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ABSTRACT

Balancing training on long-tail data distributions remains a long-standing chal-
lenge in deep learning. While methods such as re-weighting and re-sampling help
alleviate the imbalance issue, limited sample diversity continues to hinder models
from learning robust and generalizable feature representations, particularly for tail
classes. In contrast to existing methods, we offer a novel perspective on long-tail
learning, inspired by an observation: datasets with finer granularity tend to be
less affected by data imbalance. In this paper, we investigate this phenomenon
through both quantitative and qualitative studies, showing that increased granu-
larity enhances the generalization of learned features in tail categories. Motivated
by these findings, we propose a method to increase dataset granularity through
category extrapolation. Specifically, we introduce open-set auxiliary classes that
are visually similar to existing ones, aiming to enhance representation learning
for both head and tail classes. This forms the core contribution and insight of our
approach. To automate the curation of auxiliary data, we leverage large language
models (LLMs) as knowledge bases to search for auxiliary categories and retrieve
relevant images through web crawling. To prevent the overwhelming presence
of auxiliary classes from disrupting training, we introduce a neighbor-silencing
loss that encourages the model to focus on class discrimination within the tar-
get dataset. During inference, the classifier weights for auxiliary categories are
masked out, leaving only the target class weights for use. Extensive experiments
and ablation studies on three standard long-tail benchmarks demonstrate the ef-
fectiveness of our approach, notably outperforming strong baseline methods that
use the same amount of data. The code will be made publicly available.

1 INTRODUCTION

Deep models have shown extraordinary performance on large-scale curated datasets (He et al., 2016;
Simonyan & Zisserman, 2015; Dosovitskiy et al., 2021b). But when dealing with real-world appli-
cations, they generally face highly imbalanced (e.g., long-tailed) data distribution: instances are
dominated by a few head classes, and most classes only possess a few images (Wang et al., 2021;
He et al., 2021; Xiang et al., 2020; Dong et al., 2023). Learning in such an imbalanced setting is
challenging as the instance-rich (or head) classes dominate the training procedure (Cui et al., 2021;
Samuel & Chechik, 2021; Alshammari et al., 2022; Zhong et al., 2021). Without considering this
situation, models tend to classify tailed class samples as similar head categories, leading to signif-
icant performance degradation on tail categories (Yu et al., 2022; Park et al., 2022; Parisot et al.,
2022; Zhu et al., 2022).

Existing works tackle challenges in long-tail learning from various perspectives. An earlier stream
is to re-balance the learning signal (e.g., re-weighting (Cui et al., 2019) and re-sampling (Chawla
et al., 2002)). Yet, they inevitably face the scarcity of data and suffer from over-fitting on tail classes
(Fig. 1b). Another straightforward fix is to augment training samples into diverse ones through
image transformations (DeVries & Taylor, 2017; Zhang et al., 2018; Yun et al., 2019; Chou et al.,
2020). These methods typically increase the loss weights or enhance the sample diversity of tail
classes to balance representation learning. Despite advances, limited sample diversity still constrains
the ability to generalize the learned features. Additionally, improvements in tail class performance
are often accompanied by a decline in head class performance. This limitation motivates us to inves-
tigate what factors contribute to generalizable feature learning in long-tail settings. Our exploration
is inspired by a common, yet counterintuitive, phenomenon observed in existing benchmarks: de-
spite being more imbalanced than ImageNet-LT (Liu et al., 2019), iNat18 (Van Horn et al., 2018)
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(a) Baseline (b) Reweighting / Resampling (c) Data Augmentation (d) Category Extrapolation (Ours)

Tail Class Auxiliary Tail Classes

Figure 1: Holistic comparison to previous philosophy. (a) Data imbalance between head and tail classes
makes biased features; (b, c): Previous methods are still bounded by existing known classes; (d) We instead
seek help from auxiliary open-set data.

achieves nearly balanced performance (see Table 1). This observation raises the question: Does
granularity play a role in the performance balance of long-tail learning?

To investigate this further, we conducted a pilot study (see Sec. 2.2) using a larger data pool and
controlled experiments to verify this phenomenon. We found that datasets with finer granularity are
less affected by data imbalance. Feature visualizations (see Fig. 2 and Fig. 9) reveal that, despite
a long-tail distribution, datasets with finer granularity enable the model to learn more generalized
representations. This discovery motivates us to explore altering data distribution by introducing
open-set categories to increase the granularity of data for long-tail learning.

Dataset #Class #Train Granul. Imb. Ratio β Many Med. Few

IN-LT 1000 116K Coarse 5/1280=0.004 68.2 56.8 41.6
iNat18 8142 438K Fine 2/1000=0.002 70.3 71.3 70.2

Table 1: Average performance of previous methods. Results are obtained by averaging the performance
listed in Table 3a for ImageNet-LT and Table 3b for iNat18.

At the core of our approach is the idea of augmenting training data with fine-grained categories re-
lated to the original ones, thereby increasing granularity (Fig. 1d). To acquire auxiliary data, we es-
tablish a fully automated data crawling pipeline powered by the knowledge of large language models
(LLMs). Specifically, for each class to be expanded, we query an LLM for k visually similar auxil-
iary classes, then retrieve corresponding images from the web based on these class names (Fig. 4).
The crawled data are subsequently integrated with the original dataset for model training. Dur-
ing training, we introduce a neighbor-silencing loss to enhance discrimination between confusing
classes, prevent the model from being overwhelmed by auxiliary classes, and ensure alignment with
the objectives of the testing phase. After training, the classifier– by simply masking out the auxiliary
classes demonstrates strong performance without the need for additional classifier re-balancing, as
required in previous methods (Kang et al., 2020; Zhou et al., 2020).

Intuitively, our method could be interpreted as category extrapolation. These augmented categories
complete the learning signal, which may fill the gap between originally distinct classes, encourage
continuity and smoothness of the feature manifold, and allow better generalization of representations
across classes. In terms of classification, samples of auxiliary classes take up the neighborhood of
existing classes, thus explicitly enlarging the margin between them and encouraging discriminability.
Empirically, we indeed observe tighter clusters and better separation in-between (Fig. 2d).

Our major contributions are summarized as follows:

• We explore the effect of granularity on the performance balance in long-tail learning, which
motivate us to introduce neighbor classes to increase the granularity and facilitate represen-
tation learning for both head and tail classes.

• We propose a neighbor-silencing learning loss to facilitate long-tail learning with extra
open-set categories and design a fully automatic data acquisition pipeline to efficiently
harvest data from the Web.
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Head Class
Tail Class

(a) Raw feature space
(train).

Head Class
Tail Class

(b) Baseline after training
(train).

Head Class
Tail Class

(c) Baseline after training
(val).

