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Abstract

Self-Supervised Learning (SSL) is an important paradigm for learning representations from
unlabelled data, and SSL with neural networks has been highly successful in practice. How-
ever current theoretical analysis of SSL is mostly restricted to generalisation error bounds.
In contrast, learning dynamics often provide a precise characterisation of the behaviour
of neural networks based models but, so far, are mainly known in supervised settings.
In this paper, we study the learning dynamics of SSL models, specifically representations
obtained by minimising contrastive and non-contrastive losses. We show that a niive ex-
tension of the dymanics of multivariate regression to SSL leads to learning trivial scalar
representations that demonstrates dimension collapse in SSL. Consequently, we formulate
SSL objectives with orthogonality constraints on the weights, and derive the exact (network
width independent) learning dynamics of the SSL models trained using gradient descent on
the Grassmannian manifold. We also argue that the infinite width approximation of SSL
models significantly deviate from the neural tangent kernel approximations of supervised
models. We numerically illustrate the validity of our theoretical findings, and discuss how
the presented results provide a framework for further theoretical analysis of contrastive and
non-contrastive SSL.

1 Introduction

A common way to distinguish between learning approaches is to categorize them into unsupervised learning,
which relies on a input data consisting of a feature vector (x), and supervised learning which relies on feature
vectors and corresponding labels (x,y). However, in recent years, Self-Supervised Learning (SSL) has been
established as an important paradigm between supervised and unsupervised learning as it does not require
explicit labels but relies on implicit knowledge of what makes some samples semantically close to others.
Therefore SSL builds on inputs and inter-sample relations (x,x%), where 2T is often constructed through
data-augmentations of z known to preserve input semantics such as additive noise or horizontal flip for an
image [Kanazawa et al.| (2016]); Novotny et al.| (2018)); |Gidaris et al.|(2018). While the idea of SSL is not new
Bromley et al.| (1993)), recent deep SSL models have been highly successful in computer vision (Chen et al.
(2020)); |Caron et al.| (2021); |Jing & Tian| (2019)), natural language processing Misra & Maaten| (2020)); |[Devlin
et al.| (2019), speech recognition |Steffen et al.| (2019); Mohamed et al.|(2022]). Since the early works|Bromley!
et al.| (1993), methods for SSL have predominantly relied on neural networks however with a strong focus on
model design with only little theoretical backing.

The main focus of the theory literature on SSL has been either on providing generalization error bounds for
downstream tasks on embeddings obtained by SSL (Arora et al., [2019b; |Ge et al., |2023; |Bansal et al., [2021}
Lee et al., [2021; [Saunshi et al. 2021} |Tosh et al., 2021} |Wei et al., [2021}; |Bao et al.| [2022; |Chen et al., [2022)),
or analysing the spectral and isoperimetric properties of data augmentation (Balestriero & LeCunl 2022;
Han et al., 2023; |Zhuo et al., 2023). The latter approach also result in novel bounds on the generalisation
error (HaoChen et all, 2021} |Zhai et al.|2023)). While generalisation theory remains one of the fundamental
tools to characterise the statistical performance, it has been already established for supervised learning that
classical generalisation error bounds do not provide a complete theoretical understanding and can become
trivial in the context of neural network models (Zhang et al., 2017} [Neyshabur et al.| |2017)). Therefore a
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key focus in modern deep learning theory is to understand the learning dynamics of models, often under
gradient descent, as they provide a more tractable expression of the problem that can be an essential tool to
understand the loss landscape and convergence (Fukumizu, 1998; |Saxe et al., [2014; Pretorius et al. |2018),
early stopping 2021)), linearised (kernel) approximations (Jacot et al., 2018; Du et al., 2019) and,
mostly importantly, generalisation and inductive biases (Soudry et al) 2018; Luo et al.,, 2019; [Heckel &/

Yilmaz 2021).

In this paper, we analyze the learning dynamics of SSL models under contrastive and non-contrastive losses
(Arora et all [2019b; |Chen et all, |2020), which we show to be significantly different from the dynamics of
supervised models. This gives a simple and precise characterization of the dynamics that can provide the
foundation for future theoretical analysis of SSL models. Before presenting the learning dynamics, we recall
the SSL principles and losses consisdered in this work.

ls—di

Contrastive Learning. Contrastive SSL has its roots in the work of [Bromley et al.| (1993)). Recent deep
learning based contrastive SSL show great empirical success in computer vision (Chen et all 2020; (Caron|
let al.l 2021% Jing & Tian, 2019), video data (Fernando et al.,|2017; [Sermanet et al., |2018), natural language
tasks (Misra & Maaten, [2020; Devlin et al., 2019) and speech (Steffen et al., 2019; [Mohamed et all 2022).
In general a contrastive loss is defined by considering an anchor image, x € R?, positive samples {x*} C R?
generated using data augmentation techniques as well as independent negative samples {x~} C RY. The
heuristic goal is to align the anchor more with the positive samples than the negative ones, which is rooted
in the idea of maximizing mutual information between similar samples of the data. In this work, we consider
a simple contrastive loss minimisation problem along the lines of |/Arora et al.| (2019b), assuming exactly one
positive sample xf and one negative sample z; for each anchor xlﬂ

m@inZu(wi)T (u(xz_) - u(x;")) , (1)

where u = [u;(+,0)...u.(-,0)]" : RY — R? is the embedding function, parameterized by ©, the learnable
parameters.

Non-Contrastive Learning Non-contrastive losses emerged from the observation that negative samples
(or pairs) in contrastive SSL are not necessary in practice, and it suffices to maximise only alignment between
positve pairs (Chen & Hel (2021)); |Chen et al.| (2020)); |Grill et al.| (2020). Considering a simplified version of
the setup in [Chen et al| (2020) one learns a representation by minimising the loss [}

m@inz —u(z;) Tu(x)). (2)

The embedding u = [u;(,0)...u.(-,0)]" : R? — R? parametrised by O, typically comprises of a base
encoder network and a projection head in practice (Chen et al., 2020).

