
TABED: Test-Time Adaptive Ensemble Drafting
for Robust Speculative Decoding in LVLMs

Anonymous ACL submission

Abstract

Speculative decoding (SD) has proven effective001
in accelerating LLM inference by quickly gen-002
erating draft tokens and verifying them in par-003
allel. However, SD remains largely unexplored004
for Large Vision Language Models (LVLMs),005
advanced LLMs capable of processing both006
image and text prompts. To address this gap,007
we first benchmark existing drafting methods008
for LVLMs across diverse scenarios and ob-009
serve that methods using small draft models010
show scenario-specific performance fluctua-011
tions. Motivated by these findings, we propose012
Test-time Adaptive Batched Ensemble Drafting013
(TABED), which dynamically ensembles multi-014
ple drafts obtained via batch inference by lever-015
aging measurable deviations from past ground016
truths available in the SD setting. Across di-017
verse input scenarios, TABED achieves an aver-018
age robust expected walltime speedup of 1.74x019
compared to standard decoding and a 5% im-020
provement over individual drafting methods,021
though it does not incur additional training022
costs (i.e., training-free) and keeps ensembling023
costs negligible by sharing model parameters.024
To further enhance its extensibility, we also025
explore incorporating alternative drafting meth-026
ods using image pooling and captioning. Our027
method maintains seamless compatibility with028
existing LVLM acceleration techniques, and029
we open-source custom-trained draft LVLMs030
to ensure reproducibility.031

1 Introduction032

Multimodal Large Language Models (MLLMs)033

(Yin et al., 2024; Wu et al., 2023; Zhang et al.,034

2024a) are an advanced class of LLMs (Brown035

et al., 2020; Ouyang et al., 2022; Touvron et al.,036

2023) designed to process multiple modalities,037

such as images, audio, and video, alongside038

text. In particular, Large Vision Language Mod-039

els (LVLMs) (Chen et al., 2024c), also known as040

Large Multimodal Models (Li et al., 2024b; Jin041

et al., 2024; Song et al., 2023), specialize in han- 042

dling prompts comprised of text and images. These 043

models have attracted significant attention due to 044

their unique applications, including multimodal 045

chatbots, visual question answering (VQA), and 046

augmented reality (AR) (OpenAI, 2023; Anthropic, 047

2024; Gemini Team Google: Anil et al., 2023). 048

As LVLMs are increasingly deployed, reducing 049

their inference time has become a critical challenge. 050

In addition to the standard LLM autoregressive de- 051

coding process, LVLMs must (1) pre-process each 052

image in the input into several hundred image to- 053

kens (Radford et al., 2021; Liu et al., 2023, 2024a) 054

and (2) process both text and image tokens, result- 055

ing in considerably higher inference time. 056

Recently, methods like token pruning, layer skip- 057

ping, and key-value cache compression have been 058

proposed to accelerate LVLM inference (Shang 059

et al., 2024; Chen et al., 2024b; Lin et al., 2024; 060

Liu et al., 2024e; Wan et al., 2024; McKinzie et al., 061

2024). While effective, these approximation tech- 062

niques cannot preserve the original LVLM’s out- 063

put distribution. Moreover, they primarily reduce 064

prompt processing time (i.e., the prefilling stage) 065

and have less impact on response generation time 066

(i.e., the decoding stage). 067

In contrast, Speculative Decoding (SD) is an ac- 068

celeration technique for LLM inference that fully 069

preserves the output distribution (Leviathan et al., 070

2023; Chen et al., 2023). SD speculates a specified 071

number of draft tokens and then uses the origi- 072

nal target model to verify these tokens in parallel. 073

For LLM inference, various methods have been 074

proposed to enhance each component in SD (Xia 075

et al., 2024). To tailor and further exploit their 076

specific approach, these methods often use addi- 077

tional training, either for a separate lightweight 078

draft model (Miao et al., 2023; Kim et al., 2023; 079

Zhou et al., 2024) or an added component within 080

the target model (Cai et al., 2024; Li et al., 2024d; 081

Zhang et al., 2024b). These approaches signifi- 082
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Figure 1: Overview of TABED. LVLMs must handle a wide range of input scenarios, including various combinations
of formats, tasks, and potential noise. To effectively accelerate target LVLMs using SD, different drafting methods
are required for intra-response and inter-response cases. For example, in the first turn, the drafting method needs
to identify the graphical information the user is referring to based on the input image, and then perform text-
based general knowledge retrieval. ( 1⃝ to 2⃝). In the second turn, it performs mathematical reasoning using
the accumulated text context ( 3⃝). Existing single drafting methods with small models, whether Multimodal or
Text-only, show fluctuating performance across scenarios (Section 4). TABED addresses this by dynamically
ensembling multiple drafts using past ground truths in SD, thereby achieving robust speedup across diverse scenarios
(Section 5) and can be further extended with additional drafting methods (Section 6). See Fig. 2 for details.