Head Class
Tail Class
Auxiliary Class 1
Auxiliary Class 2

(d) After training w/ aux.
class (val).

Figure 2: Feature visualization of confusing head and tail classes by UMAP (McInnes et al., 2020) on
ImageNet-LT (Liu et al., 2019). (a) Raw feature space of training data by DINOv2 (Maxime et al., 2023); (b)
Feature space of training data after the training phase; (c) The baseline (re-weighting) shows poor generalization
on validation data; (d) Adding auxiliary categories condenses clusters and improves separation.

• We conduct extensive experiments across standard benchmarks using various training
paradigms (e.g., random initialization, CLIP (Radford et al., 2021), and DINOv2 (Maxime
et al., 2023)), all of which consistently demonstrate high performance. Notably, when train-
ing from random initialization, our method improves tail class performance by 16.0% on
ImageNet-LT and 8.3% on Places-LT.

2 PILOT STUDY

In this section, we investigate whether granularity impacts performance balance in long-tail distri-
bution. We first provide preliminary for long-tail learning and an analysis on a baseline method
in Sec. 2.1. Then, we verify the impact of the granularity of training data on long-tail learning
(Sec. 2.2) from both quantitative and qualitative perspectives.

2.1 PRELIMINARY

In long-tail visual recognition, the model has access to a set of N training samples S =
{(xn, yn)}Nn=1, where xn ∈ X ⊂ RD and labels Y = {1, 2, .., L}. Training class frequencies
are defined as Ny =

∑
(xn,yn)∈S 1yn=y and the test-class distribution is assumed to be sampled

from a uniform distribution over Y, but is not explicitly provided during training. A classic solution
is to minimize the balanced error (BE), of a scorer f : X → RL, defined as:

BE(x, f(·)) =
∑
y∈Y

Px|y

(
y /∈ argmax

y′∈Y

fy′(x)

)
, (1)

where fy(x) is the logit produced for true label y for sample x. Traditionally, this is done by
minimizing a proxy loss, the Balanced Softmax Cross Entropy (BalCE) (Cui et al., 2019):

LBalCE(M(x|θf , θw),yi) = − log[p(yi|x; θf , θw)]

= − log

[
nyi

ezyi∑
yj∈Y nyje

zyj

]
= log

1 + ∑
yj ̸=yi

elognyj
−lognyi

+zyj
−zyi

. (2)

This is known as re-weighting, where the contribution of each label’s individual loss is scaled by an
inverse class frequency derived from the class’s instance number nyi

. We adopt this setting as the
baseline in follow-up experiments.

On the failure of re-balancing. The primary challenge of long-tail learning stems from data im-
balance, which affects the representation learning of both head classes and few-shot classes. For
head classes, if there is a lack of effective negative-class samples, then learning an effective bound-
ary is challenging. To better demonstrate this, we provide feature visualizations of confusing head
(Scottish Deerhound) and tail (Irish Wolfhound) classes on ImageNet-LT in ??. As in Fig. 2a, these
two classes are challenging even for the advanced vision foundation model DINOv2 (Maxime et al.,
2023). After training with the re-weighting baseline on the imbalanced training data, the learned
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features seem relatively satisfactory (Fig. 2b). However, the generalization is poor: samples in the
validation data are still convoluted, and the separation between them is unclear (Fig. 2c). On top of
this baseline, we then study the effect of data distribution on long-tail learning.

2.2 GRANULARITY MATTERS IN LONG-TAIL LEARNING
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Figure 3: Effect of granularity vs. imbalance ratio.

We study whether the granularity of the dataset
is critical to long-tail learning. Our study is
motivated by an intriguing observation that, al-
though more classes and stronger imbalance,
we observe nearly balanced performance on
iNat18 (Van Horn et al., 2018), as opposed to
ImageNet-LT (Liu et al., 2019). A significant
distinction is that iNat18 is an extremely fine-
grained dataset with over 8000 categories, yet
it only consists of 14 superclasses in total. On
the other hand, ImageNet-LT, although com-
prising only 1000 categories, has over 100 su-
perclasses, making it relatively coarse-grained.
Therefore, we conduct experiments to study the
effect of granularity on long-tail learning.

Dataset Configuration. To this end, we con-
struct a dataset pool using ImageNet-21k (Rid-

nik et al., 2021) and OpenImage (Krasin et al., 2017) datasets. To investigate the influence of
granularity, we sample 500 classes from the pool for each time and control the number of su-
perclasses to be {20, 40, 60, 100} based on WordNet. Then, we used different imbalance ratios
{1.0, 0.5, 0.1, 0.05, 0.01, 0.001} to study the effect of granularity on the imbalance ratio. We train
the model (ViT-Base (Dosovitskiy et al., 2021b)) using BalCE (Cui et al., 2019) as Eq. (2). We
conduct 5 experiments and take the average value.

In Fig. 3, we show the performance gap between head categories and tail categories under different
dataset imbalance ratios. The results show that as the granularity increases, the dataset is less sen-
sitive to the imbalance ratio. For example, when the number of superclasses is 20, the performance
gap between the head and tail is 7.3%, while the gap is 20.8% when the number of superclasses is
100, under the severe imbalance (imbalance ratio=0.001).

Finding 1: Increased granularity of training data benefits long-tail learning.

In a fine-grained long-tail dataset, although there are few samples for tail categories, many categories
share similar patterns, which is conducive to learning distinctive features, thus enhancing generaliz-
ability. As reflected in Fig. 2d, for clearer visualization, we sample two fine-grained categories that
is denoted as the auxiliary classes. The visualization shows that the separation between head and tail
classes is clearly improved. Also, the distribution of intra-class samples is also more compact. Due
to the space limitation, we show more examples in Appendix Fig. 9. This motivate us to introduce
diverse open-set auxiliary categories to enhance the granularity for close-set long-tail learning.

Finding 2: Despite long-tail distribution, increased granularity could explicitly separate and
condensify existing data clusters.

Based on the above findings, given a long-tail dataset, we aim to establish a framework that can
effectively acquire auxiliary data to enhance the granularity. Specifically, we utilize LLMs to query
the candidate auxiliary categories and crawl images from the Web, followed by a filtering stage
to ensure similarity and diversity. To better incorporate auxiliary data for training with target cat-
egories, we propose a Neighbor-Silencing Loss to avoid being overwhelmed by auxiliary classes.
Details are included in Sec. 3.
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3 LONG-TAIL LEARNING BY CLASS EXTRAPOLATION

In this section, we first introduce our simple and automatic pipeline for obtaining auxiliary data in
Sec. 3.1. Then, we present our new learning objective that effectively leverages the auxiliary data to
enhance long-tail learning in Sec. 3.2.