Contributions. The objective of this paper is to derive the evolution dynamics of the learned embedding
u = u(-,0) under gradient flow for the constrastive and non-contrastive losses . More specifically we
show the following:

o We express the learning dynamics for both contrastive and non-contrastive learning and show that,
the evolution dynamics is same across dimensions. This explains why SSL is naturally prone to
dimension collapse.

e Assuming a 2-layer linear network, we show that dimension collapse cannot be avoided by adding
standard Frobenius norm reguralisation or constraint, but by adding orthogonality or L2 norm
constraints.

1t is straightforward to extend our analysis to multiple positive and negative samples, but the expressions become cumber-
some, without providing additional insights.

2We simplify [Chen et al| (2020 by replacing the cosine similarity with the standard dot product and also by replacing an
+

additional positive sample x."" by anchor x; for convenience.
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o We further show that at initialization, the dynamics of 2-layer network with nonlinear activation
is close to their linear, width independent counterparts (Theorem . We also provide empirical
evidence that the evolution of the infinite width non-linear networks are close to their linear coun-
terparts, under certain conditions on the nonlinearity (that hold for tanh).

o We derive the learning dynamics of SSL for linear networks, under orthogonality constraints (Theo-
rem . We further show the convergence of the learning dynamics for the one dimensional embed-
dings (z =1).

e We numerically show, on the MNIST dataset, that our derived SSL learning dynamics can be
solved significantly faster than training nonlinear networks, and yet provide comparable accuracy
on downstream tasks.

All proofs are provided in the supplementary material.

Related works. Our focus is on the evolution of the learned representations, and hence, considerably
different from the aforementioned literature on generalisation theory and spectral analysis of SSL. From an
optimisation perspective, |[Liu et al.| (2023) derive the loss landscape of contrastive SSL with linear models,
u(z) = Wz, under InfoNCE loss jvan den Oord et al| (2018)). Although the contrastive loss in seems
simpler than InfoNCE, they are structurally similar under linear models (Liu et all 2023 see Eqns. 4-
6). Training dynamics for contrastive SSL with deep linear models have been partially investigated by
Tian| (2022)), who show an equivalence with principal component analysis, and by [Jing et al.| (2022, who
establish that dimension collapse occurs for over-parametrised linear contrastive models. Theorem [2|provides
a more precise characterisation and convergence criterion of the evolution dynamics than previous works.
Furthermore, none of prior works consider non-linear models or orthogonality constraints as studied in this
work.

We also distinguish our contributions (and discussions on neural tangent kernel connections) with the kernel
equivalents of SSL studied in Kiani et al| (2022); |Johnson et al.| (2023)); [Shah et al| (2022); (Cabannes
et al.| (2023]). While |Shah et al.| (2022)); Cabannes et al.| (2023)) specifically pose SSL objectives using kernel
models, [Kiani et al.| (2022)); Johnson et al.| (2023]) show that contrastive SSL objectives induce specific kernels.
Importantly, these works neither study the learning dynamics nor consider the neural tangent kernel regime.

Notation. Let I, be an n x n identity matrix. For a matrix A let ||Al|; and ||A|, be the standard
frobenious norm and the L2-operator norm respectively. The machine output is denoted by u(-). While w is
time dependent and should be more accurately denoted as u; we suppress the subscript where obvious. For
any time dependent function, for instance u, denote u to be its time derivative i.e. %. ¢ is used to denote
our non-linear activation function and we abuse notation to also denote its co-ordinate-wise application on
a vector by ¢(-). (-,-) is used to denote the standard dot product.

2 Learning Dynamics of Regression and its Ndive Extension to SSL

In the context of regression, |Jacot et al| (2018) show that the evolution dynamics of (infinite width) neural
networks, trained using gradient descent under a squared loss, is equivalent to that of specific kernel machines,
known as the neural tangent kernels (NTK). The analysis has been extended to a wide range of models,
including convolutional networks (Arora et al.l 2019a)), recurrent networks (Alemohammad et al., [2021)),
overparametrised autoencoders (Nguyen et al., 2021)), graph neural networks (Du et al., |2019; Sabanayagam
et al.| [2022)) among others. However, these works are mostly restricted to squared losses, with few results for
margin loss (Chen et al.l |2021)), but derivation of such kernel machines are still open for contrastive or non-
contrastive losses 7, or broadly, in the context of SSL. To illustrate the differences between regression
and SSL, we outline the learning dynamics of multivariate regression with squared loss, and discuss how a
néive extension to SSL is inadequate.
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2.1 Learning Dynamics of Multivariate Regression

Given a training feature matrix X := [z, -- ,xn]T € R™? and corresponding z-dimensional labels
Y = [y1, - ,yn]T € R™ #  consider the regression problem of learning a neural network function

uw(z) = [ui(z,0)...u.(z,0)]", parameterized by ©, by minimising the squared loss function

n

1

£(©):=3 > llu@:) — il
i=1

Under gradient flow, the evolution dynamics of the parameter during training is O =-Vol and, conse-

quently, the evolution of the I-th component of network output u(z), for any input z, follows the differential

equation

(z) = <V@w(l‘),é>

=Y (Veu(w), Vou(w:)) (u;(z:) — yi ;). (3)

i=1 j=1

While the above dynamics apparently involve interaction between the different dimensions of the output
u(x), through (Vew(z), Veu;(z;)), it is easy to observe that this interaction does not contribute to the
dynamics of linear or kernel models. We formalise this in the following lemma.

Lemma 1 (No interaction across output dimensions). Let u : R? — R? be either a linear model
u(x) = Ox, or a kernel machine u(x) = OY(x), where ¥ corresponds to the implicit feature map of a kernel
k, that is, k(z,z") = (¢(z), ¥ ().

Then in the infinite width limit (h — oc) the inner products between the gradients are given by
0 if L # ],

(Vou(x), Vou;(z')) = z'a’ if l = j (linear case),
k(x,z’) ifl =7 (kernel case).

