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ABSTRACT

The robustness of deep neural networks is critical for their deployment in safety-
sensitive domains. This paper establishes a novel theoretical framework for quan-
tifying model robustness through the lens of Fisher information. We first start
with the known conclusion that maximizing the KL divergence of the posterior
probability is equivalent to minimizing half the Mahalanobis distance defined by
the Fisher Information Matrix (FIM), and further reveal that the FIM is equal to
the variance of the input Jacobian matrix. Based on this insight, we propose the
FIM’s principal eigenvalue (or its reciprocal) as a principled robustness metric. We
derive closed-form spectral bounds for common architectural components (e.g.,
ReLU, convolution) and theoretically compare the robustness of VGG, ResNet,
DenseNet, and Transformer. To enable scalable computation, we resort to efficient
algorithms, including power iteration and randomized Hutchinson, to estimate the
robustness metric. Furthermore, we propose to use Hutchinson and finite differ-
ences to achieve robust estimation in a black-box setting. Extensive experiments
validate our theoretical claims and demonstrate the metric’s utility in predicting
adversarial vulnerability. Code: https://anonymous.4open.science/r/8F4D7E6R/.

1 INTRODUCTION

As deep learning models are increasingly used in safety-sensitive areas such as autonomous driving
Shibly et al. (2023) and medical diagnosis Aggarwal et al. (2021), their robustness to adversarial
perturbations has become a critical research topic. Even imperceptible input perturbations can lead to
catastrophic prediction errors Zhou et al. (2022), exposing fundamental vulnerabilities of modern
neural architectures. Robustness means the ability to maintain consistent performance under input
perturbations, including adversarial attacks Carlini & Wagner (2017a), noise, and distribution changes.
Therefore, understanding and quantifying robustness is crucial for both theoretical development and
practical applications.

Attack-Dependent Metrics Existing robustness metrics mainly rely on the strength of adversarial
attacks (e.g., bounded perturbations of the ℓp norm Lin et al. (2020)) or empirical accuracy under
attack scenarios Madry et al. (2019). While these heuristics provide practical evaluation benchmarks,
they suffer from three major limitations: (i) metrics that rely on attacks cannot reveal the intrinsic
properties of the model; (ii) norm-based constraints (adding norm constraints to the loss function)
lack probabilistic interpretation; and (iii) most analyses focus on local behaviors without considering
global statistical characteristics.

Heuristic Theoretical Bounds Although the robustness of models has been demonstrated by
estimating the Lipschitz constant Weng et al. (2018) or studied by analyzing input sensitivity, such as
the Jacobian norm Sokolic et al. (2016) or gradient variance Agarwal et al. (2022), the connection
between these heuristic metrics and the behavior of probabilistic models remains unclear.

To address these deficiencies, we propose a unified information-theoretic framework for robust-
ness evaluation based on the geometry of deep learning input-output manifolds, which has a well-
established theoretical foundation and do not depend on any attack algorithm. Our work makes the
following contributions :
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Theoretical foundation : We start with the known fact that maximizing the KL divergence of the
model posterior probability is approximately equivalent to minimizing half the Mahalanobis distance
defined by the Fisher Information Matrix (FIM), analyze the approximation error, and establish the
equivalence of the FIM with the variance of the input Jacobian matrix. This bridges the robustness
from the geometric (Jacobian) and statistical (FIM) perspectives. Furthermore, we theoretically
analyze the relationship between our metric and several classic metrics.

Practical Metric : We derive 1/∥F∥2 or ∥F∥2 as an interpretable and differentiable robustness
metric, where ∥F∥2 is the largest eigenvalue of the FIM. This avoids attack-specific evaluations and
provides a global robustness proof.

Architecture Analysis : We characterize the spectral properties of common layers (ReLU, convolu-
tion) and theoretically rank the robustness of VGG, ResNet, DenseNet, and Transformer architectures.

Efficient Algorithms : We resort to three algorithms including direct eigenvalue decomposition,
power iteration, and Hutchinson approximation to handle the estimation of the spectral norm λmax(F )
of various scales and guarantee convergence, making it applicable to large-scale models. Furthermore,
we propose a new algorithm based on Hutchinson and finite differences to estimate the ∥F∥2 value in
the black-box setting.

Application Potential : Our robustness metric can estimate the robustness of multiple models on the
same dataset, and can also compare the volatility of multiple data sets for a model, further helping us
use adversarial training to further improve the robustness of the model.

Our experiments verify the correlation of this metric with adversarial vulnerability across datasets
(CIFAR-10, MNIST etc.) and demonstrate its practicality in robustness-aware model selection. By
unifying geometric sensitivity and probabilistic uncertainty, this work provides a principled toolkit
for evaluating and designing robust deep learning (see App. A for more discussion).

2 RELATED WORK

2.1 ROBUSTNESS METRICS IN DEEP LEARNING

Adversarial Attack-Based Metrics Empirical robustness is usually evaluated through adversarial
attacks (e.g., PGD Madry et al. (2019) and C&W Carlini & Wagner (2017b)), which create perturba-
tions to induce misclassification. While these methods are effective in exposing vulnerabilities, they
are computationally expensive and attack-dependent — their results may not generalize to unknown
threat models or real-world noise.

Lipschitz and Jacobian Norms Theoretical approaches use Lipschitz continuity Szegedy et al.
(2014) or Jacobian matrix norms Sokolic et al. (2016) to bound model sensitivity. However, these
methods lack probabilistic interpretation and are difficult to scale to complex architectures (e.g.,
Transformer) due to fuzzy boundaries or exponential computational complexity.

Information Theoretic Perspective KL divergence and mutual information have been used to
quantify robustness Alemi et al. (2019), but previous studies have failed to link these metrics to
the geometry of the input space. Our work bridges this gap by linking KL divergence to Fisher
information, unifying probabilistic and geometric perspectives.

2.2 FISHER INFORMATION IN DEEP LEARNING

Classic Foundations The Fisher Information Matrix (FIM) is central to statistical estimation
and natural gradient descent Amari (1998). In deep learning, it has been used for optimization
and uncertainty quantification (e.g., K-FAC Martens & Grosse (2020)), but these studies focus on
parameter space properties rather than robustness in the input space.

FIM for Adversarial Robustness Recent studies have used FIM for adversarial detection Zhao et al.
(2019) or robust training Martin & Elster (2019), but none of them has established a direct relationship
between FIM eigenvalues and the inherent robustness of the model. Our key insight—that the
largest FIM eigenvalue encodes the worst-case sensitivity—provides a novel, theoretically supported
robustness metric.
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2.3 SPECTRAL ANALYSIS AND EFFICIENT COMPUTATION

Spectral Methods in Deep Learning Spectral normalization Miyato et al. (2018) can regulate model
complexity, but their applications are mainly limited to generative models. Different from these
studies, we analyze the spectral properties of discriminative architectures (e.g., CNN, Transformer)
from the perspective of FIM.

Randomized Algorithms Hutchinson estimator Hutchinson (1989) and power iteration Golub &
Loan (2013) are widely used for large-scale matrix computation. We adapt these algorithms to the
special structure of FIM matrices to efficiently estimate λmax(F ) with provable convergence, thus
enabling scalability to modern architectures.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

Robustness as KL-Divergence Maximization For any model, the cluster of posterior probability
distributions of the model output relative to the input x forms a statistical manifold

P = {p(y|x; θ)|x ∈ X}, (1)

where each input x corresponds to a point on the manifold and θ is a parameter of the model. In
adversarial training, the input sample x is mapped to a point p(y|x) on the manifold by the model,
and the perturbation x → x+ δ will correspond to a trajectory on the manifold. We try to maximize
the distance between two model output points on the manifold

x′∗ = argmax
x′

D(p(y|x; θ), p(y|x′; θ)), (2)

where D(·, ·) represents the distance between the outputs of the two distribution functions.

Fisher Information and Robustness Metric For the convenience of discussion, we ignore the model
parameter θ. We will introduce the following Theorem 1 as our starting point: The KL divergence
between any two conditional distributions p(y|x) and p(y|x′) is approximately equal to half of the
Mahalanobis distance between x and x′, where the covariance parameter matrix is the inverse of
the Fisher information matrix (FIM). App. C and D analyze the rationality of the approximation
theoretically and experimentally.

Theorem 1 For any two conditional distributions p(y|x) and p(y|x′), where x and x′ are the inputs
of the model and y is the class label of the model output, we have

KL(p(y|x), p(y|x′)) ≈ 1

2
(x′ − x)TF (x)(x′ − x) =

1

2
δTF (x)δ, (3)

where F (x) is the Fisher information matrix defined as follows

F (x) = Ep(y|x)[∇x log p(y|x)∇x log p(y|x)T ]. (4)

F (x) geometrically represents the curvature of the probability distribution manifold at point x. From
Theorem 1, it is not difficult to see that the perturbation direction δ (∥δ∥2 = 1) in adversarial training
is approximately equal to the principal eigenvector of the Fisher information matrix. Furthermore,
for any deep learning structure, we have the following conclusion (see App. E for proof):

Theorem 2 For a deep learning model whose last layer uses a softmax function to implement
classification tasks, where the input vector of softmax is f(x), the Fisher information matrix is

F (x) = var(Jf (x)), (5)

where Jf (x) is the gradient matrix (Jacobian matrix) of the vector f(x) with respect to the input x
and var represents the variance of the matrix random variable.

Using Theorem 2 and the properties of variance, we immediately get 1
2δ

TF (x)δ = 1
2var(δTJf (x)).

Therefore, the KL divergence also measures the sensitivity of the model output (Jacobian projection)

3
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to the fluctuation of the input in the perturbation direction δ. The experimental results in App. K.1
verify how the variance of the gradient tends to the FIM matrix as the number of samples increases.

Given an input x, when δ is the principal eigenvector of F (x), the KL divergence between the two
posterior probabilities is maximum, that is, at this time δ corresponds to the worst-case perturbation
to the model, and λmax(F (x)) (or ∥F (x)∥2) bounds the worst-case perturbation impact. So for the
dataset S, we define the following robustness measure based on the spectral norm (|S| represents the
number of elements in set S):

Rspec(S) =
1

|S|
∑
x∈S

1

∥F (x)∥2
, Rnorm(S) =

1

|S|
∑
x∈S

∥F (x)∥2. (6)

App. B provides the relationship between our metric and several classical measures and further
discussion.

3.2 THEORETICAL ANALYSIS

General Analysis Given any classifier based on deep learning model, we will discuss how to estimate
the upper bound of the spectral norm ∥F (x)∥2, where the Fisher information matrix of x for the
discrete variable y is defined as (pk = p(yk|x))

F (x) =

K∑
k=1

p(yk|x)[∇x log p(yk|x)∇x log p(yk|x)T ] =
K∑

k=1

pk[∇x log pk∇x log p
T
k ]. (7)

For any network structures, we further estimate ∥F (x)∥2 by the following theorem, where the proof
is in App. F.

Theorem 3 For any deep network-based classifier h : x → softmax(f(x)), where softmax is the
softmax function, the spectral norm ∥F (x)∥2 of its Fisher information matrix with respect with the
input x has the following upper bound

∥F (x)∥2 = λmax(F (x)) = max
∥v∥2=1

vTF (x)v ≤ max
k

pk(1− pk)∥Jf (x)∥22, (8)

where Jf (x) is the Jacobian matrix of the output f(x) ∈ RK with respect to the input x ∈ Rd.

In a deep neural network, the model f(x) is essentially a composite of m functions

f(x) = fm ◦ fm−1 ◦ · · · ◦ f1(x), (9)

where the Jacobian matrix of each function fi : Rni → Rni+1 is Ji, then we have (by chain rule)
∂f
∂x = JmJm−1 · · · J1. Then, according to the property of the norm ∥AB∥2 ≤ ∥A∥2∥B∥2, we
immediately have ∥Jf∥2 ≤

∏m
i=1 ∥Ji∥2. Finally, we get

∥F (x)∥2 ≤ max
k

pk(1− pk)

m∏
i=1

∥Ji∥22. (10)

Therefore, the spectral norm analysis of deep network models can be reduced to the analysis of its
basic components.

Spectral Norm ∥Ji∥2 of Basic Components We theoretically analyze the upper bounds of the
spectral norms of the basic components of deep neural networks in Table 1 (see App. G for details).
We can see that 1) The spectral norm of ReLU and Max Pooling is strictly 1, indicating that they have
equidistant propagation of input perturbations; 2) The spectral return of Average Pooling decreases
as the kernel increases, which has a certain gradient smoothing effect; 3) BN and LN can actively
amplify or suppress perturbations through scaling factors; 4) When the spectral norm of Softmax is
close to 0, it may suppress the propagation of perturbations, and the spectral norm of the concatenation
operation is proportional to the sum of the squares of the spectral norms of the input tensor, which may
implicitly introduce gradient expansion; 5) The spectral norm of the linear change layer (convolution
or full connection) is the main source of perturbation amplification.