cantly improve performance, but often at the cost083

of additional training or reduced compatibility with084

other acceleration methods.085

Unlike LLM inference, SD for LVLMs has been086

far less explored, with the only notable exception087

by Gagrani et al. (2024). They were the first to088

successfully accelerate LVLM inference via SD us-089

ing a text-only drafting method (i.e., the drafting090

relied solely on the text tokens and ignored the im-091

age tokens)—an observation that is both intriguing092

and counterintuitive. However, the authors evalu-093

ate their method on a few datasets with single-turn094

VQA tasks, limiting insight into when the method095

excels without image modality.096

To assess whether existing drafting meth-097

ods (Gagrani et al., 2024) consistently acceler-098

ate LVLM inference via SD across diverse real-099

world scenarios, we first benchmark them at scale100

on seven benchmark datasets and two out-of-101

distribution (OOD) datasets using interactions with102

various types of multi-turn instructions. As a re-103

sult, none of the existing drafting methods, whether104

multimodal or text-only, effectively handles the full105

range of input scenarios when using a small draft106

model. Consequently, selecting a single drafting107

method in advance is a nontrivial challenge. This108

raises the question: “Can we develop a method109

that integrates multiple draftings to ensure robust110

performance across all input scenarios?”111

To address this, we present Test-time Adap-112

tive Batched Ensemble Drafting (TABED), which113

(1) obtains multiple drafts simultaneously through114

batch inference while sharing the same model pa- 115

rameters and (2) dynamically weights the drafts 116

based on their differences from previous ground 117

truth labels after verification by the target model. 118

This approach is entirely training-free and incurs 119

no additional cost during inference, making it gen- 120

eralizable to a wider range of drafting scenarios. To 121

further leverage this flexibility, we explore incor- 122

porating alternative drafting strategies, including 123

image pooling and captioning, into our method. 124

As a result, TABED consistently shows the 125

best or second-best performance across all com- 126

binations of scenarios, with an average robust ex- 127

pected walltime speedup of 1.74x and over 5% im- 128

provement compared to existing drafting strategies, 129

which often exhibit scenario-specific performance 130

fluctuations. Further extending drafting strategies 131

with complementary advantages also leads to en- 132

hanced performance. This is particularly signifi- 133

cant, as this improvement achieved solely through 134

better utilization of a small draft model as is. As 135

it does not incur additional costs in training or in- 136

ference, it remains compatible with other LVLM 137

acceleration techniques, including those targeting 138

the prefilling stage or other types of SD. To support 139

LVLM SD research and ensure reproducibility, we 140

open-source our code and draft LVLMs. 141

In summary, main contributions of our work are: 142

• We benchmark existing drafting methods and find 143

scenario-specific performance fluctuations across 144

various input scenarios for LVLM SD (Sec. 4). 145
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• We propose TABED, which achieves superior146