For infinite width neural networks, whose weights are randomly initialised with appropriate scaling, [Jacot
et al| (2018) show that at, initialisation, Lemma || holds with k& being the neural tangent kernel. Approxi-
mations for wide neural networks further imply the kernel remains same during training (Liu et al., [2020)),
and so Lemma [I] continues to hold through training.

Remark 1 (Multivariate regression = independent univariate regressions). A consequence of
Lemma is that the learning dynamics (3) simplifies to

==Y (Vou(x), Vou(x:)) (w(x:) — yir),

=1

that is, each component of the output w; evolves independently from other uj,j # . Hence, one may solve a
z-variate squared regression problem as z independent univariate problems. We discuss below that a similar
phenomenon is true in SSL dynamics with disastrous consequences.

2.2 Dynamics of Nidive SSL has Trivial Solution

We now present the learning dynamics of SSL with contrastive and non-contrastive losses in . For
convenience, we first discuss the non-contrastive case. Assuming that the network function wu : R — R?# is

parametrised by ©, the gradient of the loss £(0) = Y —u(x;) Tu(x]) is
i=1

VeoL(© ZZUJ ;) - Veu;(x]) +uj(a]) - Vous(z;)

=1 j=1
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Hence, under gradient descent © = —VeL, the evolution of each component of u(x), given by iy(z) =
<V@ul(x),é> is

n z

(@) =Y > (Veu(), Vou;(x:)) u; () + (Ve (x), Vou,(a)) u; (). (4)

i=1 j=1

Similarly, in the case of contrastive loss , the learning dynamics of u(x), for any input z, is similarly
expressed by

i(x) =Y (Vew(x), Veu;(x:)) uj(z]) + (Veu (), Vou;(z)) u;(w:)

i=1 j=1

— (Veu(x), Vou;(x:)) uj(x;) — (Veur(x), Vou(x; )) uj(x;). (5)

We note Lemma [I] depends only on the model and not the loss function, and hence, it is applicable for the
SSL dynamics in 7. However, there are no multivariate training labels y € R® in SSL (i.e. y = 0)
that can drive the dynamics of the different components uq,...,u, in different directions, which leads to
dimension collapse.

Proposition 1 (Dimension collapse in SSL dynamcis). Under the conditions of Lemma every
component of the network output u : R* — R* has identical dynamics. As a consequence, the output
collapses to one dimension at convergence.
For linear model, u(x) = Oz, the dynamics of u(x) is given by
n
() =Y (@Te)u()) + (@ e yu(w:)
i=1
for the non-contrastive case, and
n
dn(x) =Y (e Ta) (w(af) —w(@))) + (@l —aTa] Ju(e;)
i=1

for the contrastive case. For kernel models, the dynamcis is similarly obtained by replacing each x 'z’ by
k(x,2').

By the extension of Lemma [I] to neural network and NTK dynamics, one can conclude that Proposition [I]
and dimension collapse also happen for wide neural networks, when trained for the SSL losses in 7.

Remark 2 (SSL dynamics for other losses). One may argue that the above dimension collapse is a
consequence of loss definitions in 7, and may not exist for other losses. We note that|Liu et al| (2023)
analyse contrastive learning with linear model under InfoNCE, and the simplified loss closely resembles
, which implies decoupling of output dimensions (and hence, dimension collapse) would also happen for
InfoNCE. The same argument also holds for non-constrastive loss in |Chen et al.| (2020). However, for the
spectral contrastive loss of [HaoChen et al.| (2021), the output dimensions remain coupled in the SSL dynamics
due to existing interactions u(z;) u(x; ) on the training data.

Remark 3 (Projections cannot overcome dimension collapse). |Jing et al.| (2022) propose to project
the representation learned by a SSL model into a much smaller dimension, and show that fixed (non trainable)
projectors may suffice. For a linear model, this implies u(x) = AOz, where A € R™* r < z is fized. It is
straightforward to adapt the dynamics and Proposition[]] to this case, and observe that for any r > 1, all the
r components of u(xz) have identical learning dynamics, and hence, collapse at convergence.

3 SSL with (Orthogonality) Constraints

For the remainder of the paper, we assume that the SSL model u : R* — R? corresponds to a 2-layer neural
network of the form

. al
zeR? M gh 20, gr Wa, u(z) = Wy ¢(Wyiz) € R?,
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where h is the size of the hidden layer and © = (Wy, W, ) are trainable matrices. Whenever needed, we

use u? for the output to emphasize the nonlinear activation ¢, and contrast it with a 2-layer linear network
ul(z) = W, Wy

Based on the discussion in the previous section, it is natural to ask how can the SSL problem be rephrased
to avoid dimension collapse. An obvious approach is to add regularisation or constraints (Bardes et al.|
2021 [Ermolov et al., |2021; |Caron et al.| 2020]). The most obvious regularisation or constraint on Wy, Ws is
entry-wise, such as on Frobenius norm. While there has been little study on various regularisations in SSL
literature, a plethora of variants for Frobenius norm regularisations can be found for autoencoders, such as
sum-regularsiation, ||[W1||% + |[|[W2||%, or product regularisation ||W, Wi |2 (Kunin et al.l 2019).

It is known in the optimisation literature that regularised loss minimisation can be equivalently expressed
as constrained optimisation problems. In this paper, we use the latter formulation for convenience of the
subsequent analysis. The following result shows that Frobenius norm constraints do not prevent the output
dimensions from decoupling, and hence, it is still prone to dimension collapse.

Proposition 2 (Frobenius norm constraint does not prevent dimension collapse). Consider a
linear SSL model u®(z) = Wy ¢(Wyz). The optimisation problem

in L(Wy, W-
i, (W, Wy)
st |Whllr < e, [|[Wellr < o,

where the loss L is given by or (@), has a global solution u(z) = [a(z) 0...0]T € R

The above result precisely shows dimension collapse for linear networks u! even with Frobenius norm con-
straints. An alternative to Frobenius norm constraint can be to constrain the L2-operator norm. To this
end, the following result shows that, for linear networks, the operator norm constraint can be realised in
multiple equivalent ways.