3.1 NEIGHBOR CATEGORY SEARCHING

In search of neighbor categories sharing some common visual patterns with the pre-defined cate-
gories in the dataset, we design a fully automatic crawling pipeline that includes (i) querying neigh-
bor categories from LLMs to obtain similar categories and enhance the granularity of the training
data and (ii) retrieving corresponding images from the web and conducting filtering to guarantee
similarity and diversity. An overview of this pipeline is illustrated in Fig. 4, and we introduce each
step in detail as follows.

Querying LLM for Neighbor Categories. We take advantage of the recent development of Large
Language Models (LLMs), e.g., GPT-4 (OpenAI, 2023), and query them for expert knowledge of
possible visually similar classes with respect to the classes to extrapolate (i.e., the medium and tail
classes by default). For example, we can prompt the language model with: “Please create a list
which contains 5 visually similar categories of {CLS}”. However, the output of this naive prompt is
unstable, possibly because ‘visually similar categories’ by itself is quite a broad and vague concept.
To make the prompt more concrete and clear for LLMs, we design a structural prompt with in-
context learning:

Task: Given a category name, please list out 5 classes that are visually similar to the provided classes.
Query: sports car
Response: sedan, coupe, SUV, luxury car, electric car
Query: {CLS}
Response:

Auxiliary Images

Task Prompt
Given a category name, please list 
out categories which are visually 
similar to the provided category. 

Query
sports car

Neighbor Categories
sedan, coupe, SUV, luxury car, electric car

Filter

GPT4

Web Search

Figure 4: Data crawling pipeline. We prompt GPT-
4 for visual-similar categories of query classes and re-
trieve corresponding images from the web. Classes al-
ready in the label set and images of lower visual simi-
larity than the threshold are filtered out.

The LLM then completes the response above.
After that, classes in the target dataset S are fil-
tered out to avoid possible information leaks.
Then, the remaining class names are fed to an
image-searching engine for image retrieval.

Retrieving and Filtering Images from the
Web. Images retrieved by the search engine can
be noisy, thus, a filtering strategy is adopted.
An image xr corresponding to a specific class
yi is dropped if: (i) the class’s name does not
exist in the associated caption; or (ii) the visual
similarity between the class and this image sat-
isfies thresholds: γ1 < cos(pi, fr) < γ2. We
employ DINOv2 (Maxime et al., 2023) for fea-
ture extraction and use cosine similarity as the
metric. Specifically, the prototype pi of cate-
gory yi is computed as the average feature of
all samples of this category in the target dataset
S: pi = 1/nyi

∑
j fj . After the filtering pro-

cess, the model has access to a set of M auxiliary training samples A = {(xm, ym)}Mm=1, where
xm ∈ X ⊂ RD and labels Ya = {L + 1, L + 2, .., L +K} and the category number for auxiliary
set is K.
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3.2 LEARNING WITH AUXILIARY CATEGORIES

We mix the auxiliary dataset A and the target dataset S for training. A naive approach is to directly
employ the BalCE loss (Cui et al., 2019) by merging the label space:

LBalCE = − log

[
nyi

ezyi/(

Target︷ ︸︸ ︷∑
yj∈Y

nyj
ezyj +

Auxiliary︷ ︸︸ ︷∑
yj∈Ya

nyj
ezyj )

]
. (3)

But note that our objective is to classify L categories within the target dataset, as opposed to L+K
categories. Directly employing the standard BalCE loss as Eq. (3) would result in an inconsistency
between the optimization process and the ultimate goal. The auxiliary part could overwhelm opti-
mization and result in degenerated performance. We thus “silent” them by weighting as follows.

Silencing the Overwhelming Neighbors. Concretely, if yj is a neighbor category of yi from aux-
iliary categories, we spot this as possible neighbor overwhelming and give the corresponding logit
a smaller weight. To clarify, yj is a neighbor category of yi means that yj is queried from yi by
Neighbor Category Searching (Sec. 3.1). We thus expect the auxiliary classes to influence less the
target class which they are queried from, and contribute more to their classification as a whole with
respect to other classes. The neighbor-silencing variant of the re-balancing loss is then formulated
as:

LNS-CE = log

1 + ∑
yj ̸=yi

λij · elognyj
−lognyi

+zyj
−zyi

, (4)

where λij = λs, if yi and yj satisfy that one is the other’s neighbor category and one of them from
auxiliary categories, and λij = 1 otherwise. λs is the weight for balancing the loss between neighbor
category pairs and non-pairs. By default, 0 < λs < 1. In this way, we assign a smaller weight to
neighbor category pairs, thus, the effect within neighbor classes is weakened, and the optimization
focuses more on their separation as a whole from other confusing classes.

Obtaining the Final Classifier. Given that our model’s classifier includes more categories, it can-
not be directly applied to the target dataset for evaluation. A common practice is to discard the
trained classifier and re-train it with re-balancing techniques on the target dataset through linear
probing (Kang et al., 2020; Zhou et al., 2020). However, this could be suboptimal since the sepa-
ration hyper-planes shaped by auxiliary categories can be undermined. Therefore, we try directly
masking out the weights of auxiliary categories, retaining only the weights of the target categories.
Specifically, we denote the trained classifier weights as W = {wi}L+K

i=1 , where wi ⊂ RC , and keep
W = {wi}Li=1. Surprisingly, this simpler approach works better. This is potentially because incor-
porating more auxiliary fine-grained categories can enable the classifier to focus on class-specific
discriminative features. These features possess stronger generalizability, facilitating the classifier to
construct more precise separation hyper-planes.

4 EXPERIMENTS

In this section, we first introduce benchmark datasets for long-tail image classification in Sec. 4.1,
followed by the implementation details in Sec. 4.2. Then, we compare our approach with the base-
line and state-of-the-art methods in Sec. 4.3. Finally, a series of ablation studies are performed for
further analysis in Sec. 4.4.

4.1 DATASETS

We experiment with three standard long-tailed image classification benchmarks. All datasets adopt
the official validation/test images for fair comparisons. We report accuracy on three splits of the set
of classes: Many-shot (more than 100 images), Medium-shot (20∼100 images), and Few-shot (less
than 20 images). Besides, we also report the commonly used top-1 accuracy over all classes for
evaluation. Detailed dataset information is available in the Appendix.
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Table 2: Quantitative results of the proposed method on three standard benchmarks. For each dataset, we
conduct three pre-training paradigms (training from scratch, CLIP, and DINOv2) to compare our method with
baseline methods on accuracy (%). In addition, we report the relative improvement of our method compared to
the baseline method in each setting.

