using 6 metrics on 3 datasets

Dataset Rnorm(white) R̂norm(black)

Medical Data 5.95 0.0056
CIFAR100 0.73 0.0032

4.7 COMPARISON OF RUNNING TIMES

We use the adversarial training model MCW on CIFAR100 to test 5 metrics and run them 5 times
on 500 samples to calculate the average running time of the 5 metrics, as shown in Tab. 7. Since
CLEVER greatly approximates the gradient of the loss function, the maximum eigenvalue of the
gradient can be easily solved, so it has the fastest running time. Our Rnorm and Lipschitz constant
L(x) are both based on the gradient of the model, but Rnorm calculate the spectral norm of F (x)
instead of the spectral norm of the gradient, which takes more time than the estimation of L(x).
Although we can achieve fast estimation of ∥F (x)∥2 through parallel sampling of the Hutchinson
algorithm, due to the limitations of the GPU memory , we have to convert large-scale batch
sampling into multiple batches of small-scale sampling, which makes our algorithm slightly slower.

Table 7: Comparison of running times of two models on CIFAR100 with multiple metrics

Model L(x) CLEVER CW PGD Rnorm(white) R̂norm(black)

ResNet18 131.09 24.65 96.12 83.48 267.13 66.16
ViT B 16 494.74 41.19 172.08 233.70 309.73 379.22

5 CONCLUSION

This paper proposes a unified information-theoretic framework to quantify the robustness of deep
neural networks using Fisher information. Building on the connection between the KL divergence
of the posterior probability and the Fisher Information Matrix (FIM), we propose the maximum
eigenvalue of the FIM, or its inverse, as a principled and interpretable robustness metric. We
analyze the connections and differences between our metric and several classical metrics. We further
analyze upper bounds on the spectral norms of common architectural components (e.g., ReLU and
convolution) and compare the robustness of popular architectures including VGG, ResNet, DenseNet,
and Transformer. To achieve scalable computation, we use three algorithms to compute the spectral
norm of the FIM, making it applicable to scenarios of various scales. Furthermore, we propose a
new algorithm that implements robustness estimation in the black-box setting with the Hutchinson
algorithm and finite differences. Extensive experiments on datasets of varying sizes and types validate
our theoretical results. Overall, our metric is well-founded, independent of attack algorithms, and
applicable to both white-box and black-box settings.

However, FIM is data-dependent, which means that robustness evaluation may vary for different test
sets or input domains, and comparisons across data distributions remain challenging, which will be
our future work. Despite these limitations, our framework lays the foundation for a more rigorous
understanding of deep learning robustness, paving the way for future work on robust model design
and evaluation.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Potential risks and mitigations include:

• Misuse in adversarial settings: While our metrics are useful for evaluating robustness,
malicious actors may exploit insights from the Jacobian or FIM properties to design more
powerful attacks. We mitigate this by focusing on defensive applications and encouraging
transparency in robustness benchmarks.

• Over-reliance on theoretical guarantees: While principled, our bounds and metrics are
not exhaustive (e.g., they may not cover all perturbation types). We emphasize that our
approach should complement rather than replace empirical testing and highlight the need
for multifaceted robustness evaluation.

• Computational cost: Despite the efficiency of our algorithm, estimating the Fisher
spectrum for very large models may still be resource-intensive. We provide guidance on the
trade-off between accuracy and computational overhead of robustness estimation.

REPRODUCIBILITY STATEMENT

All experiments were performed on a GeForce RTX 3090 with 24 GB video memory to fairly compare
the performance and running time of all algorithms. The datasets used in our experiments are all
publicly available datasets on the Internet, including commonly used datasets in computer vision. For
datasets from uncommon sources such as medical data, we provide links to the data. We performed a
simple normalization on the images following the conventional normalization method for images
in the field of image classification. For details, see the anonymous code. All experiments ensure
the reproducibility of the results by fixing the random seed, including model initialization and data
generation, for verifying the theoretical results of the theorem. For specific code, please see the link:
https://anonymous.4open.science/r/8F4D7E6R/.

THE USE OF LARGE LANGUAGE MODELS

In this work, large language models (LLMs) were primarily used as a general-purpose assist tool to aid
and polish the writing of the manuscript. LLMs were not involved in research ideation, experimental
design, data analysis, or the generation of any novel scientific content.

10

https://anonymous.4open.science/r/8F4D7E6R/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Chirag Agarwal, Daniel D’souza, and Sara Hooker. Estimating example difficulty using variance of
gradients, 2022.

Ravi Aggarwal, Viknesh Sounderajah, Guy Martin, Daniel S. W. Ting, Alan Karthikesalingam,
Dominic King, Hutan Ashrafian, and Ara Darzi. Diagnostic accuracy of deep learning in medical
imaging: a systematic review and meta-analysis. Digital Medicine, 4(1):1–23, April 2021. ISSN
2398-6352.

Alexander A. Alemi, Ian Fischer, Joshua V. Dillon, and Kevin Murphy. Deep variational information
bottleneck, 2019.

Shun-ichi Amari. Natural Gradient Works Efficiently in Learning. Neural Computation, 10(2):
251–276, 1998. ISSN 0899-7667.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
ieee symposium on security and privacy (sp), pp. 39–57. Ieee, 2017a.

Nicholas Carlini and David Wagner. Towards Evaluating the Robustness of Neural Networks, 2017b.

Jeremy M Cohen, Elan Rosenfeld, and J. Zico Kolter. Certified adversarial robustness via randomized
smoothing, 2019. URL https://arxiv.org/abs/1902.02918.

Gene H. Golub and Charles F. Van Loan. Matrix Computations. JHU Press, 2013. ISBN 978-1-4214-
0859-0.

Ulf Grenander and Gabor Szego. Toeplitz Forms and Their Applications. In Toeplitz Forms and
Their Applications. University of California Press, 1958. ISBN 978-0-520-35540-8.

Michael F Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics-Simulation and Computation, 18(3):1059–1076,
1989.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, Citeseer,
2009.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Wei-An Lin, Chun Pong Lau, Alexander Levine, Rama Chellappa, and Soheil Feizi. Dual manifold
adversarial robustness: Defense against lp and non-lp adversarial attacks, 2020.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards Deep Learning Models Resistant to Adversarial Attacks, 2019.

James Martens and Roger Grosse. Optimizing Neural Networks with Kronecker-factored Approxi-
mate Curvature, 2020.

Jörg Martin and Clemens Elster. Inspecting adversarial examples using the fisher information, 2019.

Vitali D. Milman and Gideon Schechtman. Asymptotic Theory of Finite Dimensional Normed Spaces.
1986. ISBN 978-0-387-16769-5.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral Normalization for
Generative Adversarial Networks, 2018.

Kabid Hassan Shibly, Md Delwar Hossain, Hiroyuki Inoue, Yuzo Taenaka, and Youki Kadobayashi.
Towards autonomous driving model resistant to adversarial attack. Applied Artificial Intelligence,
37(1):2193461, 2023.

11

https://arxiv.org/abs/1902.02918

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jure Sokolic, Raja Giryes, Guillermo Sapiro, and Miguel R. D. Rodrigues. Robust Large Margin
Deep Neural Networks, May 2016.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks, 2014.

Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, and
Luca Daniel. Evaluating the robustness of neural networks: An extreme value theory approach.
arXiv preprint arXiv:1801.10578, 2018.

Chenxiao Zhao, P. Thomas Fletcher, Mixue Yu, Yaxin Peng, Guixu Zhang, and Chaomin Shen. The
adversarial attack and detection under the fisher information metric, 2019.

Shuai Zhou, Chi Liu, Dayong Ye, Tianqing Zhu, Wanlei Zhou, and Philip S Yu. Adversarial attacks
and defenses in deep learning: From a perspective of cybersecurity. ACM Computing Surveys, 55
(8):1–39, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

We know that ∥F (x)∥2 = λmax(F (x)), but for the convenience of description, we use both the
spectral norm ∥F (x)∥2 and the maximum eigenvalue λmax(F (x)) in the text.

A BROADER IMPACTS

This work advances the theoretical understanding and practical evaluation of model robustness and
will have impacts in multiple areas:

• Safety-critical applications: By providing a principled metric to quantify robustness that
does not rely on adversarial attacks, our framework can help design more reliable models
for high-risk applications (e.g., autonomous systems, healthcare, and finance). Improved
robustness metrics may help reduce the risk of catastrophic failures caused by adversarial
perturbations or distribution shifts.

• Transparency and interpretability: Our theoretical connections between Fisher informa-
tion, Jacobian variance, and robustness provide interpretable insights into model behavior.
This is in line with the growing demand for explainable AI, especially in regulated industries
where understanding model vulnerabilities is critical for certification and deployment.

• Model selection and benchmarking: The proposed metric 1/λmax(F (x)) provides an
interpretable tool for comparing different architectures (e.g., VGG vs. Transformer) and
selecting models with inherent robustness, reducing reliance on empirical adversarial testing.

• Efficiency of robustness evaluation: The scalable algorithms (e.g., power iteration,
Hutchinson approximation) enable efficient robustness evaluation of large models, reducing
the computational barrier compared to attack-based evaluation. This can make robustness
testing more accessible to resource-constrained researchers and practitioners.

By combining theoretical guarantees with practical tools, this work contributes to the broader goal of
building trustworthy AI systems. We hope that our framework will inspire further research to unify
geometric and probabilistic perspectives on robustness analysis.