Proposition 3 (Equivalence of operator norm and orthonognality constraints). Consider a linear
SSL model u'(x) = W' Wiz, and let the loss L(W1, Wy) be given by either or whose general form

is LW, Ws) = HWJWlCWJWQHE, where C' has atleast one negative eigenvalue. Then the following
optimisation problems are equivalent:

LWy, Ws)
min ————-—
Wi, W2 ||W2H2 ||W1H2

2. min L(Wl,WQ) s.t. ||W2||2 S 1, HW1||2 S 1,
Wi, W2

1.

: T
. .T. <1
3 pnin, LW, Wa) st |[Wy Wil <1

4. min LW, W) st Wy Wy =1, W,'W; =1,.
Wi1,Wa

Additionally this regularization avoids dimension collapse.

Avoidance of dimensional collapse is also heuristically evident in the orthogonality constraint Wy Wo =
I., W,'W; = I, which we focus on in the subsequent sections. In particular we observe from the proof of
Prop[3|that this regularization extracts the eigenvectors of C' corresponding to its "most-negative" eigenvalues

Example 1 (SSL dynamics on half moons). We numerically illustrate the importance of constraints in
SSL. We consider a contrastive setting with the loss in and u(z) = W, tanh(Wyz) for the dataset shown
n Figure where ™ is an independent sample from the dataset and x+ = x+e wheree ~ N(0,0.11). Let us
now compare the dynamics of L (no constraints) and Lorin, the scaling loss that corresponds to orthogonality
constraints, and present the results in Figure [l We firstly observe in Figure that the unconstrained loss
does not converge. Secondly considering the embeddings as plotted in Figure[Il we observe dimension collapse
for the unconstrained loss function (middle) but not for the one with orthogonal constraints (right).
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(a) Dataset and loss. (left) Tllustration of the dataset in R®. The considered test point is marked with the blue cross.
(right) Loss curve (mean over 100 initializations) for the network with and without orthogonal constraint.
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(b) Embedding into R?. (left) Embedding at initialization. (middle) Embedding for the network without constraints
after 30 epochs. (right) Embedding for the network with orthogonal constraints after 500 epochs.

Figure 1: Ilustration of dimension collapse. We consider the Dataset in Figure and plot the loss for
constraint and unconstrained models. In Figure [[b] we furthermore plot the embedding at initialization and
during training for both models.

3.1 Non-Linear SSL Models are Almost Linear

While the above discussion pertains to only linear models, we now show that the network, with nonlinear
activation ¢ and orthognality constraints,
-
uly () = W3 (Wha)
s.t. Id/grlﬂ/g = Hz, I‘firtdfl - Hd7

is almost linear. For this discussion, we explicitly mention the time dependence as a subscript u?t). We begin
by arguing theoretically that in the infinite width limit at initialization there is very little difference between

the output of the non-linear machine u?o) and that of its linear counterpart U]%o)'

Theorem 1 (Comparison of Linear and Non-linear Network). Recall that uy provides the output of
the machine at time t and therefore consider the linear and non-linear setting at initialization as

) = Wy Wiz st W Wa =1, W)W, =1Ig (6)
u?)O) =W, ¢ (Wix) st Wy Wy =1, W' W) =1,

Let ¢(-) be an activation function, such that $(0) =0, ¢'(0) =1, and |¢"(-)| < c. E| Then at initialization as
uniformly random orthogonal matrices
log* h

h

H“((lso)ful([O)H < Ke|z|*d

where K is an universal constant ¢, d is the feature dimension and h the width of the hidden layer.

3This last assumption can also be weakened to say that ¢’ is continuous at 0. See the proof of the theorem for details.
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Figure 2: Difference between the non-linear output and the linear output under various conditions on the
activation function. Change of the difference while training for hidden layer size 10 to 1000.

We furthermore conjecture that the same behaviour holds during evolution.

Conjecture 1 (Evolution of Non-linear Networks). Consider the setup of Theorem |1| with the linear
(u]%t)> and non-linear machine (u?)t)) as defined in @ and an optimization of the general

vgzlivrvll Tr (uz;)u(t)>

st. Wy Wo =1, and W, W, =1,.

Again assume ¢ is an activation function, such that $(0) =0 and ¢'(0) = 1. Then

—0 Vt>0ash— .

[ I
H“m )
Numerical justification of the above conjecture is presented in the following section.

3.2 Numerical Evaluation

We now illustrate the findings of of Theorem [I] and Conjecture [I] numerically. For evaluation we use the
following experimental setup: We train a network with contrastive loss as defined in using gradient
descent with learning rate 0.01 for 100 epochs and hidden layer size from 10 to 1000. We consider the
following three loss functions: (1) sigmoid, (2) ReLU (¢(z) = max{z,0}) and (3) tanh. The results are
shown in Figure [2] where the plot shows the average over 10 initializations. We note that tanh fulfills the
conditions on ¢ and we see that with increasing layer size the difference between linear and non-linear goes
to zero. While ReLU only fulfills ¢(0) = 0 the overall picture still is consistent with tanh but with slower
convergence. Finally the results on sigmoid (which has a linear drift consistent with its value at 0) indicate
that the conditions on ¢ are necessary as we observe the opposite picture: with increased layer width the
difference between linear and non-linear increases.

4 Learning Dynamics of Linear SSL Models

Having showed that the non-linear dynamics are close to the linear ones we now analyze the linear dynamics.
We do so by first showing that the two SSL settings discussed in the introduction can be phrased as a more
general trace minimization problem. From there we derive the learning dynamics and discuss the evolution
of the differential equation. Furthermore we numerically evaluate the theoretical results and show that the
dynamics coincide with learning the general loss function under gradient decent.