ImageNet-LT iNaturalist 18 Place-LT

Method Overall Many Med. Few Overall Many Med. Few Overall Many Med. Few

Sc
ra

tc
h Baseline 60.9 72.9 56.8 41.4 76.1 78.5 76.9 74.6 39.9 43.0 40.5 33.3

+ Ours 68.2↑7.3 74.5↑1.6 66.2↑9.4 57.4↑16.0 78.0↑1.9 78.9↑0.4 78.2↑1.3 77.5↑2.9 43.8↑3.9 43.7↑0.7 44.8↑4.3 41.6↑8.3

C
L

IP Baseline 74.0 77.2 72.8 68.5 75.0 77.8 76.5 72.5 48.4 47.9 48.6 48.9
+ Ours 77.3↑3.5 79.1↑1.9 76.8↑4.0 74.1↑5.6 78.5↑3.5 79.5↑1.5 79.3↑2.8 77.3↑4.8 50.5↑2.1 50.0↑2.1 51.0↑2.4 50.2↑1.3

D
IN

O
v2 Baseline 79.6 84.3 78.3 71.1 85.0 85.7 86.2 84.2 49.5 49.2 51.3 46.1

+ Ours 82.0↑2.4 84.7↑0.4 81.5↑3.2 76.2↑5.1 87.0↑2.0 86.4↑0.7 87.4↑1.2 86.7↑2.5 50.8↑1.3 49.4↑0.2 52.4↑1.1 49.2↑3.1

ImageNet-LT (Liu et al., 2019) is a class-imbalanced subset of the popular image classification
benchmark ImageNet ILSVRC 2012 (Russakovsky et al., 2015). The images are sampled following
the Pareto distribution with a power value α = 6, containing 115.8k images from 1,000 categories.
iNaturalist 2018 (Van Horn et al., 2018) (iNat18 for short) is a species classification dataset, which
consists of 437.5k images from 8,142 fine-grained categories following an extreme long-tail dis-
tribution. Places-LT is a synthetic long-tail variant of the large-scale scene classification dataset
Places (Zhou et al., 2017). With 62.5k images from 365 categories, its class cardinality ranges from
5 to 4,980.

4.2 IMPLEMENTATION DETAILS

We adopt ViT-Base (Dosovitskiy et al., 2021b) as the backbone. Our models are trained with the
AdamW optimizer (Loshchilov & Hutter, 2019) with βs = {0.9, 0.95}, with an effective batch
size of 512 on 4 NVIDIA 3090 GPUs. We train all models with RandAug(9, 0.5) (Cubuk et al.,
2020), Mixup(0.8) (Zhang et al., 2018) and Cutmix(1.0) (Yun et al., 2019). We set the maximum
sampling number for each auxiliary category to 50 in each training epoch. For the ratio of neighbor
category for head, medium, and tail class, we set to 1 :

[
Nh

Nm

]
:
[
Nh

Nt

]
, where Nh, Nm, and Nt

denote the total number of samples of head, medium, and tail classes, respectively. [·] stands for
ceiling, which rounds a number up to the nearest integer. Following LiVT (Xu et al., 2023), the
training epochs for ImageNet-LT, iNaturalist, and Place-LT is set to 100, 100, and 30, respectively.
The hyper-parameter λs is set to 0.1. See detailed implementation settings in the Appendix.

4.3 MAIN RESULTS

Comparison with Baseline with Different Pre-training. We experiment with three different pre-
training paradigms (i.e., random initialization, CLIP (Radford et al., 2021), and DINOv2 (Maxime
et al., 2023)). The baseline applies BalCE (Cui et al., 2019) loss. As shown in Table 2, our method
significantly improves the performance over the baseline on all three datasets, especially on fewer-
shot classes. This improvement is also consistent and generalizes to a variety of pre-training strate-
gies. In particular, when the model is trained from scratch, we observe a significant performance
boost on ImageNet-LT, with a 16.0% increase in accuracy on the tail classes. A plausible expla-
nation is that randomly initialized networks are more prone to overfitting on tail classes compared
to large-scale pre-trained models. Our method effectively addresses this issue by utilizing neighbor
categories. Besides, even with pre-trained models as initialization, our approach consistently demon-
strates satisfactory improvements. For example, when using DINOv2 as the backbone, we achieve
performance improvements of 5.0%, 2.5%, and 3.1% on the tail classes of ImageNet-LT, iNaturalist,
and PlaceLT datasets, respectively, without compromising performance on the head classes. This
verifies our method’s generalizability and effectiveness on long-tail datasets.

Can Learning by Class Extrapolation Enhance the State-of-the-Art Methods? We conduct
comprehensive experiments with existing SoTAs in Table 3a, Table 3b, and Table 4. Current meth-
ods can be generally categorized into two settings, i.e., training from scratch or adopting CLIP
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Table 3: Performance on ImageNet-LT and iNaturalist 2018. We report accuracy (%) of all methods under
three pre-training paradigms (*indicates using additional text information and related modules for training. For
each pre-training paradigm, we select a SOTA method, and add proposed method with the auxiliary data on it.
We also report the performance of adding the auxiliary data but without our method, which denotes by †.)

(a) Performance on ImageNet-LT.

Methods Backbone Overall Many Med. Few
Training from scratch
MiSLAS (Zhong et al., 2021) ResNet-50 52.7 62.9 50.7 34.3
RIDE (Wang et al., 2021) ResNet-50 56.8 68.2 53.8 36.0
LA (Menon et al., 2021) ResNet-50 51.1 - - -
DisAlign (Zhang et al., 2021) ResNet-50 52.9 61.3 52.2 31.4
BCL (Zhu et al., 2022) ResNet-50 56.0 - - -
PaCo (Cui et al., 2021) ResNet-50 57.0 - - -
NCL (Li et al., 2022) ResNet-50 57.4 - - -
LiVT (Xu et al., 2023) ViT-B 60.9 73.6 56.4 41.0
LiVT† (Xu et al., 2023) ViT-B 59.3 74.2 54.1 35.3
Ours ViT-B 68.2 74.5 66.2 57.4
Fine-tuning pre-trained model (CLIP)
BALLAD (Ma et al., 2021) ViT-B 75.7 79.1 74.5 69.8
VL-LTR* (Tian et al., 2022) ViT-B 77.2 84.5 74.6 59.3
Decoder (Wang et al., 2023) ViT-B 73.2 - - -
LIFT (Shi et al., 2024) ViT-B 77.0 80.2 76.1 71.5
LIFT† (Shi et al., 2024) ViT-B 75.4 80.3 73.8 67.1
Ours ViT-B 78.8 80.3 78.4 75.8
Fine-tuning pre-trained model (DINOv2)
LiVT (Xu et al., 2023) ViT-B 79.6 84.3 78.3 71.1
LiVT† (Xu et al., 2023) ViT-B 77.9 84.4 75.6 67.8
Ours ViT-B 82.0 84.7 81.5 76.2

(b) Performance on iNaturalist 2018.

