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Abstract

Achieving robust textual comprehension and in-context learning requires
language models capable of interpreting entire document contexts. How-
ever, scaling these models directly to long contexts remains technically
challenging, prompting a surge of “extension” strategies. To date, rigorous
comparisons among these approaches have been complicated by incon-
sistent base models, training data, and evaluation metrics, limiting our
understanding of how long-context performance may differ from stan-
dard benchmarks. In this work, we introduce a controlled extension pro-
tocol and a standardized evaluation pipeline, enabling an apples-to-apples
comparison across diverse long-context methods. Through extensive ex-
periments, we uncover three key insights: (1) perplexity emerges as a
helpful (albeit imperfect) indicator for gauging model quality on lengthy-
context tasks, (2) approximate attention mechanisms exhibit systematic
performance deficits on long-context benchmarks, and (3) exact fine-tuning
remains robust within its extension range, although extrapolation beyond
that range continues to pose challenges. Our results not only help clarify
the current landscape of long-context modeling but also offer guidance
for building more capable, context-aware language models. To fostering
transparency and accelerating progress in this critical area of AI research, all
codebases, trained models, and checkpoints are made available open-source
via https://github.com/Leooyii/LCEG.

1 Introduction

The scale of pretraining data for large language models (LLMs) has grown dramatically,
with open-source models now trained on up to 15 trillion tokens (AI@Meta, 2024). Despite
this progress, implementation challenges often hinder fully training models with larger context
windows (Liu et al., 2023a). Yet long-context capabilities are increasingly recognized as
essential for tasks demanding extensive textual understanding, such as referencing entire
textbooks (Tanzer et al., 2024), summarizing novels (Kryściński et al., 2022), or performing
many-shot learning (Bertsch et al., 2024; Li et al., 2023b).

To circumvent the difficulty of long-context pretraining, researchers have proposed context
extension methods. These approaches adapt LLMs pretrained on standard sequence lengths
to much larger context windows (Chen et al., 2023a; Peng et al., 2023; Han et al., 2023;
bloc97, 2023), differing in attention mechanisms and adaptation procedures. However,
significant variability in training complexity, data usage, and model performance often
leads to inconsistent or incomplete experimental comparisons.

Existing studies have introduced specialized metrics—such as long-context perplexity (Chen
et al., 2023a;b; Han et al., 2023; Hsieh et al., 2024) and retrieval accuracy (Mohtashami &
Jaggi, 2023; gkamradt, 2023)—to capture extended-context performance (Bai et al., 2023;
An et al., 2023). Yet their utility is difficult to calibrate across diverse extension methods.
Further complicating matters, prior work typically focuses on distinct base models, different
post-training data, or custom evaluation protocols, making it challenging to directly compare
reported results.
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In this work, we implement a controlled protocol for context extension. The aim is to
compare context extension while removing spurious factors that impact LLM ability.

Unified Mathematical Framework. We consolidate multiple mathematical formulations of
long-context adaptation into a single, well-rounded perspective, addressing fragmentation
in existing literature and offering a rigorous theoretical grounding for context extension.

Controlled Protocol. We propose a carefully designed experimental setup that employs
five identical open-weight base models, same training data, and tuning hyperparameters
across a diverse set of extension methods. This removes confounding factors and permits
an apples-to-apples comparison of each approach’s ability to scale to longer contexts.

Robust Evaluation. Our study incorporates both intrinsic (e.g., perplexity) and extrinsic
(e.g., downstream tasks) metrics, measured within and beyond each method’s intended
extension range. Although perplexity only partly reflects real-world performance, it still
provides useful insights for many tasks, albeit less reliably when approximate attention
methods are involved.

Key Findings. First, while some question perplexity’s suitability for long-context evaluation,
we find it often correlates with downstream performance in controlled settings, though its
predictive power is not universal. Second, approximate attention approaches show system-
atic performance deficits, raising questions about their trade-offs between efficiency and
accuracy. Third, continual fine-tuning with exact attention reliably enhances long-context
performance, especially within the intended extension range. By contrast, extrapolation to
even longer windows remains an open challenge, suggesting opportunities for future work.

Taken together, our unified mathematical framework, standardized experiments, and multi-
metric evaluation illuminate the landscape of long-context modeling. By bridging existing
gaps in methodology and metrics, we hope to provide a common reference point and spark
more consistent research into extended context windows in LLMs.

2 Related Work
Long Context Methods We divide extension methods into three broad classes: exact
attention, approximate attention, and context compression. Exact attention methods aug-
ment the parameterization of attention. Position interpolation (PI) (Chen et al., 2023a),
NTK-aware (bloc97, 2023), Dynamic NTK (emozilla, 2023), YaRN (Peng et al., 2023), and
CLEX (Chen et al., 2024), all based on RoPE (Su et al., 2021), design position embeddings
for length extension. These methods may be applied with fine-tuning or to frozen models.
Other exact attention methods focus on training-time improvements, such as contrastive
training (Tworkowski et al., 2023). Approximate attention methods uses structured attention
approximations to minimize the computational cost of length growth. Chen et al. (2023b)
uses LoRA (Hu et al., 2021) and a specialized local attention mechanism to reduce further
the computational overhead of further fine-tuning with long context. Other approaches
break the text into chunks and utilize a well-designed "chunk representation" to retrieve
relevant chunks for attention (Mohtashami & Jaggi, 2023; Xiao et al., 2024; Lu et al., 2024).
LM-Infinite and StreamLLM (Han et al., 2023; Xiao et al., 2023) retain only a few tokens
from the beginning of the text and a local window to keep the attention window within the
pretrained length. Xu et al. (2024) focuses on using retrievers to retrieve relevant blocks
from long documents. Finally, context compression methods, which we do not explore in
this work, reduce length extension to length compression via a summarization step (Jiang
et al., 2023; Li et al., 2023c).

Long Context Evaluation Benchmarks The Long Range Arena (LRA) (Tay et al., 2020) is
an early efforts evaluating the proficiency of processing long contexts. Since then, a growing
number of benchmarks have emerged, including LongBench (Bai et al., 2023), LEval (An
et al., 2023), and LooGLE (Li et al., 2023a). These benchmarks are a mixture of diverse
downstream tasks explicitly tailored to assess the capabilities of LLMs in understanding
and generating lengthy contexts. Among these benchmarks, LongBench stands out for
its inclusion of diverse sequences with varying lengths, distributions, patterns, languages,
and domains, enabling a comprehensive, nuanced evaluation. In addition to evaluating
LLMs’ performance on downstream NLP tasks, there is another line of benchmarks that
specifically focuses on assessing particular aspects of long context processing ability Liu
et al. (2023b); Hsieh et al. (2024). For instance, Mohtashami & Jaggi (2023) propose the
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passkey retrieval task to challenge a language model to accurately locate and retrieve a
simple passkey (a five-digit random number) in a long context sequence. Similarly, the
Needle in a Haystack (gkamradt, 2023) test requires the model to accurately recite the
information from a specified sentence(the "needle"). However, most existing works mainly
focus on evaluating mainstream commercial models (e.g. GPT-4 and Claude), open-source
base models, or just perform individual evaluations of a few long context methods. There is
a lack of comprehensive, yet controlled evaluation on long-context extension techniques.

3 Context Extension Methods

3.1 Background: Attention and RoPE

The bottleneck in long context modeling in Transformers is attention. Attention is defined
over C embeddings X = [x1, x2, . . . , xC]

⊤ ∈ RC×d where d is the model dimension. Learned
weight matrices Wv ∈ Rd×dk , Wq ∈ Rd×dk , and Wk ∈ Rd×dk are used to transform these
inputs where dk is the projected hidden dimension. The attention mechanism itself computes
the attention matrix and applies it to produce a weighted sum of the value vectors:

Attention(Q, K, V) = AV = softmax

(
QK⊤
√

dk

)
V. (1)

Basic attention was originally defined with: Q = XWq, K = XWk, V = XWv. However, this
approach does not directly encode the relative position of keys and values.
Rotary Position Embeddings (RoPE) (Su et al., 2024) encode positional information by
applying a phase rotation to each element of the embedding vectors. Formally, we define a
transformation f:

fW(xi, θ) = R(θ, i)W⊤xi (2)

Here xi ∈ Rdk is an embedding for position i, W is a projection matrix, and θ ∈ Rdk/2 is a
frequency basis. The function is defined based on the rotary position matrix:

R(θ, i) =



cos iθ1 − sin iθ1 · · · 0 0
sin iθ1 cos iθ1 · · · 0 0

...
0 0 · · · cos iθ dk

2
− sin iθ dk

2
0 0 · · · sin iθ dk

2
cos iθ dk

2

 (3)

Due to the arrangement of frequencies, this matrix has the property that R(θ, n − m) =
R(θ, m)⊤R(θ, n) by Ptolemy’s identity. We redefine the query-key product between two
positions m and n as,

q⊤
mkn = fWq(xm, θ)⊤fWk (xn, θ) (4)

=
(

R(θ, m)W⊤
q xm

)⊤ (
R(θ, n)W⊤

k xn

)
(5)

= x⊤mWqR(θ, n − m)W⊤
k xn (6)

In this way, the relative positional information n − m is implicitly injected into the query
and key product, thus the attention score. The standard RoPE transformation, fW(xi, θ),

sets the components θj = b
− 2j

dk with base b = 10000.