B CONNECTIONS AND DIFFERENCES WITH OTHER WORK

B.1 SPECTRAL NORM OF FIM AND LIPCHITZ CONSTANT

We define the Lipschitz constant L(x) in the neighborhood B2(x, r) = {y|∥y − x∥2 < r} of point
x: Suppose function f : Rn → Rm, for a neighborhood of point x ∈ Rn, if there exists a constant
L(x) > 0 such that y, z ∈ B(x, r), then

∥f(y)− f(z)∥ ≤ L(x)∥y − z∥. (20)

For a differentiable function f , according to the mean value theorem, for any y, z ∈ B2(x, r), there
exists ξ on the line connecting y and z such that

f(y)− f(z) = ∇f(ξ)T (y − z). (21)

According to the properties of the spectral norm, we have

∥f(y)− f(z)∥2 ≤ ∥∇f(ξ)∥2∥y − z∥2 ≤ sup
ξ∈B2(x,r)

∥∇f(ξ)∥2∥y − z∥2. (22)

By the definition of local Lipschitz continuity, the Lipschitz constant L(x) at a point x is

L(x) = sup
ξ∈B2(x,r)

∥∇f(ξ)∥2. (23)

Let Jf (x) = ∇f(x), then by Eqn. (69), we have

F (x) ≤ ∥B∥2∥Jf (x)∥22 ≤ ∥B∥2

(
sup

ξ∈B2(x,r)

∥∇f(ξ)∥2

)2

= ∥B∥2L(x)2. (24)

where B = diag(p)− ppT and L(x) is the the Lipschitz constant.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B.2 SPECTRAL NORM OF FIM AND CLEVER SCORE

In the CLEVER algorithm Weng et al. (2018) (Algorithm 1), we assume that the classifier output is
f(x), then the probability output p(y|x) = softmax(f(x)). Let the true category of sample x be j,
and the category predicted by the model be c, then we can define the function

g(x) = fc(x)− fj(x). (25)

Next we calculate the posterior probability of the class y

p(y|x) = efy(x)∑
i e

fi(x)
=

efy(x)−maxk fk(x)∑
i e

fi(x)−maxk fk(x)
=

efy(x)−fc(x)∑
i e

fi(x)−fc(x)
. (26)

When fc(x) ≫ fi(x), i ̸= c, then we have
∑

i e
fi(x)−fc(x) ≈ 1, we can approximately calculate

p(j|x)
p(j|x) ≈ efj(x)−fc(x) = e−g(x), p(c|x) ≈ 1. (27)

So the cross entropy loss at a point x is − log p(j|x) ≈ g(x). Therefore, the CLEVER algorithm
approximates the gradient norm of the cross entropy loss function with respect to the input ∥∇g(x)∥,
which is the CLEVER score of the point x.

In practice, the CLEVER algorithm calculates the Lipchitz constant L(x) of the cross entropy loss at
point x according to Eqn. (23) by sampling points in the neighborhood Np(x) (defined with p-norm)
of x (1/q + 1/q = 1)

L(x) = max
z∈Np(x)

∥∇g(z)∥q ≈ ∥∇g(x)∥q, (28)

Usually we take p = q = 2.

When the loss function optimizes the model, it will cause the posterior probability of the true label
p(j|x) to be as large as possible, so p(j|x) will be equal to p(c|x) or its value is second only to
p(c|x), so we only consider the two terms in FIM (notice that p(j|x) ≈ e−g(x) and p(c|x) ≈ 1)

F (x) =

K∑
y=1

p(y|x)
[
∇ log p(y|x)∇ log p(y|x)T

]
≈ p(j|x)∇ log p(j|x)∇ log p(j|x)T + p(c|x)∇ log p(c|x)∇ log p(c|x)T

≈ e−g(x)∇g(x)∇g(x)T . (29)

At this time, the principal eigenvector of F (x) is ∇g(x), and the maximum eigenvalue is the Rayleigh
Quotient

∥F (x)∥2 = λmax(F (x)) ≈ e−g(x)∇gT (x)∇g(x)∇g(x)T∇g(x)

∇g(x)T∇g(x)
= e−g(x)∥∇g(x)∥22, (30)

where ∥∇g(x)∥2 is an approximate estimate of the CLEVER score.

B.3 SPECTRAL NORM OF FIM AND RANDOMIZED SMOOTHING ALGORITHM

The randomized smoothing algorithm Cohen et al. (2019) explicitly assumes that the perturbation
noise follows a Gaussian distribution ϵ ∼ N(0, σ2I) (see Theorem 1)

p(ϵ) ∝ exp

{
−∥ϵ∥22

σ2

}
(31)

This assumption allows the authors to devise adversarial attacks against the l2 norm. Furthermore,
we can establish a connection between l∞-norm attacks and the multivariate uniform distribution,
and between l1-norm attacks and the Laplace distribution.

Thus, the use of randomized smoothing relies on the assumption of the perturbed probability
distribution (Gaussian distribution) , which generally works better against adversarial attacks on
the l2-norm.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

We now present the relationship between random smoothing and our FIM-based metric ∥F (x)∥2 : In
the random smoothing method, the certification radius is defined as follows (Φ−1 is the inverse CDF
of the standard normal distribution)

r =
σ

2
[Φ−1(pA)− Φ−1(pB)], pA = P (f(x+ δ) = cA), pB = max

c ̸=cA
P (f(x+ δ) = c) (32)

We present the proof as follows:

Probability Difference : Let pA = p(y|x) and pB = p(y|x+ δ), according to Pinsker’s inequality,
we have

pA − pB ≤
√

1

2
DKL(pA||pB) (33)

Since the sqrt function is a concave function, using the Jensen inequality we have

Eδ(pA − pB) ≤ Eδ

√
1

2
DKL(pA||pB) ≤

√
1

2
EδDKL(pA||pB). (34)

For Gaussian perturbations δ ∼ N(0, σ2I), we have approximately

Eδ[DKL(pA||pB)] ≈
σ2

2
∥F (x)∥2. (35)

Taylor Expansion : By Taylor expansion of the inverse CDF at point p = 0.5, we have

Φ−1(pA)− Φ−1(pB) ≈
√
2π(pA − pB). (36)

Finally we have

Eδ[r] =
σ

2
E[Φ−1(pA)− Φ−1(pB)] ≈

√
2πσ

2
E[pA − pB] ≤

√
2πσ2

4

√
∥F (x)∥2 (37)

B.4 SUMMARY ON THE RELATIONSHIP BETWEEN THE THREE METRICS

All three metrics are directly related to the gradient norm, which is used to measure the local
sensitivity and stability of the model. Specifically, we list the differences between our method and
the norm constraint-based method and the random smoothing method as follows

Table 8: The differences between our metric and other types of metrics

Method Random Smoothing Norm Constraints Our ∥F (x)∥2
Starting Point Centrality of Probability Worst-case analysis Information Geometry
Theoretical guarantee Probabilistic Guarantee Deterministic Guarantee Expectation Sensitivity
Assumptions Gaussian distribution Maximizing the loss Any distribution

At the same time, the relationship between them is as follows:

• Spectral norm ∥F (x)∥2 of FIM and the Lipschitz constant L(x) of the model :

∥F (x)∥2 ≤ B(x)∥L(x)∥2. (38)

• Spectral norm ∥F (x)∥2 of FIM and the CLEVER score maxz∈Np(x) ∥∇g(z)∥2
(p(c|x) ≈ 1):

∥F (x)∥2 ≈ e−g(x)∥∇g(x)∥22. (39)

• The Lipschitz constant L(x) of the model and the CLEVER score The former is the
Lipschitz constant of the model f(x), while CLEVER is the Lipschitz constant of the
cross-entropy loss function.

• Certification radius r of the random smoothing and the spectral norm ∥F (x)∥2 of the
FIM : ∥F (x)∥2 limits the upper bound of the expectation of r

Eδ[r] ≤
√
2πσ2

4

√
∥F (x)∥2. (40)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C PROOF ON KL DIVERGENCE UNDER GENERAL DISCRETE DISTRIBUTION

Theorem 6 For any two class confidence distributions p(y|x) and p(y|x′), where x and x′ are the
inputs of the model and y is the class label of the model output, we have

KL(p(y|x), p(y|x′)) ≈ 1

2
(x′ − x)TF (x)(x′ − x) =

1

2
δTF (x)δ, (41)

where F (x) is the Fisher information matrix defined as follows

F (x) = Ep(y|x)[∇x log p(y|x)∇x log p(y|x)T]. (42)

For any two discrete probability distributions p(y|x) and p(y|x′), we have

KL(p(y|x), p(y|x′)) ≈ 1

2
(x′ − x)TF (x)(x′ − x), (43)

where
F (x) = Ep(y|x)[∇x log p(y|x)∇x log p(y|x)T]. (44)

First, we perform Taylor’s second-order expansion of the function log p(y|x′) at point x

log p(y|x′) ≈ log p(y|x) + (∇x log p(y|x))T (x′ − x)

+
1

2
(x′ − x)T∇2

x log p(y|x)(x′ − x) + o(∥x′ − x∥3), (45)

then substitute it into the KL divergence

KL(p(y|x)||p(y|x′)) =

K∑
i=1

p(yi|x)[log p(yi|x)− log p(yi|x′)]

to get

KL(p(y|x)||p(y|x′)) = −(x′ − x)T
K∑
i=1

p(yi|x)∇ log p(yi|x)

−1

2
(x′ − x)T

(
K∑
i=1

p(yi|x)∇2 log p(yi|x)

)
(x′ − x)

−o(∥x′ − x∥3), (46)

where o(∥x′ − x∥3) is the approximate error term.

For the first term above, we have

K∑
i=1

p(yi|x)∇ log p(yi|x) = ∇
K∑
i=1

p(yi|x) = 0. (47)

For the second term above, we have

∇x log p(yi|x) = ∇xp(yi|x)/p(yi|x),

∇2
x log p(yi|x) =

p(yi|x)∇2
xp(yi|x)−∇xp(yi|x)∇xp(yi|x)T

p(yi|x)2

=
∇2

xp(yi|x)
p(yi|x)

−∇x log p(yi|x)∇x log p(yi|x)T . (48)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Further we get
K∑
i=1

p(yi|x)∇2
x log p(yi|x)

=

K∑
i=1

{∇2
xp(yi|x)− p(yi|x)[∇x log p(yi|x)∇x log p(yi|x)T]},

= ∇2
x

K∑
i=1

p(yi|x)− Ep(y|x)[∇x log p(y|x)∇x log p(y|x)T],

= −Ep(y|x)[∇x log p(y|x)∇x log p(y|x)T] = −F. (49)

Finally, we arrive at our conclusion.

D ANALYSIS OF KL DIVERGENCE APPROXIMATION ERROR

D.1 THEORETICAL ANALYSIS

We express the approximation error as third-order remainder R3(δ, x).