Analysis of Deep Neural Networks We analyzed the following four classic deep network structures,
including VGG, Densenet, Resnet and Transformer (ViT), and the specific results are as shown in
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Table 1: Spectral norm of the basic components

Name Function ∥J∥2
ReLU max(0, x) = 1
Max Pooling max(m,n)∈Nk(i,j) xm,n,c = 1
Average Pooling 1

k2

∑
(m,n)∈Nk(i,j)

xm,n,c = 1
k

Convolutional
∑k−1

i=0

∑k−1
j=0

∑Cin
c=1 Wi,j,c,c′Xh′+i,w′+j,c ≈ ∥W∥2

Fully Connected Wx+ b = ∥W∥2
Batch Normalization γ(c) x(c)−µ(c)√

(σ(c))2+ϵ
+ β(c) = maxc

|γ(c)|√
(σ(c))2+ϵ

Layer Normalization γ ⊙ x−µ√
σ2+ϵ

+ β ≤ maxi
|γ(i)|√
σ2+ϵ

Softmax σ(x)i =
exi∑n

j=1 exj ≤ 2maxk σ(x)k(1− σ(x)k)

Concatenation [X1 · · · Xn] ≤
√∑n

i=1 ∥Xi∥22

Table 2: Analysis of spectral norm of deep network structure (h is the number of attention heads)

DNN Estimation of Upper bound of ∥J∥2 Structural complexity

VGG
∏L

i=1 ∥Wi∥2 ·
∏M

j=1 ∥Uj∥2 O(L+M)

ResNet 1
2∥Wcov∥2

∏L
l=1(1 + ∥Wl,1∥2∥Wl,2∥2)∥U∥2 O(L)

DenseNet ∥WL∥2
∏L−1

k=1 (1 + ∥Wk∥2) O(L)

Transformer
∏L

l=1(1 +
√
hmaxi ∥WV

i ∥2∥WO∥2 + ∥Wl1∥2∥Wl2∥2) O(L)

Table 2 (see App. H for more details). In Table 1, since the spectral norm of the linear change layer
(convolution or fully connected) is the main source of perturbation amplification, we only estimate
the upper bound in the form of the spectral norm of the convolution or fully connected layer.

Analyzing the results in Table 2, we conclude that: 1) The spectral norm of VGG is the product of the
spectral norms of each layer, which grows exponentially with the network depth; 2) The introduction
of the residual structure in Resnet makes the (1 + ∥Wl,1∥2∥Wl,2∥2) term make the upper bound
grow linearly, especially when ∥Wl,1∥2∥Wl,2∥2 < 1; 3) DenseNet has a linear growth similar to
Resnet, but has more cross-layer links and the network weights of each layer are reused; 4) The terms
referenced by the attention mechanism in Transformer may significantly increase the upper bound.

We take the most classic models among the four models to compare their structural complexity:
VGG16 (L = 13,M = 3), DenseNet121 (L = 59), ResNet18 (L = 12), ViT-B-16 (L = 12).
Therefore, we roughly conclude that the robustness ranking of the models is

DenseNet121 < VGG16 < ResNet18 ≤ ViT-B-16. (11)

3.3 PRACTICAL ALGORITHMS WITH WHITE-BOX SETTINGS

Since in the theoretical analysis, we only approximately estimated the upper bound of the model,
ignoring the actual spectral norm values of each component, and we also ignored the fact that
the spectral norm also depends on the input of the model. Therefore, below we will evaluate the
robustness of the model on a certain data set by solving the spectral norm of F (x).

Let qk = ∇x log p(yk|x) and λk = p(yk|x), we can write the Fisher information matrix in a more
compressed form

F (x) = QΛQT , (12)

where Q = [q1 q2 · · · qK ] and Λ = diag(λ1, λ2, · · · , λK).

Direct Eigendecomposition Considering the properties of the spectral norm ∥AB∥2 = ∥BA∥2, we
can get ∥F (x)∥2 = ∥P∥2, where P = Λ1/2QTQΛ1/2 is a symmetric matrix. The time complexity
and space complexity of solving ∥P∥2 directly through eigenvalue decomposition are O(dK2 +K3)
and O(dK) respectively, which is suitable for cases where K is small.

5
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Power Iteration The power iteration algorithm (as shown in Algorithm 1 of App. J) is a simple
algorithm for finding the leading eigenvalue of a matrix and its associated eigenvector. Although the
most time-consuming operation of the algorithm is the matrix multiplication, the matrix F (x) has a
special form of eigenvalue decomposition, and we can calculate F (x)bt very efficiently. Note that the
initial value is set to the approximate value to accelerate the iterative algorithm’s convergence process.
Due to the special structure of QΛQT , we can obtain the time complexity and space complexity of
the power iteration algorithm as O(TdK) and O(dK) respectively. Note that when the iteration error
∥λt − λprev∥)/∥λt∥2 < ϵ, where ϵ is a given threshold, the algorithm will exit midway.

Hutchinson Approximation Algorithm We adopt Hutchinson algorithm (as shown in Alg. 2 of the
App. J) Hutchinson (1989) to estimate the principal eigenvalue of the matrix λmax

∥F (x)∥2 = λmax(F (x)) ≈ max
i

zTi F (x)zi
zTi zi

, (13)

where zi is a random vector (such as a Rademacher vector with elements of ±1) or a Gaussian
variable.

Theorem 4 Hutchinson (1989) Let R(A, xi) =
xT
i Axi

xT
i xi

, given M independent random vec-

tors x1, · · · , xM (Rademacher vectors or Gaussian variables), when M → ∞, then λ̂max =
maxmi=1 R(A, xi) will converge to λmax(A) with high probability. For any given δ value, when

M ≥
log 1

δ

pϵ
, (14)

then
P (λ̂max ≥ λ(A)− ϵ) = 1− (1− pϵ)

M ≥ 1− δ, (15)
where pϵ = P (R(A, xi) ≥ λmax(A)− ϵ).

Theorem 2 shows that even if the probability pϵ of a single sample falling into the target interval is
very low, we can still ensure high probability convergence to λmax(A) by moderately increasing M .

Theorem 5 Hutchinson (1989) Let u, v ∈ Rn, where u is a random unit vector and v is a fixed unit
vector (such as the principal eigenvector of a matrix), then the probability that u is aligned with v
decays exponentially with n. Specifically, we have

P (|uT v| ≥ t) ≤ 2 exp
(
−cnt2

)
, (16)

where c is a universal constant.

Theorem 5 shows that when the dimension of the random vector grows, the probability of the
random vector aligning with λmax will decay exponentially. If the random vector generated by
F (x) = QΛQT as the input of Hutchinson is in a high-dimensional space of d dimensions, then the
probability of it aligning with the spectral norm will be very low. Therefore, as with direct eigenvalue
decomposition, we also consider using P = Λ1/2QTQΛ1/2 as the input of Hutchinson. The time
complexity of Hutchinson algorithm for calculating the spectral norm of FIM is O(MdK), and
Hutchinson algorithm can be highly parallelized since each random vector is independent of each
other.

The theoretical analysis in Appendix J and experimental verification in Appendix K show that we
can significantly reduce the space complexity and approximation error of the model by indirectly
estimating ∥F∥2 through P .

3.4 PRACTICAL ALGORITHMS WITH BLACK-BOX SETTINGS

Below we will use Hutchinson’s algorithm and finite differences to estimate the robustness measure
∥F (x)∥2 in a black-box setting.

For any Gaussian random vector v ∼ N(0, I), the directional derivative of the gradient ∇x log p(y|x)
can be approximated by symmetric difference (u = v/∥v∥2)

uT∇x log p(y|x) ≈
log p(y|x+ hu)− log p(y|x− hu)

2h
, (17)

6
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where h is a small positive constant (such as 10−3). The quadratic form uTF (x)u of FIM can be
decomposed into

uTF (x)u = uTEp(y|x)[∇x log p(y|x)∇x log p(y|x)T ]u = Ep(y|x)[(u
T∇x log p(y|x))2], (18)

where uT∇x log p(y|x) can be estimated using first-order finite differences (Eqn. (17)).

4 EXPERIMENTS

4.1 DATASETS AND SETTINGS

To estimate the robustness of the model, we use the basic models of four classic models, including
VGG16, ResNet18, DenseNet121, and ViT B 16, and train them on three different styles of datasets
(CIFAR10, MNIST, and Tiny-ImageNet). For unified processing, the images in the three datasets
are resized to 224×224 size images during training. The optimizer uses the AdamW optimizer in
PyTorch, where the learning rate is uniformly set to 3e-5. The model obtained by using only the
training set (without using any pre-trained model) for all models is called the clean model Mclean.
Subsequently, the model we obtain through the two adversarial training algorithms, CW or PGD, is
the adversarial model, denoted as MCW or MPGD. We also validate the effectiveness of our metrics
on large-scale datasets like CIFAR100, ImageNet, and special types of data such as medical data 1.

4.2 EVALUATION METRICS AND SETTINGS

Assume that the model M is tested on the test set D, and a(x) represents the perturbation sample
generated by the clean input x. We will mainly use the spectral norm robustness ∥F (x)∥2, Lipschitz
constant, CLEVER score, and robustness metrics based on adversarial attacks including PGD Madry
et al. (2018) and C&W Carlini & Wagner (2017a).

PGD and CW Below we introduce the two metrics PGD and CW, which are two classic adversarial
attack methods. We often use the attack success rate under PGD and CW attacks as an indicator to
evaluate the robustness of the model, where the attack success rate (ASR) is defined as follows:

ASR =
|{(x, y)|M(a(x)) ̸= y, (x, y) ∈ D}|
|{(x, y)|M(x) = y, (x, y) ∈ D}

. (19)

In the experiments, we use torchattacks 2 to calculate PGD and CW values. In PGD, the maximum
perturbation ϵ is set to 8/255, the step size α is 2/255, the number of attack steps is 20 and
random initialization is performed. CW uses the following parameters: box constraint parameter
c = 1, confidence κ = 0, the number of attack steps is 20 and the learning rate lr = 0.01 of the
Adam optimizer. It is worth noting that PGD contains random factors, while CW does not contain
randomness.

CLEVER score The maximum perturbation radius in the CLEVER algorithm is set to 0.1, and
the distance norm in the neighborhood definition and the norm in the gradient both use the 2-norm.
When the CLEVER algorithm estimates the Lipschitz constant at each data point x, 100 points are
sampled in the neighborhood of point x to find the maximum value of the gradient norm.

Rspec and Lipschitz constant We approximate the Lipschitz constant of the model f(x) by the
gradient at point x, where the gradient is implemented by automatic differentiation in pytorch. When
calculating the robustness based on the spectral norm, we also count the average value of ∥F (x)∥2
and the average value of 1/∥F (x)∥2. The former is positively correlated with other metrics, while
the latter corresponds to Rspec and is negatively correlated with other metrics.

4.3 REASONABLENESS OF OUR ROBUSTNESS METRIC

We use the clean model Mclean (ResNet18) as the benchmark and use CW adversarial training to
obtain a model MCW. Based on our intuition, MCW should be more robust than Mclean. Since the

1https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
2https://adversarial-attacks-pytorch.readthedocs.io/en/latest/attacks.htmlmodule-torchattacks.attacks.pgd
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Lipschitz constant L(x), CLEVER, CW, PGD and spectral norm ∥F (x)∥2 are positively correlated,
the value of MCW on the above indicators should be smaller than the corresponding value of M . We
counted the percentage reduction of the metric on the model MCW compared to the metric on Mclean,
and the results are shown in Table 3 with 500 samples.

As can be seen from Table 3, the reduction value of our spectral norm metric ∥F (x)∥2 is very close to
the CW estimate. It is worth noting that the attack success rate on PGD decreases the least, because
we use CW to perform adversarial attacks in training, but use PGD to implement attacks in testing,
which shows that the CW metric is not transferable. At the same time, the estimated values of L(x)
and CLEVER are relatively close.

Table 3: Robustness comparison using adversarial training model MCW and clean model Mclean

Model L(x) CLEVER CW PGD Rnorm Rspec

None-Attack (Mclean) 0.50 3.52 93.64 99.24 2.38 46.46
CW-Attack (MCW) 0.29 2.02 29.60 86.67 0.82 186.46
Reduction (%) 42.00 42.61 68.39 12.67 65.55 -

Comparing the results in Table 3, we can see that the estimated values of ∥F (x)∥2, L(x), and
CLEVER are very stable when the size of the data set changes, while the fluctuations of CW and
PGD are relatively large. This is because CW and PGD are essentially discrete functions of the input
x, where accuracy functions are not differentiable with respect to the input.

4.4 ROBUSTNESS OF DIFFERENT MODELS ON THE SAME DATASET

We use CIFAR10 as a benchmark to analyze how the six metrics rank the models (as shown in Table
4). We sort the four metrics in descending order of L(x), and we can see that our spectral norm
∥F (x)∥2 obtains the same ranking results as L(x) and CLEVER, while the results of CW are exactly
the same as our Rspec. This shows that the two metrics ∥F (x)∥2 and Rspec we proposed can replace
CLEVER and CW respectively to some extent. PGD uses different attack methods in training and
testing, so the results are not referenceable (See App. K.4 for more comparisons on large-scale
datasets).