3.2 Adjusting the Frequency of RoPE for Long Context Extension

We consider four methods for performing length extension on RoPE embeddings: Position
Interpolation (PI) (Chen et al., 2023a), NTK-RoPE (emozilla, 2023), YaRN (Peng et al., 2023)
and CLEX (Chen et al., 2024). In this section our goal is to extend a method trained to extend
position embeddings for context length C to length C′ >> C. The methods in this section

perform this extension by scaling the frequencies with the base scaling vector α ∈ R
dk
2 :

fW(xi) = f(xi, α ⊙ θ). (7)
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Linear Position Interpolation (PI) decreases the frequencies of the basis functions so that
more tokens fit within each period. PI set the components of the base scaling vector to

αPI
j =

C
C′ =

1
t

. (8)

where t = C′
C is target length ratio. PI has been integrated into many open-source models

such as LLaMA2-7B-32K (Together.AI, 2023), Vicuna-7B-v1.5 (Chiang et al., 2023).

Neural Tangent Kernel Interpolation RoPE (NTK-RoPE) builds on linear position interpo-
lation by introducing a per-dimension scaling factor. Inspired by findings from the NTK
literature that show that high-frequency features are difficult for MLPs to learn, NTK-RoPE
preserves high-frequency features while extending the period of low-frequency features.
This is accomplished via a dimension-dependent base scaling vector α:

αNTK-RoPE
j = κ

− 2j
dk , (9)

where κ = (t)
dk

dk−2 so that the lowest frequency is scaled to match PI and the highest
frequency remains the same as in RoPE. An extension to this approach, Dynamic NTK-RoPE
suggests that instead of fixing scaling based on a set ratio s for all examples during inference,
the formula should adapt to the current context length for a specific example. We followed
the set up of Fu et al. (2024) for Dynamic NTK-RoPE. More details are in the Appendix H.

YaRN, another RoPE extension method, uses “NTK-by-parts" interpolation strategies across
different dimensions of the embedding space and introduces a temperature factor to adjust
the attention distribution for long inputs.

αYaRN
j = (

(
1 − γj

) 1
t
+ γj)/

√
T (10)

We use a ramp vector γ to determine the interpolation between the 1
t and the original

frequency base. The interpolation gating is set based on the frequency for the dimension j.
More details about this ramp function can be found in the Appendix F.

Other methods such as CLEX Chen et al. (2024) models the scaling vectors as a dynamical
system, with the goal of learning target-length dependent scaling vectors.

3.3 Adjusting Attention for Context Extension

An alternative approach is to modify the attention function itself. Approaches to handling
longer contexts fall into two main categories: approximate attention and attention modifi-
cation. In approximate attention, instead of computing the full attention matrix, methods
select a subset of positions to attend to. In attention modification, the approach incorporates
additional information through retrieval or other mechanisms. We examine three methods
across these categories: sparse attention, sliding window attention, and retrieval attention.

LongLoRA (Chen et al., 2023b) avoids computing attention ranges over C′ by only comput-
ing the block-diagonl part of attention. Formally, given a sequence length of C′, LongLoRA
divides it into M blocks of size B, resulting in a sparse attention matrix A ∈ RC′×C′

with a
block-diagonal structure:

A =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · AM

 (11)

where Ai ∈ RB×B is the attention matrix for the i-th block. In addition, they shift the blocks
for half of the heads enabling the information flow between groups via shifting. Notably,
while they employ local attention during the fine-tuning phase, full attention is still adopted
during the inference stage.

Landmark Attention (Mohtashami & Jaggi, 2023) addresses the challenge of attending over
long sequences by breaking the input sequence into chunks and using trainable “landmark"
tokens to summarize these chunks. The attention process is carried out in two stages. Given
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a sequence of C′ embeddings, divided into M chunks, each of length B, the first step is to
compute global attention between the query vectors Q ∈ RC′×dk (corresponding to all input
embedding) and the landmark vectors L ∈ RM×dk (which represent the chunks). From this
global attention, a set of n-most attended-to chunks is selected for further processing. Next,
a local attention mechanism is applied within each of the selected chunks. For the n-th
selected chunk, the key matrix for the chunk is denoted as Kn ∈ RB×dk and Qn ∈ RB×dk .
The attention matrices are then computed as follows:

A1 = softmax
(

QLT
√

dk

)
∈ RC′×M, A2,n = softmax

(
QnKT

n√
dk

)
∈ RB×B, (12)

The final attention for each embedding is a combination of these two attentions, which
efficiently scales attention mechanisms for long sequences by focusing on landmark tokens
that summarize large parts of the sequence, followed by local attention within the relevant
chunks.

LM-Infinite (Han et al., 2023) (a.k.a., Sliding Window Attention) maintains a sliding local
window of size M along with a fixed global memory of G positions at the starting point of
the given embedding. Given C′ embeddings, attention is computed over the M embeddings
in its local window and G embeddings in global memory. LM-Infinite replaces relative
positional information n − m with min(n − m, C) while computing the query and key
product in Eq 4. Altogether, LM-Infinite reduces the complexity from O((C′)2) to O(C′(M +
G)) without the need to scale positional encoding.

Self-Extend (Jin et al., 2024) maps the unseen positions in extended context length C′ to
positions within the pretraining context length C to avoid training. For each embeddings,
Self-Extend chooses closest M embeddings and any embeddings beyond are divided into
multiple groups. Each group contains N embeddings. When performing query-key product
between two positions m and n in Equation 4, the relative positional information n − m is
replaced by r which is computed by scaling n − m w.r.t M and N:

r =

{
n − m, n − m ≤ M,
M +

⌊ n−m
N
⌋
−
⌊

M
N

⌋
, n − m > M.

(13)

where ⌊·⌋ denotes the floor division. Extended context length C′ is (C − M) · N + M.

4 Long-Context Extension Protocol
Base Model All models start from an identical base checkpoint. We choose to use five
different base models LLaMA2-7B, 13B, 70B (Touvron et al., 2023), Phi-2(Javaheripi et al.,
2023), LLaMA3-8B(Dubey et al., 2024)for context extension experiments, to verify whether
the trends and analyses we observed are consistent across different base models, thereby
avoiding potential over-generalization. Note that in our main findings, we only report
results with LLaMA2-7B base model to maintain conciseness and avoid redundancy as
we find most of general findings from LLaMA2-7B can be transferred to all other models.
Results from other models are provided in Appendix G.

Fine-Tuning We sample 1B tokens from a long-context data mixture following Fu et al.
(2024). The data details are reported in Appendix I. We focus on extending the context
window from 4k to 32k since most benchmarks require contexts under 32k. We maintain a
fixed training recipe to ensure consistency across all models (Chen et al., 2023b). We follow
existing practices by keeping an exponential moving average (EMA) of model weights with
a constant decay and a linear learning rate warm-up. Most training hyperparameters are
based on (Fu et al., 2024), with the learning rate set to 2 × 10−5. Our experiments are done
on 8 NVIDIA A100 GPUs. Detailed hyperparameter setups are in Appendix H.

Metrics We consider two sets of intrinsic metrics. The first is based on perplexity. We use the
book corpus PG19 (Rae et al., 2019) and the Proof-pile dataset (Azerbayev et al., 2023) to
evaluate the long sequence language modeling performances. Following Press et al. (2022),
all perplexity evaluations are calculated using a sliding window with a window size of 256.

The second is based on retrieval. We focus on the needle in the haystack task (gkamradt,
2023)(NIAH). NIAH involves identifying a specific, relevant piece of information (the
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Table 1: Overview of results across different extension types.

Attention Mechanisms Model PPL ND Mshots LB RULER HEL

Exact
Attention

Frozen NTK-F 14.5 18.8 64.5 25.5 0.7 3.5

Fine-Tuned

PI 5.9 42.1 75.5 33.5 57.7 25.7
YaRN 5.9 46.7 75.0 33.5 37.0 21.3
CLEX 5.8 71.1 74.0 33.5 52.2 26.4

NTK-32K 5.8 83.7 71.0 35.3 59.4 28.3
NTK-64K 5.9 69.1 73.0 34.3 60.0 29.3

Modified.
Attention

Modified. LM-Infinite 6.7 23.9 61.5 25.8 12.3 -
Attention Self-Extend 6.1 25.8 72.0 33.6 29.5 19.7

Approxi. LongLora 9.9 20.3 55.5 23.3 3.5 -
Attention Landmark 8.1 50.9 50.0 28.2 13.6 -

"needle") within a large set of irrelevant data (the "haystack"). This task is commonly
used to test the precision and recall capabilities of LLMs in scenarios where the relevant
data is sparse and surrounded by a significant amount of noise. We also evaluate with
RULER (Hsieh et al., 2024). RULER enhances the standard NIAH test by incorporating
variations with different types and quantities of needles with new task categories, such as
multi-hop tracing and aggregation.