KL(p(y|x), p(y|x′)) =
1

2
δTF (x)δ +R3(δ, x), (50)

where δ = x′ − x. Assume there exists a constant M > 0 such that∣∣∣∣∂3KL(p(y|x)∥p(y|x+ δ))

∂δi∂δj∂δk

∣∣∣∣ ≤ M, ∀i, j, k, (51)

Then the upper bound of the remainder is

|R3(δ, x)| ≤
M

6

∑
i,j,k

|δiδjδk|. (52)

Below we use the perturbation l∞ norm and l2 norm to represent the upper bound of the approximation
error respectively.

l∞ upper bound : We have

|R3(δ, x)| ≤
M

6

∑
i,j,k

|δiδjδk| ≤
Md3

6
∥δ∥3∞. (53)

l2 upper bound : We have

|R3(δ, x)| ≤
M

6

∑
i,j,k

|δiδjδk| ≤
M

6

(∑
i

|δi|

)3

=
M

6
∥δ∥31 ≤ M

6

(√
d∥δ∥2

)3
=

Md3/2

6
∥δ∥32.

(54)
Then we can conclude that

|R3(δ, x)| ≤
Md3

6
∥δ∥3∞, |R3(δ, x)| ≤

Md3/2

6
∥δ∥32. (55)

Since we usually consider robustness on the entire dataset, we can replace ∥δ∥2 or ∥δ∥∞ in the upper
bound with its upper bound θ.

For the given dataset, we can replace ∥δ∥2 or ∥δ∥∞ in the above formula with its upper bound θ .

D.2 EXPERIMENTAL ESTIMATION

We randomly sample 500 samples on CIFAR10 using four classic models with CW adversarial
training, where ∥δ∥∞ ≤ θ, as shown in Table 1. Table 2 shows the results of ResNet18 on three
datasets.

The results in both tables show that the approximation error and the proportionality coefficient of
both are very small. Therefore, in practice, the approximation error can be ignored.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 9: Approximation error of multiple models on CIFAR10

Model R3(δ, x) ∥F (x)∥2 R3(δ,x)
∥F (x)∥2

θ

ViTB16 2.7e-5 0.61 4.4e-5 8/255
ResNet18 6.8e-4 0.77 8.8e-4 8/255
VGG16 5.8e-5 0.09 6.4e-4 8/255
DenseNet121 1.7e-3 2.18 7.7e-4 8/255

Table 10: Approximation error of multiple datasets on the ResNet18 model

Dataset R3(δ, x) ∥F (x)∥2 R3(δ,x)
∥F (x)∥2

θ

Tiny-Imagenet 1.7e-3 0.51 3.3e-3 4/255
MNIST 3.3e-5 0.01 3.3e-3 76/255

CIFAR10 6.8e-4 0.77 8.8e-4 8/255

E STATISTICAL SIGNIFICANCE OF FISHER INFORMATION MATRIX

Theorem 7 For a deep learning model whose last layer uses a softmax function to implement
classification tasks, where the input vector of softmax is f(x), the Fisher information matrix is

F (x) = var(J(x)), (56)

where J(x) is the gradient matrix (Jacobian matrix) of the vector f(x) with respect to the input x
and var represents the variance of the matrix random variable.

According to Theorem 1, the Fisher information matrix F measures the sensitivity of the model
output distribution p(y|x) to the input x. For classification tasks, F is defined as

F (x) = Ep(y|x)[∇x log p(y|x)∇x log p(y|x)T]. (57)

Next we need to estimate the maximum eigenvalue of the Fisher information matrix for some models.

For classification, we assume the model outputs k probabilities yi

yi = p(y = i|x) = efi(x)∑K
k=1 e

fk(x)
, (58)

then

log p(y = i|x) = fi(x)− log

K∑
k=1

efk(x). (59)

Its gradient with respect to the input x is (let fi = fi(x))

∇x log p(y = i|x) = ∇xfi −
K∑

k=1

(
K∑

k=1

efk

)−1

efi∇xfi

= ∇xfi −
K∑

k=1

p(y = k|x)∇xfk

=

K∑
k=1

(1k=i − pk)∇xfk, (60)

where pk = p(y = k|x) and 1i=k is the indicator function.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

We obtain the Fisher information matrix is
F (x) = Ep(y|x)[∇x log p(y|x)∇x log p(y|x)T]

=

K∑
k=1

pk[∇x log p(y = k|x)∇x log p(y = k|x)T]

=

K∑
k=1

pk

∑
j

(1k=j − pj)∇xfj

(∑
i

(1k=i − pi)∇xfi

)T


=

K∑
k=1

pk

∑
j

1k=j∇xfj − E[∇xf]

(∑
i

1k=i∇xfi − E[∇xf]

)T

=

K∑
k=1

pk
∑
j,i

1k=i1k=j∇xfi∇xf
T
j − E[∇xf]

K∑
k=1

pk
∑
i

1k=i∇xf
T
k

−
K∑

k=1

pk
∑
j

1k=j∇xfjE[∇xf
T] +

K∑
k=1

pkE[∇xf]E[∇xf
T]

=

K∑
k=1

pk∇xfk∇xf
T
k − E[∇xf]

K∑
k=1

pk∇xf
T
k

−
K∑

k=1

pk∇xfkE[∇xf]
T + E[∇xf]E[∇xf]

T

= E[∇xf∇xf
T]− E[∇xf]E[∇xf]

T

= var(J(x)). (61)

F GENERAL ANALYSIS OF MODEL ROBUSTNESS

Theorem 8 For any deep network-based classifier h : x → softmax(f(x)), where softmax is the
softmax function, the spectral norm ∥F (x)∥2 of its Fisher information matrix with respect with the
input x has the following upper bound

∥F (x)∥2 = λmax(F (x)) = max
∥v∥2=1

vTF (x)v ≤ 2max
k

pk(1− pk)∥J(x)∥22, (62)

where Jf (x) is the Jacobian matrix of the output f(x) ∈ RK with respect to the input x ∈ Rd.
Let B = diag(p)− ppT . When the principal eigenvector w1 of B is aligned with the principal left
singular vector of J(x), then there exists a principal right singular vector v = Jf (x)

Tw1/∥Jf (x)∥2
of J(x) such that ∥F (x)∥2 = 2maxk pk(1− pk)∥Jf (x)∥22.

To facilitate our estimation of the maximum eigenvalue of the Fisher information matrix, we rewrite
it as

F (x) =

K∑
k=1

pk[∇x log p(y = k|x)∇x log p(y = k|x)T]

=

K∑
k=1

pk

∑
j

(1k=j − pj)∇xfj

(∑
i

(1k=i − pi)∇xfi

)T


=

K∑
k=1

pk
∑
j,i

(1k=j − pj)(1k=i − pi)∇xfj∇xf
T
i

=

K∑
j,i=1

(
K∑

k=1

pk(1k=j − pj)(1k=i − pi)

)
∇xfj∇xf

T
i

= Jf (x)
TBJf (x) (63)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

where Bij =
∑K

k=1 pk(1k=j − pj)(1k=i − pi) and Jf (x) is the Jacobian matrix of the K outputs
with respect to the d inputs.

Now let’s discuss Bij =
∑K

k=1 pk(1k=j − pj)(1k=i − pi):

1) When i = j, we have

K∑
k=1

pk(1k=j − pj)(1k=i − pi) =

K∑
k=1

pk(1k=i − pi)
2

=

K∑
k=1

pk(1
2
k=i − 21k=ipi + p2i)

= pi − 2p2i + p2i
= pi(1− pi) (64)

2) When i ̸= j, then

K∑
k=1

pk(1k=j − pj)(1k=i − pi) =

K∑
k=1

(pk1k=j1k=i − pk1k=jpi

−pk1k=ipj + pkpjpi)

= 0− pjpi − pipj + pjpi

= −pipj (65)

Finally, we get a matrix B with dimension K ×K

B = diag(p)− ppT . (66)

We use the Gershgorin disk theorem Golub & Loan (2013) to estimate the range of eigenvalues.
For B, the center of the i-th Gershgorin disk is Bii = pi(1 − pi), and the radius is

∑
j ̸=i |Bij | =∑

j ̸=i pipj = pi(1− pi). Therefore, each eigenvalue satisfies

|λ− pi(1− pi)| ≤ pi(1− pi), (67)

which means λ ∈ [0, 2pi(1− pi)]. Then we have

∥B∥2 ≤ 2pi(1− pi). (68)

Finally, we estimate the largest eigenvalue of the matrix F (x) = Jf (x)
TBJf (x), which is equal to

the Rayleigh quotient

λmax(F (x)) = max
∥v∥=1

(Jf (x)v)
TB(Jf (x)v)

≤ ∥Jf (x)∥2∥v∥2∥B∥2∥Jf (x)∥2∥v∥2
= ∥B∥2∥Jf (x)∥22. (69)

Assume that the model output is a classification probability vector p = [p1, p2, · · · , pK]T , and let Y
be a random class label (one-hot vector), then we have

E[Y] = p, E[Y Y T] = diag(p). (70)

So we have
B = cov(Y) = E[Y Y T]− E[Y]E[Y]T . (71)

Next we discuss the condition that there exists v(∥v∥2 = 1) such that λmax(F (x)) = ∥B∥2∥Jf (x)∥22.
Let y = Jf (x)v, where ∥v∥2 = 1, then we have

λmax(F (x)) = max
∥v∥=1

yTBy. (72)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

When y∗ = cw1(c > 0) = Jf (x)v, where w1(∥w1∥2 = 1) is the main eigenvector of B, then we
have

λmax(F (x)) = ∥y∗∥22∥B∥2 = c2∥B∥2. (73)
We look for the maximum value of c and get λmax(F (x)). Furthermore, we let w1 = 1

cJf (x)v, then

wT
1 w1 =

1

c2
vTJf (x)

TJf (x)v = 1. (74)

So we have
c =

√
vTJf (x)TJf (x)v (75)

We immediately get the optimal value c∗ of c to be

c∗ = max
∥v∥2=1

√
vTJf (x)TJf (x)v = ∥Jf (x)∥2, (76)

where v is the right singular vector corresponding to the largest singular value of Jf (x). Since
∥Jf (x)∥2wT

1 w1 = wT
1 Jf (x)v = ∥Jf (x)∥2, so when w1 and v are the left and right singular vectors

corresponding to the maximum singular value of Jf (x), we have

λmax(F (x)) = ∥B∥2∥Jf (x)∥22. (77)

When the principal eigenvector w1 of B is the principal left singular vector of Jf (x), then

∥Jf (x)∥2w1 = Jf (x)v → ∥Jf (x)∥2Jf (x)Tw1 = Jf (x)
TJf (x)v = ∥Jf (x)∥22v

→ v = Jf (x)
Tw1/∥Jf (x)∥2. (78)

So there exists Jf (x)
Tw1/∥Jf (x)∥2 such that the equation holds. However, w1 is the principal

eigenvector of ∥B∥2, and is usually unlikely to be the principal left singular vector of Jf (x).