Table 4: Comparison of ranking results of 4 models on 6 metrics on the CIFAR10 dataset

Models L(x) CLEVER CW PGD Rnorm Rspec

DenseNet121 0.47 2.93 54.55 94.81 2.18 5.16
ResNet18 0.29 1.99 22.97 89.19 0.77 124.61
ViT B 16 0.25 1.35 39.39 96.97 0.61 77.36
VGG16 0.07 1.11 14.29 55.95 0.09 97685.6

4.5 ROBUSTNESS OF THE SAME MODEL ON DIFFERENT DATASETS

Comparing the robustness of the same model across multiple datasets (in Tab. 25) shows that our
metrics and other metrics produce consistent results for Medical Data and CIFAR100: CIFAR100 >
Medical Data. However, the data distribution in ImageNet varies significantly, leading to inconsistent
results when compared with other datasets. The results show that ImageNet is as difficult to attack as
CIFAR100.

Table 5: Comparison of robustness ranking results of ResNet18 using 6 metrics on 3 datasets

Dataset L(x) CLEVER CW PGD Rnorm ↓ Rspec

Medical Data 0.57 5.43 37.08 98.88 5.95 36.28
ImageNet 0.17 2.29 95.24 100.0 1.11 1.44
CIFAR100 0.29 1.81 62.07 94.83 0.73 5.69
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4.6 ROBUSTNESS COMPARISON BETWEEN BLACK-BOX SETTING AND WHITE-BOX SETTING

To compare the robustness metrics under two different settings, we use only the model output p(yk|x)
in the black-box setting and explicitly use the model gradient ∇ log p(yk|x) in the white-box setting.
The results for both settings are shown in Table 6. We can draw the following conclusions: 1) Since
the dimensionality of the vectors in the black-box setting is higher than that in the white-box setting
(data comparison coefficient), and since we indirectly compute the matrix P in the white-box setting,
the estimated eigenvalues are an order of magnitude lower than those in the white-box setting; 2)
Our metrics yield consistent conclusions in both settings: for the ResNet-18 model, the robustness
comparison across datasets is CIFAR100 > Medical Data.

Table 6: Comparison of robustness ranking results of ResNet18 using 6 metrics on 3 datasets

Dataset Rnorm(white) R̂norm(black)

Medical Data 5.95 0.0056
CIFAR100 0.73 0.0032

4.7 COMPARISON OF RUNNING TIMES

We use the adversarial training model MCW on CIFAR100 to test 5 metrics and run them 5 times
on 500 samples to calculate the average running time of the 5 metrics, as shown in Tab. 7. Since
CLEVER greatly approximates the gradient of the loss function, the maximum eigenvalue of the
gradient can be easily solved, so it has the fastest running time. Our Rnorm and Lipschitz constant
L(x) are both based on the gradient of the model, but Rnorm calculate the spectral norm of F (x)
instead of the spectral norm of the gradient, which takes more time than the estimation of L(x).
Although we can achieve fast estimation of ∥F (x)∥2 through parallel sampling of the Hutchinson
algorithm, due to the limitations of the GPU memory , we have to convert large-scale batch
sampling into multiple batches of small-scale sampling, which makes our algorithm slightly slower.

Table 7: Comparison of running times of two models on CIFAR100 with multiple metrics

Model L(x) CLEVER CW PGD Rnorm(white) R̂norm(black)

ResNet18 131.09 24.65 96.12 83.48 267.13 66.16
ViT B 16 494.74 41.19 172.08 233.70 309.73 379.22

5 CONCLUSION

This paper proposes a unified information-theoretic framework to quantify the robustness of deep
neural networks using Fisher information. Building on the connection between the KL divergence
of the posterior probability and the Fisher Information Matrix (FIM), we propose the maximum
eigenvalue of the FIM, or its inverse, as a principled and interpretable robustness metric. We
analyze the connections and differences between our metric and several classical metrics. We further
analyze upper bounds on the spectral norms of common architectural components (e.g., ReLU and
convolution) and compare the robustness of popular architectures including VGG, ResNet, DenseNet,
and Transformer. To achieve scalable computation, we use three algorithms to compute the spectral
norm of the FIM, making it applicable to scenarios of various scales. Furthermore, we propose a
new algorithm that implements robustness estimation in the black-box setting with the Hutchinson
algorithm and finite differences. Extensive experiments on datasets of varying sizes and types validate
our theoretical results. Overall, our metric is well-founded, independent of attack algorithms, and
applicable to both white-box and black-box settings.

However, FIM is data-dependent, which means that robustness evaluation may vary for different test
sets or input domains, and comparisons across data distributions remain challenging, which will be
our future work. Despite these limitations, our framework lays the foundation for a more rigorous
understanding of deep learning robustness, paving the way for future work on robust model design
and evaluation.
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ETHICS STATEMENT

Potential risks and mitigations include:

• Misuse in adversarial settings: While our metrics are useful for evaluating robustness,
malicious actors may exploit insights from the Jacobian or FIM properties to design more
powerful attacks. We mitigate this by focusing on defensive applications and encouraging
transparency in robustness benchmarks.

• Over-reliance on theoretical guarantees: While principled, our bounds and metrics are
not exhaustive (e.g., they may not cover all perturbation types). We emphasize that our
approach should complement rather than replace empirical testing and highlight the need
for multifaceted robustness evaluation.

• Computational cost: Despite the efficiency of our algorithm, estimating the Fisher
spectrum for very large models may still be resource-intensive. We provide guidance on the
trade-off between accuracy and computational overhead of robustness estimation.

REPRODUCIBILITY STATEMENT

All experiments were performed on a GeForce RTX 3090 with 24 GB video memory to fairly compare
the performance and running time of all algorithms. The datasets used in our experiments are all
publicly available datasets on the Internet, including commonly used datasets in computer vision. For
datasets from uncommon sources such as medical data, we provide links to the data. We performed a
simple normalization on the images following the conventional normalization method for images
in the field of image classification. For details, see the anonymous code. All experiments ensure
the reproducibility of the results by fixing the random seed, including model initialization and data
generation, for verifying the theoretical results of the theorem. For specific code, please see the link:
https://anonymous.4open.science/r/8F4D7E6R/.

THE USE OF LARGE LANGUAGE MODELS

In this work, large language models (LLMs) were primarily used as a general-purpose assist tool to aid
and polish the writing of the manuscript. LLMs were not involved in research ideation, experimental
design, data analysis, or the generation of any novel scientific content.
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We know that ∥F (x)∥2 = λmax(F (x)), but for the convenience of description, we use both the
spectral norm ∥F (x)∥2 and the maximum eigenvalue λmax(F (x)) in the text.

A BROADER IMPACTS

This work advances the theoretical understanding and practical evaluation of model robustness and
will have impacts in multiple areas:

• Safety-critical applications: By providing a principled metric to quantify robustness that
does not rely on adversarial attacks, our framework can help design more reliable models
for high-risk applications (e.g., autonomous systems, healthcare, and finance). Improved
robustness metrics may help reduce the risk of catastrophic failures caused by adversarial
perturbations or distribution shifts.

• Transparency and interpretability: Our theoretical connections between Fisher informa-
tion, Jacobian variance, and robustness provide interpretable insights into model behavior.
This is in line with the growing demand for explainable AI, especially in regulated industries
where understanding model vulnerabilities is critical for certification and deployment.

• Model selection and benchmarking: The proposed metric 1/λmax(F (x)) provides an
interpretable tool for comparing different architectures (e.g., VGG vs. Transformer) and
selecting models with inherent robustness, reducing reliance on empirical adversarial testing.

• Efficiency of robustness evaluation: The scalable algorithms (e.g., power iteration,
Hutchinson approximation) enable efficient robustness evaluation of large models, reducing
the computational barrier compared to attack-based evaluation. This can make robustness
testing more accessible to resource-constrained researchers and practitioners.

By combining theoretical guarantees with practical tools, this work contributes to the broader goal of
building trustworthy AI systems. We hope that our framework will inspire further research to unify
geometric and probabilistic perspectives on robustness analysis.

B CONNECTIONS AND DIFFERENCES WITH OTHER WORK

B.1 SPECTRAL NORM OF FIM AND LIPCHITZ CONSTANT

We define the Lipschitz constant L(x) in the neighborhood B2(x, r) = {y|∥y − x∥2 < r} of point
x: Suppose function f : Rn → Rm, for a neighborhood of point x ∈ Rn, if there exists a constant
L(x) > 0 such that y, z ∈ B(x, r), then

∥f(y)− f(z)∥ ≤ L(x)∥y − z∥. (20)

For a differentiable function f , according to the mean value theorem, for any y, z ∈ B2(x, r), there
exists ξ on the line connecting y and z such that

f(y)− f(z) = ∇f(ξ)T (y − z). (21)

According to the properties of the spectral norm, we have

∥f(y)− f(z)∥2 ≤ ∥∇f(ξ)∥2∥y − z∥2 ≤ sup
ξ∈B2(x,r)

∥∇f(ξ)∥2∥y − z∥2. (22)

By the definition of local Lipschitz continuity, the Lipschitz constant L(x) at a point x is

L(x) = sup
ξ∈B2(x,r)

∥∇f(ξ)∥2. (23)

Let Jf (x) = ∇f(x), then by Eqn. (69), we have

F (x) ≤ ∥B∥2∥Jf (x)∥22 ≤ ∥B∥2

(
sup

ξ∈B2(x,r)

∥∇f(ξ)∥2

)2

= ∥B∥2L(x)2. (24)

where B = diag(p)− ppT and L(x) is the the Lipschitz constant.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B.2 SPECTRAL NORM OF FIM AND CLEVER SCORE

In the CLEVER algorithm Weng et al. (2018) (Algorithm 1), we assume that the classifier output is
f(x), then the probability output p(y|x) = softmax(f(x)). Let the true category of sample x be j,
and the category predicted by the model be c, then we can define the function

g(x) = fc(x)− fj(x). (25)

Next we calculate the posterior probability of the class y

p(y|x) = efy(x)∑
i e

fi(x)
=

efy(x)−maxk fk(x)∑
i e

fi(x)−maxk fk(x)
=

efy(x)−fc(x)∑
i e

fi(x)−fc(x)
. (26)

When fc(x) ≫ fi(x), i ̸= c, then we have
∑

i e
fi(x)−fc(x) ≈ 1, we can approximately calculate

p(j|x)
p(j|x) ≈ efj(x)−fc(x) = e−g(x), p(c|x) ≈ 1. (27)

So the cross entropy loss at a point x is − log p(j|x) ≈ g(x). Therefore, the CLEVER algorithm
approximates the gradient norm of the cross entropy loss function with respect to the input ∥∇g(x)∥,
which is the CLEVER score of the point x.

In practice, the CLEVER algorithm calculates the Lipchitz constant L(x) of the cross entropy loss at
point x according to Eqn. (23) by sampling points in the neighborhood Np(x) (defined with p-norm)
of x (1/q + 1/q = 1)

L(x) = max
z∈Np(x)

∥∇g(z)∥q ≈ ∥∇g(x)∥q, (28)

Usually we take p = q = 2.

When the loss function optimizes the model, it will cause the posterior probability of the true label
p(j|x) to be as large as possible, so p(j|x) will be equal to p(c|x) or its value is second only to
p(c|x), so we only consider the two terms in FIM (notice that p(j|x) ≈ e−g(x) and p(c|x) ≈ 1)

F (x) =

K∑
y=1

p(y|x)
[
∇ log p(y|x)∇ log p(y|x)T

]
≈ p(j|x)∇ log p(j|x)∇ log p(j|x)T + p(c|x)∇ log p(c|x)∇ log p(c|x)T

≈ e−g(x)∇g(x)∇g(x)T . (29)

At this time, the principal eigenvector of F (x) is ∇g(x), and the maximum eigenvalue is the Rayleigh
Quotient

∥F (x)∥2 = λmax(F (x)) ≈ e−g(x)∇gT (x)∇g(x)∇g(x)T∇g(x)

∇g(x)T∇g(x)
= e−g(x)∥∇g(x)∥22, (30)

where ∥∇g(x)∥2 is an approximate estimate of the CLEVER score.

B.3 SPECTRAL NORM OF FIM AND RANDOMIZED SMOOTHING ALGORITHM

The randomized smoothing algorithm Cohen et al. (2019) explicitly assumes that the perturbation
noise follows a Gaussian distribution ϵ ∼ N(0, σ2I) (see Theorem 1)

p(ϵ) ∝ exp

{
−∥ϵ∥22

σ2

}
(31)

This assumption allows the authors to devise adversarial attacks against the l2 norm. Furthermore,
we can establish a connection between l∞-norm attacks and the multivariate uniform distribution,
and between l1-norm attacks and the Laplace distribution.