For extrinsic metrics, we consider a collection of tasks. LongBench (Bai et al., 2023) is a
family of bilingual, multitask evaluations for long-context understanding widely used in
measuring the long-context abilities of LLMs (Jin et al., 2024; Xiao et al., 2024; Lu et al.,
2024). LongBench includes single-document question answering, multi-document QA,
summarization, few-shot learning, and code completion. We follow Bai et al. (2023) to
evaluate the models on 32k context window sizes by truncating the prompt from the middle
when the task length exceeds a designated context window size. We also consider the
ManyShots tasks, where the long-context model will be given several examples as prompts.
We use the Trec News (Li & Roth, 2002) dataset for this task. Additionally, we evaluate
HELMET (Yen et al., 2025), a comprehensive benchmark encompassing seven diverse,
application-centric categories with controllable lengths up to 128k tokens.

5 Experimental Results and Analysis

5.1 Result Overview
Table 1 overviews the results across both types of evaluation. The main result demonstrate
that fine-tuned exact attention methods for long contexts, such as NTK-32K and YARN,
consistently outperform approximate attention methods by a significant margin. This
suggests that trading accuracy for speed in approximate attention methods can result
in a loss of important reasoning capabilities, particularly for retrieval-based tasks. The
performance disparity highlights the importance of exact attention in maintaining high
accuracy over extended contexts, emphasizing the need for careful consideration of attention
type in model design for long-context tasks. We now consider each type of result in detail.

5.2 Intrinsic tasks
Perplexity Table 2 shows perplexity scores across length. We see that continuous fine-
tuning methods like PI, YaRN, and LongLora effectively keep low perplexity scores within
the pre-training context length. However, when the context length exceeds perplexity
scores escalate once the context surpasses the pre-trained window. Only NTK and CLEX
can generalize to unseen sequence length in both pretraining and continual finetuning.
Additionally, we find that exact attention maintains better perplexity than LoRA, which
may reduce LongLora’s ability. We also note that results on both PG19 and Proof-file gave
nearly consistent conclusions.

Needle-in-the-haystack NIAH results are shown in Figure 1. Continuous finetuning
approaches such as NTK, PI, and YaRN have successfully retrieved the "needle" within the
pretraining length. Yet, only the NTK and CLEX method can retrieve the needle beyond
the pretraining length, aligning with the perplexity results. The performance of the Exact
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Table 2: Perplexity of different methods on PG 19 and Proof-file. NTK-32K and NTK-64K
refer to NTK-Dynamic, which requires finetuning. Len refers to the longest-length examples
seen at training or fine-tuning. Ex refers to the exact attention.

Model Details Eval Length
Len Ex Methods 2k 4k 8k 16k 32k 64k

PG19

Frozen
4k ✓ LLaMA2 6.61 6.30 - - - -
4k LM-Infinite 6.61 6.30 6.25 6.45 6.71 8.49
4k ✓ NTK-Frozen 6.61 6.30 6.82 7.94 14.52 -
4k Self-Extend 6.61 6.32 6.15 6.07 6.11 7.15

Finetuned

32k ✓ PI 6.88 6.52 6.27 6.08 5.95 -
32k ✓ NTK-32K 6.63 6.32 6.09 5.92 5.79 5.76
32k ✓ YaRN 6.70 6.39 6.16 6.01 5.93 -
32k ✓ CLEX 6.85 6.62 6.14 5.93 5.82 5.79
32k LongLora 12.80 11.52 10.70 10.18 9.89 -
32k Landmark 8.15 8.14 8.14 8.11 8.13 8.15

64k ✓ NTK-64K 6.83 6.49 6.25 6.07 5.93 5.85

Proof-file

Frozen
4k ✓ LLaMA2 3.34 3.04 - - - -
4k LM-Infinite 3.34 3.04 2.94 3.02 3.11 3.12
4k ✓ NTK-Frozen 3.34 3.04 2.91 3.09 4.06 12.65
4k Self-Extend 3.35 3.06 2.88 2.78 2.75 2.90

Finetuned

32k ✓ PI 3.34 3.03 2.83 2.68 2.58 -
32k ✓ NTK-32K 3.27 2.98 2.78 2.64 2.54 2.48
32k ✓ YaRN 3.29 3.00 2.81 2.68 2.59 106.38
32k ✓ CLEX 3.37 3.10 2.80 2.65 2.55 2.48
32k LongLora 5.97 5.10 4.58 4.27 4.13 -
32k Landmark 4.51 4.50 4.48 4.49 4.49 4.49

64k ✓ NTK-64K 3.33 3.03 2.83 2.69 2.58 2.51

Attention Method generally surpasses that of the Approximate Attention Methods. LM-
Infinite and Landmark Excel are only within the local window, and they struggle to retrieve
the intermediate text accurately. Regarding the Dynamic NTK method, NTK-F exhibits
weak generalization when not trained. When trained on the same amount of data(1B),
NTK-32K outperforms NTK-64K. When trained on 2B tokens, NTK-64K demonstrated a
significant performance improvement, details are in Appendix J.

Table 3: RULER evaluation over 13 tasks at lengths from 4k to 64k.

Models Train
Len 4k 8k 16k 32k 64k 128k

Frozen
LLaMA2 4k 80.94 - - - - -
LM-Infinite 4k 81.05 30.01 18.02 12.34 10.56 -
NTK-Frozen 4k 81.14 44.45 14.79 0.72 0.91 -
Self-Extend 4k 65.03 50.73 44.02 29.50 9.34 -

Finetuned

PI 32k 84.56 76.04 69.64 57.66 0.00 -
NTK-32K 32k 86.58 77.75 70.01 59.42 46.26 29.91
YaRN 32k 79.12 65.60 54.21 36.95 0.00 -
CLEX 32k 50.18 63.93 64.35 52.17 30.61 -
LongLora 32k 10.58 6.37 3.67 3.53 0.00 -
Landmark 32k 22.37 17.52 16.31 13.56 14.15 -

NTK-64K 64k 86.60 76.34 69.56 60.03 49.31 40.09

RULER We test all models on 13 tasks from RULER (Hsieh et al., 2024). Each model
is evaluated with 500 examples for lengths of 4k, 8k, 16k, 32k, 64k and 128k. Results are
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Figure 1: Needle in a Haystack evaluation. Green squares indicate a high retrieval success
rate, the white dashed line denotes the longest length examples seen at training, and the
Y-axis represents the distance to the retrieved target.

compared with the Llama2-7B baseline in Table 3. We observed a similar trend as in the
NIHK task, NTK has the minimal performance degration w.r.t the increase of length beyond
pretrained or finetuned length. NTK-32k maintained relatively good performance compared
to other methods finetuned with a length cap of 32k. Performance of models on different
length and breakdown by 13 subtasks can be found in Appendix M.

5.3 Extrinsic tasks
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Figure 2: Many-shot ICL on TREC News.

Many-shot In-Context Learning with Trec
News We evaluate TREC News (Li & Roth,
2002) with 1 to 1000 in-context examples. In
general, performance improves with more ex-
amples in Figure 2. Exact Attention methods
show significant gains from 10 to 50 examples
(+44.0%), with slower growth from 50 to 100 ex-
amples (+5.7%). Approximate Attention meth-
ods consistently underperform. Performance
gains align with model perplexity; NTK-Frozen
excels with fewer examples but underperforms
with more.

LongBench Both LM-Infinite and Landmark Attention exhibit significant performance
degradation compared to the base model. In contrast, the NTK, PI, and YaRN methods have
successfully maintained their performance at 32k, demonstrating comparable results among
these methods. PI and YaRN perform similarly in downstream tasks, while the NTK family
of models remains stable.

8



Published as a conference paper at COLM 2025

Notably, LongLoRA also experiences a performance decline relative to the LLaMA2-base.
We argue that this may be due to the sensitivity of the training procedures for LongLoRA,
and we acknowledge this in our limitation discussion section. Furthermore, the overall
performance on LongBench has not shown significant improvement over LLaMA2. We
hypothesize that this is due to the average length of LongBench test data (7.5k) being
considerably shorter than the 32k context window of the long-context methods.