G ∥J∥2 ESTIMATION OF BASIC MODULES

G.1 CONVOLUTION LAYER

Theorem: For convolution operations on multi-channel images, the spectral norm ∥JΨ∥2 of the
Jacobian matrix of the convolution operator Ψ is approximately the spectral norm ∥W∥2 of the
convolution kernel W , i.e. ∥JΨ∥2 ≈ ∥W∥2.

1) When the convolution operator’s padding is ’SAME’ and circular padding is used, where the stride
s is 1, so the input and output of the convolution operator have the same size. For the convolutional
mapping Ψ : RH×W×Cin → RH×W×Cout :

Ψh′,w′,c′ =

k−1∑
i=0

k−1∑
j=0

Cin∑
c=1

Wi,j,c,c′Xh′+i,w′+j,c. (79)

We divide JΨ into blocks according to the output channel c′ and the input channel c, then each block
[JΨ]c′,c ∈ RHW×HW can be a circulant matrix with circulant filled.

Under the loop filling condition, the Jacobian matrix can be expressed as a double loop structure

J circ
Ψ =

k−1∑
i=0

k−1∑
j=0

Πi
H ⊗Πj

W ⊗Wi,j , (80)

where ⊗ denotes the Kronecker product, Wi,j ∈ Cout × Cin is a tensor slice of the matrix W , ΠH

denotes the circulant shift matrix of H ×H
0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 . (81)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Let ω1 = e−2πi/H and ω2 = e−2πi/W , where i is the imaginary unit, we diagonalize the cyclic shift
matrices separately

ΠH = FHΛHF ∗
H , ΠW = FWΛWF ∗

W , (82)

where ΛH = diag(1, ω1, · · · , ωH−1
1) and ΛW = diag(1, ω2, · · · , ωW−1

2). We substitute them into
Eqn. (80) and obtain

J circ
Ψ =

k−1∑
i=0

k−1∑
j=0

(FHΛHF ∗
H)⊗ (FWΛWF ∗

W)⊗Wi,j ,

=

k−1∑
i=0

k−1∑
j=0

(FHΛHF ∗
H)i ⊗ (FWΛWF ∗

W)j ⊗ (IoutWi,jIin)

=

k−1∑
i=0

k−1∑
j=0

(FHΛi
HF ∗

H)⊗ (FWΛj
WF ∗

W)⊗ (IoutWi,jIin)

=
k−1∑
i=0

k−1∑
j=0

(FH ⊗ FW ⊗ Iout)(Λ
i
H ⊗ Λj

W ⊗Wi,j)(FH ⊗ FW ⊗ Iin)

= (FH ⊗ FW ⊗ Iout)

k−1∑
i=0

k−1∑
j=0

Λi
H ⊗ Λj

W ⊗Wi,j

 (FH ⊗ FW ⊗ Iin),

= (FH ⊗ FW ⊗ Iout)Ŵ (FH ⊗ FW ⊗ Iin), (83)

where Ŵ =
∑k−1

i=0

∑k−1
j=0 Λ

i
H ⊗ Λj

W ⊗Wi,j .

Notice that Λi
H ⊗ Λj

W = diag(µi,j
0,0, µ

i,j
0,1, · · · , µ

i,j
H−1,M−1), where µi,j

u,v = ωui
1 ωvj

2 . We simplify
Λi
H ⊗ Λj

W ⊗Wi,j into diagonal blocks to obtain

Ŵ =

k−1∑
i=0

k−1∑
j=0

blkdiag(µi,j
0,0Wi,j , µ

i,j
0,1Wi,j , · · · , µi,j

H−1,W−1Wi,j)

= blkdiag(Ŵ0,0, Ŵ0,1, · · · , ŴH−1,W−1), (84)

where Ŵp,q is the two-dimensional Discrete Fourier Transform (DFT) of the convolution kernel W
at frequency (p, q)

Ŵp,q =

k−1∑
i=0

k−1∑
j=0

µi,j
p,qWi,j . (85)

Therefore we have

∥JΨ∥2 = ∥J circ
Ψ ∥2 = max

p,q
σmax(Ŵp,q) = max

p,q
∥Ŵp,q∥2 = ∥W∥2. (86)

2) When the convolution operator uses zero padding, W is a Toeplitz matrix (corresponding to
non-circular convolution). According to the asymptotic spectral theory of the Toeplitz matrix
(Grenander-Szegő theorem) Grenander & Szego (1958), when H,W ≫ k, the spectral norm of the
Toeplitz matrix W converges to the l∞ norm of its sign function (i.e., the Fourier transform of the
convolution kernel W)

lim
n→∞

∥W∥2 = ∥Ŵ∥∞ = max
u,v

∥Ŵu,v∥2 = ∥JΨ∥2. (87)

3) Assuming the stride s in the convolution operator is s ≥ 1 and the padding method is VALID (i.e.
no padding), the output size of the convolution operator is

H ′ =

⌊
H − k

s

⌋
+ 1 ≤ H, W ′ =

⌊
W − k

s

⌋
+ 1 ≤ W. (88)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

For any matrix A, without loss of generality, we delete the last k rows of A to obtain B

A =


aT1
aT2
...
aTn

 , B =


aT1
aT2
...

aTn−k

 , (89)

so we have

∥A∥22 = max
∥v∥2=1

vTATAx =

n∑
i=1

(aTi v)
2 ≥ max

∥v∥2=1
vTBTBx =

n−k∑
i=1

(aTi v)
2 = ∥B∥22. (90)

That is, the spectral norm of the submatrix is less than or equal to the spectral norm of the original
matrix, e.g. ∥B∥2 ≥ ∥A∥2.

Note that J can be regarded as a submatrix obtained by deleting some rows and columns from the
Jacobian matrix of the complete convolution (s = 1, padding= SAME), and the spectral norm of the
submatrix is smaller than the spectral norm of the original matrix, so there is

∥JΨ∥2 ≤ max
p,q

∥Ŵp,q∥2 = ∥W∥2. (91)

In summary, we can use ∥W∥2 to approximate the spectral norm of the Jacobian matrix of the
convolution operator,i.e. ∥JΨ∥2 ≈ ∥W∥2.

G.2 RELU LAYER

The ReLU function is defined as ReLU(x) = max(0, x), so its derivative is

d

dx
ReLU(x) =

{
1, x > 0

0, x ≤ 0.
(92)

For an input vector x ∈ Rn, the ReLU Jacobian matrix JReLU ∈ Rn×n is a diagonal matrix

JReLU = diag(1x>0). (93)

We immediately get
∥JReLU∥2 = 1. (94)

G.3 MAX POOLING LAYER

Considering the input tensor X ∈ RH×W×C and the stride of the max pooling layer is 2 and the
pooling layer size is 2× 2, the output Y ∈ R(H/2)×(W/2)×C is

Yi,j,c = max(X2i−1,2j−1,c, X2i−1,2j,c, X2i,2j−1,c, X2i,2j,c) (95)

Furthermore, the Jacobian matrix J ∈ R((H/2)(W/2)C)×(HWC) describes the gradient relationship of
the output Y to the input X

J(i,j,c),(k,l,m) =
∂Yi,j,c

∂Xk,l,m
(96)

Given Yi,j,c, if k, l, c = argmax(X2i−1,2j−1,c, X2i−1,2j,c, X2i,2j−1,c, X2i,2j,c), then Yi,j,c =

Xk,l,c, i.e. ∂Yi,j,c

∂Xk,l,c
= 1; otherwise, ∂Yi,j,c

∂Xk,l,c
= 0.

So each row has exactly one 1 (corresponding to the maximum value), and all the others are 0, so the
vectors in each row are orthogonal to each other, and we immediately get

JJT = I(H/2)(W/2)C (97)

and
∥J∥2 =

√
λmax(JTJ) =

√
λmax(JJT) = 1. (98)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

G.4 AVERAGE POOLING

Suppose we input a tensor X ∈ RH×W×C , where H is the height, W is the width, and C is the
number of channels. For two-dimensional average pooling, we use a pooling window such as k × k
to slide on the input with a certain step size, and calculate the average of all elements in each window
as the output.

To simplify the analysis, we assume that the input is a vector x ∈ Rn, and average pooling divides x
into m = n/k (k can divide n) windows of size k, then we have

yi =
1

k

ik∑
j=(i−1)k+1

xj , , i = 1, 2, · · · ,m. (99)

We calculate the partial derivative of yi with respect to xj and obtain

∂yi
∂xj

=

{
1/k, (i− 1)k + 1 ≤ j ≤ ik,

0, otherwise.
(100)

Further, we will write the Jacobian matrix of the average pooling into a block matrix form based on
the above results

J = blkdiag
(
1

k
1Tk ,

1

k
1Tk , · · · ,

1

k
1Tk

)
. (101)

We know that ∥J∥2 is the square root of the eigenvalue of JTJ , so we calculate JTJ

JTJ = blkdiag
(

1

k2
1k1

T
k ,

1

k2
1k1

T
k , · · · ,

1

k2
1k1

T
k

)
, (102)

where each diagonal block is a k× k matrix with all elements 1
k2 . The rank of the matrix 1

k2 is 1, and
its non-zero eigenvalues are

λmax

(
1

k2
1k1

T
k

)
=

1Tk
(

1
k2 1k1

T
k

)
1k

1Tk 1k
=

1

k
. (103)

That is, JTJ has an m-th eigenvalue 1
k and an n−m eigenvalue 0. Therefore, we have

∥J∥2 =
1√
k
. (104)

We generalize it to two-dimensional pooling, then the pooling window is k × k, so each element
corresponds to the average of k2 inputs, and we have similar conclusions

∥J∥2 =
1

k
, (105)

where the window size k is usually set to 2 in the construction of deep learning models.