and robust performance across diverse scenarios147

(Sec. 5), and further explore and incorporate new148

drafting methods (Sec. 6).149

• We open-source our code and the custom-trained150

draft model to support the emerging field of151

LVLM SD and ensure reproducibility.152

2 Related Work153

2.1 Large Vision Language Models154

LVLMs Frontier proprietary LVLMs (OpenAI,155

2023; Anthropic, 2024; Gemini Team Google: Anil156

et al., 2023) exhibit state-of-the-art performance157

across multiple modalities beyond just text. Mean-158

while, open-source models such as the LLaVA se-159

ries (Liu et al., 2023, 2024a; Li et al., 2024b,a) and160

LLaMA 3.2 (Dubey et al., 2024) are also rapidly161

advancing. While various methods exist for embed-162

ding image inputs (Yin et al., 2024; Jin et al., 2024),163

one of the most prominent approaches, LLaVA,164

employs an off-the-shelf vision encoder (Radford165

et al., 2021; Zhai et al., 2023) and a trainable pro-166

jector to convert each image into several hundred167

visual context tokens for an LLM.168

Approximate Inference To address the ineffi-169

ciency of handling visual tokens from images, sev-170

eral approaches have been proposed based on a171

common finding: only a sparse subset of the hun-172

dreds of visual tokens is important, enabling re-173

duced computational cost with minimal informa-174

tion loss. Shang et al. (2024); Chen et al. (2024b);175

Lin et al. (2024) dynamically prune significant vi-176

sual tokens based on attention sparsity. Further177

focusing on reducing redundant key-value caches,178

Liu et al. (2024e); Wan et al. (2024) retain key-179

value vectors by merging or discarding less critical180

caches during inference. However, from a latency181

perspective, these approaches primarily benefit the182

prefilling stage while providing limited advantages183

for the decoding stage.184

2.2 Speculative Decoding185

SD for LLMs SD accelerates LLM inference186

using a small draft model while preserving the tar-187

get model’s output distribution (Leviathan et al.,188

2023; Chen et al., 2023). To improve the drafting189

phase, various efforts have been made, including190

generating multiple draft candidates (Miao et al.,191

2023; Sun et al., 2024b; Yang et al., 2024), and192

fine-tuning the draft model with knowledge distilla- 193

tion (Zhou et al., 2024). Some studies address cases 194

with exceptionally long prefill lengths (e.g., 100k), 195

which significantly affect decoding efficiency (Sun 196

et al., 2024a; Chen et al., 2024a). 197

SD for LVLMs Gagrani et al. (2024) is the only 198

prior work to study SD for LVLMs. They intro- 199

duced text-only drafting, claiming its performance 200

is comparable to multimodal drafting. However, 201

their benchmark results were limited, and they 202

provided little detailed analysis of each drafting 203

method. Additionally, they did not address how 204

to best use multimodal information for improved 205

drafting. Furthermore, whether or not one can ef- 206

fectively use multiple drafting methods remains 207

unclear. Jang et al. (2024) and Teng et al. (2024) 208

propose SD methods to improve text-to-image gen- 209

erative models, distinct from LVLM approaches. 210

2.3 Test-time Adaptation 211

To enhance model robustness against distribution 212

shifts during test time, various generalization and 213

adaptation techniques have been proposed (Liang 214

et al., 2025). In situations where data arriving 215

during test time lacks ground truth labels, these 216

techniques update models through explicit gradi- 217

ent steps by formulating loss using pseudo label- 218

ing (Hardt and Sun, 2024; Wang et al., 2022), self- 219

supervision (Sun et al., 2020; Krause et al., 2018), 220

or normalization statistics (Schneider et al., 2020; 221

Wang et al., 2021), thereby causing inevitable de- 222

lays during test time. In contrast, SD allows the 223

use of ground truth information obtained through 224

verification for test-time adaptation. 225

3 Preliminaries 226

3.1 Theoretical Latency of Transformers 227

Following Chen et al. (2024a), for a given batch 228

size B and a sequence length S, let T (B,S, 1) de- 229

note the time to decode a single token, and let 230

T (B,S, γ) represent the time to verify γ tokens in 231

parallel. Under moderate S (e.g., S ≤ 3k) and 232

sufficiently small B (e.g., B ≤ 4) and γ (e.g., 233

γ ≤ 10), the decoding phase displays the following 234

observations (Chen et al., 2024a; Fu, 2024), where 235

∆T = Tmax − Tmin denotes the maximum time 236

difference across the varying parameter in each 237

remark: 238

Remark 1. For given B and S, regardless of γ, 239

T (B,S, γ) remains approximately constant (e.g., 240

|∆T/T | < 0.05). 241
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Remark 2. For a given B, regardless of S,242

T (B,S, 1) remains approximately constant (e.g.,243

|∆T/T | < 0.05).244

Remark 3. For a given S, regardless of B,245

T (B,S, 1) remains approximately constant (e.g.,246

|∆T/T | < 0.05).247

Note that the magnitude of the relative difference248

|∆T/T | depends on various factors, such as model249

architecture, model size, and hardware specifica-250

tions. We empirically demonstrate Remarks 1 to 3251

in Appendix F.252

3.2 Speculative Decoding253

Algorithm Following (Leviathan et al., 2023;254

Zhou et al., 2024), let Mp be the target model255

whose inference we aim to accelerate, and let Mq256

be the draft model for the same task. For a given257

prefix x, generated sequence y<t, chunk length γ,258

and n = 0, . . . , γ − 1, the following steps are re-259

peated until either an <EOS> token is accepted or260

the maximum sequence length is reached:261

1. The Drafting Phase, where Mq sequentially gen-262

erates γ draft tokens from q(yt+n|x, y<t+n).263

2. The Verification Phase, where Mp reviews these264

draft tokens in parallel, comparing them to265

p(yt+n|x, y<t+n).266

3. For sampling, each token yt+n is se-267

quentially accepted with probability268

min
(
1, p(yt+n|x,y<t+n)

q(yt+n|x,y<t+n)