We can define a simple linear embedding function u as: u(z) = W, Wiz where the feature dimension is d
for n data points. The hidden layer dimension is h and embedding dimension z, such that the weights are
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given by Wy € RP** W, € R"*4, Therefore we can write our loss function as

L= iTr (WQTWﬁz (z;7 — xj)T W1TW2)

_ (W2T WLCW, Wg) = Tr (W W,CW, W)
with
_Cc+CT

¢ 2

n
~ _ T
and C = le (z; — ) . (7)
i
Furthermore can easily be extended to the p positive and ¢ negative sample setting where we then
obtain C = " (Zg x; (:EJ_)T s (:Cj_)—r> . In addition we can also frame the previously considered
non-contrastive model in in the simple linear setting by considering the general loss function with C' =
S, (m*)T . We can now consider the learning dynamics of models, that minimize objects of the form

K2 2

Definition 1 (General Loss Function). Consider the following loss function
Ly,w, = Tr (W, W1CW, W) (8)
s.t. Wy Wo =1, and W' W, = 1,.

where Wi € R4 gnd Wy € RM? are the trainable weight matrices. C € RY*¢ s a symmetric, data
dependent matrix.

With the general optimization problem set up we can analyze by deriving the dynamics under orthogo-
nality constraints on the weights, which constitutes gradient descent on the Grassmannian manifold. While
orthogonality constraints are easy to initialize the main mathematical complexity arises from ensuring that
the constraint is preserved over time. Following |Lai et al.| (2020), we do so by ensuring that the gradients
lie in the tangent bundle of orthogonal matrices.

4.1 Theoretical Analysis

In the following we present the dynamics in Theorem [2] followed by the analysis of the evolution of the
dynamics in Theorem
Theorem 2 (Learning Dynamics in the Linear Setting). Let us recall the the general linear trace
minimization problem stated in .'

min Tr (W;chWlTWQ)

Wo Wi

st. Wy Wo =1, and W, W =1,.

where W, € R and Wy € R'? are the trainable weight matrices and C € R¥? o symmetric, data
dependent matrices, such that C = VAV with V := [vy,...,vq). Then with q = [uﬂ(vl), e ,uﬂ(vd)]T,
where u represents the machine function i.e. u'(x) = Wy Wiz, the learning dynamics of q, the machine
outputs are given by

G=—2[2Aq — Aqq"q — qq" Aq]. 9)

Similar differential equations to (9) have been analysed in [Yan et al| (1994) and [Fukumizu (1998). The
typical way to find stable solutions to such equations involve converting it to a differential equation on ¢q'.
This gives us a matrix riccati type equation. For brevity’s sake we write below a complete solution when
z=1.

Evolution of the differential equation. While the above differential equation doesn’t seem to have a
simple closed form, a few critical observations can still be made about it - particularly about what this
differential equation converges to. As observed in Figure [3| (right), independent of initialisation we converge
to either of two points. In the following we formalise this observation.
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Loss Dynamics of the Machine Output
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Figure 3: Comparison of gradient decent optimization and differential equation. (left) comparison of the
loss function (right) comparison of the outputs.

Theorem 3 (Evolution of learning dynamics in @ for z =1). Let z =1 then our update rule simplifies to

DN |0

=—(1- qTq)Aq - (I- qu)Aq. (10)

We can distinguish two cases:

o Assume all the eigenvalues of A are strictly positive then q converges to O with probability 1.

o Assume there is at least one negative eigenvalue of A, then q becomes the smallest eigenvector, vy .

The requirement of negative eigenvalues of C for a non-trivial convergence might be surprising however we
can observe this when considering C' in expectation. Let us assume C' is constructed by (@ and note that

E[é] =E [ i (x; — xj) T } . While this already gives a heuristic of what is going on, for some more precise

mathematical calculations, we can specialise to the situation where x~ is given by an independent sample
and x is given by adding a noise value € sampled from N(0,0l), i.e. z+ = x +¢. Then

n

E[C] =Y Elz]E[z; '] - Elwia]

9

] = —nE[zz ).

=1

Thus E[C] is in fact negative definite. Extending Theorem [3[to a general k > 1 we conjecture the following
to hold.

Conjecture 2. If C has atleast k strictly negative eigenvalues and vy, ..., vx are the eigenvectors correspond-
ing to the most negative eigenvalues then the space spanned by v1,...,v; and that by q1, ..., qr are the same
in limit where q; denotes the i’th column of q.

We note that to prove the conjecture it is enough to show in limit vy, ..., vy are each contained in the space
spanned by qi, ..., qrx. As the norm of v; is 1, it is enough in turn to show that the norm of the projection of
v; onto the space of q1, ..., g, converges to 1. We experimentally verify and illustrate this in Figure

New Datapoint. While the above dynamics provide the setting during training we can furthermore in-
vestigate what happens if we input a new datapoint or a testpoint to the machine. Because u is a linear
function and because vy, ..., v4 is a basis this is quite trivial. So if # is a new point, let & = (aq, ..., aq)' be

. PN d .
the co-ordinates of #, i.e. # =37 a;v; or « =V 4. Then

d d
ue () = uy (Z aivi> = Zaiut(vi) =q¢la=¢ Vi
i i

10
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Figure 4: (left) Run-time comparison between running differential equation and SGD iteration for different
hidden layer width. (right) Downstream task: Accuracy comparison for SVM on embedding obtained by
SGD optimization and running the differential equation.

4.2 Numerical Evaluation

We can now further illustrate the above derived theoretical results empirically.

Leaning dynamics (Theorem [2) and new Datapoint. We can now illustrate that the derived dynamics
in @[) do indeed behave similar to learning using gradient decent updates. To analyze the learning
dynamics we consider the gradient decent update of :

Wl(,t;l) = 1(2 + HVLWS),WY) (11)

where I/Vl(t)7 Q(t) are the weights at time step ¢ and 7 is the learning rate as a reference. Practically the
constraints in are enforced by projecting the weights back onto VV2T Wy =1, and V[/lT Wi = I after each
gradient step. Secondly we consider a discretized version of @D

Q41 = qe — n[20q — Ay @ — aq) Ay ). (12)

where ¢; is the machine outputs at time step ¢t. We now illustrate the comparison through in Figure |3| where
we consider different width of the network (h € {10,100,1000}) and n = 0.01. We can firstly observe on the
left, that the loss function of the trained network and the dynamics and observe while the decay is slightly
slower in the dynamics setting both converge to the same final loss value. Secondly we can compare the
function outputs during training in Figure [3| (right): We initialize the NN randomly and use this initial
machine output as gy. We observe that during the evolution using & for a given initialization the
are stay close to each other and converge to the same final outputs.