Thus, the use of randomized smoothing relies on the assumption of the perturbed probability
distribution (Gaussian distribution) , which generally works better against adversarial attacks on
the l2-norm.
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We now present the relationship between random smoothing and our FIM-based metric ∥F (x)∥2 : In
the random smoothing method, the certification radius is defined as follows (Φ−1 is the inverse CDF
of the standard normal distribution)

r =
σ

2
[Φ−1(pA)− Φ−1(pB)], pA = P (f(x+ δ) = cA), pB = max

c ̸=cA
P (f(x+ δ) = c) (32)

We present the proof as follows:

Probability Difference : Let pA = p(y|x) and pB = p(y|x+ δ), according to Pinsker’s inequality,
we have

pA − pB ≤
√

1

2
DKL(pA||pB) (33)

Since the sqrt function is a concave function, using the Jensen inequality we have

Eδ(pA − pB) ≤ Eδ

√
1

2
DKL(pA||pB) ≤

√
1

2
EδDKL(pA||pB). (34)

For Gaussian perturbations δ ∼ N(0, σ2I), we have approximately

Eδ[DKL(pA||pB)] ≈
σ2

2
∥F (x)∥2. (35)

Taylor Expansion : By Taylor expansion of the inverse CDF at point p = 0.5, we have

Φ−1(pA)− Φ−1(pB) ≈
√
2π(pA − pB). (36)

Finally we have

Eδ[r] =
σ

2
E[Φ−1(pA)− Φ−1(pB)] ≈

√
2πσ

2
E[pA − pB ] ≤

√
2πσ2

4

√
∥F (x)∥2 (37)

B.4 SUMMARY ON THE RELATIONSHIP BETWEEN THE THREE METRICS

All three metrics are directly related to the gradient norm, which is used to measure the local
sensitivity and stability of the model. Specifically, we list the differences between our method and
the norm constraint-based method and the random smoothing method as follows

Table 8: The differences between our metric and other types of metrics

Method Random Smoothing Norm Constraints Our ∥F (x)∥2
Starting Point Centrality of Probability Worst-case analysis Information Geometry
Theoretical guarantee Probabilistic Guarantee Deterministic Guarantee Expectation Sensitivity
Assumptions Gaussian distribution Maximizing the loss Any distribution

At the same time, the relationship between them is as follows:

• Spectral norm ∥F (x)∥2 of FIM and the Lipschitz constant L(x) of the model :

∥F (x)∥2 ≤ B(x)∥L(x)∥2. (38)

• Spectral norm ∥F (x)∥2 of FIM and the CLEVER score maxz∈Np(x) ∥∇g(z)∥2
(p(c|x) ≈ 1):

∥F (x)∥2 ≈ e−g(x)∥∇g(x)∥22. (39)

• The Lipschitz constant L(x) of the model and the CLEVER score The former is the
Lipschitz constant of the model f(x), while CLEVER is the Lipschitz constant of the
cross-entropy loss function.

• Certification radius r of the random smoothing and the spectral norm ∥F (x)∥2 of the
FIM : ∥F (x)∥2 limits the upper bound of the expectation of r

Eδ[r] ≤
√
2πσ2

4

√
∥F (x)∥2. (40)
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C PROOF ON KL DIVERGENCE UNDER GENERAL DISCRETE DISTRIBUTION

Theorem 6 For any two class confidence distributions p(y|x) and p(y|x′), where x and x′ are the
inputs of the model and y is the class label of the model output, we have

KL(p(y|x), p(y|x′)) ≈ 1

2
(x′ − x)TF (x)(x′ − x) =

1

2
δTF (x)δ, (41)

where F (x) is the Fisher information matrix defined as follows

F (x) = Ep(y|x)[∇x log p(y|x)∇x log p(y|x)T ]. (42)

For any two discrete probability distributions p(y|x) and p(y|x′), we have

KL(p(y|x), p(y|x′)) ≈ 1

2
(x′ − x)TF (x)(x′ − x), (43)

where
F (x) = Ep(y|x)[∇x log p(y|x)∇x log p(y|x)T ]. (44)

First, we perform Taylor’s second-order expansion of the function log p(y|x′) at point x

log p(y|x′) ≈ log p(y|x) + (∇x log p(y|x))T (x′ − x)

+
1

2
(x′ − x)T∇2

x log p(y|x)(x′ − x) + o(∥x′ − x∥3), (45)

then substitute it into the KL divergence

KL(p(y|x)||p(y|x′)) =

K∑
i=1

p(yi|x)[log p(yi|x)− log p(yi|x′)]

to get

KL(p(y|x)||p(y|x′)) = −(x′ − x)T
K∑
i=1

p(yi|x)∇ log p(yi|x)

−1

2
(x′ − x)T

(
K∑
i=1

p(yi|x)∇2 log p(yi|x)

)
(x′ − x)

−o(∥x′ − x∥3), (46)

where o(∥x′ − x∥3) is the approximate error term.

For the first term above, we have

K∑
i=1

p(yi|x)∇ log p(yi|x) = ∇
K∑
i=1

p(yi|x) = 0. (47)

For the second term above, we have

∇x log p(yi|x) = ∇xp(yi|x)/p(yi|x),

∇2
x log p(yi|x) =

p(yi|x)∇2
xp(yi|x)−∇xp(yi|x)∇xp(yi|x)T

p(yi|x)2

=
∇2

xp(yi|x)
p(yi|x)

−∇x log p(yi|x)∇x log p(yi|x)T . (48)
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Further we get
K∑
i=1

p(yi|x)∇2
x log p(yi|x)

=

K∑
i=1

{∇2
xp(yi|x)− p(yi|x)[∇x log p(yi|x)∇x log p(yi|x)T ]},

= ∇2
x

K∑
i=1

p(yi|x)− Ep(y|x)[∇x log p(y|x)∇x log p(y|x)T ],

= −Ep(y|x)[∇x log p(y|x)∇x log p(y|x)T ] = −F. (49)

Finally, we arrive at our conclusion.

D ANALYSIS OF KL DIVERGENCE APPROXIMATION ERROR

D.1 THEORETICAL ANALYSIS

We express the approximation error as third-order remainder R3(δ, x).

KL(p(y|x), p(y|x′)) =
1

2
δTF (x)δ +R3(δ, x), (50)

where δ = x′ − x. Assume there exists a constant M > 0 such that∣∣∣∣∂3KL(p(y|x)∥p(y|x+ δ))

∂δi∂δj∂δk

∣∣∣∣ ≤ M, ∀i, j, k, (51)

Then the upper bound of the remainder is

|R3(δ, x)| ≤
M

6

∑
i,j,k

|δiδjδk|. (52)

Below we use the perturbation l∞ norm and l2 norm to represent the upper bound of the approximation
error respectively.

l∞ upper bound : We have

|R3(δ, x)| ≤
M

6

∑
i,j,k

|δiδjδk| ≤
Md3

6
∥δ∥3∞. (53)

l2 upper bound : We have

|R3(δ, x)| ≤
M

6

∑
i,j,k

|δiδjδk| ≤
M

6

(∑
i

|δi|

)3

=
M

6
∥δ∥31 ≤ M

6

(√
d∥δ∥2

)3
=

Md3/2

6
∥δ∥32.

(54)
Then we can conclude that

|R3(δ, x)| ≤
Md3

6
∥δ∥3∞, |R3(δ, x)| ≤

Md3/2

6
∥δ∥32. (55)

Since we usually consider robustness on the entire dataset, we can replace ∥δ∥2 or ∥δ∥∞ in the upper
bound with its upper bound θ.

For the given dataset, we can replace ∥δ∥2 or ∥δ∥∞ in the above formula with its upper bound θ .

D.2 EXPERIMENTAL ESTIMATION

We randomly sample 500 samples on CIFAR10 using four classic models with CW adversarial
training, where ∥δ∥∞ ≤ θ, as shown in Table 1. Table 2 shows the results of ResNet18 on three
datasets.

The results in both tables show that the approximation error and the proportionality coefficient of
both are very small. Therefore, in practice, the approximation error can be ignored.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Table 9: Approximation error of multiple models on CIFAR10

Model R3(δ, x) ∥F (x)∥2 R3(δ,x)
∥F (x)∥2

θ

ViTB16 2.7e-5 0.61 4.4e-5 8/255
ResNet18 6.8e-4 0.77 8.8e-4 8/255
VGG16 5.8e-5 0.09 6.4e-4 8/255
DenseNet121 1.7e-3 2.18 7.7e-4 8/255

Table 10: Approximation error of multiple datasets on the ResNet18 model

Dataset R3(δ, x) ∥F (x)∥2 R3(δ,x)
∥F (x)∥2

θ

Tiny-Imagenet 1.7e-3 0.51 3.3e-3 4/255
MNIST 3.3e-5 0.01 3.3e-3 76/255

CIFAR10 6.8e-4 0.77 8.8e-4 8/255

E STATISTICAL SIGNIFICANCE OF FISHER INFORMATION MATRIX

Theorem 7 For a deep learning model whose last layer uses a softmax function to implement
classification tasks, where the input vector of softmax is f(x), the Fisher information matrix is

F (x) = var(J(x)), (56)

where J(x) is the gradient matrix (Jacobian matrix) of the vector f(x) with respect to the input x
and var represents the variance of the matrix random variable.

According to Theorem 1, the Fisher information matrix F measures the sensitivity of the model
output distribution p(y|x) to the input x. For classification tasks, F is defined as

F (x) = Ep(y|x)[∇x log p(y|x)∇x log p(y|x)T ]. (57)

Next we need to estimate the maximum eigenvalue of the Fisher information matrix for some models.

For classification, we assume the model outputs k probabilities yi

yi = p(y = i|x) = efi(x)∑K
k=1 e

fk(x)
, (58)

then

log p(y = i|x) = fi(x)− log

K∑
k=1

efk(x). (59)

Its gradient with respect to the input x is (let fi = fi(x))

∇x log p(y = i|x) = ∇xfi −
K∑

k=1

(
K∑

k=1

efk

)−1

efi∇xfi

= ∇xfi −
K∑

k=1

p(y = k|x)∇xfk

=

K∑
k=1

(1k=i − pk)∇xfk, (60)

where pk = p(y = k|x) and 1i=k is the indicator function.
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We obtain the Fisher information matrix is
F (x) = Ep(y|x)[∇x log p(y|x)∇x log p(y|x)T ]

=

K∑
k=1

pk[∇x log p(y = k|x)∇x log p(y = k|x)T ]

=

K∑
k=1

pk

∑
j

(1k=j − pj)∇xfj

(∑
i

(1k=i − pi)∇xfi

)T


=

K∑
k=1

pk

∑
j

1k=j∇xfj − E[∇xf ]

(∑
i

1k=i∇xfi − E[∇xf ]

)T

=

K∑
k=1

pk
∑
j,i

1k=i1k=j∇xfi∇xf
T
j − E[∇xf ]

K∑
k=1

pk
∑
i

1k=i∇xf
T
k

−
K∑

k=1

pk
∑
j

1k=j∇xfjE[∇xf
T ] +

K∑
k=1

pkE[∇xf ]E[∇xf
T ]

=

K∑
k=1

pk∇xfk∇xf
T
k − E[∇xf ]

K∑
k=1

pk∇xf
T
k

−
K∑

k=1

pk∇xfkE[∇xf ]
T + E[∇xf ]E[∇xf ]

T

= E[∇xf∇xf
T ]− E[∇xf ]E[∇xf ]

T

= var(J(x)). (61)

F GENERAL ANALYSIS OF MODEL ROBUSTNESS

Theorem 8 For any deep network-based classifier h : x → softmax(f(x)), where softmax is the
softmax function, the spectral norm ∥F (x)∥2 of its Fisher information matrix with respect with the
input x has the following upper bound

∥F (x)∥2 = λmax(F (x)) = max
∥v∥2=1

vTF (x)v ≤ 2max
k

pk(1− pk)∥J(x)∥22, (62)

where Jf (x) is the Jacobian matrix of the output f(x) ∈ RK with respect to the input x ∈ Rd.
Let B = diag(p)− ppT . When the principal eigenvector w1 of B is aligned with the principal left
singular vector of J(x), then there exists a principal right singular vector v = Jf (x)

Tw1/∥Jf (x)∥2
of J(x) such that ∥F (x)∥2 = 2maxk pk(1− pk)∥Jf (x)∥22.

To facilitate our estimation of the maximum eigenvalue of the Fisher information matrix, we rewrite
it as

F (x) =

K∑
k=1

pk[∇x log p(y = k|x)∇x log p(y = k|x)T ]

=

K∑
k=1

pk

∑
j

(1k=j − pj)∇xfj

(∑
i

(1k=i − pi)∇xfi

)T


=

K∑
k=1

pk
∑
j,i

(1k=j − pj)(1k=i − pi)∇xfj∇xf
T
i

=

K∑
j,i=1

(
K∑

k=1

pk(1k=j − pj)(1k=i − pi)

)
∇xfj∇xf

T
i

= Jf (x)
TBJf (x) (63)
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where Bij =
∑K

k=1 pk(1k=j − pj)(1k=i − pi) and Jf (x) is the Jacobian matrix of the K outputs
with respect to the d inputs.

