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Abstract

Large vision-language models (VLMs) are shown to learn rich joint image-text represen-
tations enabling high performances in relevant downstream tasks. However, they fail to
showcase their quantitative understanding of objects, and they lack good counting-aware
representation. This paper conducts a reproducibility study of ‘Teaching CLIP to Count
to Ten’ (Paiss et al., 2023), which presents a method to finetune a CLIP model (Radford
et al., 2021) to improve zero-shot counting accuracy in an image while maintaining the per-
formance for zero-shot classification by introducing a counting-contrastive loss term. We
contribute to the existing methods by improving the model’s performance on a smaller sub-
set of their training data with lower computational resources. We verify these claims by
reproducing their study with our own open-source code. The implementation can be found
at https://anonymous.4open.science/r/CountCLIP-FA07.

1 Introduction

In recent years, the development of large Vision-Language Models (VLMs) has significantly propelled the
field of representation learning in computer vision, with models like CLIP (Radford et al., 2021) and BASIC
(Pham et al., 2023) showcasing their ability to learn robust joint image-text representations. Tasks such
as zero-shot classification, segmentation, image captioning, and text-to-image generation benefit from the
compositional understanding capabilities of such models. However, these models struggle on counting tasks
such as matching an image representation based on the number of the specified objects present, to the text
representation of the count corresponding to the image’s caption. The popularity of text-to-image and text-
to-video models such as Stable Diffusion Video (Blattmann et al., 2023), Sora (Brooks et al., 2024), Lumiere
(Bar-Tal et al., 2024), has risen and such models rely heavily on CLIP for their image-text representations.
Count-aware models like (Paiss et al., 2023) shall greatly enhance the abilities of these existing architectures,
enabling models to produce highly accurate videos with the correct number of entities.

Paiss et al. (2023) suggested shifting the training objective to discriminate between the correct and the
incorrect captions associated with the object counts given an image by introducing a counting loss term
Lcount to the VLM’s loss function. The paper reported a pipeline to create training data consisting of
counting images. A counting image is an image whose caption accurately reflects the number of entities in
the image, as shown in Figure 1(b). This data is then used to fine-tune a pre-trained VLM by contrasting the
representation of the correct caption with that of the synthetically generated counterfactual caption, where
the count in the correct caption is randomly swapped to an incorrect one. This way, the VLM is trained to
align images with its true count captions and discriminate against the incorrect ones. The trained model is
evaluated on the CountBench benchmark, an object counting benchmark introduced by the paper. Noting
its importance to the contributions to VLM’s, this paper seeks to reproduce and build upon their work.

This paper primarily aims at reproducibility while also advancing the existing research. Our keys contribu-
tions include:

1. We improved the model’s performance on a smaller subset, 640 times smaller than that of the paper’s
training data and with lower computational resources, beating the baseline by 1.38%.

2. We created and released our own counting image training dataset, making it publicly accessible.
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3. We created and made public a more comprehensive version of the CountBench benchmark by man-
ually including images from non-functional URLs.

2 Materials and Methods

2.1 Dataset

The LAION-400M (Schuhmann et al., 2021) dataset is used to obtain the counting image dataset. Of the
400 million images, they obtained roughly 200,000 counting images. Due to our size and computational
constraints, we passed over 2 million images and obtained ∼2,000 counting images. We have made our code
and counting set public. As described in the paper, we looked for the sentences that contained the numbers
"two" to "ten" in words. Images were passed through the YOLOv8 (Jocher et al., 2023) object detector,
and the count of the most frequent entity was checked with the count in the caption. If they are equal, the
image-text pair is added to the counting set, as seen in Figure 1(a) .

The method to generate the counting set was highly unfeasible when running over the full dataset. The
training data could have been made public with the URLs being public. The large number of non-functioning
URLs in the original dataset was a major bottleneck. At least 30 out of 540 images were unavailable in the
CountBench due to the URLs of the images being defunct. We contacted the authors of the papers, and
they stated that while they possess the image files, it was against their company policy to share raw images
sourced from publicly available data. The benchmark is the only one of its kind, and it was carefully curated,
to ensure class balance. As a result, any future work measuring counting accuracy must use this benchmark
in addition to other methods for fairer and more reproducible comparisons.

2.2 Training the model

The authors in the original paper utilized a dual loss function, combining the regular contrastive loss of
CLIP (LCLIP ) with a counting-designated loss (Lcount), weighted by the hyperparameter λ (Equation 1).

L = LCLIP + λLcount (1)

The fine-tuning process involved training the model on two different training sets: (i) LAION-400M (Schuh-
mann et al., 2021), an extensive dataset collected from the web comprising general images and captions, and
(ii) a filtered numbered training set C, as described in Section 2.1, containing samples with object counts
spelled out in the captions. While the regular contrastive loss LCLIP was calculated on all samples, the
counting loss Lcount was specifically computed for samples from set C, with N counting image-text pairs in
a batch. For each image-text pair (ik, tk) in set C, a counterfactual caption tCF

k was automatically generated
by replacing the number in the original caption tk with a different random number (e.g., for an image con-
sisting of four parrots, the corresponding true caption “four parrots” can be counterfactualized with “seven
parrots”).