Numerical Evaluation of Theorem We can again illustrate that the behaviour stated in Theorem
can indeed be observed empirically. This is shown in Figure [3| (right), a setting where C' has negative
eigenvalues. We observe that eventually the machine outputs converge to the smallest eigenvector.

Runtime and downstram task. Before going into the illustration of the dynamics we furthermore note
that an update step using is significantly faster then a SGD step using . For this illustration we
now consider two classes with 200 datapoints each from the MNIST dataset Deng] (2012)). This is illustrated
in Figure [4| (left) where we compare the runtime over different layer width (of which is independent
of). Expectantly scales linearly with A and overall has a shorter runtime per timestep. While
throughout the paper we focus on the obtained embeddings we can furthermore consider the performance of
downstream tasks on top of the embeddings. We illustrate this in the setting above where we apply a linear
SVM on top of the embeddings. The results are shown in Figure |4 (right) where we observe that overall the
performance of the downstream task for both the SGD optimization and the differential equation coincide.

Deep Linear Networks. Numerically we extend the illustration of the learning dynamics as derived in
Theorem [2] for one hidden layer to multiple hidden layers. In Figure [6] we observe that for two and three
hidden layer we still converge to the same final embedding as the one derived for one hidden layer.

11
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Figure 5: Counsider the dataset presented in Figure [lajand embedding into z = {1, 2, 3}. Plotted is the norm
of the projection of vy, ...wv3 onto the space spanned by the collumns of q.

Dynamics of the Machine Output
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Figure 6: Numerical illustration of the convergence of deep linear models. We consider the same setting as
considered above for the one hidden layer setting and plot similar dynamics for two and three hidden layer
linear networks.

5 Conclusion

The study of learning dynamics of (infinite-width) neural networks has led to important results for the su-
pervised setting. However, there is little understanding of SSL dynamics. Our initial steps towards analysing
SSL dynamics encounters a hurdle: standard SSL training has drastic dimension collapse (Proposition ,
unless there are suitable constraints. We consider a general formulation of linear SSL under orthogonality
constraints , and derive its learning dynamics (Theorem . We also show that the derived dynamics can
approximate the SSL dynamics using wide neural networks (T heorem under some conditions on activation
¢. We not only provide a framework for analysis of SSL dynamics, but also shows how the analysis can
critically differ from the supervised setting. As we numerically demonstrate, our derived dynamics can be
used an efficient computational tool to approximate SSL models. In particular, the equivalence in Proposi-
tion [3] ensures that the orthogonality constraints can be equivalently imposed using a scaled loss, which is
easy to implement in practice. We conclude with a limitation and open problem. Our analysis relies on a
linear approximation of wide networks, but more precise characterisation in terms of kernel approximation
(Jacot et all [2018; [Liu et al., 2020) may be possible, which can better explain the dynamics of deep SSL
models. However, integrating orthogonality or operator norm constraints in the NTK regime remains an
open question.
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A Appendix

In the appendix we provide the following additional proofs

e Proof of Lemmall
 Proof of Proposition
e Proof of Proposition
o Proof of Theorem [
 Proof of Theorem [

e Proof of Theorem [3]

A.1 Proof of Lemmdil

Proof. Let the collumns of W5 be denoted by w1, ws,...,w,. Then we note that each component of u, u; is
given by u;(x) = w] ¢(Wyz). Thus if [ # j, u;(x) has no dependence with wy i.e. Vy,u;(x) = 0. Thus we
get that when [ # 7,

(Veoui(x), Veu;(x)) = (Vw,w(x), Vi, u;(z")) .

We can now use [Liu et al.| (2020) (for instance its Lemma 3.1) which basically concludes that no training
happens at the penultimate or prior layers. In limit all positive gradients arise only from the final layer. As
such

(Vw, (), Vv, u;(2')) = 0.
By the same token, for [ = 7,

<v@ul<$)7 V@Uj (;C/)> = <VW1 ul(x)7 le Uj (xl» + <ij U (CL‘), v'wj U (.%'/)>
= (p(W1rz), p(Wiz'")) .

Finally again using the fact that W; does not change in training and that W is initialized from a normal-
ized gaussian , when ¢ is the identity map, it is well known that the above converges to = '’ (as there
(p(Whz), p(Wiz')) = 2T (W, Wy)x — zT2') and otherwise to a deterministic kernel k (see e.g. (Liu et al.,
2020), (Arora et all [2019D)). O

A.2 Proof of Proposition 2]

Proof. For simplicity of the proof we begin by reformulating the loss function in both contrastive and
noncontrastive setting to a more general form. In particular it is trivial to check that we can generalize by
writing

L="Tr (W, f(X,W1)Ws),
where X denotes the collection of all the relevant data (i.e. V1 <14 < n x;, as well as z;’ and x~ where
applicable), and f(X,W1) = 31, o(Wha;) (p(Whz; ) — ¢(Wla:;r))T in the contrastive setting (equation |
while f(X,W1) ==Y 1, ¢(Wiz;)p(Wiz] )T in the non-contrastive setting (equation )

Then decompose

k
T § : 2 T
W2W2 = o,;Viv; .
i=1
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Note then that ||W2||§7 =Tr (WoW, ) = Zle o?. Thus the optimization target,

k
LW, Wa) = Tr (W, f(X, W1)Ws) = Tr (f(X, W1)WoW, ) = Tr <f(X, Wi) Zafvivj>
i=1
k k
Z F(X, W)y 2 min (o] FX, W)} Y o? = [[Wall min k{U:f(Xv Wi)vi}.
P P i=1 to
Thus when the Frobenius norm is restricted (i.e. bounded between 0 and c¢), if f(X, W) has atleast one
negative eigenvalue the loss is minimized when v is the eigenvector corresponding to the most negative
eigenvalue of f(X,W;) with o1 = |[Wa||p, with no other non-zero singular value. On the other hand if
f(X,W7) has no negative eigenvalue then the loss is minimized when W5 = 0. O