Now let’s discuss Bij =
∑K

k=1 pk(1k=j − pj)(1k=i − pi):

1) When i = j, we have

K∑
k=1

pk(1k=j − pj)(1k=i − pi) =

K∑
k=1

pk(1k=i − pi)
2

=

K∑
k=1

pk(1
2
k=i − 21k=ipi + p2i )

= pi − 2p2i + p2i
= pi(1− pi) (64)

2) When i ̸= j, then

K∑
k=1

pk(1k=j − pj)(1k=i − pi) =

K∑
k=1

(pk1k=j1k=i − pk1k=jpi

−pk1k=ipj + pkpjpi)

= 0− pjpi − pipj + pjpi

= −pipj (65)

Finally, we get a matrix B with dimension K ×K

B = diag(p)− ppT . (66)

We use the Gershgorin disk theorem Golub & Loan (2013) to estimate the range of eigenvalues.
For B, the center of the i-th Gershgorin disk is Bii = pi(1 − pi), and the radius is

∑
j ̸=i |Bij | =∑

j ̸=i pipj = pi(1− pi). Therefore, each eigenvalue satisfies

|λ− pi(1− pi)| ≤ pi(1− pi), (67)

which means λ ∈ [0, 2pi(1− pi)]. Then we have

∥B∥2 ≤ 2pi(1− pi). (68)

Finally, we estimate the largest eigenvalue of the matrix F (x) = Jf (x)
TBJf (x), which is equal to

the Rayleigh quotient

λmax(F (x)) = max
∥v∥=1

(Jf (x)v)
TB(Jf (x)v)

≤ ∥Jf (x)∥2∥v∥2∥B∥2∥Jf (x)∥2∥v∥2
= ∥B∥2∥Jf (x)∥22. (69)

Assume that the model output is a classification probability vector p = [p1, p2, · · · , pK ]T , and let Y
be a random class label (one-hot vector), then we have

E[Y ] = p, E[Y Y T ] = diag(p). (70)

So we have
B = cov(Y ) = E[Y Y T ]− E[Y ]E[Y ]T . (71)

Next we discuss the condition that there exists v(∥v∥2 = 1) such that λmax(F (x)) = ∥B∥2∥Jf (x)∥22.
Let y = Jf (x)v, where ∥v∥2 = 1, then we have

λmax(F (x)) = max
∥v∥=1

yTBy. (72)
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When y∗ = cw1(c > 0) = Jf (x)v, where w1(∥w1∥2 = 1) is the main eigenvector of B, then we
have

λmax(F (x)) = ∥y∗∥22∥B∥2 = c2∥B∥2. (73)
We look for the maximum value of c and get λmax(F (x)). Furthermore, we let w1 = 1

cJf (x)v, then

wT
1 w1 =

1

c2
vTJf (x)

TJf (x)v = 1. (74)

So we have
c =

√
vTJf (x)TJf (x)v (75)

We immediately get the optimal value c∗ of c to be

c∗ = max
∥v∥2=1

√
vTJf (x)TJf (x)v = ∥Jf (x)∥2, (76)

where v is the right singular vector corresponding to the largest singular value of Jf (x). Since
∥Jf (x)∥2wT

1 w1 = wT
1 Jf (x)v = ∥Jf (x)∥2, so when w1 and v are the left and right singular vectors

corresponding to the maximum singular value of Jf (x), we have

λmax(F (x)) = ∥B∥2∥Jf (x)∥22. (77)

When the principal eigenvector w1 of B is the principal left singular vector of Jf (x), then

∥Jf (x)∥2w1 = Jf (x)v → ∥Jf (x)∥2Jf (x)Tw1 = Jf (x)
TJf (x)v = ∥Jf (x)∥22v

→ v = Jf (x)
Tw1/∥Jf (x)∥2. (78)

So there exists Jf (x)
Tw1/∥Jf (x)∥2 such that the equation holds. However, w1 is the principal

eigenvector of ∥B∥2, and is usually unlikely to be the principal left singular vector of Jf (x).

G ∥J∥2 ESTIMATION OF BASIC MODULES

G.1 CONVOLUTION LAYER

Theorem: For convolution operations on multi-channel images, the spectral norm ∥JΨ∥2 of the
Jacobian matrix of the convolution operator Ψ is approximately the spectral norm ∥W∥2 of the
convolution kernel W , i.e. ∥JΨ∥2 ≈ ∥W∥2.

1) When the convolution operator’s padding is ’SAME’ and circular padding is used, where the stride
s is 1, so the input and output of the convolution operator have the same size. For the convolutional
mapping Ψ : RH×W×Cin → RH×W×Cout :

Ψh′,w′,c′ =

k−1∑
i=0

k−1∑
j=0

Cin∑
c=1

Wi,j,c,c′Xh′+i,w′+j,c. (79)

We divide JΨ into blocks according to the output channel c′ and the input channel c, then each block
[JΨ]c′,c ∈ RHW×HW can be a circulant matrix with circulant filled.

Under the loop filling condition, the Jacobian matrix can be expressed as a double loop structure

J circ
Ψ =

k−1∑
i=0

k−1∑
j=0

Πi
H ⊗Πj

W ⊗Wi,j , (80)

where ⊗ denotes the Kronecker product, Wi,j ∈ Cout × Cin is a tensor slice of the matrix W , ΠH

denotes the circulant shift matrix of H ×H
0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 . (81)
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Let ω1 = e−2πi/H and ω2 = e−2πi/W , where i is the imaginary unit, we diagonalize the cyclic shift
matrices separately

ΠH = FHΛHF ∗
H , ΠW = FWΛWF ∗

W , (82)

where ΛH = diag(1, ω1, · · · , ωH−1
1 ) and ΛW = diag(1, ω2, · · · , ωW−1

2 ). We substitute them into
Eqn. (80) and obtain

J circ
Ψ =

k−1∑
i=0

k−1∑
j=0

(FHΛHF ∗
H)⊗ (FWΛWF ∗

W )⊗Wi,j ,

=

k−1∑
i=0

k−1∑
j=0

(FHΛHF ∗
H)i ⊗ (FWΛWF ∗

W )j ⊗ (IoutWi,jIin)

=

k−1∑
i=0

k−1∑
j=0

(FHΛi
HF ∗

H)⊗ (FWΛj
WF ∗

W )⊗ (IoutWi,jIin)

=
k−1∑
i=0

k−1∑
j=0

(FH ⊗ FW ⊗ Iout)(Λ
i
H ⊗ Λj

W ⊗Wi,j)(FH ⊗ FW ⊗ Iin)

= (FH ⊗ FW ⊗ Iout)

k−1∑
i=0

k−1∑
j=0

Λi
H ⊗ Λj

W ⊗Wi,j

 (FH ⊗ FW ⊗ Iin),

= (FH ⊗ FW ⊗ Iout)Ŵ (FH ⊗ FW ⊗ Iin), (83)

where Ŵ =
∑k−1

i=0

∑k−1
j=0 Λ

i
H ⊗ Λj

W ⊗Wi,j .

Notice that Λi
H ⊗ Λj

W = diag(µi,j
0,0, µ

i,j
0,1, · · · , µ

i,j
H−1,M−1), where µi,j

u,v = ωui
1 ωvj

2 . We simplify
Λi
H ⊗ Λj

W ⊗Wi,j into diagonal blocks to obtain

Ŵ =

k−1∑
i=0

k−1∑
j=0

blkdiag(µi,j
0,0Wi,j , µ

i,j
0,1Wi,j , · · · , µi,j

H−1,W−1Wi,j)

= blkdiag(Ŵ0,0, Ŵ0,1, · · · , ŴH−1,W−1), (84)

where Ŵp,q is the two-dimensional Discrete Fourier Transform (DFT) of the convolution kernel W
at frequency (p, q)

Ŵp,q =

k−1∑
i=0

k−1∑
j=0

µi,j
p,qWi,j . (85)

Therefore we have

∥JΨ∥2 = ∥J circ
Ψ ∥2 = max

p,q
σmax(Ŵp,q) = max

p,q
∥Ŵp,q∥2 = ∥W∥2. (86)

2) When the convolution operator uses zero padding, W is a Toeplitz matrix (corresponding to
non-circular convolution). According to the asymptotic spectral theory of the Toeplitz matrix
(Grenander-Szegő theorem) Grenander & Szego (1958), when H,W ≫ k, the spectral norm of the
Toeplitz matrix W converges to the l∞ norm of its sign function (i.e., the Fourier transform of the
convolution kernel W )

lim
n→∞

∥W∥2 = ∥Ŵ∥∞ = max
u,v

∥Ŵu,v∥2 = ∥JΨ∥2. (87)

3) Assuming the stride s in the convolution operator is s ≥ 1 and the padding method is VALID (i.e.
no padding), the output size of the convolution operator is

H ′ =

⌊
H − k

s

⌋
+ 1 ≤ H, W ′ =

⌊
W − k

s

⌋
+ 1 ≤ W. (88)
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For any matrix A, without loss of generality, we delete the last k rows of A to obtain B

A =


aT1
aT2
...
aTn

 , B =


aT1
aT2
...

aTn−k

 , (89)

so we have

∥A∥22 = max
∥v∥2=1

vTATAx =

n∑
i=1

(aTi v)
2 ≥ max

∥v∥2=1
vTBTBx =

n−k∑
i=1

(aTi v)
2 = ∥B∥22. (90)

That is, the spectral norm of the submatrix is less than or equal to the spectral norm of the original
matrix, e.g. ∥B∥2 ≥ ∥A∥2.

Note that J can be regarded as a submatrix obtained by deleting some rows and columns from the
Jacobian matrix of the complete convolution (s = 1, padding= SAME ), and the spectral norm of the
submatrix is smaller than the spectral norm of the original matrix, so there is

∥JΨ∥2 ≤ max
p,q

∥Ŵp,q∥2 = ∥W∥2. (91)

In summary, we can use ∥W∥2 to approximate the spectral norm of the Jacobian matrix of the
convolution operator,i.e. ∥JΨ∥2 ≈ ∥W∥2.

G.2 RELU LAYER

The ReLU function is defined as ReLU(x) = max(0, x), so its derivative is

d

dx
ReLU(x) =

{
1, x > 0

0, x ≤ 0.
(92)

For an input vector x ∈ Rn, the ReLU Jacobian matrix JReLU ∈ Rn×n is a diagonal matrix

JReLU = diag(1x>0). (93)

We immediately get
∥JReLU∥2 = 1. (94)

G.3 MAX POOLING LAYER

Considering the input tensor X ∈ RH×W×C and the stride of the max pooling layer is 2 and the
pooling layer size is 2× 2, the output Y ∈ R(H/2)×(W/2)×C is

Yi,j,c = max(X2i−1,2j−1,c, X2i−1,2j,c, X2i,2j−1,c, X2i,2j,c) (95)

Furthermore, the Jacobian matrix J ∈ R((H/2)(W/2)C)×(HWC) describes the gradient relationship of
the output Y to the input X

J(i,j,c),(k,l,m) =
∂Yi,j,c

∂Xk,l,m
(96)

Given Yi,j,c, if k, l, c = argmax(X2i−1,2j−1,c, X2i−1,2j,c, X2i,2j−1,c, X2i,2j,c), then Yi,j,c =

Xk,l,c, i.e. ∂Yi,j,c

∂Xk,l,c
= 1; otherwise, ∂Yi,j,c

∂Xk,l,c
= 0.

So each row has exactly one 1 (corresponding to the maximum value), and all the others are 0, so the
vectors in each row are orthogonal to each other, and we immediately get

JJT = I(H/2)(W/2)C (97)

and
∥J∥2 =

√
λmax(JTJ) =

√
λmax(JJT ) = 1. (98)
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G.4 AVERAGE POOLING

Suppose we input a tensor X ∈ RH×W×C , where H is the height, W is the width, and C is the
number of channels. For two-dimensional average pooling, we use a pooling window such as k × k
to slide on the input with a certain step size, and calculate the average of all elements in each window
as the output.