During each step of the training process, the tuples (ik, tk, tCF
k )N

k=1 are fed into CLIP’s text and image
encoders, resulting in the generation of their respective embeddings (eik, etk, etCF

k )N
k=1. The contrastive loss

Lcount was then computed to ensure a high similarity score between the image and the original caption and
a low similarity score with the counterfactual caption (Equation 2). This loss function encouraged the model
to learn the relationship between the spelled-out number in the caption and the number of objects it referred
to. This is shown in Figure 1.

Lcount = − 1
N

N∑
k=1

log exp(eik · etk)
exp(eik · etk) + exp(eik · etCF

k )
(2)

Furthermore, negative samples were exclusively used in the counting objective Lcount, rather than being
added to the batch for the existing contrastive loss LCLIP . This selective approach was adopted to better
weigh the impact of negative samples on the counting objective. To reproduce the experimental setup
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(a)

(b) (c)

Figure 1: Figure copyright Paiss et al. (2023). (a) Training setup (b) Examples of counting images (c)
Examples of noncounting images
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Figure 2: (a) Class frequency (b) log2(frequency) (c) log2(log2(frequency))

accurately, we followed the described procedures, including creating counterfactual captions and the training
regime on the specified datasets.

2.3 Balancing lambda

In section 2.2, the hyperparameter λ was introduced to adjust the weightage of LCLIP and Lcount in the
final loss function. In the paper, the optimal lambda was reported to be 1.

We introduce a new scheme for setting the hyperparameter λ by balancing it on the frequencies of the classes.
The main motivation behind this is the severe imbalance in the counting training data for both our counting
set as well as Paiss et al. (2023)’s. The paper used a form of undersampling, as they had very a large amount
of data avaliable to them. This scheme of choosing λ ensures that more focus is given to the less frequent
class. This technique allows us to use this modified loss on smaller datasets like ours.

We present three ways to balance lambda, λnorm, λmodal, λlog. The λnorm in equation (3) setting the focus
in proportion to the frequency of classes. The lambda is normalised as it is always a fraction of λ0.

λnorm(class) = (1 − nclass

ntotal
)λ0 (3)

The λmodal (given by Equation (4)) sets more focus on less frequent classes, while ensuring that the most
frequent (modal) class has the minimum value λ0.

λmodal(class) = nmodal

nclass
λ0 (4)

The λlog in Equation (5) and σ in Equation (6) are computed for all classes. σmin, σmax are the minimum
and maximum values of σ after computing it for each class respectively. The training dataset had a class
imbalance resembling an exponential curve. By taking the logarithmic transformation as in Equation (6),
we can apply a linear scaling to the λ, while avoiding overfitting on the least frequent classes. The class
distributions are plotted in figure 2(a), and resembles an exponential curve. On taking the logarithm, we
see that the distribution is now close to linear. We apply the logarithm again to make the distribution as
linear as possible for our training data. This is seen in the figure 2. We have tested the model by taking the
logarithm once (i.e., log2( ntotal

nclass
)) for computing σ, however, it yielded poorer results, so we proceeded with

the transformation as per Equation 6.

λlog(class) = (σclass − σmin

σmax
+ 1)λ0 (5)

σ(class) = log2(log2( ntotal

nclass
)) (6)
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nclass is the number of examples of the given class, and ntotal is the total number of counting images in
the training dataset. The base lambda λ0 is set to 1. During train time, we pass the counting caption to a
function to get its appropriate value of λbalanced based on its count.

2.4 CountPlus

The loss function introduced in the paper (Equation 2) contrasted the correct caption with the counterfactual
caption, where the count in the correct caption is randomly swapped to an incorrect one. We experiment
by changing the loss so that it contrasts the correct caption with all possible counterfactual captions, where
the number is swapped with all possible incorrect values.

Lcount+ = − 1
N

N∑
k=1

log exp(eik · etk)
exp(eik · etk) +

∑10
j=2;j ̸=count exp(eik · etCF

k )
(7)

3 Evaluation

The paper also published a new image-text counting benchmark CountBench for evaluating a model’s un-
derstanding of object counting, which we used to benchmark our model. The data is carefully curated and
class-balanced, with 540 images. We create embeddings of all the possible combinations for the captions
of the images, take the embeddings of the 9 captions and images, and compute the similarity score with
each caption. The caption with the highest similarity score is the predicted class. We have normalised the
embeddings before the dot product in all the results reported in Table 1. Figure 4 and Figure 5 gives the
confusion matrices for the tested configurations.