A.3 Proof of Proposition [3]

Proof. We begin by quickly observing that (1) <= (2). This is simply done by defining W, = i ‘ for
i =1,2. Then we have
Tr (W, W,CW, W- A ToA N
argmin r (W 21 ! 5 2) = argmin Tr (WQT WioW," Wz)
wiwe WAy [[Well; Wi Wi [ W || = | W |, =1

Using the fact that at least one eigenvalue of C' is strictly negative (this rules out the case that the optimal
is achieved when W; = 0 as that would have prevented division by norm) then we can quickly get that

argmin Tr (W;WICWFWQ) = argmin Tr (W;WlCWlTWQ) .
W e = =1 W <

For (2) <= (3), we begin by observing that by submultiplicativity of norm, any W, Wy such that
[Will, < 1 and [[Wall, < 1 automatically falls is the optimization space given by ||[W,"Ws| < 1 thus

giving one direction of the optimization equivalence for free. For the other side we note that given any

W1, Wy such that HWl—'—WgHz = HWlTWgWQTWle < 1, we can construct Wl,Wg such that ‘ Al

wir WQWQT Wy = W, WoW, Wy, This follows from considering the singular values decomposition of W W,
getting W,T Wy = UTEV. As the norm of the product is smaller than 1, all the entries of the singular value
matrix X are less than 1. Thus depending upon which among d or z is larger we consider either the matrices
YU and V or the matrices U and XV to be our candidate Wy and W, respectively. To complete we will
simply have to add zero rows to our choice i.e. say U and ¥V to match the dimensions (i.e. to get a n x d
matrix from a z x d one).

Finally for (3) <= (4) we begin by defining W = W," Wy. Then the optimization problem in (3) becomes,

min Tr (WTCW) = min Tr (CWWT) .
Wi [W]l,<1 Wi [W]|,<1

We then prove that we are done if we can prove the claim at optimal of (3) (i.e. the above optimization
problem) all the eigenvalues of WW T are 1 or 0. Given this claim the singular value decomposition of W
becomes only W = U "V, where if k = rank(W), U is a k x d matrix and V a k x z matrix. Additionally by
property of SVD, the collumns of U and V are orthonormal. Finally as

k = rank(W) < min{rank(Wh), rank(W3)} < min{d, z} <n,

we can add a bunch of zero rows to U and V to get our n x d and n X z matrices which will be our
corresponding W; and Ws.
It remains to prove that Tr (CWWT) is minimized when all the eigenvalues of WW T are 1 or 0. To do this

simply decompose
k
T Z 2, T
= g, 0;0;
i=1
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where v; is the set of orthonormal eigenvectors of WW T corresponding to non-zero eigenvalues of WW T (or
alternatively non-zero singular values of W) Then

k
Tr (C’WWT) =Tr (C'ZafviviT>
i=1

k
= Z U? Tr (C’viv;)
i=1
k
= Z o?v, Cu.
i=1
Thus if C' has [ many strictly negative eigenvalues A; < --- < A\; with corresponding eigenvectors cq, ...,
and o? is positive the above quantity is minimized by choosing as many of these as possible i.e. v, =
Cls-++»Umin{d,z,l} = Cmin{d,z,1} and setting the corresponding o; to be 1 while every setting all other eigen-

values to 0.

We then also note by consequence of the above proof that we avoid dimension collapse when possible i.e.
when C has multiple strictly negative eigenvalues (which is what one should expect if the data is not one
dimensional as E[C] = —E[zz]) O

A.4 Proof of Theorem [

Proof. Let us start by defining some properties for the non-linearity: Assume the non-linear function ¢ is
continuously twice differentiable near 0 and has no bias i.e. ¢(0) = 0. Then via scaling we can assume
WLOG that ¢/(0) = 1. As [¢"(2)| < ¢, we get that []

2
|p(z) — x| < - (13)
Recall that the mapping of the first weight matrix is given by W, : R¢ — R",  h > d under the constraint
that W, W = I. Under uniformly random initialization by Lemma (see proof below) then with probability
asymptotically going to 1 we have that

log® h
max (Wl)?,j <C Ogh

Thus the norm of each row of Wy we get with a.w.h.p. :

d
Jrows (WA)|[* = (W12, < ©

=1

dlog®h
h

From there we can now write the value of each node in the layer using Cauchy-Schwarz inequality as

dlog®h
row; (W1) - z|* < [[row; (W1)||* [|z]|* < C[|=|)? ,f . (14)

We now apply the non-linearity to this quantity and denote the output of the first layer after the non-linearity
as

v; = ¢ (vow; (Wh) - )

Define the vector € € R", where
€; = V; — IOW; (Wl) T

4We can actually also use the weaker assumption that ¢”(0) is continuous at 0. Thus there is some bounded (compact) set
2
A containing 0 and a constant c¢ such that Vo € A, |¢(z) —z| < S5
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Then we have for h large enougl”ﬂ

(-
“l\'}

S
Il
_

[
B

(v; — row; (W) - )2

.
Il
—

h 2
< Z e (row; (Wh) - z)* by equation [1]
o4
h 2 2
c? 5 dlog®h )
< z:: T (C’ ||z - by equation [T
hd?log* h d?log* h
= K2 o PEIOE R gerga ot LD

where K is the universal constant %

outputs of the two networks as

. Combining this with the second layer we get the difference of the

Hu?o) — uI([O) H = HWQTU — W;Wle

= W (v~ W)
< |Wall lell = [le] as |[Wa| =1
log* h
< Ke | dy| =2
h
— 0.