To simplify the analysis, we assume that the input is a vector x ∈ Rn, and average pooling divides x
into m = n/k (k can divide n) windows of size k, then we have

yi =
1

k

ik∑
j=(i−1)k+1

xj , , i = 1, 2, · · · ,m. (99)

We calculate the partial derivative of yi with respect to xj and obtain

∂yi
∂xj

=

{
1/k, (i− 1)k + 1 ≤ j ≤ ik,

0, otherwise.
(100)

Further, we will write the Jacobian matrix of the average pooling into a block matrix form based on
the above results

J = blkdiag
(
1

k
1Tk ,

1

k
1Tk , · · · ,

1

k
1Tk

)
. (101)

We know that ∥J∥2 is the square root of the eigenvalue of JTJ , so we calculate JTJ

JTJ = blkdiag
(

1

k2
1k1

T
k ,

1

k2
1k1

T
k , · · · ,

1

k2
1k1

T
k

)
, (102)

where each diagonal block is a k× k matrix with all elements 1
k2 . The rank of the matrix 1

k2 is 1, and
its non-zero eigenvalues are

λmax

(
1

k2
1k1

T
k

)
=

1Tk
(

1
k2 1k1

T
k

)
1k

1Tk 1k
=

1

k
. (103)

That is, JTJ has an m-th eigenvalue 1
k and an n−m eigenvalue 0. Therefore, we have

∥J∥2 =
1√
k
. (104)

We generalize it to two-dimensional pooling, then the pooling window is k × k, so each element
corresponds to the average of k2 inputs, and we have similar conclusions

∥J∥2 =
1

k
, (105)

where the window size k is usually set to 2 in the construction of deep learning models.

G.5 BATCH NORMALIZATION (BN)

Given an input x ∈ RC (assuming each channel c is processed independently), the output y(c) of the
BN layer is

y(c) = γ(c) x(c) − µ(c)√
(σ(c))2 + ϵ

+ β(c), (106)

where the mean parameter µ(c), the offset parameter β(c), and the variance parameter σ(c) are all
constants during the inference stage.

For the convenience of analysis, we write the BN transformation in matrix form

y = D(x− u) + β, (107)
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where

D = diag

(
γ(1)√

(σ(1))2 + ϵ
, · · · , γ(C)√

(σ(C))2 + ϵ

)
. (108)

We immediately get

∥JBN∥2 =

∥∥∥∥∂y∂x
∥∥∥∥
2

= ∥D∥2 = max
c

|γ(c)|√
(σ(c))2 + ϵ

(109)

Usually if |γ| ≫ σ, there is a risk of gradient explosion, while |γ| ≪ σ has a risk of gradient
vanishing. Therefore, in practice, we usually approximately select γ ≈ σ or γ ≈

√
σ2 + ϵ, where ϵ is

a very small positive constant. In general, we have approximately

∥JBN∥2 = max
c

|γ(c)|√
(σ(c))2 + ϵ

≈ O(1). (110)

G.6 LAYER NORMALIZATION (LN)

The Layer normalization (LN) operation on the input x ∈ Rd is defined as (⊙ is the element-wise
multiplication)

y = γ ⊙ x− µ√
σ2 + ϵ

+ β, µ =
1

d

d∑
i=1

xi, σ2 =
1

d

d∑
i=1

(xi − µ)2, (111)

where γ, β ∈ Rd are learnable scale and offset parameters (ϵ is a small constant).

According to the chain rule, JLN = ∂y
∂x can be expressed as

JLN = diag(γ)
∂z

∂x
, z =

x− µ√
σ2 + ϵ

. (112)

Furthermore, we have
∂zi
∂xj

=
δij − 1/d√

σ2 + ϵ
− (xi − µ)(xj − µ)

d(σ2 + ϵ)3/2
, (113)

where δij is defined as

δij =

{
1, i = j,

0, i ̸= j.
(114)

That is

∂z

∂x
=

1√
σ2 + ϵ

(
I − 1

d
11T − (x− µ)(x− µ)T

d(σ2 + ϵ)

)
=

1√
σ2 + ϵ

(
I − 1

d
11T − (x− µ)(x− µ)T

dσ2
+

(x− µ)(x− µ)T

dσ2
− (x− µ)(x− µ)T

d(σ2 + ϵ)

)
=

1√
σ2 + ϵ

(
I − P +

(x− µ)(x− µ)T

dσ2
− (x− µ)(x− µ)T

d(σ2 + ϵ)

)
, (115)

where P = I − 1
d11

T − (x−µ)(x−µ)T

dσ2 .

Next we prove that the matrix P is a projection matrix. We can observe that

P = aaT + bbT , (116)

where a = 1√
d
1 and b = 1√

d
x−u
σ . We have

aTa = 1, aT b =
1

d

∑d
i=1 xi − dµ√

σ2
= 0, bT b =

1

d

∑d
i=1(xi − u)2

σ2
=

σ2

σ2
= 1. (117)
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Then
P 2 = (aaT + bbT )(aaT + bbT ) = aaT + bbT = P. (118)

According to the properties of the projection matrix P , we have I − P is also a projection matrix, so
the eigenvalue of I − P is either 1 or 0. That is

∥I − P∥2 = 1. (119)

According to the properties of the spectral norm, we have

∥JLN∥2 ≤ ∥diag(γ)∥2
∥∥∥∥∂z∂x

∥∥∥∥
2

=
1√

σ2 + ϵ
∥diag(γ)∥2

∥∥∥∥I − P +
(x− µ)(x− µ)T

dσ2
− (x− µ)(x− µ)T

d(σ2 + ϵ)

∥∥∥∥
2

≤ 1√
σ2 + ϵ

∥diag(γ)∥2
(
∥I − P∥2 +

∥∥∥∥ (x− µ)(x− µ)T

dσ2
− (x− µ)(x− µ)T

d(σ2 + ϵ)

∥∥∥∥
2

)
≤ 1√

σ2 + ϵ
∥diag(γ)∥2

(
1 +

ϵdσ2

dσ2(σ2 + ϵ)

)
=

1√
σ2 + ϵ

max
i

γ(i)

(
1 +

ϵ

σ2 + ϵ

)
. (120)

Usually we have ϵ ≪ σ2, and thus ϵ
ϵ+σ2 → 0. Finally we have

∥JLN∥2 ≤ max
i

|γ(i)|√
σ2 + ϵ

≈ O(1). (121)

G.7 SOFTMAX FUNCTION

The softmax function σ is defined as

σ(z)i =
ezi∑n
j=1 e

zj
, i = 1, 2, · · · , n. (122)

Its Jacobian matrix Jσ(z) is a n× n matrix, where

σ(z)ij =
∂σi

∂zj
= σi(δij − σj). (123)

Therefore, we can represent it in matrix form

Jσ = diag(σ(z))− σ(z)σ(z)T , (124)

which is a symmetric matrix.

We use the Gershgorin disk theorem Golub & Loan (2013) to estimate the range of eigenvalues.
For J , the center of the i-th Gershgorin disk is Jii = σi(1 − σi), and the radius is

∑
j ̸=i |Jij | =∑

j ̸=i σiσj = σi(1− σi). Therefore, each eigenvalue satisfies

|λ− σi(1− σi)| ≤ σi(1− σi), (125)

which means λ ∈ [0, 2σi(1− σi)]. Then we have

∥Jsoftmax∥2 ≤ 2σi(1− σi). (126)

When σi = 1/2, the upper bound 2σi(1− σi) takes the maximum value 1/2. That is, ∥J∥softmax ≤ 1
2 .

Note that when the dimension d of the vector is very high, then σk are approximately equal, and we
have

2σk(1− σk) ≈
2

d

(
1− 1

d

)
≈ 2

d
, (127)

which leads ∥Jσ∥2 ≤ 2
d .
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G.8 BLOCK MATRIX

Assume that the block matrix M ∈ Rm×(n1+n2) is composed of two sub-matrices A ∈ Rm×n1 and
B ∈ Rm×n2 horizontally concatenated

M = [A B] , (128)

the spectral norm of a matrix M is its maximum singular value, defined as

∥M∥2 = max
∥x∥2=1

∥Mx∥2, (129)

where x ∈ Rn1+n2 , and defined as

x =

[
x1

x2

]
. (130)

So we have

∥Mx∥2 = ∥Ax1 +Bx2∥
≤ ∥A∥2∥x1∥2 + ∥B∥2∥x2∥2

≤
√

∥A∥22 + ∥B∥22
√
∥x1∥22 + ∥x2∥22

=
√

∥A∥22 + ∥B∥22. (131)

On the other hand, if we let x1 be the main right singular vector of A, we have

∥M∥2 = max
∥x∥2=1

∥Mx∥2 ≥
∥∥∥∥M [

x1

0

]∥∥∥∥
2

= ∥Ax1∥2 = ∥A∥2. (132)

Similarly, if we let x2 be the main right singular vector of matrix B, we have ∥M∥2 ≥ ∥B∥2.
Therefore

∥M∥2 ≥ max(∥A∥2, ∥B∥2). (133)

That is
max(∥A∥2, ∥B∥2) ≤ ∥M∥2 ≤

√
∥A∥22 + ∥B∥22 ≤

√
2max{∥A∥2, ∥B∥2}. (134)

Furthermore, we can generalize to a block matrix consisting of n matrices

max
i

(∥Ai∥2) ≤ ∥[A1 A2 · · · An]∥2 ≤

√√√√ n∑
i=1

∥Ai∥22 ≤
√
nmax

i
{∥Ai∥2}. (135)

H ROBUSTNESS ANALYSIS OF CLASSICAL DEEP LEARNING NETWORKS

Since the components ReLU, Max Pooling, Average Pooling, BN and LN usually have a constant
spectral norm upper bound O(1), for the convenience of discussion, we mainly focus on the spectral
norm upper bounds of convolutional layers, fully connected layers and concatenation layers.

H.1 VGGNET

VGGNet is mainly composed of consecutive convolutional layers and fully connected layers, each
of which is followed by ReLU activation and maximum pooling. Assuming that VGGNet has L
convolutional layers and M fully connected layers, we have

∥Jf∥2 ≤
L∏

i=1

∥Wi∥2 ·
M∏
j=1

∥Uj∥2, (136)

where Wi is the convolution kernel and Uj is the weight of the fully connected layer.

Since VGGNet is very deep and has no residual connections, the upper bound of ∥Jf∥2 will grow or
decay exponentially with depth (depending on the size of ∥Wi∥2). It is worth noting that VGG16 and
VGG19 contain 13 convolutional layers, 3 fully connected layers and 16 convolutional layers, 3 fully
connected layers, respectively.
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H.2 RESNET

The core innovation of ResNet is the residual connection, which is used to solve the gradient vanishing
problem of deep networks. It mainly includes the initial convolution layer, the maximum pooling
layer, the residual block and the global average pooling + fully connected layer. ResNet18 and
ResNet50 contain 8 residual blocks and 16 residual blocks, respectively.

Suppose a residual block is
fi(x) = x+ gi(x), (137)

where gi is the composite function of the convolutional layer. The Jacobian matrix of the function fi
is

Jfi = I + Jgi . (138)
Therefore, we have

∥Jfi∥2 ≤ ∥I∥2 + ∥Jgi∥2 = 1 + ∥Jgi∥2. (139)

Assuming that the function gi is a combination of convolution + ReLU + convolution 3, then

∥Jgi∥ ≤ ∥Wi,1∥2 · ∥Wi,2∥2. (140)

ResNet usually consists of an initial convolutional layer followed by multiple residual blocks, a global
average pooling layer and a fully connected layer. So we end up with (assuming ∥JBN∥2 ≤ 1)

∥Jresnet∥2 ≤ 1

2
∥Wcov∥2

L∏
l=1

(1 + ∥Wl,1∥2∥Wl,2∥2)∥U∥2, (141)

where Wcov and U are the weights of the initial convolutional layer and the fully connected layer,
respectively.

ResNet still grows with depth, but more modestly than VGGNet’s exponential product.

H.3 DENSENET

DenseNet121 contains 4 dense blocks, a total of 58 convolution layers, and DenseNet169 also
contains 4 dense blocks, but is deeper than DenseNet121 and contains 82 convolution layers.

In dense blocks, each layer is the concatenation of the outputs of all previous layers. Suppose the
output of the l-th layer is

Xl = Hl(concat(X0, X1, · · · , Xl−1)) (142)

According to the properties of the Jacobian matrix, we have (X0 is the input of the network)

∥JL∥2 =

∥∥∥∥∂XL

∂X0

∥∥∥∥
2

=

∥∥∥∥ ∂HL

∂cat(X0, X1, · · · , XL−1)

∂cat(X0, X1, · · · , XL−1)

∂X0

∥∥∥∥
2

≤
∥∥∥∥∂(cov · ReLU · BN)

∂cat

∥∥∥∥
2

∥∥∥∥∥∥∥
 I

J1
· · ·

JL−1


∥∥∥∥∥∥∥
2

, Eqn.(135)

≤ ∥WL∥2

√√√√1 +

L−1∑
l=1

∥Jl∥22

≤ ∥WL∥2(1 +
L−1∑
l=1

∥Jl∥2)

= ∥WL∥2SL−1, (143)

3The residual blocks of ResNet are basic block and bottleneck block, where the former contains 2 convolu-
tional layers, while the latter contains 3 convolutional layers.
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where SL−1 =
∑L−1

k=0 ∥Jk∥2 and J0 = I .