)
. If any token is269

rejected before the end of the block, subsequent270

tokens are discarded, and the rejected token271

is resampled from the adjusted distribution272

norm(max(0, p(y)− q(y))).1273

Block Efficiency and Walltime Speedup Given274

an input, the block efficiency τp,q(γ) is defined as275

the expected number of accepted tokens per block.276

Let Tp(B,S, 1) and Tq(B,S, 1) denote the time277

required for Mp and Mq to decode a single to-278

ken, and let Tp(B,S, γ) denote the time required279

for Mp to verify γ tokens in parallel. For brevity,280

we use the simplified notations Tp, Tq, and Tp(γ),281

omitting B and S. The required time per block282

in SD, denoted as TSD, can be approximated as283

TSD = γ · Tq + Tp(γ) ≈ γ · Tq + Tp by Remark 1.284

The token rate is defined as the number of tokens285

generated per unit time. The expected walltime286

1When the prefix (x, y<t) is clear from the context, we
use p(y) and q(y) to denote p(yt|x, y<t) and q(yt|x, y<t),
respectively.

speedup of SD can be expressed as the token rate 287

ratio: 288

Token rate (SD)
Token rate (target)

=
τp,q(γ)/TSD

1/Tp
≈ τp,q(γ)

γ · Tq

Tp
+ 1

(1) 289

We first empirically measure the draft-to-target 290

latency ratio Tq

Tp
and then use the speedup calcu- 291

lated by Eq. (1) to evaluate the performance of SD. 292

See Appendix G for measurement details. 293

4 Benchmarking SD for LVLMs 294

In this section, we systematically benchmark spec- 295

ulative decoding for LVLMs by evaluating existing 296

drafting methods, both multimodal and text-only, 297

across a variety of input scenarios. 298

4.1 Experiment Settings 299

Target and Draft Models We employ 7B and 300

13B models from the LLaVA-1.5 (Liu et al., 2024a) 301

and LLaVA-NeXT (Liu et al., 2024b) series, both 302

of which are widely adopted public LVLMs, as 303

our target models. We then use three distinct vari- 304

ants of the draft model, considering different model 305

sizes and training strategies to ensure comprehen- 306

sive benchmarking. Due to the lack of sufficiently 307

small LVLMs that ensure a low draft-to-target la- 308

tency ratio (represented by Tq

Tp
in Eq. (1)), we se- 309

lect the small public LLaMA models of 68M and 310

160M (Miao et al., 2023) as base models for train- 311

ing. We then train the draft model using different 312

training methodologies, specifically utilizing the 313

procedures for LLaVA-1.5, as well as LLaVA-OV 314

(Li et al., 2024a), which are specialized in multi- 315

image processing (see Appendix H.1 for training 316

details). 317

To summarize, we benchmarked draft models by 318

size (68M, 160M) and type (LLaVA-1.5, LLaVA- 319

OV), and target models by size (7B, 13B) and type 320

(LLaVA-1.5, LLaVA-NeXT). We particularly fo- 321

cused on the results of LLaVA-1.5 68M, which has 322

the smallest model size and an aligned represen- 323

tation with the target model. We observe that the 324

draft model perceives multimodality in representa- 325

tive multimodal tasks (see Appendix H.2). 326

Input Scenarios Systems using SD must de- 327

liver consistent performance gains across diverse 328

real-world scenarios, especially due to their ap- 329

plication with LVLMs in practical settings. To 330

examine this requirement, we initially curated 331

seven benchmark datasets due to the lack of pre- 332

existing benchmarks specifically for LVLM SD. 333
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Draft Model Benchmark Datasets (First Turn) OOD Datasets