Table 4: LongBench results over 16 tasks. ✓refers to exact attention.
Exact AvgLen Frozen Finetuned

Base Inf N-F SE PI N-32 YaRN CLEX LLR Land N-64
✓ ✓ ✓ ✓ ✓ ✓

Train Len 4k 4k 4k 4K 32k 32k 32k 32k 32k 32k 64k
Eval Len 4k 32k 32k 32K 32k 32k 32k 32k 32k 32k 32k

NQA 18,409 21.09 10.39 3.88 23.49 23.02 23.73 19.82 24.19 12.07 12.47 24.31
QAPR 3,619 26.94 22.58 26.79 28.75 25.85 27.50 26.98 23.36 20.15 19.06 24.97
MFQA 4,559 32.42 26.19 29.82 32.66 35.10 38.22 37.11 40.83 24.50 21.86 40.60
HPQA 9,151 31.23 16.13 32.10 37.63 36.98 41.56 38.60 35.59 27.41 33.66 41.47
WMQA 4,887 25.75 20.64 22.34 30.70 29.38 31.58 30.63 28.24 21.46 24.94 28.62
MSQ 11,214 10.55 5.26 8.84 15.73 16.80 17.41 22.08 17.12 11.46 11.41 18.24
GR 8,734 17.32 13.43 17.87 13.15 25.61 28.27 20.98 24.68 24.05 17.20 24.37
QMSM 10,614 21.28 6.10 15.35 20.20 21.19 21.52 20.66 21.55 17.66 18.83 21.65
MNWS 2,113 3.44 3.63 9.30 1.50 10.55 22.13 8.91 16.96 21.19 19.43 25.02
TREC 5,177 66.00 61.00 67.50 69.00 71.00 69.00 69.00 67.50 50.00 49.00 69.00
TRVQA 8,209 87.89 81.40 18.69 88.44 88.55 88.86 89.63 89.36 12.28 74.75 88.65
SMSM 6,258 41.70 15.07 32.46 43.76 43.35 42.21 44.25 43.02 13.45 40.38 41.59
PSC 11,141 2.10 1.62 2.67 0.00 1.50 2.68 1.05 2.50 4.57 0.64 2.09
PSR 9,289 9.00 4.00 3.77 4.50 4.50 4.62 3.79 8.50 3.50 2.50 6.50
LCC 1,235 68.22 67.68 63.64 68.47 55.05 56.78 54.06 49.45 57.12 56.70 52.04
REPO 4,206 61.73 58.27 53.69 59.99 47.26 49.09 47.60 42.84 51.92 48.23 39.68

Average 7,425 32.92 25.84 25.54 33.62 33.48 35.32 33.45 33.48 23.30 28.19 34.30

HELMET We evaluate HELMET across lengths up to 64k tokens. The results in Table 5
shows the NTK series exhibits the least performance degradation as length increases. De-
tailed results breakdown by 7 task categories is provided in the Appendix A.

Table 5: HELMET evaluation over 7 categories tasks at lengths from 8k to 64k.

Models Train
Len 8k 16k 32k 64k

Frozen NTK-Frozen 4k 25.81 16.02 3.46 1.86
Self-Extend 4k 27.01 24.40 19.65 6.69

Finetuned

NTK-32k 32k 42.09 37.31 28.29 24.95
CLEX 32k 32.65 30.87 26.43 22.80
PI 32k 41.48 37.56 25.74 0.98
YaRN 32k 36.83 30.67 21.28 0.98

NTK-64k 64k 39.91 35.47 29.29 26.49

6 Additional Analysis
Perplexity and Downstream Tasks While prior work (Sun et al., 2021; An et al., 2023)
suggests that perplexity may not reliably predict long-range task performance, our analysis
in Figure 3 reveals to some extent perplexity might be reliable. We observe a general
correlation between perplexity and model performance across tasks. However, we also
observed that approximate attention methods, including LongLora and Landmark on
RULER, show minor deviations but maintain a roughly linear relationship. We hypothesize
that this apparent discrepancy with previous findings may stem from their less controlled
experimental conditions and noisier datasets.
Context extension hurts in the short term and gains in the long term While context
extension seems to improve perplexity, in Table ??, we do not notice a significant gain in
performance. We hypothesize that while this dataset contains long tasks, the average length
is much shorter than 32K. These methods seem to improve the ability to model language
over the long term but hurt in the short term. To understand this better we compute
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Figure 3: Perplexity and downstream task accuracy for NIAH, LongBench and RULER.
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Figure 4: (Left) Average negative log-likelihood of different models by context position.
(Right) Performance of different context extension methods across model sizes.

the averaged negative likelihood of each position of YaRN, LLaMa2, and NTK-32K per
position (with LLaMa2 seeing just tokens every 4k chunks) in Figure 4(Left). Additionally,
we evaluated these methods on short tasks from standard benchmarks and found that
extension methods exhibited a slight decrease in performance on short-text tasks compared
to the base model, in Table 9. This aligns with our observations in Figure 4(Left), which
analyzes the average negative log-likelihood across different context positions.
General Discoveries across Model Sizes Our analysis across LLaMA2-7b, 13b, and 70b
base models reveals several key patterns. Non-extension methods like NTK-Frozen and
Self-Extend demonstrate improved performance on intrinsic tasks such as Needle-in-a-
Haystack at larger scales, while maintaining consistent performance rankings across model
sizes. Although continual fine-tuning methods still outperform non-extension approaches
within their extension range, the correlation between perplexity and downstream task
performance remains robust. These findings, shown in Figure 4(Right), provide insights
into the relationship between model scaling and context extension.
NTK Generalizes Beyond 32k In Figure 1, we observe that NTK-32K successfully general-
izes to unseen sequence lengths beyond 32k in both NIAH and RULER tasks, performing
on par with NTK-64K. In contrast, NTK-F demonstrates generalization up to 8k but fails
to extend further. While NTK methods may possess the capability to generalize to longer
unseen sequences, their effectiveness is contingent upon conditions such as continual fine-
tuning. We find that up until 4k they all improve as expected with LLaMa2 having the best
NLL. After 4k they all fluctuate in average, but we see a clear separation with Yarn and
NTK taking into account the long context. At extremely long context NTK remains a strong
model whereas Yarn becomes reverts to a similar performance as LLaMa2.

7 Limitations and Conclusion
Our study has several limitations. The experiments are confined to context extensions up
to 32k tokens, and behavior patterns may vary at longer extensions. Additionally, our
standardized training protocol with fixed hyperparameters might disproportionately affect
certain models’ performance. Furthermore, our perplexity findings may be specific to our
experimental settings and may not generalize to models beyond our test scope.

In this paper, we use a standardized approach to assess the performance of various long-
context methods in LLMs. Our study underscores the role of perplexity as a crucial, per-
formance indicator at length and highlights the trade-offs inherent in different attention
mechanisms. We analyze the strengths and weaknesses of various approaches, providing
valuable insights for future research. All our resources are open-sourced, fostering future
advancements in this pivotal area of AI research.
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A HELMET of LLaMA-2-7B

We present the detailed results of HELMET with LLaMA2-7B across seven subtask cat-
egories in Table X: Retrieval-Augmented Generation (RAG), Generation with Citations
(Cite), Passage Re-ranking (Rerank), Many-shot In-Context Learning (ICL), Long-document
Question Answering (QA), Summarization (Summ), and Synthetic Recall (Recall).

Table 6: Detailed results of HELMET with LLaMA2 variants across different evaluation
lengths and task categories.

Model Recall RAG ICL Cite Rerank QA Summ Avg.

NTK-Frozen

8k 21.31 50.29 40.60 4.62 23.25 25.14 15.47 25.81
16k 2.38 39.96 34.36 4.32 0.87 16.87 13.41 16.02
32k 0.00 2.96 11.56 0.34 0.00 3.10 6.23 3.46
64k 0.00 0.42 4.76 0.06 0.00 3.23 4.59 1.86

SelfExtend

8k 18.44 49.50 50.12 3.87 32.33 23.64 11.15 27.01
16k 15.69 47.42 53.00 2.80 17.13 25.51 9.26 24.40
32k 8.63 40.13 44.88 2.37 5.98 27.31 8.24 19.65
64k 0.94 8.08 21.84 0.95 0.18 9.26 5.58 6.69

NTK-32k

8k 72.81 55.46 61.28 11.32 45.63 28.47 19.69 42.09
16k 57.31 51.08 66.80 8.35 27.04 31.38 19.19 37.31
32k 29.44 48.42 69.52 2.75 6.85 30.36 10.71 28.29
64k 17.06 42.79 72.24 1.95 0.55 28.87 11.16 24.95

NTK-64k

8k 69.50 53.63 60.76 10.47 38.31 27.62 19.07 39.91
16k 52.75 50.83 66.96 5.84 21.06 29.86 20.99 35.47
32k 35.31 47.75 71.08 3.44 8.61 26.91 11.95 29.29
64k 20.00 44.08 72.48 2.18 3.12 28.14 15.42 26.49