We now use mathematical induction to prove

SL ≤
L∏

l=1

(1 + ∥Wl∥2). (144)

When L = 1, we have
S1 = 1 + ∥J1∥2 ≤ 1 + ∥W1∥2. (145)

Furthermore, we assume that the conclusion holds when k = l, that is Sl−1 ≤
∏l−1

k=1(1 + ∥Wk∥2).
Then using the conclusion Jl ≤ ∥Wl∥2Sl−1 from Eqn. (143), we immediately have

Sl = Sl−1 + ∥Jl∥2
≤ Sl−1 + ∥Wl∥2Sl−1

= Sl−1(1 + ∥Wl∥2)

≤
l−1∏
k=1

(1 + ∥Wk∥2)(1 + ∥Wl∥2)

=

l∏
k=1

(1 + ∥Wk∥2). (146)

So, we get the upper bound of ∥JL∥2 as

∥JL∥2 ≤ ∥WL∥2
L−1∏
k=1

(1 + ∥Wk∥2). (147)

H.4 TRANSFORMER

Vision Transformer (ViT) is a vision model based on the Transformer architecture, which divides
images into fixed-size patches and performs global modeling through multi-head attention (MHA).
ViT-B-16 is the basic version, using a 16 × 16 patch size. ViT-B-16 contains L = 12 layers of
Transformer Encoder. Next we discuss the spectral norm of the Jacobian matrix of the Encoder
model.

The input sequence X = (x1, x2, · · · , xn) is transformed by the embedding layer and positional
encoding to

H(0) = Embed(X) + PositionalEncoding, (148)

where H(0) ∈ Rn×d and d is the model dimension.

The encoder is composed of L identical layers stacked together, each layer contains:

• Multi-Head Attention (MHA)

MHA(H) = Concat(head1, · · · , headh)W
O. (149)

Each attention head headi = σ
(

QiK
T
i√

dk

)
Vi, where Qi = HWQ

i , Ki = HWK
i , Vi =

HWV
i and WQ,WK ,WV ∈ Rd×dk .

• Feed-Forward Network (FFN)

FFN(H) = ReLU(HW1 + 1bT1 )W2 + 1bT2 , (150)

• Residual Connection and Layer Normalization

H(l) = LN(H(l−1) + MHA(H(l−1))) (151)

H(l) = LN(H(l) + FFN(H(l))). (152)
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Given an input H ∈ Rn×d, where n is the sequence length and d is the feature dimension, Self-
Attention will be represented as follows

Q = HWQ, K = HWK , V = HWV ,

S =
QKT

√
dk

, A = σ(S), Attention(Q,K, V ) = AV, (153)

where WQ,WK ,WV ∈ Rd×dk are the learnable weight matrices, A ∈ Rn×n is the row-normalized
attention weight matrix, and Attention(Q,K, V ) ∈ Rn×dk is the output of Self-Attention.

We first calculate the gradient with respect to the value H from V∥∥∥∥∂Attention
∂H

∥∥∥∥
2

≤
∥∥∥∥∂Attention

∂V

∥∥∥∥
2

∥∥∥∥ ∂V∂H
∥∥∥∥
2

= ∥A∥2∥WV ∥2. (154)

Note that A ∈ Rm×n is a row-normalized matrix, and all elements of A are positive. Therefore,
according to the Gerschgorin disk theorem, we have that any eigenvalue of the matrix A is located in
a Gerschgorin disk

|λ−Aii| ≤
∑
j ̸=i

|Aij |, i = 1, 2, · · · ,m. (155)

That is, −1 + Aii ≤ λ ≤ 1. So we immediately get ∥A∥2 ≤ 1. At the same time, we observe that
A1 = 1, then 1 is an eigenvalue of A, and thus ∥A∥2 = 1.

Next we calculate the gradient of Attention with respect to H from the attention weight A∥∥∥∥∂Attention
∂H

∥∥∥∥
2

=

∥∥∥∥∂Attention
∂A

∂σ

∂S

∂S

∂H

∥∥∥∥
2

≤ ∥V ∥2 ·
1

n
·
∥∥∥∥ 1√

dk

(
∂Q

∂H
KT +Q

∂KT

∂H

)∥∥∥∥
2

≤ 2

n
√
dk

∥WV ∥2∥WQ∥2∥WK∥2∥H∥22. (156)

The input H is normalized, so ∥H∥2 is bounded. In general, n and dk are very large, then we have

∥Jattn∥2 ≤ ∥WV ∥2 +
2

n

∥WV ∥2∥WQ∥2∥WK∥2∥H∥22√
dk

≈ ∥WV ∥2. (157)

According to the estimation of the spectral norm of the block matrix (as shown in Eqn. (135)), we
have (h = 8)

∥JMHA∥2 ≤
√
hmax

i
∥WV

i ∥2∥WO∥2. (158)

According to the properties of the spectral norm, we immediately have

∥JFFN∥2 =

∥∥∥∥∂FFN
∂H

∥∥∥∥
2

≤ ∥W2∥2∥JReLU∥2∥W1∥2 = ∥W1∥2∥W2∥2. (159)

Note that when we use a transformer for classification, we do not use the decoding layer. Combining
our previous analysis and conclusions, we have

∥Jtransformer∥2 ≤
L∏

l=1

(1 +
√
hmax

i
∥WV

i ∥2∥WO∥2 + ∥Wl1∥2∥Wl2∥2). (160)

I PROPERTIES OF HUTCHINSON’S ALGORITHM

I.1 CONVERGENCE OF HUTCHINSON’S ALGORITHM FOR SOLVING SPECTRAL NORM

Theorem 9 Let R(A, xi) =
xT
i Axi

xT
i xi

, given m independent random vectors x1, · · · , xm, when m →
∞, then λ̂max = maxmi=1 R(A, xi) will converge to λmax(A) with high probability. For any given δ
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value, when

m ≥
log 1

δ

pϵ
, (161)

then
P (λ̂max ≥ λ(A)− ϵ) = 1− (1− pϵ)

m ≥ 1− δ, (162)
where pϵ = P (R(A, xi) ≥ λmax(A)− ϵ).

Defining Rayleigh entropy R(A, x) = xTAx
xT x

, then for a symmetric matrix A, we have

λmin(A) ≤ R(A, x) ≤ λmax(A), ∀x ̸= 0. (163)

Furthermore, we have λmax(A) = maxx ̸=0 R(A, x).

Coverage of random vectors Assume z ∼ N(0, In) is a standard Gaussian random variable, vmax

is the largest eigenvector (unit vector) of A, then z = xT vmax is also a Gaussian random variable.
We know that the probability of a continuous random variable at any single point is 0, so we have

P (z = 0) = P (xT vmax = 0) = 0. (164)

That is, P (xT vmax ̸= 0) = 1, so x can be decomposed into

x = (xT vmax)vmax + x⊥, x⊥⊥vmax. (165)

When x → vmax, that is, R(A, x) → λmax(A).

Concentration of Rayleigh Entropy Since R(A, x) is a continuous function and R(A, vmax) =
λmax(x), there exists a neighborhood Bδ(vmax) of vmax such that for any x

∥x− vmax∥ ≤ δ ⇒ R(A, x) ≥ λmax(A)− ϵ. (166)

It is worth noting that the probability that a Gaussian random variable x falls in the neighborhood is
positive

P (∥x− vmax∥ < δ) > 0. (167)
So we have

P (R(A, x) ≥ λmax(A)− ϵ) ≥ P (∥x− vmax∥ < δ) > 0. (168)

Convergence of the maximum value We take m independent random variables x1, · · · , xm and
define

λ̂ =
m

max
i=1

R(A, xi). (169)

Since P (R(A, xi) ≥ λmax(A)− ϵ) = pϵ > 0, then

P (R(A, xi) ≤ λmax(A)− ϵ) = 1− pϵ, i = 1, 2, · · · ,m. (170)

So we obtain

P (λ̂max ≤ λ(A)− ϵ) = P
(

m
max
i=1

R(A, xi) ≤ λ(A)− ϵ
)
= (1− pϵ)

m. (171)

When m → ∞, then (1− pϵ)
m → 0. In other words, there is

P (λ̂max ≥ λ(A)− ϵ) = 1− (1− pϵ)
m → 1. (172)

High probability convergence Now, given δ ∈ (0, 1), we ask for the probability

P (λ̂max ≥ λ(A)− ϵ) = 1− (1− pϵ)
m ≥ 1− δ

⇒ (1− pϵ)
m ≤ δ

⇒
(

1

1− pϵ

)m

≥ 1

δ

⇒ m log

(
1

1− pϵ

)
≥ log

(
1

δ

)
⇒ m ≥

log 1
δ

− log(1− pϵ)
(173)
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Since − log(1 − pϵ) is a convex function of pϵ, according to the convex function f(x) satisfying
f(x) ≥ f(0) + f ′(0)x, we know that

− log(1− pϵ) ≥ pϵ. (174)

So when

m ≥
log 1

δ

pϵ
≥

log 1
δ

− log(1− pϵ)
, (175)

we have
P (λ̂max ≥ λ(A)− ϵ) = 1− (1− pϵ)

m ≥ 1− δ. (176)

I.2 ALIGNMENT OF RANDOMLY SAMPLED VECTORS WITH THE PRINCIPAL EIGENVECTOR OF A
MATRIX

Theorem 10 Let u, v ∈ Rn, where u is a random unit vector and v is a fixed unit vector (such as the
principal eigenvector of a matrix), then the probability that u is aligned with v decays exponentially
with n. Specifically, we have

P (|uT v| ≥ t) ≤ 2 exp
(
−cnt2

)
, (177)

where c is a universal constant.

Let v ∈ Rn be a fixed unit vector corresponding to the principal eigenvector of the matrix A, and u
be a uniform random unit. Below we use uT v to denote the degree of alignment of u with v.

Expectation and variance of the inner product Since u is uniformly randomly distributed, its
direction distribution is symmetrical, that is, for any uv = c, there exists (−u)T v = −c. Therefore

E(uT v) = 0. (178)

Furthermore, we calculate the variance var(uT v) of uT v

var(uT v) = E[(uT v − E(uT v))2] = E[(uT v)2]

= E

( n∑
i=1

uivi

)2


=

n∑
i=1

v2i E[u2
i ] +

∑
i ̸=j

vivjE[uiuj ]. (179)

Note that since u is uniformly randomly distributed, all E[u2
i ] are equal, as shown by

∑n
i=1 u

2
i = 1

n∑
i=1

E[u2
i ] = 1 ⇒ E[u2

i ] =
1

n
. (180)

Therefore, the variance of uT v is

var(uT v) =
1

n

n∑
i=1

v2i =
1

n
. (181)

Let the standard deviation σ =
√

var(uT v) = 1√
n

. For most probability distributions, such as the
Gaussian distribution, uT v will have a probability of 95% falling within the interval [−2σ,+2σ].
Therefore, |uT v| is usually no more than O( 1√

n
).

Concentration Inequality Levy’s lemma Milman & Schechtman (1986) states that for a Lipschitz
function on a high-dimensional sphere, its values are highly concentrated near the desired value.
Specifically,
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Lemma 1 Levy’s Lemma: Assume that f : Sn−1 → R is an L-Lipschitz function (i.e., |f(u) −
f(u′)| ≤ L∥u− u′∥2), and u is uniformly distributed on the unit sphere Sn−1, then

P (|f(u)− E[f ]| ≥ t) ≤ 2 exp

(
−cnt2

L2

)
, (182)

where c is a universal constant (e.g. c = 1/2).

We define the function f(u) = uT v, where v is a fixed unit vector, so we have

|f(u)− f(u′)| = |(u− u′)T v| ≤ ∥u− u′∥2∥v∥2 = ∥u− u′∥2. (183)

That is, the function f is an L-Lipschitz function, where L = 1. From the symmetry of f , we know
that E[f ] = 0, so applying Levy’s Lemma we can get

P (|uT v| ≥ t) ≤ 2 exp
(
−cnt2

)
. (184)

It can be seen that the alignment of the random unit vector u with the fixed unit vector (the principal
eigenvector of the matrix) decays exponentially as d increases.

J OVERVIEW AND ANALYSIS OF ALGORITHMS

We innovatively apply three algorithms based on the low-rank structure of F (x). We make full use of
the associative property of matrix multiplication and the property of the spectral norm ∥AAT ∥ =
∥ATA∥ in our algorithm to indirectly estimate B(x) = Λ1/2QTQΛ1/2 rather than F (x) = QΛQT .
In the power iteration algorithms, when computing bt+1 = F (x)bt, we compute (Q(Λ(QT bt))
instead of QΛQT bt. Computing according to (Q(Λ(QT bt)) has lower space complexity. Note that
the indirect estimation makes the approximation error of the Hutchinson algorithm smaller.

The following table compares the space complexity and time complexity of direct and indirect
estimation of F (x) (d ≫ K)

Table 11: Time and space complexity analysis of indirect estimation of ∥F∥2

Indirect Estimation Space complexity Time complexity
Eigendecomposition O(dK) O(dK2 +K3)
Power Iteration O(dK) O(TdK)
Hutchinson Approximation O(dK) O(dK)

Table 12: Time and space complexity Analysis of direct estimation of ∥F∥2

Direct Estimation Space complexity Time complexity
Eigendecomposition O(d2) O(Kd2 + d3)
Power Iteration O(d2) O(TdK)
Hutchinson Approximation O(dK) O(dK)

Overall, our innovative application of the three algorithms generally significantly reduces the time
and space complexity of the algorithms, making our robustness metrics more feasible in large-scale
practical applications.