G.5 BATCH NORMALIZATION (BN)

Given an input x ∈ RC (assuming each channel c is processed independently), the output y(c) of the
BN layer is

y(c) = γ(c) x(c) − µ(c)√
(σ(c))2 + ϵ

+ β(c), (106)

where the mean parameter µ(c), the offset parameter β(c), and the variance parameter σ(c) are all
constants during the inference stage.

For the convenience of analysis, we write the BN transformation in matrix form

y = D(x− u) + β, (107)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

where

D = diag

(
γ(1)√

(σ(1))2 + ϵ
, · · · , γ(C)√

(σ(C))2 + ϵ

)
. (108)

We immediately get

∥JBN∥2 =

∥∥∥∥∂y∂x
∥∥∥∥
2

= ∥D∥2 = max
c

|γ(c)|√
(σ(c))2 + ϵ

(109)

Usually if |γ| ≫ σ, there is a risk of gradient explosion, while |γ| ≪ σ has a risk of gradient
vanishing. Therefore, in practice, we usually approximately select γ ≈ σ or γ ≈

√
σ2 + ϵ, where ϵ is

a very small positive constant. In general, we have approximately

∥JBN∥2 = max
c

|γ(c)|√
(σ(c))2 + ϵ

≈ O(1). (110)

G.6 LAYER NORMALIZATION (LN)

The Layer normalization (LN) operation on the input x ∈ Rd is defined as (⊙ is the element-wise
multiplication)

y = γ ⊙ x− µ√
σ2 + ϵ

+ β, µ =
1

d

d∑
i=1

xi, σ2 =
1

d

d∑
i=1

(xi − µ)2, (111)

where γ, β ∈ Rd are learnable scale and offset parameters (ϵ is a small constant).

According to the chain rule, JLN = ∂y
∂x can be expressed as

JLN = diag(γ)
∂z

∂x
, z =

x− µ√
σ2 + ϵ

. (112)

Furthermore, we have
∂zi
∂xj

=
δij − 1/d√

σ2 + ϵ
− (xi − µ)(xj − µ)

d(σ2 + ϵ)3/2
, (113)

where δij is defined as

δij =

{
1, i = j,

0, i ̸= j.
(114)

That is

∂z

∂x
=

1√
σ2 + ϵ

(
I − 1

d
11T − (x− µ)(x− µ)T

d(σ2 + ϵ)

)
=

1√
σ2 + ϵ

(
I − 1

d
11T − (x− µ)(x− µ)T

dσ2
+

(x− µ)(x− µ)T

dσ2
− (x− µ)(x− µ)T

d(σ2 + ϵ)

)
=

1√
σ2 + ϵ

(
I − P +

(x− µ)(x− µ)T

dσ2
− (x− µ)(x− µ)T

d(σ2 + ϵ)

)
, (115)

where P = I − 1
d11

T − (x−µ)(x−µ)T

dσ2 .

Next we prove that the matrix P is a projection matrix. We can observe that

P = aaT + bbT , (116)

where a = 1√
d
1 and b = 1√

d
x−u
σ . We have

aTa = 1, aT b =
1

d

∑d
i=1 xi − dµ√

σ2
= 0, bT b =

1

d

∑d
i=1(xi − u)2

σ2
=

σ2

σ2
= 1. (117)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Then
P 2 = (aaT + bbT)(aaT + bbT) = aaT + bbT = P. (118)

According to the properties of the projection matrix P , we have I − P is also a projection matrix, so
the eigenvalue of I − P is either 1 or 0. That is

∥I − P∥2 = 1. (119)

According to the properties of the spectral norm, we have

∥JLN∥2 ≤ ∥diag(γ)∥2
∥∥∥∥∂z∂x

∥∥∥∥
2

=
1√

σ2 + ϵ
∥diag(γ)∥2

∥∥∥∥I − P +
(x− µ)(x− µ)T

dσ2
− (x− µ)(x− µ)T

d(σ2 + ϵ)

∥∥∥∥
2

≤ 1√
σ2 + ϵ

∥diag(γ)∥2
(
∥I − P∥2 +

∥∥∥∥ (x− µ)(x− µ)T

dσ2
− (x− µ)(x− µ)T

d(σ2 + ϵ)

∥∥∥∥
2

)
≤ 1√

σ2 + ϵ
∥diag(γ)∥2

(
1 +

ϵdσ2

dσ2(σ2 + ϵ)

)
=

1√
σ2 + ϵ

max
i

γ(i)

(
1 +

ϵ

σ2 + ϵ

)
. (120)

Usually we have ϵ ≪ σ2, and thus ϵ
ϵ+σ2 → 0. Finally we have

∥JLN∥2 ≤ max
i

|γ(i)|√
σ2 + ϵ

≈ O(1). (121)

G.7 SOFTMAX FUNCTION

The softmax function σ is defined as

σ(z)i =
ezi∑n
j=1 e

zj
, i = 1, 2, · · · , n. (122)

Its Jacobian matrix Jσ(z) is a n× n matrix, where

σ(z)ij =
∂σi

∂zj
= σi(δij − σj). (123)

Therefore, we can represent it in matrix form

Jσ = diag(σ(z))− σ(z)σ(z)T , (124)

which is a symmetric matrix.

We use the Gershgorin disk theorem Golub & Loan (2013) to estimate the range of eigenvalues.
For J , the center of the i-th Gershgorin disk is Jii = σi(1 − σi), and the radius is

∑
j ̸=i |Jij | =∑

j ̸=i σiσj = σi(1− σi). Therefore, each eigenvalue satisfies

|λ− σi(1− σi)| ≤ σi(1− σi), (125)

which means λ ∈ [0, 2σi(1− σi)]. Then we have

∥Jsoftmax∥2 ≤ 2σi(1− σi). (126)

When σi = 1/2, the upper bound 2σi(1− σi) takes the maximum value 1/2. That is, ∥J∥softmax ≤ 1
2 .

Note that when the dimension d of the vector is very high, then σk are approximately equal, and we
have

2σk(1− σk) ≈
2

d

(
1− 1

d

)
≈ 2

d
, (127)

which leads ∥Jσ∥2 ≤ 2
d .

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

G.8 BLOCK MATRIX

Assume that the block matrix M ∈ Rm×(n1+n2) is composed of two sub-matrices A ∈ Rm×n1 and
B ∈ Rm×n2 horizontally concatenated

M = [A B] , (128)

the spectral norm of a matrix M is its maximum singular value, defined as

∥M∥2 = max
∥x∥2=1

∥Mx∥2, (129)

where x ∈ Rn1+n2 , and defined as

x =

[
x1

x2

]
. (130)

So we have

∥Mx∥2 = ∥Ax1 +Bx2∥
≤ ∥A∥2∥x1∥2 + ∥B∥2∥x2∥2

≤
√

∥A∥22 + ∥B∥22
√
∥x1∥22 + ∥x2∥22

=
√

∥A∥22 + ∥B∥22. (131)

On the other hand, if we let x1 be the main right singular vector of A, we have

∥M∥2 = max
∥x∥2=1

∥Mx∥2 ≥
∥∥∥∥M [

x1

0

]∥∥∥∥
2

= ∥Ax1∥2 = ∥A∥2. (132)

Similarly, if we let x2 be the main right singular vector of matrix B, we have ∥M∥2 ≥ ∥B∥2.
Therefore

∥M∥2 ≥ max(∥A∥2, ∥B∥2). (133)

That is
max(∥A∥2, ∥B∥2) ≤ ∥M∥2 ≤

√
∥A∥22 + ∥B∥22 ≤

√
2max{∥A∥2, ∥B∥2}. (134)

Furthermore, we can generalize to a block matrix consisting of n matrices

max
i

(∥Ai∥2) ≤ ∥[A1 A2 · · · An]∥2 ≤

√√√√ n∑
i=1

∥Ai∥22 ≤
√
nmax

i
{∥Ai∥2}. (135)

H ROBUSTNESS ANALYSIS OF CLASSICAL DEEP LEARNING NETWORKS

Since the components ReLU, Max Pooling, Average Pooling, BN and LN usually have a constant
spectral norm upper bound O(1), for the convenience of discussion, we mainly focus on the spectral
norm upper bounds of convolutional layers, fully connected layers and concatenation layers.

H.1 VGGNET

VGGNet is mainly composed of consecutive convolutional layers and fully connected layers, each
of which is followed by ReLU activation and maximum pooling. Assuming that VGGNet has L
convolutional layers and M fully connected layers, we have

∥Jf∥2 ≤
L∏

i=1

∥Wi∥2 ·
M∏
j=1

∥Uj∥2, (136)

where Wi is the convolution kernel and Uj is the weight of the fully connected layer.

Since VGGNet is very deep and has no residual connections, the upper bound of ∥Jf∥2 will grow or
decay exponentially with depth (depending on the size of ∥Wi∥2). It is worth noting that VGG16 and
VGG19 contain 13 convolutional layers, 3 fully connected layers and 16 convolutional layers, 3 fully
connected layers, respectively.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

H.2 RESNET

The core innovation of ResNet is the residual connection, which is used to solve the gradient vanishing
problem of deep networks. It mainly includes the initial convolution layer, the maximum pooling
layer, the residual block and the global average pooling + fully connected layer. ResNet18 and
ResNet50 contain 8 residual blocks and 16 residual blocks, respectively.