Method Backbone Overall Many Med. Few
Training from scratch
cRT (Kang et al., 2020) ResNet-50 65.2 69.0 66.0 63.2
MiSLAS (Zhong et al., 2021) ResNet-50 71.6 73.2 72.4 70.4
DiVE (He et al., 2021) ResNet-50 69.1 70.6 70.0 67.6
DisAlign (Zhang et al., 2021) ResNet-50 69.5 61.6 70.8 69.9
BCL (Zhu et al., 2022) ResNet-50 71.8 - - -
PaCo (Cui et al., 2021) ResNet-50 73.2 70.4 72.8 73.6
NCL (Li et al., 2022) ResNet-50 74.2 72.0 74.9 73.8
GML (Suh & Seo, 2023) ResNet-50 74.5 - - -
LiVT (Xu et al., 2023) ViT-B 76.1 78.9 76.5 74.8
LiVT† (Xu et al., 2023) ViT-B 66.2 78.0 68.2 60.4
Ours ViT-B 78.0 78.9 78.2 77.5
Fine-tuning pre-trained model (CLIP)

VL-LTR* (Tian et al., 2022) ViT-B 76.8 - - -
Decoder (Wang et al., 2023) ViT-B 59.2 - - -
LIFT (Shi et al., 2024) ViT-B 79.1 72.4 79.0 81.1
LIFT† (Shi et al., 2024) ViT-B 74.5 72.9 75.3 73.9
Ours ViT-B 80.9 79.6 80.1 82.1
Fine-tuning pre-trained model (DINOv2)
LiVT (Xu et al., 2023) ViT-B 85.0 85.7 86.2 84.2
LiVT† (Xu et al., 2023) ViT-B 82.9 85.9 84.1 80.4
Ours ViT-B 87.0 86.4 87.4 86.7

pre-training. For a fair comparison, we benchmark our method regarding each setting correspond-
ingly. Under the train-from-scratch setting, we implement our method based on LiVT. The results
show that our approach outperforms alternative methods by a significant margin. Specifically, when
compared to LiVT (Xu et al., 2023), we observe improvements of 16.4%, 2.7%, and 14.1% in the
tail classes across the three datasets. When CLIP pre-training is adopted, our method still achieves
the best performance. Under the CLIP pre-training setting, we implement our method based on
LIFT (Shi et al., 2024). Notably, we do not introduce additional complex structures as in VL-
LTR (Tian et al., 2022). Besides, we also present results obtained by DINOv2, in which we provide
the results of LiVT initialized by pre-trained weights from DINOv2. In this setting, our method also
shows considerable improvements.

Fair Comparison. In each pre-training paradigm (Table 3a, Table 3b, and Table 4), we select a
SOTA method, and add proposed method with the auxiliary data on it, which is denoted by †. When
using the neighbor categories with other methods, we can observe that the performance in medium
and few classes declines. The potential reason is that the representation learning of medium and few
classes are overwhelmed by auxiliary categories, which indicates the effectiveness of our proposed
methods.

Comparison with methods fine-tuned with extra data. As shown in Table 5, we compare our
methods with approaches trained with extra data. Note that VL-LTR (Tian et al., 2022) collects
textual descriptions for each category as auxiliary data. RAC (Long et al., 2022) retrieves samples
in a data pool with 11.2M images and leverages the most similar samples to refine features during
inference. Our method only utilizes 3.6M auxiliary images and surpasses them by a large margin.

4.4 ABLATION AND ANALYSIS

Contributions of Individual Components. As shown in Tab. 6, we evaluate the contribution of
each component of the full method. The baseline is BalCE with DINOv2 pretraining. We conduct
ablation experiments on ImageNet-LT. We replace the re-balancing loss (Eq. (2)) with the neighbor-
silencing loss (Eq. (4)), obtaining improvements of 1.0% and 1.9% in the medium and tail categories,
respectively. If we use the direct classifier instead of retraining the classfier by linear probing, the
performance in the medium and tail categories increases to 79.2% and 73.2%, respectively. The
best performance is achieved when we do not re-train the classifier and instead directly utilize the
classifier weights corresponding to the target categories.
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Table 4: Performance on Places-LT.

Method Backbone Overall Many Med. Few

Training from scratch

MiSLAS (Zhong et al., 2021) ResNet-152 40.4 39.6 43.3 36.1
DisAlign (Zhang et al., 2021) ResNet-152 39.3 40.4 42.4 30.1
ALA (Zhao et al., 2022) ResNet-152 40.1 43.9 40.1 32.9
PaCo (Cui et al., 2021) ResNet-152 41.2 36.1 47.9 35.3
LiVT (Xu et al., 2023) ViT-B 40.8 48.1 40.6 27.5
LiVT† (Xu et al., 2023) ViT-B 39.1 48.2 37.8 25.3
Ours ViT-B 43.8 43.7 44.8 41.6

Fine-tuning pre-trained model (CLIP)

BALLAD (Ma et al., 2021) ViT-B 49.5 49.3 50.2 48.4
VL-LTR* (Tian et al., 2022) ViT-B 50.1 54.2 48.5 42.0
Decoder (Wang et al., 2023) ViT-B 46.8 - - -
LIFT (Shi et al., 2024) ViT-B 51.5 51.3 52.2 50.5
LIFT† (Shi et al., 2024) ViT-B 48.8 51.5 48.3 45.1
Ours ViT-B 50.5 50.0 51.0 50.2

Fine-tuning pre-trained model (DINOv2)

LiVT (Xu et al., 2023) ViT-B 49.5 49.2 51.3 46.1
LiVT† (Xu et al., 2023) ViT-B 46.8 49.0 46.8 42.9
Ours ViT-B 52.4 51.6 53.0 52.3

Table 5: Comparison with methods fine-tuned
with extra data. Our results are notably stronger
despite better sample efficiency.

Method #Data Overall Many Med. Few

Results on iNat18 with ViT-B as backbone

VL-LTR (Tian et al., 2022) Texts 76.8 - - -
RAC (Long et al., 2022) 11.2M 80.2 75.9 80.5 81.1
Ours 3.6M 87.0 86.4 87.4 86.7

Table 6: Contributions of individual compo-
nents. Results are obtained on ImageNet-LT.

Method Many Med. Few Overall

Baseline 84.3 78.3 71.1 79.6
+ Neighbor Silencing 84.5 80.8 75.5 81.5
+ Direct Classifier 84.4 79.2 73.2 80.4
+ both 84.7 81.5 76.2 82.0

The curation of the auxiliary dataset primarily involves three hyper-parameters: the number of
auxiliary categories associated with a target category, the maximum number of samples per aux-
iliary class, and the proportion of the number of auxiliary categories for head (auxhead), medium
(auxmedium), and tail classes (auxtail), i.e. auxhead : auxmedium : auxtail (denoted as auxiliary sampling
ratio for simplicity). We will analyze these three hyper-parameters separately and fix the other two
hyper-parameters individually. The default values for these three hyper-parameters are 5, 50, and
1:1:3, respectively.