K THEORETICAL VERIFICATION EXPERIMENT

We use two common and popular datasets for image classification: CIFAR10 Krizhevsky (2009) and
MNIST LeCun et al. (1998). CIFAR10 contains 10 categories and a total of 60,000 color images of
size 32 × 32. MNIST is a handwritten digit image dataset containing 60,000 training images and
10,000 test images, each sample size is 28 × 28 pixels. Our programs are all run on a server equipped
with a GeForce RTX 3090 with 24G video memory. We select 4 classic base models including
DenseNet121, VGG16, ResNet18, ViT-B-16 to study our proposed robustness metric based on the
spectral norm.
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Algorithm 1 Power Iteration for the Principal Eigenvalue

1: Input : Q and Λ
2: Initialize j = argmaxk p(yk|x), b0 = ∇x log p(yj |x) ∈ Rd

3: λprev = p(yj |x) and b0 = b0/∥b0∥
4: for t = 0, 1, 2, · · · , T do
5: bt+1 = Q(Λ(QT bt))
6: λt = bTt bt+1

7: if (∥λt − λprev∥)/∥λt∥2 < ϵ then
8: break
9: end if

10: λprev = λt

11: bt+1 = bt+1

∥bt+1∥
12: end for
13: return λt

Algorithm 2 Hutchinson Algorithm for the Principal Eigenvalue

1: Input : Q and Λ
2: Γ = Λ1/2

3: for i = 1, 2, · · · ,M do
4: Generate a random vector z where zi ∼ N(0, 1)
5: y = QΓz

6: λi =
yT y
zT z

7: end for
8: return maxi λi

K.1 ANALYSIS OF SPECTRAL ROBUSTNESS MEASURE

FIM and variance of Jacobian matrix To verify the theorem F (x) = var(J(x)), we estimate
the variance of J(x) by sampling J(x) to verify its correctness. We design a toy model consisting
of a simple single-layer convolution layer + fully connected layer + softmax layer. By generating
random inputs of different batch sizes, we calculate the estimated variance σ̂2(x) of F (x) and J(x)

respectively, and finally estimate the approximate error of ∥F (x)−σ̂2(x)∥F

∥F (x)∥F
through relative error. The

results in Table 13 conform to the law of large numbers: as the number of samples increases, the
estimated value of the random variable approaches its true value.

Table 13: Error between FIM and variance of Jacobian matrix vs sampling size

#Size 32 64 128 256 512 1024
Error 1.8552 1.5554 1.3644 1.2530 1.1921 1.1600

Model robustness and number of model layers
Through model analysis, we know that when the model
components are the same, the model robustness Rspec
is inversely proportional to the number L of layers of
the model components (e.g. O(1/L)). Resnet18 and
Resnet34 have the same components (Basic Block), as
shown in Table 14, when the number of layers of the
model increases, the robustness metric of the model
decreases.

Table 14: Comparison of robustness
measures for models with the same com-
ponents

Rspec ResNet18 ResNet34
CIFAR10 9.610 3.162
MNIST 1.285 0.763
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Analysis on the metric Rspec From the results in Ta-
ble 16, we can see that ViT has the highest robustness
metric, while DenseNet has the worst robustness. The
performance of the robustness metric on the CIFAR10
dataset is consistent with our theoretical results, while
in the results on MNIST, VGG16 is more robust than
ResNet18. This may be because the gradient of VGG16
on simple MNIST images is smoother, making its spec-
tral norm smaller.

Table 15: Comparison of robustness
measures for multiple models

Dataset CIFAR10 MNIST
ViT-B-16 11.44 35.66
ResNet18 9.61 1.28
VGG16 1.04 5.07
DenseNet 1.40 0.06

Robustness metric Rspec and robustness metric based
on Lipschitz constant To analyze the relationship be-
tween Rspec and the classic robustness measure based
on the Lipschitz constant, we count the estimated value
1/∥F (x)∥2 and the Lipschitz constant on each sample
x in the data set, and then calculate the Pearson correla-
tion coefficient of the two sequences, as shown in the
table. This further verifies that there is a linear correla-
tion and consistency of evaluation between our measure
Rspec and Lipschitz constant robustness measure.

Table 16: Pearson and Spearman values
(in brackets) analysis between Rspec and
Lipschitz constant robustness measure

Dataset CIFAR10 MNIST
ViT-B-16 0.90 (0.95) 0.88 (0.88)
ResNet18 0.86 (0.90) 0.82 (0.84)
VGG16 0.85 (0.89) 0.80 (0.82)
DenseNet 0.84 (0.91) 0.80 (0.83)

K.2 SOLUTION ON SPECTRAL NORM OF FIM

Comparison of algorithm running times We propose to use three different types of algorithms to
solve the spectral norm of the FIM matrix to cope with models of different sizes.

We set the number of parameters to 1e5, the number
of iterations in the power iteration algorithm and
the number of samples in the Hutchinson algorithm
to 1000. Then, we randomly generate a Gaussian
distribution and run 10 times with the number of
categories to average the running time, and obtain
Table 17. From Table 17, we can see that when
the category (model output) scale is small, we can
directly resort to eigenvalue decomposition, which
is usually faster; when the category is of medium
size, power iteration may have an advantage; and
when the category scale is very large, the Hutchin-
son algorithm may be more efficient.

Table 17: Performance (Time) comparison of
algorithms vs classes (D: direct eigenvalue
decomposition, P: power iteration, and H:
Hutchinson algorithm)

#Classes(K) D (s) P (s) H (s)
10 0.0016 0.0136 0.2988
100 0.0070 0.0233 0.0265
1000 0.2649 0.1964 0.1378
10000 30.3127 1.3501 1.2813

Hutchinson’s convergence Theorem 4 shows that when the number of samplings M approaches
∞, λ̂max = maxmi=1 R(A, xi) will approach λmax(A) with high probability. Next we will verify this
conclusion through experiments.

We set the number of categories K = 10 and the
dimension of the parameters to 1e5, and then ran-
domly generate the Gaussian distribution matrix Q
and the diagonal matrix Λ. When the Hutchinson
random algorithm is run 10 times in parallel on
the GPU with different sampling times, the statis-
tical average approximation error 100 ∗ |λ̂max −
λmax|/λmax and average running time are shown in
the table. We can clearly see that when M increases,
the approximation error continues to decrease.

Table 18: Approximation Error of Hutchin-
son’s Algorithm

#Samples (M) Time (s) Error (%)
10 0.3100 35.66
100 0.0038 26.06
1000 0.0055 12.69
10000 0.0515 9.26

Comparison of Hutchinson’s algorithm for solving ∥QΛQT ∥2 and ∥Λ1/2QTQΛ1/2∥2 Theorem
5 tells us that the probability of aligning a random vector generated by the Hutchinson algorithm with
the true value λmax decays exponentially with the dimensional size n. The following experiment
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shows why we choose to use Λ1/2QTQΛ1/2 as the input of the Hutchinson algorithm instead of
QΛQT , even though they theoretically have the same spectral norm.

In Hutchinson, we choose the dimension of the pa-
rameter as d = 10000 and the number of samplings
as 1000. We randomly generate Q and Λ that follow
a Gaussian distribution, select different numbers of
categories, and use Λ1/2QTQΛ1/2 and QΛQT as
the input of Hutchinson to run the Hutchinson algo-
rithm, as shown in Table 19. It can be seen that the
approximation error using Λ1/2QTQΛ1/2 as input
is related to the number of categories, while the ap-
proximation error using QΛQT as input is related
to the dimension of the parameter.

Table 19: Approximation error of
Hutchinson’s algorithm with QΛQT

and Λ1/2QTQΛ1/2 as input

#Classes(K) Λ1/2QTQΛ1/2 QΛQT

10 13.91 99.83
100 60.75 99.52
1000 73.85 97.19

However, the dimension of the parameters is constant, so we see that as the number of categories
increases, the approximation error (or probability of alignment) of Λ1/2QTQΛ1/2 as input decreases,
while the approximation error of QΛQT as input remains approximately the same.

Sampling in Hutchinson approximation algorithm Hutchinson has good theoretical properties
by generating Rademacher random variables, but in practice, sampling Gaussian random variables
has better convergence properties. The following experimental results (Table 20) show that Gaussian
random variables have lower approximation errors than Rademacher random variables.

We generate a matrix Q with dimensions
100000×10 that follows a Gaussian distribution
and a diagonal matrix Λ that follows a Gaussian
distribution, and then sample Gaussian random
variables and Rademacher random variables for
different times, and compare their approximation
errors as shown in Table 20. The results in Table
20 show that Gaussian sampling is much better
than Rademacher sampling.

Table 20: Approximation error (%) of Hutchin-
son algorithm under Gaussian sampling and
Rademacher sampling

#Samples (M) Normal Rademacher
10 32.13 56.66
100 26.51 61.86
1000 12.06 54.09
10000 9.68 59.04

K.3 VARIANCE OF ROBUSTNESS MEASURE ESTIMATE

According to the description and setting of the estimation measure above, CLEVER and PGD contain
a certain amount of randomness because they need to randomly sample data points. The estimates of
other metrics Rspec, CW, and Lipschitz constant are all deterministic metrics.

Below we use the results of the clean model Mclean on three data sets and four models as shown
in Tables 21 and 22. For each experiment, we sample 500 data points on the data set to count the
variance of 5 repeated experiments. From Tables 21 and 22, it can be seen that DenseNet121 has the
largest variance on the MNIST data set, and the variances of the others are very small.

Table 21: Variance of PGD measure

Dataset ViT B 16 ResNet18 VGG16 DenseNet121
CIFAR10 1.00±0.0000 1.00±0.0000 0.77±0.0006 0.99±0.0006
MNIST 0.89±0.0000 0.91±0.0000 0.01±0.0000 0.96±0.0013
Tiny-ImageNet 0.99±0.0000 0.99±0.0000 1.00±0.0000 1.00±0.0010

K.4 COMPARISON OF DIFFERENT TYPES OF DATA

Below we further give the results on CIFAR100, Medical Data (covid19-radiography-database from
Kaggle 4) and ImageNet in Tab. 23 and 24. Comparing the robustness metrics of the two models,

4https://www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database
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Table 22: Variance of CLEVER Score

Dataset ViT B 16 ResNet18 VGG16 DenseNet121
CIFAR10 2.42±0.0005 5.09±0.0006 2.31±0.0004 6.11±0.0041
MNIST 2.82±0.0035 3.17±0.0007 0.40±0.0001 11.99±0.0105
Tiny-ImageNet 2.59±0.0003 2.39±0.0002 13.14±0.0021 4.46±0.0027

ViT B 16 and ResNet18, on the same dataset (Medical Data or CIFAR100), we can observe that our
metrics and most other metrics give consistent results: ResNet18 < ViT B 16.

Table 23: Comparison results of the ResNet18 and VIT B 16 models on Medical data

Model L(x) CLEVER CW PGD ∥F (x)∥2 Rspec
ResNet18 0.57 5.43 37.08 98.88 5.95 36.28
ViT B 16 0.29 2.10 20.25 98.73 2.11 375.44

Table 24: Comparison results of the ResNet18 and VIT B 16 models on CIFAR100

Model L(x) CLEVER CW PGD ∥F (x)∥2 Rspec
ResNet18 0.29 1.81 62.07 94.83 0.73 5.69
ViT B 16 0.23 1.21 65.22 93.48 0.55 23.05

K.5 COMPARISON OF ROBUSTNESS METRICS ON SMALL-SCALE DATASETS

We use ResNet18 as the basis to analyze how the six metrics rank the dataset. The results are shown
in Tab. 25.

MNIST is a grayscale image with a simple input space, which results in a flat gradient of the model
loss function, thus: 1) The model may be prone to overfitting on MNIST, resulting in L(x) = 0; 2)
Adversarial attacks are difficult to take effect, and the success rate of attacks is extremely low; 3) The
model output is very certain, so ∥F (x)∥2 is extremely small; 4) Rspec is extremely large, and there
are many outliers in the robust value.

If we exclude the outlier data MNIST, our metrics ∥F (x)∥2 and Rspec achieve consistent results with
other metrics, including L(x), CLEVER, and CW.
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Table 25: Comparison of robustness ranking results of ResNet18 using 6 metrics on 3 datasets

Dataset L(x) CLEVER CW PGD Rnorm ↓ Rspec

CIFAR10 0.29 2.02 29.60 86.67 0.82 186.46
Tiny-Imagenet 0.21 1.72 38.64 88.64 0.51 7.25
MNIST 0.0 1.73 1.0 2.0 0.01 24510.91
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