Suppose a residual block is
fi(x) = x+ gi(x), (137)

where gi is the composite function of the convolutional layer. The Jacobian matrix of the function fi
is

Jfi = I + Jgi . (138)
Therefore, we have

∥Jfi∥2 ≤ ∥I∥2 + ∥Jgi∥2 = 1 + ∥Jgi∥2. (139)

Assuming that the function gi is a combination of convolution + ReLU + convolution 3, then

∥Jgi∥ ≤ ∥Wi,1∥2 · ∥Wi,2∥2. (140)

ResNet usually consists of an initial convolutional layer followed by multiple residual blocks, a global
average pooling layer and a fully connected layer. So we end up with (assuming ∥JBN∥2 ≤ 1)

∥Jresnet∥2 ≤ 1

2
∥Wcov∥2

L∏
l=1

(1 + ∥Wl,1∥2∥Wl,2∥2)∥U∥2, (141)

where Wcov and U are the weights of the initial convolutional layer and the fully connected layer,
respectively.

ResNet still grows with depth, but more modestly than VGGNet’s exponential product.

H.3 DENSENET

DenseNet121 contains 4 dense blocks, a total of 58 convolution layers, and DenseNet169 also
contains 4 dense blocks, but is deeper than DenseNet121 and contains 82 convolution layers.

In dense blocks, each layer is the concatenation of the outputs of all previous layers. Suppose the
output of the l-th layer is

Xl = Hl(concat(X0, X1, · · · , Xl−1)) (142)

According to the properties of the Jacobian matrix, we have (X0 is the input of the network)

∥JL∥2 =

∥∥∥∥∂XL

∂X0

∥∥∥∥
2

=

∥∥∥∥ ∂HL

∂cat(X0, X1, · · · , XL−1)

∂cat(X0, X1, · · · , XL−1)

∂X0

∥∥∥∥
2

≤
∥∥∥∥∂(cov · ReLU · BN)

∂cat

∥∥∥∥
2

∥∥∥∥∥∥∥
 I

J1
· · ·

JL−1


∥∥∥∥∥∥∥
2

, Eqn.(135)

≤ ∥WL∥2

√√√√1 +

L−1∑
l=1

∥Jl∥22

≤ ∥WL∥2(1 +
L−1∑
l=1

∥Jl∥2)

= ∥WL∥2SL−1, (143)

3The residual blocks of ResNet are basic block and bottleneck block, where the former contains 2 convolu-
tional layers, while the latter contains 3 convolutional layers.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

where SL−1 =
∑L−1

k=0 ∥Jk∥2 and J0 = I .

We now use mathematical induction to prove

SL ≤
L∏

l=1

(1 + ∥Wl∥2). (144)

When L = 1, we have
S1 = 1 + ∥J1∥2 ≤ 1 + ∥W1∥2. (145)

Furthermore, we assume that the conclusion holds when k = l, that is Sl−1 ≤
∏l−1

k=1(1 + ∥Wk∥2).
Then using the conclusion Jl ≤ ∥Wl∥2Sl−1 from Eqn. (143), we immediately have

Sl = Sl−1 + ∥Jl∥2
≤ Sl−1 + ∥Wl∥2Sl−1

= Sl−1(1 + ∥Wl∥2)

≤
l−1∏
k=1

(1 + ∥Wk∥2)(1 + ∥Wl∥2)

=

l∏
k=1

(1 + ∥Wk∥2). (146)

So, we get the upper bound of ∥JL∥2 as

∥JL∥2 ≤ ∥WL∥2
L−1∏
k=1

(1 + ∥Wk∥2). (147)

H.4 TRANSFORMER

Vision Transformer (ViT) is a vision model based on the Transformer architecture, which divides
images into fixed-size patches and performs global modeling through multi-head attention (MHA).
ViT-B-16 is the basic version, using a 16 × 16 patch size. ViT-B-16 contains L = 12 layers of
Transformer Encoder. Next we discuss the spectral norm of the Jacobian matrix of the Encoder
model.

The input sequence X = (x1, x2, · · · , xn) is transformed by the embedding layer and positional
encoding to

H(0) = Embed(X) + PositionalEncoding, (148)

where H(0) ∈ Rn×d and d is the model dimension.

The encoder is composed of L identical layers stacked together, each layer contains:

• Multi-Head Attention (MHA)

MHA(H) = Concat(head1, · · · , headh)W
O. (149)

Each attention head headi = σ
(

QiK
T
i√

dk

)
Vi, where Qi = HWQ

i , Ki = HWK
i , Vi =

HWV
i and WQ,WK ,WV ∈ Rd×dk .

• Feed-Forward Network (FFN)

FFN(H) = ReLU(HW1 + 1bT1)W2 + 1bT2 , (150)

• Residual Connection and Layer Normalization

H(l) = LN(H(l−1) + MHA(H(l−1))) (151)

H(l) = LN(H(l) + FFN(H(l))). (152)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Given an input H ∈ Rn×d, where n is the sequence length and d is the feature dimension, Self-
Attention will be represented as follows

Q = HWQ, K = HWK , V = HWV ,

S =
QKT

√
dk

, A = σ(S), Attention(Q,K, V) = AV, (153)

where WQ,WK ,WV ∈ Rd×dk are the learnable weight matrices, A ∈ Rn×n is the row-normalized
attention weight matrix, and Attention(Q,K, V) ∈ Rn×dk is the output of Self-Attention.

We first calculate the gradient with respect to the value H from V∥∥∥∥∂Attention
∂H

∥∥∥∥
2

≤
∥∥∥∥∂Attention

∂V

∥∥∥∥
2

∥∥∥∥ ∂V∂H
∥∥∥∥
2

= ∥A∥2∥WV ∥2. (154)

Note that A ∈ Rm×n is a row-normalized matrix, and all elements of A are positive. Therefore,
according to the Gerschgorin disk theorem, we have that any eigenvalue of the matrix A is located in
a Gerschgorin disk

|λ−Aii| ≤
∑
j ̸=i

|Aij |, i = 1, 2, · · · ,m. (155)

That is, −1 + Aii ≤ λ ≤ 1. So we immediately get ∥A∥2 ≤ 1. At the same time, we observe that
A1 = 1, then 1 is an eigenvalue of A, and thus ∥A∥2 = 1.

Next we calculate the gradient of Attention with respect to H from the attention weight A∥∥∥∥∂Attention
∂H

∥∥∥∥
2

=

∥∥∥∥∂Attention
∂A

∂σ

∂S

∂S

∂H

∥∥∥∥
2

≤ ∥V ∥2 ·
1

n
·
∥∥∥∥ 1√

dk

(
∂Q

∂H
KT +Q

∂KT

∂H

)∥∥∥∥
2

≤ 2

n
√
dk

∥WV ∥2∥WQ∥2∥WK∥2∥H∥22. (156)

The input H is normalized, so ∥H∥2 is bounded. In general, n and dk are very large, then we have

∥Jattn∥2 ≤ ∥WV ∥2 +
2

n

∥WV ∥2∥WQ∥2∥WK∥2∥H∥22√
dk

≈ ∥WV ∥2. (157)

According to the estimation of the spectral norm of the block matrix (as shown in Eqn. (135)), we
have (h = 8)

∥JMHA∥2 ≤
√
hmax

i
∥WV

i ∥2∥WO∥2. (158)

According to the properties of the spectral norm, we immediately have

∥JFFN∥2 =

∥∥∥∥∂FFN
∂H

∥∥∥∥
2

≤ ∥W2∥2∥JReLU∥2∥W1∥2 = ∥W1∥2∥W2∥2. (159)

Note that when we use a transformer for classification, we do not use the decoding layer. Combining
our previous analysis and conclusions, we have

∥Jtransformer∥2 ≤
L∏

l=1

(1 +
√
hmax

i
∥WV

i ∥2∥WO∥2 + ∥Wl1∥2∥Wl2∥2). (160)

I PROPERTIES OF HUTCHINSON’S ALGORITHM

I.1 CONVERGENCE OF HUTCHINSON’S ALGORITHM FOR SOLVING SPECTRAL NORM

Theorem 9 Let R(A, xi) =
xT
i Axi

xT
i xi

, given m independent random vectors x1, · · · , xm, when m →
∞, then λ̂max = maxmi=1 R(A, xi) will converge to λmax(A) with high probability. For any given δ

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

value, when

m ≥
log 1

δ

pϵ
, (161)

then
P (λ̂max ≥ λ(A)− ϵ) = 1− (1− pϵ)

m ≥ 1− δ, (162)
where pϵ = P (R(A, xi) ≥ λmax(A)− ϵ).

Defining Rayleigh entropy R(A, x) = xTAx
xT x

, then for a symmetric matrix A, we have

λmin(A) ≤ R(A, x) ≤ λmax(A), ∀x ̸= 0. (163)

Furthermore, we have λmax(A) = maxx ̸=0 R(A, x).

Coverage of random vectors Assume z ∼ N(0, In) is a standard Gaussian random variable, vmax

is the largest eigenvector (unit vector) of A, then z = xT vmax is also a Gaussian random variable.
We know that the probability of a continuous random variable at any single point is 0, so we have

P (z = 0) = P (xT vmax = 0) = 0. (164)

That is, P (xT vmax ̸= 0) = 1, so x can be decomposed into

x = (xT vmax)vmax + x⊥, x⊥⊥vmax. (165)

When x → vmax, that is, R(A, x) → λmax(A).