CLEX

8k 44.44 51.00 50.52 4.29 37.46 24.40 16.45 32.65
16k 45.19 49.21 58.84 4.35 18.11 24.24 16.16 30.87
32k 28.63 45.25 68.20 2.06 0.19 26.52 14.19 26.43
64k 15.06 40.04 72.36 1.45 0.00 20.76 9.94 22.80

PI

8k 77.31 54.08 59.10 13.29 44.32 24.27 17.97 41.48
16k 67.44 50.92 62.36 7.89 27.22 27.69 19.39 37.56
32k 31.94 43.71 62.68 2.25 3.91 27.42 8.24 25.74
64k 0.00 0.00 0.00 0.00 0.00 6.73 0.12 0.98

YaRN

8k 61.81 53.21 58.08 8.83 29.77 28.67 17.43 36.83
16k 35.19 51.08 63.36 2.69 21.27 29.13 12.00 30.67
32k 14.13 40.88 61.48 1.28 1.23 23.53 6.44 21.28
64k 0.00 0.00 0.00 0.00 0.00 6.67 0.18 0.98
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B Results on Larger Model Sizes of LLaMA-2

B.1 Result Overview

Result overview of 7b, 13b, and 70b models results across different extension types are
shown in Table 7. Note that the perplexity is evaluated on Proof-file. Llama2-13b and
Llama2-70b is evaluated on 4k context length for perplexity, Longbench and RULER.

Table 7: Overview of 7b, 13b, and 70b models results across different extension types.

Model Method PPL Needle LongB RULER

Llama2-7b

Base (4k) 3.04 8.40 32.92 80.94
NTK-Frozen 4.06 18.80 25.54 0.72
Self-Extend 2.75 25.80 33.62 29.50

PI 2.58 42.10 33.48 57.66
NTK-32k 2.54 83.70 35.32 59.42

YaRN 2.59 46.70 33.45 36.95
CLEX 2.55 71.10 33.48 52.17

Llama2-13b

Base (4k) 2.90 17.00 33.84 86.35
NTK-Frozen 3.31 43.00 31.87 2.30
Self-Extend 2.65 53.50 33.69 30.23

PI 2.46 45.00 37.45 55.95
NTK-32k 2.44 82.20 38.41 58.38

YaRN 2.46 44.20 34.03 44.79
CLEX 2.43 78.90 35.89 52.76

Llama2-70b

Base (4k) 2.66 14.70 34.00 93.67
NTK-Frozen 3.25 30.90 32.40 11.39
Self-Extend 2.43 32.60 29.10 31.94

PI 2.26 49.80 42.44 77.98
NTK-32k 2.25 90.50 41.51 76.97

B.2 Perplexity and Downstream Tasks

As shown in Figure 5, we observe a general correlation between perplexity and model
performance across different model sizes. Most models exhibit a negative correlation
between perplexity and performance on LongBench and RULER. However, the correlation
is weaker on Needle-in-the-haystack.
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Figure 5: Perplexity and averaged downstream task accuracy for NIAH, LongBench and
RULER.

B.3 Needle-in-the-haystack

The result of the Needle-in-the-haystack task across different model sizes and extension
types are shown in Figure 6. Non-extension methods like NTK-Frozen and Self-Extend
demonstrate improved performance at larger scales, while maintaining consistent perfor-
mance rankings across model sizes.

15



Published as a conference paper at COLM 2025

Figure 6: Needle in a Haystack evaluation with different sizes of models. Green squares
indicates a high retrieval success rate, the white dashed line denotes the longest length
examples seen at training or finetuning, and the Y-axis represents the distance to the
retrieved target.
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C Kendall correlation of downstream task performance and perplexity

We use a non-parametric method, the ken-tau correlation to evaluate the correlation between
downstream task performance and perplexity.

Consistency Across Tasks The results show a strong and statistically significant negative
correlation between perplexity and downstream performance for most tasks. This supports
the claim that lower perplexity values are generally associated with better downstream task
performance.

Task-Specific Observations The strongest correlations are observed for Needle and
RULER, where Kendall’s tau indicates a robust alignment between perplexity and task
performance rankings. For Mshots, the correlation is moderate and statistically weaker,
suggesting that perplexity’s predictive ability may vary slightly depending on the task.

Impact of Perplexity Range Even when perplexity values are close (e.g., below 6), per-
plexity rankings remain a reliable indicator of downstream performance. However, the
narrower range may amplify the observed performance differences, highlighting the need
for nuanced interpretation.

Table 8: Perlexity and Downstream Tasks Correlations and Interpretations.

Task Kendall’s Tau p-value Interpretation

Needle -0.7191 0.0041 Statistically significant (p < 0.01).
Mshots -0.4944 0.0482 Borderline significant (p ≈ 0.05).
LongB -0.6136 0.0149 Statistically significant (p < 0.05).
RULER -0.7191 0.0041 Statistically significant (p < 0.01).

D Performance on short general tasks

Short-context Tasks We analyzed performance on short tasks from the Open LLM Leader-
board1 to validate our hypothesis regarding context length impact. Results are shown
in Table 9. Our analysis revealed three key findings: (1) long-context extension methods
generally show minor performance degradation on short-text tasks compared to the base
model, with NTK-Frozen outperforming NTK-RoPE, (2) continuous fine-tuning methods
demonstrate more significant short-text performance reduction, suggesting a trade-off be-
tween long and short context capabilities, and (3) these results corroborate the negative
log-likelihood patterns observed in Figure 4 (Right).

Table 9: Model Performance on short Tasks. HS refers to Hellaswag, TQA refers to Truth-
fulQA and WG refers to WinoGrande.

Methods ARC-c ARC-e HS MMLU TQA WG Avg.

Llama2-7b 52.73 81.31 78.96 42.09 38.97 74.43 61.42
LM-Infinite 52.56 81.36 78.95 42.09 38.96 74.11 61.34
Self-Extend 52.56 81.31 78.94 42.07 38.97 74.43 61.38
NTK-Frozen 52.73 81.31 78.96 42.09 38.97 74.43 61.42

PI 51.11 81.14 77.44 37.19 38.03 71.74 59.44
NTK-32k 49.15 80.22 74.48 35.25 38.13 72.61 58.31
NTK-64k 46.08 78.32 70.68 34.27 39.08 70.24 56.45

YaRN 53.41 81.82 78.47 41.06 38.63 74.43 61.30
CLEX 50.60 81.27 76.06 37.54 36.10 64.72 57.72

LongLora 46.67 78.58 67.08 26.29 37.61 55.25 51.91

1https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
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E Efficiency Analysis

We conduct inference speed comparisons under controlled conditions using the same
hardware setup. As shown in Table 10, we observed that approximate attention methods
are indeed faster, achieving a speedup of approximately 1.5x to 2x compared to LLaMA
when the context length is short; however, when the context length gets longer, we didn’t
see a significant margin. We hypothesize that the discrepancy between the theoretical
FLOPs-based comparisons and the observed speedup arises due to differences in hardware
characteristics and CUDA implementations of the respective methods.

Table 10: Efficiency analysis for different sequence lengths (4k, 8k, 16k, 32k). The pre-
fill time(Pre) cost represents the time required to generate the first token. The decoding
speed(Dec) (seconds / per token) is averaged over 100 token inferences at each sequence
length. Memory consumption corresponds to the peak GPU memory usage during inference.
All methods, except for LM-Infinite and Landmark, utilize Flash-Attention 2 for enhanced
computational efficiency.

Method 4k 8k 16k 32k

Pre (s) Dec (s) Mem (GB) Pre (s) Dec (s) Mem (GB) Pre (s) Dec (s) Mem (GB) Pre (s) Dec (s) Mem (GB)

Llama2 1.15 0.03 17.13 1.51 0.06 21.61 2.41 0.11 30.59 4.63 0.21 48.55
NTK-F 1.16 0.04 17.13 1.56 0.05 21.61 2.39 0.06 30.59 4.69 0.09 48.55

PI 1.15 0.03 22.05 1.54 0.03 26.54 2.43 0.05 35.51 4.74 0.08 53.47
NTK-32k 1.17 0.04 17.11 1.56 0.04 21.60 2.42 0.06 30.58 4.75 0.09 48.53

YaRN 1.23 0.03 18.05 1.53 0.03 22.54 2.43 0.05 31.51 4.80 0.08 49.47
CLEX 1.16 0.05 17.16 6.99 0.07 21.74 7.68 0.11 30.92 10.06 0.18 49.28

LM-Infinite 1.56 0.05 17.23 3.34 0.07 25.47 5.82 0.11 38.60 11.58 0.18 65.61
Self-Extend 1.24 0.05 17.23 1.63 0.07 21.81 2.63 0.13 30.98 4.97 0.22 49.32
LongLora 1.16 0.05 17.16 1.65 0.05 21.65 2.60 0.05 30.62 5.07 0.08 48.58
Landmark 8.62 0.08 18.77 17.65 0.08 22.97 36.47 0.09 31.22 77.77 0.09 47.74

F Details of Yarn Extension Method

YaRN, another RoPE extension method, uses “NTK-by-parts" interpolation strategies across
different dimensions of the embedding space and introduces a temperature factor to adjust
the attention distribution for long inputs.