Type Size Method LLaVA-W DocVQA POPE MMVet IEdit MB Spot Avg. PSV VIST

LLaVA-1.5 68M

M 2.28 2.15 2.56 2.21 2.19 1.96 2.34 2.24 1.19 1.16
T 2.19 2.08 2.31 2.16 2.23 2.34 2.27 2.23 2.05 2.05
MT 2.25 2.15 2.47 2.21 2.31 2.37 2.4 2.31 1.94 1.91
MT* 2.26 2.16 2.52 2.21 2.29 2.39 2.36 2.31 2.02 2.04

Draft Model Benchmark Datasets (Second Turn) NLP Datasets

Type Size Method LLaVA-W DocVQA POPE MMVet IEdit MB Spot Avg. NQ GSM8K

LLaVA-1.5 68M

M 2.1 1.96 2.78 2.18 1.61 1.53 1.83 2.00 1.98 2.25
T 2.32 2.23 2.91 2.56 1.87 2.01 2.08 2.28 2.03 2.30
MT 2.29 2.24 2.93 2.54 1.81 1.91 2.02 2.25 2.02 2.28
MT* 2.29 2.23 2.93 2.56 1.85 1.99 2.05 2.27 2.03 2.29

Table 1: Block efficiency results for various drafting methods are presented: existing methods (multimodal (M) and
text-only (T)), MT ensembling multiple drafts obtained through batched inference with static equal weights, and
MT*, which dynamically weights M and T through test-time adaptation. Across all combinations of turn-taking,
datasets (both benchmark and OOD), image inclusion, and contextual relatedness, MT* consistently achieves either
the best or second-best performance, while M and T vary by scenario. Even when ranked second, its performance is
close to the best, unlike the larger gaps seen with other methods. In OOD scenarios where some drafting methods
fail, MT* significantly outperforms MT by discriminating between multiple methods. See Appendix A for full
results across various sizes and types of draft and target models.

These datasets include tasks involving both single-334

image (Liu et al., 2023; Mathew et al., 2021; Li335

et al., 2023b; Yu et al., 2023) and multi-image336

scenarios (Tan et al., 2019; Zhang et al., 2024c;337

Jhamtani and Berg-Kirkpatrick, 2018). To further338

challenge the system’s ability to handle unexpected339

and varied queries while maintaining consistent340

performance, we added two additional datasets341

featuring five images per query (Li et al., 2019;342

Huang et al., 2016), serving as notable Out-of-343

Distribution (OOD) cases. Moreover, we extend344

the evaluation from single-turn to multi-turn scenar-345

ios using benchmark datasets that include various346

types of follow-up queries, including those depen-347

dent on prior responses (e.g., follow-up requests348

with images from the same dataset or text-only349

tasks from multi-turn benchmarks for LVLMs (Liu350

et al., 2024c)) and distinct text-only reasoning351

tasks (Kwiatkowski et al., 2019; Cobbe et al.,352

2021).353

Drafting Methods: Multimodal and Text-only354

The multimodal drafting method follows the stan-355

dard LVLM process, receiving both images and text356

as input. In contrast, the text-only drafting method,357

first explored in Gagrani et al. (2024), uses only358

textual data, adhering to the standard LLM process.359

For all experiments in this paper, including this sec-360

tion, we set γ = 5 and perform greedy decoding361

with a maximum of 128 new tokens.362

4.2 Experimental Results 363

Table 1 presents the block efficiency results for 364

multimodal (M) and text-only (T) drafting methods. 365

Across all scenarios, neither drafting method con- 366

sistently outperformed the other. Notably, the mul- 367

timodal drafting method demonstrated higher block 368

efficiency than the text-only approach in single-turn 369

scenarios across most benchmark datasets. How- 370

ever, the text-only drafting performed comparably 371

or slightly sub-optimally overall in single-turn sit- 372

uations, often surpassing the multimodal drafting 373

in subsequent turns–particularly in tasks dependent 374

on prior responses and independent reasoning tasks, 375

and significantly in OOD cases. This trend contin- 376

ued regardless of the model size or multi-image 377

awareness capabilities. Existing drafting meth- 378

ods, both multimodal and text-only, show scenario- 379

specific performance fluctuations with draft models 380

small enough for SD, with neither method consis- 381

tently outperforming the other across various input 382

scenarios for LVLM inference. Before execution, 383

it is challenging to determine in advance which 384

method is superior, and even if known, resolving 385

inconsistencies with a single drafting method is 386

difficult. See Appendix A for full results across 387

various sizes and types of draft and target models. 388

No one-size-fits-all among existing drafting
methods for LVLM input scenarios.