Concentration of Rayleigh Entropy Since R(A, x) is a continuous function and R(A, vmax) =
λmax(x), there exists a neighborhood Bδ(vmax) of vmax such that for any x

∥x− vmax∥ ≤ δ ⇒ R(A, x) ≥ λmax(A)− ϵ. (166)

It is worth noting that the probability that a Gaussian random variable x falls in the neighborhood is
positive

P (∥x− vmax∥ < δ) > 0. (167)
So we have

P (R(A, x) ≥ λmax(A)− ϵ) ≥ P (∥x− vmax∥ < δ) > 0. (168)

Convergence of the maximum value We take m independent random variables x1, · · · , xm and
define

λ̂ =
m

max
i=1

R(A, xi). (169)

Since P (R(A, xi) ≥ λmax(A)− ϵ) = pϵ > 0, then

P (R(A, xi) ≤ λmax(A)− ϵ) = 1− pϵ, i = 1, 2, · · · ,m. (170)

So we obtain

P (λ̂max ≤ λ(A)− ϵ) = P
(

m
max
i=1

R(A, xi) ≤ λ(A)− ϵ
)
= (1− pϵ)

m. (171)

When m → ∞, then (1− pϵ)
m → 0. In other words, there is

P (λ̂max ≥ λ(A)− ϵ) = 1− (1− pϵ)
m → 1. (172)

High probability convergence Now, given δ ∈ (0, 1), we ask for the probability

P (λ̂max ≥ λ(A)− ϵ) = 1− (1− pϵ)
m ≥ 1− δ

⇒ (1− pϵ)
m ≤ δ

⇒
(

1

1− pϵ

)m

≥ 1

δ

⇒ m log

(
1

1− pϵ

)
≥ log

(
1

δ

)
⇒ m ≥

log 1
δ

− log(1− pϵ)
(173)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Since − log(1 − pϵ) is a convex function of pϵ, according to the convex function f(x) satisfying
f(x) ≥ f(0) + f ′(0)x, we know that

− log(1− pϵ) ≥ pϵ. (174)

So when

m ≥
log 1

δ

pϵ
≥

log 1
δ

− log(1− pϵ)
, (175)

we have
P (λ̂max ≥ λ(A)− ϵ) = 1− (1− pϵ)

m ≥ 1− δ. (176)

I.2 ALIGNMENT OF RANDOMLY SAMPLED VECTORS WITH THE PRINCIPAL EIGENVECTOR OF A
MATRIX

Theorem 10 Let u, v ∈ Rn, where u is a random unit vector and v is a fixed unit vector (such as the
principal eigenvector of a matrix), then the probability that u is aligned with v decays exponentially
with n. Specifically, we have

P (|uT v| ≥ t) ≤ 2 exp
(
−cnt2

)
, (177)

where c is a universal constant.

Let v ∈ Rn be a fixed unit vector corresponding to the principal eigenvector of the matrix A, and u
be a uniform random unit. Below we use uT v to denote the degree of alignment of u with v.

Expectation and variance of the inner product Since u is uniformly randomly distributed, its
direction distribution is symmetrical, that is, for any uv = c, there exists (−u)T v = −c. Therefore

E(uT v) = 0. (178)

Furthermore, we calculate the variance var(uT v) of uT v

var(uT v) = E[(uT v − E(uT v))2] = E[(uT v)2]

= E

(n∑
i=1

uivi

)2


=

n∑
i=1

v2i E[u2
i] +

∑
i ̸=j

vivjE[uiuj]. (179)

Note that since u is uniformly randomly distributed, all E[u2
i] are equal, as shown by

∑n
i=1 u

2
i = 1

n∑
i=1

E[u2
i] = 1 ⇒ E[u2

i] =
1

n
. (180)

Therefore, the variance of uT v is

var(uT v) =
1

n

n∑
i=1

v2i =
1

n
. (181)

Let the standard deviation σ =
√

var(uT v) = 1√
n

. For most probability distributions, such as the
Gaussian distribution, uT v will have a probability of 95% falling within the interval [−2σ,+2σ].
Therefore, |uT v| is usually no more than O(1√

n
).

Concentration Inequality Levy’s lemma Milman & Schechtman (1986) states that for a Lipschitz
function on a high-dimensional sphere, its values are highly concentrated near the desired value.
Specifically,

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Lemma 1 Levy’s Lemma: Assume that f : Sn−1 → R is an L-Lipschitz function (i.e., |f(u) −
f(u′)| ≤ L∥u− u′∥2), and u is uniformly distributed on the unit sphere Sn−1, then

P (|f(u)− E[f]| ≥ t) ≤ 2 exp

(
−cnt2

L2

)
, (182)

where c is a universal constant (e.g. c = 1/2).

We define the function f(u) = uT v, where v is a fixed unit vector, so we have

|f(u)− f(u′)| = |(u− u′)T v| ≤ ∥u− u′∥2∥v∥2 = ∥u− u′∥2. (183)

That is, the function f is an L-Lipschitz function, where L = 1. From the symmetry of f , we know
that E[f] = 0, so applying Levy’s Lemma we can get

P (|uT v| ≥ t) ≤ 2 exp
(
−cnt2

)
. (184)

It can be seen that the alignment of the random unit vector u with the fixed unit vector (the principal
eigenvector of the matrix) decays exponentially as d increases.

J OVERVIEW AND ANALYSIS OF ALGORITHMS

We innovatively apply three algorithms based on the low-rank structure of F (x). We make full use of
the associative property of matrix multiplication and the property of the spectral norm ∥AAT ∥ =
∥ATA∥ in our algorithm to indirectly estimate B(x) = Λ1/2QTQΛ1/2 rather than F (x) = QΛQT .
In the power iteration algorithms, when computing bt+1 = F (x)bt, we compute (Q(Λ(QT bt))
instead of QΛQT bt. Computing according to (Q(Λ(QT bt)) has lower space complexity. Note that
the indirect estimation makes the approximation error of the Hutchinson algorithm smaller.

The following table compares the space complexity and time complexity of direct and indirect
estimation of F (x) (d ≫ K)

Table 11: Time and space complexity analysis of indirect estimation of ∥F∥2

Indirect Estimation Space complexity Time complexity
Eigendecomposition O(dK) O(dK2 +K3)
Power Iteration O(dK) O(TdK)
Hutchinson Approximation O(dK) O(dK)

Table 12: Time and space complexity Analysis of direct estimation of ∥F∥2

Direct Estimation Space complexity Time complexity
Eigendecomposition O(d2) O(Kd2 + d3)
Power Iteration O(d2) O(TdK)
Hutchinson Approximation O(dK) O(dK)

Overall, our innovative application of the three algorithms generally significantly reduces the time
and space complexity of the algorithms, making our robustness metrics more feasible in large-scale
practical applications.

K THEORETICAL VERIFICATION EXPERIMENT

We use two common and popular datasets for image classification: CIFAR10 Krizhevsky (2009) and
MNIST LeCun et al. (1998). CIFAR10 contains 10 categories and a total of 60,000 color images of
size 32 × 32. MNIST is a handwritten digit image dataset containing 60,000 training images and
10,000 test images, each sample size is 28 × 28 pixels. Our programs are all run on a server equipped
with a GeForce RTX 3090 with 24G video memory. We select 4 classic base models including
DenseNet121, VGG16, ResNet18, ViT-B-16 to study our proposed robustness metric based on the
spectral norm.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Algorithm 1 Power Iteration for the Principal Eigenvalue

1: Input : Q and Λ
2: Initialize j = argmaxk p(yk|x), b0 = ∇x log p(yj |x) ∈ Rd

3: λprev = p(yj |x) and b0 = b0/∥b0∥
4: for t = 0, 1, 2, · · · , T do
5: bt+1 = Q(Λ(QT bt))
6: λt = bTt bt+1

7: if (∥λt − λprev∥)/∥λt∥2 < ϵ then
8: break
9: end if

10: λprev = λt

11: bt+1 = bt+1

∥bt+1∥
12: end for
13: return λt

Algorithm 2 Hutchinson Algorithm for the Principal Eigenvalue

1: Input : Q and Λ
2: Γ = Λ1/2

3: for i = 1, 2, · · · ,M do
4: Generate a random vector z where zi ∼ N(0, 1)
5: y = QΓz

6: λi =
yT y
zT z

7: end for
8: return maxi λi

K.1 ANALYSIS OF SPECTRAL ROBUSTNESS MEASURE

FIM and variance of Jacobian matrix To verify the theorem F (x) = var(J(x)), we estimate
the variance of J(x) by sampling J(x) to verify its correctness. We design a toy model consisting
of a simple single-layer convolution layer + fully connected layer + softmax layer. By generating
random inputs of different batch sizes, we calculate the estimated variance σ̂2(x) of F (x) and J(x)

respectively, and finally estimate the approximate error of ∥F (x)−σ̂2(x)∥F

∥F (x)∥F
through relative error. The

results in Table 13 conform to the law of large numbers: as the number of samples increases, the
estimated value of the random variable approaches its true value.

Table 13: Error between FIM and variance of Jacobian matrix vs sampling size

#Size 32 64 128 256 512 1024
Error 1.8552 1.5554 1.3644 1.2530 1.1921 1.1600

Model robustness and number of model layers
Through model analysis, we know that when the model
components are the same, the model robustness Rspec
is inversely proportional to the number L of layers of
the model components (e.g. O(1/L)). Resnet18 and
Resnet34 have the same components (Basic Block), as
shown in Table 14, when the number of layers of the
model increases, the robustness metric of the model
decreases.

Table 14: Comparison of robustness
measures for models with the same com-
ponents

Rspec ResNet18 ResNet34
CIFAR10 9.610 3.162
MNIST 1.285 0.763

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Analysis on the metric Rspec From the results in Ta-
ble 16, we can see that ViT has the highest robustness
metric, while DenseNet has the worst robustness. The
performance of the robustness metric on the CIFAR10
dataset is consistent with our theoretical results, while
in the results on MNIST, VGG16 is more robust than
ResNet18. This may be because the gradient of VGG16
on simple MNIST images is smoother, making its spec-
tral norm smaller.

Table 15: Comparison of robustness
measures for multiple models

Dataset CIFAR10 MNIST
ViT-B-16 11.44 35.66
ResNet18 9.61 1.28
VGG16 1.04 5.07
DenseNet 1.40 0.06

Robustness metric Rspec and robustness metric based
on Lipschitz constant To analyze the relationship be-
tween Rspec and the classic robustness measure based
on the Lipschitz constant, we count the estimated value
1/∥F (x)∥2 and the Lipschitz constant on each sample
x in the data set, and then calculate the Pearson correla-
tion coefficient of the two sequences, as shown in the
table. This further verifies that there is a linear correla-
tion and consistency of evaluation between our measure
Rspec and Lipschitz constant robustness measure.