αYaRN
j = (

(
1 − γj

) 1
t
+ γj)/

√
T (14)

We use a ramp vector γ to determine the interpolation between the 1
t and the original

frequency base. The interpolation gating is set based on the frequency for the dimension j.

γj =


0, if θj < p,
1, if θj > q,
θj−p
q−p , otherwise.

(15)

The values of p, q, T can be tuned as needed.
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G LLaMA-3 and Phi-2 for Context Extension

We use other open-weight models, LLaMA-3-8B (AI@Meta, 2024) base and Phi-2-base (Java-
heripi et al., 2023) as the base point for context extension, to verify whether the trends and
analyses we observed are consistent across different base models. Using an identical training
recipe, we re-train and re-evaluate seven models with Llama-3-8B base and Phi-2-base.

G.1 Perplexity on Proof-file of Llama-3 and Phi-2

We evaluate the perplexity of LLaMA-3-8B base in Table 11 and Phi-2-base in Table 12.
Consistent with our observations on LLaMA-2-7B, continuous fine-tuning methods like PI
and YaRN effectively maintain low perplexity scores within the pre-training context length.
However, perplexity scores escalate once the context length exceeds the pre-trained window.
Notably, only NTK and CLEX could generalize to unseen sequence lengths during both
pre-training and continual fine-tuning.

Table 11: Perplexity results of different methods on Proof-file with LLaMA-3-8B base. Len
refers to the longest-length examples seen at training or fine-tuning. Ex refers to the exact
attention. All results are produced by our experiments.

Model Details Eval Length
Len Ex Methods 2k 4k 8k 16k 32k 64k

Frozen
8k ✓ LLaMA-3 2.98 2.72 2.54 31.11 318 -
8k ✓ NTK-Frozen 2.98 2.72 2.54 2.48 3.80 8.69
8k Self-Extend 2.98 2.72 2.54 2.43 2.36 2.62

Finetuned
32k ✓ PI 3.13 2.83 2.63 2.49 2.39 38.77
32k ✓ NTK-32K 3.05 2.76 2.57 2.43 2.34 2.28
32k ✓ YaRN 3.16 2.86 2.66 2.52 2.43 4989
32k ✓ CLEX 3.30 2.89 2.64 2.47 2.38 2.39

Table 12: Perplexity results of different methods on Proof-file with Phi-2-base. Len refers to
the longest-length examples seen at training or fine-tuning. Ex refers to the exact attention.
All results are produced by our experiments.

Model Details Eval Length
Len Ex Methods 2k 4k 8k 16k 32k 64k

Frozen
2k ✓ Phi-2-base 4.02 25.72 175.05 - - -
2k ✓ NTK-Frozen 4.02 3.73 4.07 5.49 12.58 36.68
2k Self-Extend 4.08 3.70 3.48 3.42 3.48 3.73

Finetuned
32k ✓ PI 7.53 6.75 6.25 5.97 5.83 45.00
32k ✓ NTK-32K 4.24 3.81 3.51 3.32 3.18 3.20
32k ✓ CLEX 5.53 4.32 3.78 3.51 3.42 3.60
64k ✓ NTK-64K 4.63 4.14 3.82 3.61 3.47 3.38

G.2 RULER of LLaMA-3 and Phi-2

We test all models on all 13 diverse tasks for LLaMA-3-8B and 12 tasks (except QA-2) for
Phi-2 from the four Ruler Hsieh et al. (2024) categories in Table 13 and Table 14. Consistently,
NTK-32k maintains relatively strong performance compared to other methods fine-tuned
with a length cap of 32k and showing a slight drop in performance at 64k. The only exception
is Self-Extend on LLaMA-3-8B, which benefits from a larger pretraining length of 8192. Self-
Extend demonstrates superior performance on LLaMA-3 compared to LLaMA-2 and Phi-2,
with performance approaching that of CLEX and PI.
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Table 13: RULER evaluation on seven methods with LLaMA-3-8B. Performance of models
evaluated at length from 8k to 64k. Each score is computed by averaging the accuracy of 13
tasks. Train Len refers to the longest-length examples seen at continuous finetuning.

Models Train
Len 4k 8k 16k 32k 64k

Frozen
LLaMA-3 8k 93.63 91.16 0.06 0.01 0.05
NTK-Frozen 8k 93.63 91.15 6.86 1.98 0.02
Self-Extend 8k 92.73 84.11 78.78 71.40 38.79

Finetuned
PI 32k 91.60 88.56 86.99 73.14 0.02
NTK-32K 32k 93.68 91.67 91.12 86.04 65.42
YaRN 32k 92.51 90.59 88.07 68.69 0.06
CLEX 32k 89.65 87.35 87.89 69.27 39.81

Table 14: RULER evaluation on seven methods with Phi-2-base. Performance of models
evaluated at length from 2k to 64k. Each score is computed by averaging the accuracy of 12
tasks. Train Len refers to the longest-length examples seen at continuous finetuning.

Models Train
Len 2k 4k 8k 16k 32k 64k

Frozen
Phi-2-base 2k 83.73 - - - - -
NTK-Frozen 2k 83.98 52.95 18.09 4.07 0.06 0.00
Self-Extend 2k 68.55 50.82 36.65 22.00 7.83 2.32

Finetuned
PI 32k 25.51 23.19 16.88 14.99 4.78 0.00
NTK-32K 32k 81.18 66.90 52.57 46.53 32.06 12.84
CLEX 32k 75.33 72.66 53.56 46.23 25.46 13.03
NTK-64K 64k 78.73 59.87 47.56 41.87 25.66 17.69

G.3 HELMET of LLaMA-3

We evaluate HELMET on all 7 categories of tasks across lengths up to 128k tokens on
LLaMA-3-8B in Table 15.

Table 15: HELMET evaluation on LLaMA-3-8B at lengths from 8k to 128k.

Models Train
Len 8k 16k 32k 64k 128k

Frozen NTK-Frozen 4k 47.48 38.98 3.16 2.98 2.11
Self-Extend 4k 44.28 41.85 38.59 27.90 10.41

Finetuned

NTK-32k 32k 50.51 48.96 47.14 37.08 19.95
CLEX 32k 46.68 47.14 42.57 29.43 17.41
PI 32k 49.22 47.66 45.78 2.43 1.56
YaRN 32k 48.47 48.65 45.31 2.95 1.77

NTK-64k 64k 49.86 49.15 47.68 42.91 37.11

H Implementation Details

H.1 Training

To maintain consistency across all models, we use a fixed training protocol (Chen et al.,
2023b). We adopt standard practices by applying an exponential moving average (EMA) to
the model weights with a constant decay rate. Most training hyperparameters are based
on (Fu et al., 2024), including a learning rate of 2 × 10−5. We implement a linear warm-up
for the learning rate and set the weight decay to zero, utilizing 8 NVIDIA A100 GPUs. We
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present the hyperparameter settings for different methods on LLaMA-2-7B, LLaMA-3-8B,
and Phi-2 during the training stage in Table 16.

LLaMA-2 For LongLora, we fine-tune the LoRA adapter weights along with trainable
embeddings and normalization, subsequently integrating these trained weights into the
LLaMA2 base model for evaluation. For Landmark Attention, the training context length is
512, with a block size of 64. For YaRN, we set beta fast to 32, beta slow to 1, and α to 8.0. For
CLEX, we set the max scale factor to 32 and use the SiLU activation function. For NTK-RoPE,
given the maximum observed length during training or inference, Ctest, and the scaling
hyperparameter s, we follow Fu et al. (2024) in replacing t with s · max(C′ ,Ctest)

C − (s − 1),
and set the hyperparameter s to C′

2C during both training and inference. We set s to 4.0 for
NTK-32k and s to 8.0 for NTK-64k. For LM-infinite, we set the global memory G = 10 and
the local window M = 4096.

We reuse the original scale factor to maintain consistency for NTK, YaRN, and Position
Interpolation methods. However, this base factor significantly degrades continual fine-tuned
models, particularly causing performance deterioration in shorter sequences. Therefore,
we conduct a grid search to determine a better scale factor for different input lengths for
NTK-RoPE method. Based on our findings, we follow and improve upon Fu et al. (2024)
to set the scale factor for NTK-RoPE method. The scale factor and its relationship with
perplexity are reported in the Appendix K.

LLaMA-3 For YaRN, we set beta fast to 32, beta slow to 1, and α to 4.0. For CLEX, we set
the max scale factor to 16 and use the SiLU activation function. For NTK-RoPE, we set s to
2.0.