Number of Sampled Categories. Fig. 6a studies the effect of the number of auxiliary categories for
each target class. The optional values are set to {1, 3, 5, 7, 8}. We can observe that as the number
of neighbor categories increases, the performance gradually improves and finally saturates when
approaching 5.

Im
ag
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O
ur
s

Figure 5: PCA visualization of “Tail” images in
ImageNet-LT. Top-3 PCA components of features are
mapped to RGB channels.

Maximum Number of Sampled Instances
Per Class. As shown in Fig. 6b, we study
the effect of the number of samples per
neighbor category. The optional values are
{10, 30, 50, 100, 150}. If the number of sam-
ples collected for a class exceeds the limit, we
randomly subsample it to the corresponding
number; and if less, we keep them unchanged.
It can be seen that as the limit increases to 50,
the performance improves. However, when too
many instances are included, the performance
drops. This can be attributed to an excessive
number of samples from auxiliary classes, re-
sulting in an overwhelming of these categories.

Auxiliary Sampling Ratio. Fig. 6c studies the proportion of the number of auxiliary categories for
head, medium, and tail classes. When the ratio is 0:1:3, which indicates that the neighbor categories
for many classes are removed, we can observe a performance degradation in many classes from
84.4% to 82.3%. This could be because, with only the addition of auxiliary data in the medium and
few-shot categories, feature learning tends to skew towards these medium and few-shot categories.
Moreover, when we decrease the ratio on medium (ratio=1:0.5:3) and tail (ratio=1:1:1) classes, the
performance degrades, respectively.

Visualization. Fig. 5 shows the top-3 PCA components of images sampled from “Tail” classes of
ImageNet-LT, where each component is mapped to an RGB channel, and the background is removed
by thresholding the first PCA component. Both the baseline (Cui et al., 2019) and our method adopt
DINOv2 pre-training. While the baseline finds it hard to locate the object of interest, our method
clearly captures better objectness despite the scarcity of “Tail” images.
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(c) Effect of sampling ratio.

Figure 6: Ablation study on factors related to the curation of auxiliary dataset. Experiments are conducted
on ImageNet-LT (Liu et al., 2019). Default options are marked in red.

5 RELATED WORKS

Re-Balancing Long-Tail Learning. Class-level re-balancing methods include oversampling
training samples from tail classes (Chawla et al., 2002), under-sampling data points from head
classes (Liu et al., 2006), and re-weighting the loss values or gradients based on label frequen-
cies (Cao et al., 2019; Cui et al., 2019) or model’s predictions (Lin et al., 2017). Classifier re-
balancing mechanisms are based on the finding that uniform sampling on the whole dataset during
training benefits representation learning but leads to a biased classifier, so they design specific al-
gorithms to adjust the classifier during or after the representation learning phase (Zhou et al., 2020;
Kang et al., 2020).

Data Augmentation for Long-Tail Learning. Spatial augmentation methods have performed sat-
isfactorily for representation learning. Among these approaches, Cutout (DeVries & Taylor, 2017)
removes random regions, CutMix (Yun et al., 2019) fills the removed regions with patches from
other images, and Mixup series (Zhang et al., 2018; Verma et al., 2019; Summers & Dinneen, 2019)
performs convex combination between images. Since data augmentation is closely related to over-
sampling, it is also adopted by recent long-tail recognition literature (Zhou et al., 2020; Zhong
et al., 2021). These techniques, however, are adopted directly while overlooking special data dis-
tributions in long-tail learning. Recently, Remix (Chou et al., 2020) was proposed in favor of the
minority classes when mixing samples. Yet, this is still bounded by existing classes. Unlike above,
our method samples images from open-set distributions and could greatly benefit from higher data
diversity.

Auxiliary Resources for Long-Tail Learning. Previous efforts mainly lie in refining represen-
tations with fixed external image features encoded by pre-trained models (Long et al., 2022; Iscen
et al., 2023). The external data could be either the training dataset (Long et al., 2022) or crawled
from the web (Iscen et al., 2023), and the fusing process could be either non-parametric (Long et al.,
2022) or learned in an attentive fashion (Iscen et al., 2023). Besides images, another line (Tian
et al., 2022) is to leverage external textual descriptors encoded by vision-language models (Radford
et al., 2021). Our method, instead, poses a clear contrast by explicitly introducing external open-set
data into a clean training pipeline and is not dependent on any foundation model. There is also
a recent work in self-supervised learning that shares the idea of crawling visually-similar data for
task-specific improvements (Li et al., 2023). Instead, our work places a special focus on long-tail
learning.

6 CONCLUDING REMARKS

This paper introduces category extrapolation, which leverages diverse open-set images crawled from
the web to enhance closed-set long-tail learning. In addition to a clean and decent method that shows
superior performance on “Medium” and “Few” splits across standard benchmarks, we also provide
instrumental guidance on when the auxiliary data helps most and empirical explanations on how
they help shape the feature manifold through visualizations. We hope our research will attract more
researchers to consider how to leverage additional data to address the pervasive problem in long-tail
learning. Related research topics could include (i) what kind of additional data is more compatible
with target datasets and (ii) how to take the additional data in conjunction with target datasets for
training.
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A APPENDIX

In this supplementary material, we first provide more implementation details in Appendix B about
training configurations (Appendix B.1) and auxiliary data collection (Appendix B.2). Then we
conduct additional experiments in Appendix C including an experimental comparison to improved
SOTA with DIONOv2 (Appendix C.1), and extended ablation studies (Appendix C.2) related to λs

in the proposed neighbor-silencing loss and the number of samples in the auxiliary dataset, and fea-
ture visualization to validate the effectiveness of auxiliary categories (Appendix C.3), and analysis
for long-tail in iNaturalist18 (Van Horn et al., 2018) (Appendix C.4). In Appendix D, we discuss
our contributions (Appendix D.1), limitations (Appendix D.2), and future work (Appendix D.3).