4 Results

The baseline accuracy for a CLIP B/32 model on the CountBench dataset is 27.5% with no training. The
confusion matrices for the main comparisons are given in Figure 3. Please refer to Figure 4 and Figure 5
of Appendix A for the confusion matrices for the remaining experiments. The accuracies are reported in
Table 1. Paiss et al. (2023) reported the results on both CLIP and BASIC. However, in this paper, we
only focus on training CLIP. We have used a learning rate of 5e−6, and 20,000 steps (10 epochs), and a
linear warmup in the first half of the steps with a cosine scheduler in the other half. The difference is in
the amount of data used to train the model, bsize is the batch size, p is the proportion of counting images
in a batch, and ncount is the total number of counting images in the training data. Paiss et al. (2023):
bsize = 32, 768, p = 1/32, ncount = 200, 000; Ours: bsize = 5, p = 1/5, ncount = 2000.

Configuration Accuracy (end of 10th epoch) (%) Max Acc. (with early stopping) (%)
λ = 1 with no scheduler 21.81 25.15
scheduler and λ = 1 (base model) 22.59 25.93
λnorm 21.61 25.74
scheduler and λnorm 25.54 25.54
scheduler and λnorm and Lcount+ 26.92 26.92
λmodal 20.83 26.13
scheduler and λmodal 19.84 26.33
scheduler and λmodal and Lcount+ 26.33 28.88
λlog 19.25 24.56
scheduler and λlog 21.81 27.90
scheduler and λlog and Lcount+ 22.59 27.50

Table 1: Zero-shot counting accuracy for the configurations for a CLIP-B/32 model
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Figure 3: Confusion matrices with early stopping for: (a)baseline (b) scheduler and λ = 1 (base model) (c)
scheduler and λmodal and Lcount+ (d) scheduler and λnorm and Lcount+ (e) scheduler and λlog and Lcount+

5 Discussion

We found adapting the auxiliary loss weight as a class weight with an appropriate scheme is an effective way
to boost the performance of the model in scenarios with extreme class imbalance and low training dataset
sizes. We have also found that changing the counting objective to a multiclass classification loss leads to
better performance when used with a scheme for balancing lambda, even exceeding or matching the baseline
by upto 1.38% despite the severe lack of data. We performed an ablation of the learning rate scheduler and
observed a gain in both maximum accuracy (using early stopping) and the end of 10th epoch in most cases.

Better schemes can be devised to improve accuracy, a limitation of using such schemes is that, while
it may increase the overall accuracy, it may also weaken the accuracy of classes that are more data rich.
The confusion matrices in Figure 3 show that the models rarely predict the higher-numbered classes, which
may be due to the models not learning to classify those classes due to a lack of training data available for
those classes (refer to Figure 2). Specifically, classes 7-10 each had training data less 20. Our models have
learned to classify the counts much better than the baseline for classes with more data (i.e., classes 2-6).
With more diverse training data, our methods are more likely to get better results on all the classes.

6 Conclusions

We carried out a reproducibility study of the paper ‘Teaching CLIP to Count to Ten’ (Paiss et al. 2023),
that introduced a new loss function to fine-tune VLM’s to make them adept at counting tasks and released
a benchmark for the same. In our efforts to reproduce the paper, we modified the loss function for a small
training dataset (∼ 640 times smaller than the dataset used in the paper). Despite the small amount of data
our modifications have been shown to improve the performance of the model, surpassing the baseline. We
also thoroughly audited the benchmark CountBench published in the paper, finding that ∼ 30 of the 540
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images in the dataset are missing. We have made our datasets and code public, in an effort to make the
work on count-aware VLMs to be more accessible to the research community.
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Figure 4: Confusion matrices for models trained till the end of the 10th epoch for: (a)baseline (b) λ = 1
with no scheduler (c) scheduler and λ = 1 (base model) (d) λnorm (e) scheduler and λnorm (f) scheduler and
λnorm and Lcount+ (g) λmodal (h) scheduler and λmodal (i) scheduler and λmodal and Lcount+ (j) λlog (k)
scheduler and λlog (l) scheduler and λlog and Lcount+

A Visualising Results

This section the contains the confusion matrices for all the experiments as mentioned in Table 1 in Section
4. Figure 4 contains the confusion matrices for models till the end of the 10th epoch. Figure 5 contains the
confusion matrices for an early stopping mechanism selecting models with maximum validation accuracy.
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Figure 5: Confusion matrices for an early stopping mechanism selecting models with maximum validation
accuracy for :(a)baseline (b) λ = 1 with no scheduler (c) scheduler and λ = 1 (base model) (d) λnorm (e)
scheduler and λnorm (f) scheduler and λnorm and Lcount+ (g) λmodal (h) scheduler and λmodal (i) scheduler
and λmodal and Lcount+ (j) λlog (k) scheduler and λlog (l) scheduler and λlog and Lcount+
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