Phi-2 For CLEX, we set the max scale factor to 64 and use the tanh activation function.
For NTK-RoPE, we set s to 8.0 for NTK-32k and 16.0 for NTK-64k.

Table 16: Hyperparameters for Different Long Sequence Methods in Training.

Models Methods Train
Len

Train
Tokens α bsz lr

LLaMA-2

PI 32k 1B 8.0 32 2e-5
NTK-32K 32k 1B 29.0 32 2e-5
YaRN 32k 1B 8.0 32 2e-5
LongLora 32k 1B 8.0 32 2e-5
Landmark 32k 1B - 32 2e-5
NTK-64K 64k 1B 57.0 32 2e-5
NTK-64K-2B 64k 2B 57.0 32 2e-5

LLaMA-3
PI 32k 1B 4.0 32 2e-5
NTK-32K 32k 1B 7.0 32 2e-5
YaRN 32k 1B 4.0 32 2e-5

Phi-2
PI 32k 1B 16.0 32 2e-5
NTK-32K 32k 1B 121.0 32 2e-5
NTK-64K 64k 1B 497.0 32 2e-5

H.2 Inference

For all methods on all base models, we show the hyperparameter settings and present the α
used for different length ranges during inference in Table 17.

LLaMA-2 For Landmark Attention, the training context length is set to 512, with a block
size of 64. For Self-Extend, we set the local window size M for neighbor tokens to 1024 and
the group size N to 64. For NTK-RoPE, we replace t with s · max(C′ ,Ctest)

C − (s − 1) and set s
to 4.0 for NTK-32k and 8.0 for NTK-64k.
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LLaMA-3 For Self-Extend, we set the local window size M for neighbor tokens to 2048
and the group size N to 32. For NTK-RoPE, we set s to 2.0 for NTK-frozen and 4.0 NTK-32k.

Phi-2 For Self-Extend, we set the local window size M for neighbor tokens to 512 and the
group size N to 128. For NTK-RoPE, we set s to 2.0 for NTK-frozen, 8.0 for NTK-32k, and
16.0 for NTK-64k.

Table 17: Hyperparameters for the Scale Factor α Different Long-context Methods in Infer-
ence.

Models Methods 4k 8k 16k 32k 64k

LLaMA-2

NTK-Frozen 1.0 3.0 7.0 15.0 31.0
PI 8.0 8.0 8.0 8.0 8.0
NTK-32K 29.0 29.0 29.0 29.0 61.0
YaRN 8.0 8.0 8.0 8.0 8.0
LongLora 8.0 8.0 8.0 8.0 8.0
NTK-64K 57.0 57.0 57.0 57.0 57.0

LLaMA-3

NTK-Frozen 1.0 1.0 3.0 7.0 15.0
PI 4.0 4.0 4.0 4.0 4.0
NTK-32K 13.0 13.0 13.0 13.0 29.0
YaRN 4.0 4.0 4.0 4.0 4.0

Phi-2

NTK-Frozen 3.0 7.0 15.0 31.0 63.0
PI 16.0 16.0 16.0 16.0 16.0
NTK-32K 121 121 121 121 249
NTK-64K 497 497 497 497 497

I Training Data Construction

We sample 1B tokens from a long-context data mixture following Fu et al. (2024). We use
the SlimPajama (Soboleva et al., 2023) dataset for continuous finetuning. This dataset serves
as an open-source replication of the LLaMA (Touvron et al., 2023) pretraining data mixture.
It comprises 82% web data (sourced 67% from CommonCrawl and 15% from C4), 4.5%
code data (Github), 4.5% Wikipedia content, 4.5% books, 2.5% Arxiv papers, and 2.0%
StackExchange content. We use per-source length-upsampling to sample 1B tokens from the
datasets, which increases the portion of long sequences while keeping the domain mixture
the same. We packed all sampled data into chunks of the corresponding training length,
regardless of document boundaries, following common practiceTouvron et al. (2023); Fu
et al. (2024).

J Longer Model Needs more Training Tokens

We observe that the performance of NTK-64K is not as good as NTK-32K. Consequently, we
further sample 2B tokens from a long-context data mixture from Fu et al. (2024) for training
and evaluate the model on the "Needle in A Haystack" task, as shown in Figure 7. Our
NTK-64K model demonstrates a significant performance improvement when trained with
more tokens, indicating that longer models require more tokens for effective training.

K RoPE Scale Factor for Dynamic NTK

We observe that the scale factor significantly degrades NTK-Dynamic models, particularly
causing performance deterioration in shorter sequences. Therefore, we conduct a grid
search to determine a better scale factor for different input lengths. The scale factor and its
relationship with perplexity on PG19 are reported in Table 18.
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Figure 7: Needle in a Haystack evaluation. “NTK-64-2B” represents the NTK-64K model
trained with 2B tokens. Green squares indicates a high retrieval success rate, the white
dashed line denotes the longest length examples seen at training or finetuning, and the
Y-axis represents the distance to the retrieved target.

Table 18: The scale factor and its relationship with perplexity on PG19. We only use the first
2 documents of PG19 to calculate the perplexity.

Models Scale Factor 4k 8k 16k 32k 64k

NTK-Frozen

1 7.65 118.82 NaN NaN NaN
3 8.19 7.99 57.15 386.02 NaN
7 9.39 9.26 9.61 72.62 486.13

15 11.53 12.04 12.98 20.15 180.59
31 16.18 20.66 26.67 40.06 69.01
63 30.22 48.78 69.89 89.75 118.59

NTK-32K

1 12.64 NaN NaN NaN NaN
5 7.84 7.638 10.36 NaN NaN

13 7.686 7.459 7.25 8.35 NaN
29 7.689 7.457 7.24 6.82 9.11
61 7.8 7.565 7.34 6.91 6.63
125 7.99 7.774 7.57 7.13 6.83

NTK-64K

1 19.16 NaN NaN NaN NaN
9 8.02 7.79 7.63 22.6 NaN

25 7.89 7.65 7.443 7.04 14.02
57 7.922 7.67 7.44 7.01 6.75
121 8.016 7.75 7.51 7.06 6.77

L LongLora Validation

To validate our LongLora Chen et al. (2023b) implementation, we reproduce their Llama-2-
7b-longlora-32k model following LongLora’s training data and training recipe. We evaluate
the perplexity for the corresponding length on PG19 and Proof-file in Table 19.

Table 19: Perplexity results of LongLora reported and our reproduction on PG 19 and
Proof-file.

Method 2k 4k 8k 16k 32k

PG19

Llama-2-7b-longlora-32k 8.29 7.83 7.54 7.35 7.22
Our Reproduction 8.10 7.69 7.43 7.28 7.32

Proof-file

Llama-2-7b-longlora-32k 3.35 3.01 2.78 2.61 2.50
Our Reproduction 3.33 3.01 2.80 2.67 2.61
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M RULER Subtasks Result

The performance of models on different lengths and breakdowns by 13 subtasks are reported
in Table 20(RULER on 4k), Table 21(RULER on 8k), Table 22(RULER on 16k), Table 23(RULER
on 32k) and Table 24(RULER on 64k).

Table 20: Ruler results on 4k context length. N-32 and N-64 refer to NTK finetuned on 32K
and 64K context lengths respectively. Inf refers to LM-Infinite. SE refers to Self-Extend.
LLR refers to LongLora. Train Len refers to the longest length examples seen at training or
finetuning. Eval Len refers to the maximum length of the input prompt. ✓refers to whether
the method is exact attention.