389
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5 Test-time Adaptive Batched Ensemble390

Drafting391

For LVLM SD, selecting a single drafting method392

in advance for a small draft model is challeng-393

ing. In this context, ensemble learning offers a394

promising solution, as it is often used to reduce395

both bias and variance in predictions (Dietterich,396

2000; Ganaie et al., 2022), particularly for models397

with limited capacity (Zhou, 2012).398

In this section, we introduce Test-time Adap-399

tive Batched Ensemble Drafting (TABED), a400

method that applies ensemble learning with dy-401

namic weight adaptation to each of the drafts ob-402

tained via batch inference. It is fully training-free,403

highly extensible, and delivers robust performance404

across diverse input scenarios. Fig. 2 provides an405

overview of TABED.406

5.1 Proposed Method407

Unlike typical test-time scenarios where incoming408

data lacks ground truth labels (Wang et al., 2021,409

2022), SD allows access to both hard labels (i.e.,410

y<t) and soft labels (i.e., p(yt′)) for t′ < t after411

verifying all steps prior to t using the target model412

Mp. When drafting is performed in step t, this413

information can be leveraged to dynamically ad-414

just ensemble weights wt, controlling each drafting415

method’s influence based on its past performance.416

This approach can enhance ensemble learning by417

effectively combining probabilities [q(1)t , . . . , q
(m)
t ]418

from m drafting methods, ensuring the resulting en-419

sembled distribution q(·|x, y<t;wt) closely aligns420

with the target distribution p(·|x, y<t). For in-421

stance, the system can adjust the weight assigned422

to the multimodal drafting method by recognizing423

varying needs for visual context for a specific sam-424

ple x and timestep t.425

Ensemble learning via Batched Inference To426

obtain multiple predictions from draft model Mq,427

we utilize batched inference tailored for LVLMs.428

At each decoding timestep t to t + γ − 1, all m429

drafting methods share the parameters of Mq, and430

their distributions are ensembled to sample the next431

token (Algorithm 1). We employ a weighted aver-432

aging ensemble method, sampling a token from the433

ensembled distribution to continue drafting. This434

process incurs no additional costs during training435

(i.e., training-free) and keeps ensembling costs neg-436

ligible (Eq. (1), Remark 3), unlike typical ensemble437

learning, which often requires extra parameters or438

models to generate multiple predictions.439
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Figure 2: TABED predicts the optimal weight, w∗,
based on the deviation (i.e., distance) of past drafting
blocks from the ground truth obtained through the veri-
fication in SD. It then dynamically ensembles multiple
drafts obtained via batch inference. See Algorithm 1 for
further details.

Test-time Adaptive Ensemble Weights To effec- 440

tively combine drafting methods based on varying 441

needs, we explore test-time adaptation to dynam- 442

ically weight each method. Specifically, at the 443

beginning of each new drafting block, we sample a 444

list of ensemble weights Wt = [w1
t , . . . , w

n
t ] using 445

the weight sampling policy SW (t) (Algorithm 1). 446

For each wj
t ∈ Rm, we compute ensembled draft 447

probabilities qjt′ = q(·|x, y<t′ ;w
j
t ) over the past 448

time step window t′ ∈ [t−h, t−1]. We then select 449

the optimal w∗
t from Wt to be used at timestep t by 450

utilizing hard labels y<t (by maximizing the num- 451

ber of token matches sampled from each qjt′), or 452

soft labels p(yt′) (by minimizing the accumulated 453

error ejt over previous steps t′), or both. 454

ejt =
∑
t′

DKL
(
p(· | x, y<t′) ∥ q(· | x, y<t′ ;w

j
t )
)

where DKL is the KL divergence between p and 455

qjt′ at each of the previous steps t′. This weight w∗
t 456

is used throughout the current drafting block of γ 457

tokens (i.e., from timestep t to t+ γ − 1). 458

Drafting methods with higher weights indicate 459

closer alignment to the target model. In our experi- 460

ments, we also explored the effects of employing 461

various weight sampling policies SW , varying the 462

window size h for past time steps, and using Total 463

Variation Distance (TVD) instead of KLD. 464

SD enables test-time adaptation using
ground truth, obtained through verification.