B IMPLEMENTATION DETAILS

B.1 TRAINING

We employ LiVT (Xu et al., 2023) as our baseline since it achieves the top performance under the
training from scratch paradigm using ViT (Dosovitskiy et al., 2021a). Specifically, when training
from scratch, following LiVT (Xu et al., 2023), we conduct MAE (He et al., 2022) training on
the downstream dataset because training directly on a long-tail dataset with randomly initialized
parameters makes it difficult to converge. When using pre-training paradigms of CLIP and DINOv2,
we directly initialize ViT from their weights. Furthermore, the models are trained with AdamW
optimizer (Loshchilov & Hutter, 2019) with βs = {0.9, 0.95}, with an effective batch size of 512 on
4 NVIDIA 3090 GPUs. The values for weight decay and layer decay are 0.05 and 0.75, respectively.
We train all models with RandAug(9, 0.5) (Cubuk et al., 2020), Mixup(0.8) (Zhang et al., 2018)
and Cutmix(1.0) (Yun et al., 2019). Following LiVT (Xu et al., 2023), the number of training
epochs for ImageNet-LT, iNaturalist 18, and Place-LT is set to 100, 100, and 30, respectively. The
number of epochs for warmup is set to 10, 10, and 5. The learning rate is set to 1e-3, 1e-5, and
3.5e-5 for training from scratch, CLIP, and DINOv2, respectively. We set a cosine learning rate
schedule and the minimum learning rate is 1e-6. We set the maximum sampling number for each
auxiliary category to 50 in each training epoch. The hyper-parameter λs is set to 0.1. For the ratio
of neighbor category for head, medium, and tail classes, we set to 1 :

[
Nh

Nm

]
:
[
Nh

Nt

]
, where Nh,

Nm, and Nt denote the instance number of head, medium, and tail classes, respectively. [·] stands
for ceiling, which rounds a number up to the nearest integer.

Figure 7: Distribution of samples of original datasets and corresponding datasets with auxiliary data.
Please note that because two lines partially overlap, for a better display, the index of the augmented dataset is
slightly shifted.

B.2 DATA COLLECTION

We leverage GPT-3.5/4 (OpenAI, 2023) to search names of visually similar categories for
the downstream long-tail datasets. We design a structural prompt with in-context learn-
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Table 7: Examples of query classes and respective auxiliary classes across three datasets.

Query Neighbor Categories

ImageNet-LT

Wolf Spider Grass Spider, Fishing Spider, Funnel Web Spider, Garden Spider, Dock Spider, hunts-
man spider

Irish Wolfhound Greyhound, Pharaoh hound, Silken Windhound, Coonhound, Plott Hound, Bearded
Collie

Basketball Handball, Football, Badminton Shuttlecock, Softball, Cricket Ball, Billiard Ball, Bowl-
ing Ball

Kingsnake Milk Snake, Corn Snake, Hognose Snake, Ribbon Snak, Black Racer, Speckled
Kingsnake

iNaturalist 18

Dryopteris Expansa Dryopteris Austriaca, Dryopteris Carthusiana, Dryopteris Dilatata, Dryopteris Filix-
mas

Polypodium Virginianum Polypodium Amorphum, Polypodium Californicum, Polypodium Vulgare, Poly-
podium Scouleri

Adiantum Hispidulum Adiantum Diaphanum, Adiantum Raddianum, Adiantum Reniforme, Adiantum Venus-
tum

Spilosoma Lubricipeda Arctia Caja, Arctia Villica, Callimorpha Dominula, Diaphora Mendica, Eilema De-
pressa

Place-LT

Bus Interior Airplane Interior, Tram Interior, Subway Interior, Van Interior, Taxi Interior, Limo
Interior

Bamboo Forest Tropical forest, Evergreen Forest, Pine Forest, Birch Forest, Cypress Forest, Mangrove
Forest

Fastfood Restaurant Seafood Restaurant, Vegetarian Restaurant, Pizza Restaurant, Mexican Restaurant,
Steakhouse

Physics Laboratory Materials Laboratory, Environmental Laboratory, Geology Laboratory, Engineering
Laboratory

ing and the below shows one example of our interaction with GPT-4 (OpenAI, 2023).

Prompt: Now I will give you one category name. Please create a list which contains 10 visually simi-
lar categories of the provided category.
For example: If I give you a category name: Acacia cochliacantha. You should return: [Acacia
cambagei, Acacia calamifolia, Acacia campylacantha, Acacia cardiophylla, Acacia colei, Acacia col-
letioides, Acacia compacta, Acacia corymbosa, Acacia crocophylla, Acacia cuthbertii]
Now, I give you this category name: Abaeis Nicippe.
You should return:
Response: [Eurema ada, Eurema alitha, Eurema andersonii, Eurema beatrix, Eurema blanda, Eurema
brigitta, Eurema candida, Eurema celebensis, Eurema desjardinsii, Eurema esakii]

Table 7 shows examples of searched category names for each query class on three benchmark
datasets. The results show that LLM can provide satisfactory responses using our prompts. Af-
ter removing duplicates, we obtain 8913, 2318, and 99192 class names for ImageNet-LT (Liu et al.,
2019), Place-LT (Zhou et al., 2017), and iNat18 (Van Horn et al., 2018) datasets, respectively. Then
we search images for each queried name through the web (e.g., Google/Duckduckgo Image Search
Engine). After removing the dissimilar images, concretely, we collect 4.1M, 1.1M, and 3.6M im-
ages in 5012, 1895, and 20380 categories as auxiliary data. Fig. 7 shows the distribution of instance
numbers for three datasets in each training epoch. It can be observed that ’Tail’ is extended by
auxiliary data for each dataset.

C ADDITIONAL EXPERIMENTS

C.1 COMPARISON TO IMPROVED SOTA WITH DINOV2

As shown in Table 8, we re-implement LiVT (Xu et al., 2023) on DINOv2 (Maxime et al., 2023),
which is the first work to apply ViT (Dosovitskiy et al., 2021a) to long-tail learning and leads the
performance under the training from scratch paradigm. Our implementation differs only in that
LVIT conducts MAE (He et al., 2022) training on the downstream dataset because training directly
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Table 8: Re-implementation of previous method with DINOv2. We report the performance on three standard
benchmark datasets (i.e., ImageNet-LT, iNaturalist 18, and Place-LT).

Methods Backbone Overall Many Medium Few

Results on ImageNet-LT with DINOv2 pretraining

LiVT(Bal-BCE) (Xu et al., 2023) ViT-B 79.4 84.9 78.2 68.5
LiVT(Bal-CE) (Xu et al., 2023) ViT-B 79.6 84.3 78.3 71.1
Ours ViT-B 82.0 84.7 81.5 76.2

Results on iNat18 with DINOv2 pretraining

LiVT(Bal-BCE) (Xu et al., 2023) ViT-B 84.5 84.4 85.4 83.3
LiVT(Bal-CE) (Xu et al., 2023) ViT-B 85.0 85.7 86.2 84.2
Ours ViT-B 87.0 86.4 87.4 86.7

Results on Place-LT with DINOv2 pretraining

LiVT(Bal-BCE) (Xu et al., 2023) ViT-B 49.6 52.4 49.7 45.2
LiVT(Bal-CE) (Xu et al., 2023) ViT-B 49.5 49.2 51.3 46.1
Ours ViT-B 50.8 49.4 52.4 49.2
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(a) Ablation study on λs in the proposed
neighbor-silencing loss.
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(b) Ablation study on the number of samples in
the auxiliary dataset.