Table 16: Pearson and Spearman values
(in brackets) analysis between Rspec and
Lipschitz constant robustness measure

Dataset CIFAR10 MNIST
ViT-B-16 0.90 (0.95) 0.88 (0.88)
ResNet18 0.86 (0.90) 0.82 (0.84)
VGG16 0.85 (0.89) 0.80 (0.82)
DenseNet 0.84 (0.91) 0.80 (0.83)

K.2 SOLUTION ON SPECTRAL NORM OF FIM

Comparison of algorithm running times We propose to use three different types of algorithms to
solve the spectral norm of the FIM matrix to cope with models of different sizes.

We set the number of parameters to 1e5, the number
of iterations in the power iteration algorithm and
the number of samples in the Hutchinson algorithm
to 1000. Then, we randomly generate a Gaussian
distribution and run 10 times with the number of
categories to average the running time, and obtain
Table 17. From Table 17, we can see that when
the category (model output) scale is small, we can
directly resort to eigenvalue decomposition, which
is usually faster; when the category is of medium
size, power iteration may have an advantage; and
when the category scale is very large, the Hutchin-
son algorithm may be more efficient.

Table 17: Performance (Time) comparison of
algorithms vs classes (D: direct eigenvalue
decomposition, P: power iteration, and H:
Hutchinson algorithm)

#Classes(K) D (s) P (s) H (s)
10 0.0016 0.0136 0.2988
100 0.0070 0.0233 0.0265
1000 0.2649 0.1964 0.1378
10000 30.3127 1.3501 1.2813

Hutchinson’s convergence Theorem 4 shows that when the number of samplings M approaches
∞, λ̂max = maxmi=1 R(A, xi) will approach λmax(A) with high probability. Next we will verify this
conclusion through experiments.

We set the number of categories K = 10 and the
dimension of the parameters to 1e5, and then ran-
domly generate the Gaussian distribution matrix Q
and the diagonal matrix Λ. When the Hutchinson
random algorithm is run 10 times in parallel on
the GPU with different sampling times, the statis-
tical average approximation error 100 ∗ |λ̂max −
λmax|/λmax and average running time are shown in
the table. We can clearly see that when M increases,
the approximation error continues to decrease.

Table 18: Approximation Error of Hutchin-
son’s Algorithm

#Samples (M) Time (s) Error (%)
10 0.3100 35.66
100 0.0038 26.06
1000 0.0055 12.69
10000 0.0515 9.26

Comparison of Hutchinson’s algorithm for solving ∥QΛQT ∥2 and ∥Λ1/2QTQΛ1/2∥2 Theorem
5 tells us that the probability of aligning a random vector generated by the Hutchinson algorithm with
the true value λmax decays exponentially with the dimensional size n. The following experiment

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

shows why we choose to use Λ1/2QTQΛ1/2 as the input of the Hutchinson algorithm instead of
QΛQT , even though they theoretically have the same spectral norm.

In Hutchinson, we choose the dimension of the pa-
rameter as d = 10000 and the number of samplings
as 1000. We randomly generate Q and Λ that follow
a Gaussian distribution, select different numbers of
categories, and use Λ1/2QTQΛ1/2 and QΛQT as
the input of Hutchinson to run the Hutchinson algo-
rithm, as shown in Table 19. It can be seen that the
approximation error using Λ1/2QTQΛ1/2 as input
is related to the number of categories, while the ap-
proximation error using QΛQT as input is related
to the dimension of the parameter.

Table 19: Approximation error of
Hutchinson’s algorithm with QΛQT

and Λ1/2QTQΛ1/2 as input

#Classes(K) Λ1/2QTQΛ1/2 QΛQT

10 13.91 99.83
100 60.75 99.52
1000 73.85 97.19

However, the dimension of the parameters is constant, so we see that as the number of categories
increases, the approximation error (or probability of alignment) of Λ1/2QTQΛ1/2 as input decreases,
while the approximation error of QΛQT as input remains approximately the same.

Sampling in Hutchinson approximation algorithm Hutchinson has good theoretical properties
by generating Rademacher random variables, but in practice, sampling Gaussian random variables
has better convergence properties. The following experimental results (Table 20) show that Gaussian
random variables have lower approximation errors than Rademacher random variables.

We generate a matrix Q with dimensions
100000×10 that follows a Gaussian distribution
and a diagonal matrix Λ that follows a Gaussian
distribution, and then sample Gaussian random
variables and Rademacher random variables for
different times, and compare their approximation
errors as shown in Table 20. The results in Table
20 show that Gaussian sampling is much better
than Rademacher sampling.

Table 20: Approximation error (%) of Hutchin-
son algorithm under Gaussian sampling and
Rademacher sampling

#Samples (M) Normal Rademacher
10 32.13 56.66
100 26.51 61.86
1000 12.06 54.09
10000 9.68 59.04

K.3 VARIANCE OF ROBUSTNESS MEASURE ESTIMATE

According to the description and setting of the estimation measure above, CLEVER and PGD contain
a certain amount of randomness because they need to randomly sample data points. The estimates of
other metrics Rspec, CW, and Lipschitz constant are all deterministic metrics.

Below we use the results of the clean model Mclean on three data sets and four models as shown
in Tables 21 and 22. For each experiment, we sample 500 data points on the data set to count the
variance of 5 repeated experiments. From Tables 21 and 22, it can be seen that DenseNet121 has the
largest variance on the MNIST data set, and the variances of the others are very small.

Table 21: Variance of PGD measure

Dataset ViT B 16 ResNet18 VGG16 DenseNet121
CIFAR10 1.00±0.0000 1.00±0.0000 0.77±0.0006 0.99±0.0006
MNIST 0.89±0.0000 0.91±0.0000 0.01±0.0000 0.96±0.0013
Tiny-ImageNet 0.99±0.0000 0.99±0.0000 1.00±0.0000 1.00±0.0010

K.4 COMPARISON OF DIFFERENT TYPES OF DATA

Below we further give the results on CIFAR100, Medical Data (covid19-radiography-database from
Kaggle 4) and ImageNet in Tab. 23 and 24. Comparing the robustness metrics of the two models,

4https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Table 22: Variance of CLEVER Score

Dataset ViT B 16 ResNet18 VGG16 DenseNet121
CIFAR10 2.42±0.0005 5.09±0.0006 2.31±0.0004 6.11±0.0041
MNIST 2.82±0.0035 3.17±0.0007 0.40±0.0001 11.99±0.0105
Tiny-ImageNet 2.59±0.0003 2.39±0.0002 13.14±0.0021 4.46±0.0027

ViT B 16 and ResNet18, on the same dataset (Medical Data or CIFAR100), we can observe that our
metrics and most other metrics give consistent results: ResNet18 < ViT B 16.

Table 23: Comparison results of the ResNet18 and VIT B 16 models on Medical data

Model L(x) CLEVER CW PGD ∥F (x)∥2 Rspec
ResNet18 0.57 5.43 37.08 98.88 5.95 36.28
ViT B 16 0.29 2.10 20.25 98.73 2.11 375.44

Table 24: Comparison results of the ResNet18 and VIT B 16 models on CIFAR100

Model L(x) CLEVER CW PGD ∥F (x)∥2 Rspec
ResNet18 0.29 1.81 62.07 94.83 0.73 5.69
ViT B 16 0.23 1.21 65.22 93.48 0.55 23.05

K.5 COMPARISON OF ROBUSTNESS METRICS ON SMALL-SCALE DATASETS

We use ResNet18 as the basis to analyze how the six metrics rank the dataset. The results are shown
in Tab. 25.

MNIST is a grayscale image with a simple input space, which results in a flat gradient of the model
loss function, thus: 1) The model may be prone to overfitting on MNIST, resulting in L(x) = 0; 2)
Adversarial attacks are difficult to take effect, and the success rate of attacks is extremely low; 3) The
model output is very certain, so ∥F (x)∥2 is extremely small; 4) Rspec is extremely large, and there
are many outliers in the robust value.

If we exclude the outlier data MNIST, our metrics ∥F (x)∥2 and Rspec achieve consistent results with
other metrics, including L(x), CLEVER, and CW.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Table 25: Comparison of robustness ranking results of ResNet18 using 6 metrics on 3 datasets

Dataset L(x) CLEVER CW PGD Rnorm ↓ Rspec

CIFAR10 0.29 2.02 29.60 86.67 0.82 186.46
Tiny-Imagenet 0.21 1.72 38.64 88.64 0.51 7.25
MNIST 0.0 1.73 1.0 2.0 0.01 24510.91

38

	Introduction
	Related Work
	Robustness Metrics in Deep Learning
	Fisher Information in Deep Learning
	Spectral Analysis and Efficient Computation

	Methodology
	Problem Formulation
	Theoretical Analysis
	Practical Algorithms with White-box Settings
	Practical Algorithms with Black-box Settings

	Experiments
	Datasets and Settings
	Evaluation Metrics and Settings
	Reasonableness of our robustness metric
	Robustness of Different Models on the Same Dataset
	Robustness of the Same Model on Different Datasets
	Robustness comparison between black-box setting and white-box setting
	Comparison of Running Times

	Conclusion
	Broader Impacts
	Connections and differences with other work
	Spectral norm of FIM and Lipchitz constant
	Spectral norm of FIM and CLEVER score
	Spectral norm of FIM and Randomized Smoothing Algorithm
	Summary on the relationship between the three metrics

	Proof on KL Divergence under General Discrete Distribution
	Analysis of KL divergence approximation error
	Theoretical analysis
	Experimental estimation

	Statistical Significance of Fisher Information Matrix
	General Analysis of Model Robustness
	J2 Estimation of Basic Modules
	Convolution Layer
	ReLU Layer
	Max Pooling Layer
	Average Pooling
	Batch Normalization (BN)
	Layer Normalization (LN)
	Softmax Function
	Block Matrix

	Robustness Analysis of Classical Deep Learning Networks
	VGGNet
	ResNet
	DenseNet
	Transformer

	Properties of Hutchinson's Algorithm
	Convergence of Hutchinson's Algorithm for Solving Spectral Norm
	Alignment of randomly sampled vectors with the principal eigenvector of a matrix

	Overview and Analysis of Algorithms
	Theoretical Verification Experiment
	Analysis of Spectral Robustness Measure
	Solution on Spectral Norm of FIM
	Variance of Robustness Measure Estimate
	Comparison of different types of data
	Comparison of robustness metrics on small-scale datasets