465
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Algorithm 1 TABED

Parameter: Mq, Prefix X = [x(1), ..., x(m)] for
m drafting methods, Weight sampling policy SW ,
local window length h
▷ W-AVG stands for Weighted Average
▷ D stands for Distance

Input: Batch b<t := [(x(1), y<t), ..., (x
(m), y<t)]

Output: γ draft tokens yt, ..., yt+γ−1 and ensem-
bled probabilities qt, ..., qt+γ−1

1: procedure TABED(b<t; γ, SW )
2: Wt = [w1

t , . . . , w
n
t ] ∼ SW (t)

3: w∗
t ← argminj

∑
t′∈[t−h,t−1] D(pt′ , q

j
t′)

4: for i← 0 to γ − 1 do
5: [q

(1)
t+i, ..., q

(m)
t+i ]←Mq(b<t+i)

6: qt+i ← W-AVG([q
(1)
t+i, ..., q

(m)
t+i ];w

∗
t )

7: yt+i ← SAMPLE(qt+i)
8: end for
9: return [yt, ..., yt+γ−1], [qt, ..., qt+γ−1]

10: end procedure

5.2 Experimental Results466

Table 1 presents the block efficiency results for467

TABED, which is denoted by MT*. MT* consis-468

tently achieved either the best or second-best perfor-469

mance across all input scenarios. These scenarios470

include turn-taking, image inclusion, prior context471

relevance, and both benchmark and OOD datasets.472

Even when MT* ranked second, its performance473

remained close to the best, unlike the larger perfor-474

mance gaps observed for other methods. Without475

incurring additional costs during training or infer-476

ence, this resulted in an average robust expected477

walltime speedup of 1.74x compared to standard478

decoding and a 5% improvement compared to ex-479

isting single drafting methods M and T, when av-480

eraged across all benchmark datasets and turns.481

These consistent gains highlight TABED’s ability482

to effectively prioritize stronger drafting methods483

by dynamically assigning optimal weights, even484

when individual methods exhibit scenario-specific485

performance fluctuations. See Appendix B for full486

experimental results with varying sampling policy487

SW , window size h, and distance D.488

Fig. 3 provides an in-depth view of how the adap-489

tive weights w∗ predicted by TABED change dur-490

ing the decoding phase. It illustrates the weights491

employed for drafting methods M, T, MT, and MT*,492

as the decoding step progresses. The ensemble493

weights are shaded if the token sampled from the494

0 10 20 30 40 50 600.0

0.5

1.0
TABED (Spot-the-Diff)

0 10 20 30 40 50 600.0

0.5

1.0
TABED (MagicBrush)

0 10 20 30 40
Decoding steps

0.0

0.5

1.0
TABED (PororoSV)

w
(M

) /(
w

(M
) +

w
(T

) )
Figure 3: Qualitative samples of ensemble weights and
the acceptance of sampled tokens from the resulting en-
sembled distribution across datasets. The y-axis denotes
the proportion of w(M) relative to w(M) + w(T ), and
the x-axis indicates decoding steps. In comparison to
other single drafting methods, M and T (y = 1 and 0),
or the static ensembling method MT (y = 0.5), adaptive
ensemble weights w∗ predicted by TABED (the blue
graph) effectively explore the region shaded, represent-
ing the weights that lead to token acceptance by the
target model. See Appendix C for more examples.

resulting ensembled distribution is accepted by the 495

target model. By dynamically adjusting the ensem- 496

ble weights, TABED more effectively explores the 497

shaded region for acceptance compared to other 498

methods. Specifically, compared to MT, which 499

employs simpler ensembling with a static equal 500

weight ratio, MT* with dynamic weights excels in 501

cases requiring effective discrimination between 502

multiple drafting methods (Fig. 3). This explains 503

the significant performance gap between MT and 504

MT* in OOD scenarios. 505

Ensemble drafting method achieves robust-
ness and speedup, and covers diverse sce-
narios including OOD cases by employing
dynamic weights.