Figure 8: More ablation studies. Experiments are conducted on ImageNet-LT (Liu et al., 2019).

on a long-tail dataset with randomly initialized parameters is difficult to converge, whereas we ini-
tialize directly with the weight from DINOv2. LiVT leverages the Bal-BCE (Xu et al., 2023) loss
by default. We also implement Bal-CE (Xu et al., 2023)) to train LiVT with DINOv2. Table 8
demonstrates that our method shows superior performance on “Medium” and “Few” splits across
three standard benchmarks. For example, our method surpasses LiVT(Bal-BCE) 3.2% and 7.6%
on “Medium” and “Few’ in ImageNet-LT. Note that we set LiVT (Bal-CE) as the baseline method
under three pre-training paradigms (training from scratch, CLIP, and DINOv2).

C.2 EXTENDED ABLATION STUDY

Effect of λs. As shown in Fig. 9c, we study the effect of λs in the proposed neighbor-silencing loss.
The optional values are {0.01, 0.10, 0.20, 0.30, 0.50, 1.00}. It can be seen that as λs increases to
0.1, the performance improves. However, when λs increases to 1.0, the performance drops. This
can be attributed that as λs gradually increases, the proposed neighbor-silencing loss will gradually
downgrade to the standard cross-entropy loss. In this case, the downstream dataset and the auxil-
iary dataset are treated equally during the training optimization, and the inconsistency between the
network’s optimization objective and the testing process leads to a decline in performance.

Number of Auxiliary Samples. As shown in Fig. 8b, we study the effect of the number of samples
in the auxiliary dataset. We find that as the number increases from 0 to 0.9 million, there is a
dramatic improvement in the accuracy in the few and medium categories, and relatively satisfactory
performance is achieved, where +3.7% and 2.3% improvement in the few and medium categories,
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(a) Feature visualization of Kit Fox (Head) and Cougar (Tail).

(b) Feature visualization of Crane (Head) and White Stork (Tail).

(c) Feature visualization of Arctic Fox (Head) and Persian Cat (Tail).

(d) Feature visualization of African Hunting Dog (Head) and Cheetah (Tail).

Figure 9: Feature visualization of confusing head and tail classes by UMAP (McInnes et al., 2020) on
ImageNet-LT (Liu et al., 2019). The left column shows the feature extracted by the model without auxiliary
data, and the right is with the auxiliary fine-grained categories.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

respectively. From 0.9 million to 4.1 million, the performance gradually increases. This indicates
the data efficiency of our method.

C.3 FEATURE VISUALIZATION

In Fig. 9, we provide more examples to demonstrate the effectiveness of auxiliary fine-grained cat-
egories on the feature separation for the head and tail classes. We conduct the experiments on
ImageNet-LT (Liu et al., 2019) and train the models from random initialization. The left column
shows the feature extracted by the model without auxiliary data, and the right is with the auxiliary
fine-grained categories. The results show that training with auxiliary fine-grained categories benefits
better feature separation between original head and tail classes.

C.4 LONG-TAIL IN INATURALIST18
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Figure 10: Effect of extending tail vs. extending head.

In Sec. 3.2, we validate the effect of granular-
ity on the performance balance. Except for the
granularity, we find that another difference be-
tween iNat18 and ImageNet-LT is that the num-
ber of tail categories in iNat18 is significantly
larger than the number of head categories. To
validate the effect of the proportion of tail cate-
gories, we sample 500 classes from the dataset
pool, comprising 60 superclasses, with an im-
balance ratio of 0.01. We conduct two sets of
experiments: in the first set, we add extra cate-
gories to head classes (each category with more
than 100 samples); in the second set, the extra
categories are added to tail (each category with
less than 20 samples). In both sets, the extra
categories are fine-grained categories related to
the original tail categories. As shown in Fig. 10,
the results show that the long-tail benefits the

performance balance, while the long-tail will exaggerate the imbalanced performance. This also
validates our motivation of extending tail categories with fine-grained categories to balance the fea-
ture learning.

D DISCUSSIONS

D.1 CONTRIBUTIONS

We summarize and discuss our main contributions as follows:
1) A new perspective for long-tail learning from neighbor categories. We investigate how to
enhance long-tailed learning from open-set data, which is an understudied problem. Our pilot study
(Sec. 3) highlights the granularity matters in long-tail learning (Sec. 3.2) and the need for auxiliary
categories to improve generalization (Sec. 3.3). As shown in Fig. 2(c), traditional reweighting
methods fail to generalize well. However, based on our finding in Sec. 3.2 that increased granularity
of training data benefits long-tail learning ((Fig. 3)), we apply auxiliary fine-grained categories,
which leads to better separation of the target classes (Fig. 2(d)). We also conduct studies on how
to select auxiliary categories: inappropriate auxiliary data can even hinder long-tail learning (Fig.
4), and there exists a trade-off between the similarity and diversity of auxiliary data (Sec. 3.3). We
believe these insights are valuable to the community.
2) Fully automated data acquisition. Inspired by our findings, we develop a fully automated
pipeline for auxiliary data acquisition. As detailed in Sec. 4.1, we utilize GPT-4 API to query
neighbor categories for target classes. Then, we retrieve images from the Web and automatically
filter these images. We will release all the associated code.

3) A new balanced loss with neighbor silencing. As shown in Sec. 4.2, we design a new balanced
loss with neighbor silencing for improving long-tailed learning with auxiliary data, which mitigates
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the distraction of extra classes during training. After training, we directly mask out the classifier
weights of auxiliary categories to obtain the final classifier. We find that this strategy works better
than retraining a new one by linear probing.

D.2 LIMITATIONS

This paper proposes to balance feature learning on downstream long-tail datasets by using visually
similar categories. While it has achieved decent performance, there are still the following limitations.
First, we use LLM (OpenAI, 2023) to obtain the names of similar categories. This step depends on
the capability of the large language model; if the model has not seen or is unfamiliar with our
query, then this step will fail. Second, we obtain images through the web, but we find that some
categories are difficult to obtain online, such as those related to the iNat18 categories. For some
special categories, we may need to look for more specialized websites to crawl data.

D.3 FUTURE WORK

In future research, we consider collecting large-scale unlabeled data as an auxiliary dataset for down-
stream long-tail datasets and then using this dataset to balance feature learning. Since it is an un-
labeled dataset, we can only consider its similarity to the downstream dataset, so compared to the
data collection method in this paper, we can have feature learning on a larger scale. Secondly, we
find that in a long-tailed distribution dataset, the distribution of superclasses also shows a long-tailed
distribution in some datasets (e.g., iNat18 (Van Horn et al., 2018)), we will also take into account
the long-tail distribution of superclasses to achieve a better balance in feature learning.
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