O

Lemma 2. Given any d < p, Let Q be a uniformly random h X d semi-orthonormal matriz. ILe. Q is
the first d columns of an uniformly random h x h orthonormal matriz. Then there are constants L and a
sequence €, converging to 0 as h goes to infinity such that ,

Llog h) <
€n
vh )~

>

P (max|Qw

Proof. We note that it is enough to prove the claim when d = h, i.e. Q is uniformly random h X h orthonormal
matrix. Then as our distribution is uniform, the density at any particular @) is same as the density at any UQ
where U is some other fixed orthogonal matrix. Thus if ¢; is the first column of @, the marginal distribution
of ¢; has the property that its density at any ¢; is same as that of Ugq; for any orthogonal matrix U. In
other words the marginal distribution for any column of () is simply that of the uniform unit sphere.

Consider then the following random variable Which has the same distribution as that of a fixed column of
@ i.e. uniform unit h-sphere. Let X = (X1,..., X;,) be iid random variables from N(0,1). Then we know
that X ~ N(0,1;,). From the rotational symmetry property of standard gaussian then we have that T X”
distributed as an uniform sample from the unit sphere in A dimensions. By union bound then, we have

P IX,| > tlogh ) < ——he—
. 2
(2Rl = Hlog | = TEhe
1 t210g2h
— P X;| <tlogh)>1— ——he =%
<1I£1?<Xh| < tlog > s ‘ i

5Note that for the weaker assumption we can still use equation This is because by equation W.h.p. row; (W1) - © goes
to 0 and thus row; (W) -« € A in limit
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As each X; is iid normal, X? is iid Chi-square with E[X?] = 1, thus by Chernoff there exists constants C’, ¢’

such that ,
2
P (Zi—}; X >1-— s> >1—Cle s,

hox2 .
Since maxi<;<p|X;| < tlogh and Z% < (1 + s) implies that maxi<;<p “Xl| < M, we get that

I = /n(i—s)
X tlogh 1 210g% h
P | max | |§ 8 >1-— he— =F" _ e chs’
1<i<h || X || h(1 — 5s) V2m

. p X|X|Z tlogh < 1 B 1°gh+clfchs
1<1<h I1X || h(1 — 5s)

From the argument before that any j’th column of @ is distributed as X. Using the above and another
union bound then get us

tlogh 1 2 log n
P > < 1 —c'hs?
(1@?<Xh 11235;1‘@ il z h(1l— s)) - w/gﬂhe +C

tlogh )) < 1 2o ¢2 log h —i—Che_ChS
S

— P ( max max |Q; ;| >

1<j<h 1<i<h - h(l — T N2
2 O, 2 1 ’
We note that for any constants ¢, ¢’ that as h goes to infinity, both h2e= %" and he=<hs’ goes to zero.
The proof is then finished by choosing some appropriate constants s,¢ > 0. O]

A.5 Proof of Theorem

Proof. To simplify notation we are dropping the superscript I from u%t . The w in the following proof is
already presumed to be linear. For the same reason we are also dropping the symbol of time, ¢, from
w, Wo, Wy even though all of them are indeed time dependent. Finally for any time dependent functlon f,
we denote 2 W by f

From (Edelman et al.l [1998]), we get that the derivative of a function v restricted to a grassmanian is derived
by left-multiplying 1 — ~y' to the "free" or unrestricted derivative of +. Using this and recalling that the
loss in Eq. [§]is given by

L= Tr (W) WiCW, W),
we therefore can write I/ffl and Vf/g as
Wa(t) = — (I — WaWy ) Vi, £ = =2 (I — WoWy' ) (W1CW, Wa)
Wi(t) = — (I WiW,") Vi, £ = =2 (I - W) (WoWy WiC) .

Thus we obtain

8 ’U,(t) (CC)

S =Wa(t) WA (t) £ Wa(t) T (1)

— (1= Wa W) (—2W, 0w, W))W (e
+ Wo(t)T (I— Wi, ) (—2WaWy WiC) x

= — 2 (W WO + W W, Wi Cx)
+2 (W WiCW W W) Wiz + W Wi, Wa W, Wi Cx)

d
—2 <2W2TW1095 — Wy WiCW, WoW, Wiz — Z Wy Wivo, W, W,y WJchz> ,
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where we obtain the second equality by expanding the terms, taking advantage of Wy Wy = L W,/ W; =1
and Iy = Zf v;v; . Now setting  as v; and using the fact that they are eigenvectors for C' and using
C= Zf )\iviv; gives us:

d d
ﬁ(vj) =2 <2)\jU(t) (Uj) — Z /\iU(t) (Ui)U(t) (Ui)TU(t) (Uj) — )\j Z U(t) (Ui)U(t) (Ui)TU(t) (’Uj))
Let’s rewrite this in matrix notation. First define ¢ := [u(vy),...u(vg)] thus obtaining:
G=—2[2Aq — Agq"q — qq" Aq]
which concludes the proof. O

A.6 Proof of Theorem [3

Proof. For instance first suppose that all the eigenvalues of A are strictly positive and thus ¢" Ag > 0. Then

d(q"q .
(dt ) 2 g =4[~ (1- ¢ Q)" Ag — ¢ (1 - qg")Aq]
=—8(1—-q"q)q" Aq
Observing now that because of orthonormality of our weight matrices, ¢7q = ||gl|> < 1 (as [|¢] # 1 at

initialization with probability 1) we get that the derivative of ||| is always negative and thus ¢ converges
to 0.

Now suppose on the other hand there is atleast one negative eigenvalue. WLOG let e; denote the eigenvector
with the smallest eigenvalue (which is negative). Then

d(e] q)
dt

=efq=2[—~(1—q"q)e] Ag—ef (I-qq")Aq]
=2[(1 —q"g)(=M)ef g+ (¢ Ag — Ai)e] q)]
We now note that ¢"Ag — A\; > 0 as \; is the smallest eigenvalue. Thus as —\; is positive, the derivative

of e] q is always positive unless 1 — ¢' ¢ = ¢" Ag — A\; = 0, which only happens at ¢ = e;. In other words,
eventually ¢ becomes the smallest eigenvector e;. O
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