Exact Frozen Finetuned
Base Inf N-F SE PI N-32 YaRN CLEX LLR Land N-64

✓ ✓ ✓ ✓ ✓ ✓ ✓

Train Len 4k 4k 4k 4k 32k 32k 32k 32k 32k 32k 64k
Eval Len 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k

NIAH_S1 100.00 100.00 100.00 100.00 98.00 100.00 99.60 100.00 0.00 49.00 100.00
NIAH_S2 100.00 100.00 100.00 100.00 99.80 100.00 88.60 100.00 0.00 20.60 100.00
NIAH_S3 99.20 95.80 98.80 89.80 99.80 94.20 53.00 89.60 0.00 10.00 97.20
NIAH_M1 99.20 98.80 99.20 79.00 99.20 99.20 62.60 95.80 0.00 10.60 98.00
NIAH_M2 88.00 88.00 88.20 26.00 95.40 97.40 14.00 83.20 0.00 6.80 97.00
NIAH_M3 61.40 62.00 61.60 14.40 78.00 68.20 8.20 53.80 0.00 1.20 84.80
NIAH_MV 83.55 90.45 86.60 82.10 95.45 96.40 50.25 95.10 0.05 10.80 96.15
NIAH_MQ 95.45 96.15 96.00 90.70 96.95 97.00 62.00 96.20 0.00 5.35 98.25
VT 57.72 58.56 56.48 8.92 96.64 98.16 25.68 85.72 0.00 2.92 97.00
CWE 78.20 75.90 78.20 73.56 81.38 80.86 58.78 82.60 64.70 23.16 74.26
FWE 84.33 84.20 84.93 80.07 58.40 85.53 26.20 52.60 18.53 84.93 81.40
QA_1 62.20 60.40 62.40 60.60 57.80 62.40 60.20 55.80 26.20 37.20 55.80
QA_2 43.00 43.40 42.40 40.20 42.40 46.20 43.20 38.20 28.00 28.20 46.00

Avg. 80.94 81.05 81.14 65.03 84.56 86.58 50.18 79.12 10.58 22.37 86.60

Table 21: Ruler results on 8k context length.
Exact Frozen Finetuned

Base Inf N-F SE PI N-32 YaRN CLEX LLR Land N-64
✓ ✓ ✓ ✓ ✓ ✓ ✓

Train Len 4k 4k 4k 4k 32k 32k 32k 32k 32k 32k 64k
Eval Len 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k

NIAH_S1 - 46.00 61.60 100.00 99.00 99.80 100.00 100.00 0.00 46.00 100.00
NIAH_S2 - 36.60 59.40 98.80 100.00 100.00 99.40 100.00 0.00 7.20 100.00
NIAH_S3 - 20.80 51.00 88.60 99.20 94.20 96.00 97.80 0.00 3.80 99.20
NIAH_M1 - 27.80 46.00 69.40 98.00 94.20 86.60 90.20 0.00 7.60 95.20
NIAH_M2 - 4.40 11.00 8.20 91.60 86.20 60.60 66.00 0.00 1.60 86.60
NIAH_M3 - 2.60 4.00 3.20 48.40 52.20 34.60 11.80 0.00 0.00 47.40
NIAH_MV - 30.35 41.35 52.95 65.50 85.95 70.40 61.25 0.00 6.25 84.75
NIAH_MQ - 30.15 50.40 78.70 93.25 95.20 92.45 86.95 0.00 3.35 94.95
VT - 4.88 69.88 1.48 91.20 96.16 77.52 48.16 0.00 3.08 94.36
CWE - 65.08 40.30 30.82 45.66 45.76 44.72 32.72 18.92 22.08 40.80
FWE - 56.73 64.87 59.00 65.07 70.13 10.53 45.40 16.73 76.60 54.13
QA_1 - 35.80 44.40 31.00 50.80 49.20 43.20 48.20 22.80 25.00 50.20
QA_2 - 29.00 33.60 37.40 40.80 41.80 36.80 42.60 24.40 25.20 44.80

Avg. - 30.01 44.45 50.73 76.04 77.75 65.60 63.93 6.37 17.52 76.34
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Table 22: Ruler results on 16k context length.
Exact Frozen Finetuned

Base Inf N-F SE PI N-32 YaRN CLEX LLR Land N-64
✓ ✓ ✓ ✓ ✓ ✓ ✓

Train Len 4k 4k 4k 4k 32k 32k 32k 32k 32k 32k 64k
Eval Len 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k

NIAH_S1 - 21.00 14.20 99.80 97.20 99.40 100.00 99.80 0.00 42.40 99.80
NIAH_S2 - 17.00 17.40 93.40 100.00 100.00 99.20 100.00 0.20 6.80 100.00
NIAH_S3 - 11.60 8.20 77.00 99.60 98.60 89.60 99.60 0.00 3.60 100.00
NIAH_M1 - 15.80 9.20 60.00 97.80 93.20 83.40 89.40 0.00 5.60 90.80
NIAH_M2 - 0.00 0.60 3.80 82.80 79.80 19.60 72.00 0.00 0.80 67.60
NIAH_M3 - 1.00 0.00 1.80 34.20 18.20 7.40 15.00 0.00 0.00 29.60
NIAH_MV - 8.40 6.90 38.85 77.55 81.95 58.75 62.40 0.00 4.80 83.50
NIAH_MQ - 8.85 7.95 59.30 90.95 86.20 85.15 81.60 0.00 2.75 90.35
VT - 6.56 11.28 1.16 68.84 83.56 47.12 48.16 0.00 2.52 88.68
CWE - 19.94 28.36 17.80 27.26 26.32 23.72 28.60 0.62 11.90 21.20
FWE - 77.13 25.80 59.80 47.93 61.73 10.13 57.33 12.93 81.60 51.73
QA_1 - 22.80 36.40 28.00 46.00 45.20 43.20 49.20 13.20 23.00 45.00
QA_2 - 24.20 26.00 31.60 35.20 36.00 37.40 33.40 20.80 26.20 36.00

Avg. - 18.02 14.79 44.02 69.64 70.01 54.21 64.35 3.67 16.31 69.56

Table 23: Ruler results on 32k context length.

Exact Frozen Finetuned
Base Inf N-F SE PI N-32 YaRN CLEX LLR Land N-64

✓ ✓ ✓ ✓ ✓ ✓ ✓

Train Len 4k 4k 4k 4k 32k 32k 32k 32k 32k 32k 64k
Eval Len 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k

NIAH_S1 - 7.80 0.00 83.00 97.20 99.00 85.80 85.60 0.00 33.80 100.00
NIAH_S2 - 7.00 0.00 68.40 99.00 100.00 81.00 94.00 0.00 3.20 99.20
NIAH_S3 - 6.40 0.00 42.80 97.00 99.40 62.40 97.20 0.00 2.60 96.40
NIAH_M1 - 8.80 0.00 29.40 93.40 90.80 63.20 78.40 0.00 5.40 82.60
NIAH_M2 - 0.00 0.00 2.40 48.80 39.40 6.40 40.40 0.00 0.20 36.60
NIAH_M3 - 0.00 0.00 1.40 5.80 8.60 1.20 8.00 0.00 0.00 7.20
NIAH_MV - 3.75 0.00 24.65 61.30 68.20 37.95 60.75 0.00 2.80 82.20
NIAH_MQ - 2.05 0.00 20.35 68.65 78.25 46.95 67.80 0.05 2.35 85.80
VT - 2.08 0.00 2.32 56.68 43.28 22.00 30.08 0.00 2.52 71.28
CWE - 4.48 0.02 17.46 26.72 11.78 11.38 22.70 13.26 3.68 7.34
FWE - 72.67 2.93 46.73 31.00 64.53 15.13 34.67 13.93 72.47 51.53
QA_1 - 20.20 5.20 20.60 33.40 34.40 23.00 28.00 6.00 22.60 27.00
QA_2 - 25.20 1.20 24.00 30.60 34.80 24.00 30.60 12.60 24.60 33.20

Avg. - 12.34 0.72 29.50 57.66 59.42 36.95 52.17 3.53 13.56 60.03
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Table 24: Ruler results on 64k context length.

Exact Frozen Finetuned
Base Inf N-F SE PI N-32 YaRN CLEX LLR Land N-64

✓ ✓ ✓ ✓ ✓ ✓ ✓

Train Len 4k 4k 4k 4k 32k 32k 32k 32k 32k 32k 64k
Eval Len 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k 4k

NIAH_S1 - 3.20 0.00 71.80 0.00 83.60 0.00 40.60 0.00 40.00 98.00
NIAH_S2 - 3.80 0.00 0.20 0.00 95.60 0.00 68.80 0.00 3.00 98.00
NIAH_S3 - 5.40 0.00 0.00 0.00 95.40 0.00 70.40 0.00 3.00 95.80
NIAH_M1 - 5.40 0.00 0.00 0.00 76.80 0.00 55.40 0.00 5.20 67.20
NIAH_M2 - 0.00 0.00 2.60 0.00 15.20 0.00 15.80 0.00 0.00 25.80
NIAH_M3 - 0.00 0.00 0.20 0.00 1.20 0.00 1.00 0.00 0.00 4.00
NIAH_MV - 4.45 0.00 0.20 0.00 51.70 0.00 36.40 0.00 3.70 51.20
NIAH_MQ - 4.45 0.00 0.05 0.00 56.60 0.00 43.50 0.00 2.45 65.40
VT - 1.28 0.00 12.20 0.00 34.28 0.00 0.00 0.00 2.40 41.48
CWE - 0.76 0.00 6.85 0.00 6.58 0.00 9.72 0.00 1.70 7.88
FWE - 72.20 11.47 26.47 0.00 25.27 0.00 11.73 0.00 82.67 27.73
QA_1 - 16.20 0.20 0.80 0.00 30.80 0.00 25.60 0.00 19.60 29.20
QA_2 - 20.20 0.20 0.00 0.00 28.40 0.00 19.00 0.00 20.20 29.40

Avg. - 10.56 0.91 9.34 0.00 46.26 0.00 30.61 0.00 14.15 49.31
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