506

6 Exploring LVLM Drafting Candidates 507

Since image tokens in LVLMs have relatively 508

sparse importance than text tokens, several methods 509

have been proposed to process image tokens and re- 510

duce computational cost (Shang et al., 2024; Chen 511
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et al., 2024b). In this section, we benchmark two512

alternative drafting methods for LVLMs—pooled513

multimodal and caption-based—which process514

image information differently. We then extend515

TABED to include these alternatives. This seamless516

integration improves generalization (Zhou, 2012)517

without additional training costs and keeps ensem-518

bling costs negligible by sharing model parameters.519

6.1 Pooled Multimodal Drafting520

To condense sparsely important image tokens while521

preserving the 2D spatial structure, we apply aver-522

age pooling during inference just before the projec-523

tor transforms them into the text embedding space.524

Specifically, we use a 2× 2 pooling kernel, reduc-525

ing the number of visual tokens from 576 to 144 in526

our default configuration.527

6.2 Caption Drafting528

To convert sparsely important image tokens into529

textual descriptions, we employ a lightweight im-530

age captioning model (Li et al., 2022, 2023a; Xiao531

et al., 2024). The captioning model runs only once,532

in parallel with the target model’s prefilling stage,533

making its overhead negligible. Any minor delays,534

such as those caused by hardware variations, are535

amortized over the entire decoding process (Fig. 9).536

We use Florence as the default captioning model537

(see Appendix D for further details).538

6.3 Experimental Results539

Table 2 presents the block efficiency results aver-540

aged across datasets in each category for pooled-541

multimodal drafting (P), caption-based drafting (C),542

static ensemble drafting that integrates these into543

existing methods (MTCP), and dynamic ensemble544

drafting with adaptive weights (MTCP*).545

First, the differently processed visual informa-546

tion from P and C adds image awareness to the547

drafting process. By supplementing T, C retains548

T’s robustness and perform better on both standard549

and OOD datasets.550

Second, MTCP*, which uses dynamic weights,551

consistently achieves the highest speedup across552

all benchmark and OOD datasets, outperforming553

single drafting (M, T, C, and P) and static ensem-554

ble drafting (MTCP) methods in both the first and555

second turns. Even static ensemble methods that556

incorporate more diverse drafting methods demon-557

strate stronger generalization, while dynamically558

weighting these methods further improves perfor-559

mance and better aligns the ensemble distribution560

Draft Model Benchmark OOD

Type Size Method First Second Avg.

LLaVA-1.5 68M

M 2.24 2.00 1.18
T 2.23 2.28 2.05
C 2.29 2.30 2.09
P 2.23 2.25 2.08
MTCP 2.32 2.31 2.12
MTCP* 2.32 2.32 2.13

Table 2: Speedup results are presented for the sin-
gle drafting methods M, T, caption-based (C), and
pooled-multimodal (P), as well as the ensemble meth-
ods MTCP and MTCP*. The ensembling benefit from
combining multiple drafting methods, with TABED
consistently achieving the highest speedup in both the
first and second turns across all benchmark and OOD
datasets. Speedup is averaged within each dataset cate-
gory. See Appendix A for full results.

with the target distribution, all without incurring 561

additional costs. See Appendix A for full results 562

and details. 563

Integrating more drafting methods yields
more robustness and speedup.

564

7 Conclusion 565

We benchmark existing drafting methods for 566

LVLMs and observe scenario-specific performance 567

fluctuations with small draft models. To address 568

this, we propose Test-time Adaptive Batched En- 569

semble Drafting (TABED), which dynamically en- 570

sembles multiple drafts via batch inference using 571

measurable deviations from past ground truths in 572

the SD setting. TABED consistently outperforms 573

individual drafting methods and delivers robust 574

speedup. We also integrate image pooling and cap- 575

tioning as alternative drafting methods, finding that 576

static ensembling improves generalization and dy- 577

namic weighting further enhances performance. 578

8 Limitations and Future Work 579

While we focused on a single draft candidate and 580

a single verification scheme, TABED could ben- 581

efit from integration with multiple draft candi- 582

dates (Miao et al., 2023; Yang et al., 2024; Cai 583

et al., 2024) for further speedup, as our method 584

is orthogonal to and fully compatible with these 585

approaches. We also believe that TABED is appli- 586

cable to other MLLMs (e.g., those handling audio 587

and text tokens (Fu et al., 2024)). 588
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A Comprehensive Benchmarking Across952

Draft and Target Models953

In this section, we present the full results corre-954

sponding to the main experiments shown in Ta-955

bles 1 and 2 for all drafting methods considered956

in this paper, including both single (multimodal957

and text-only) and ensemble approaches (MT* and958

MTCP*), across various sizes and types of draft959

and target models. Specifically, we benchmark960

draft models (LLaVA-1.5 68M, LLaVA-1.5 160M,961

LLaVA-OV 68M) and target models (LLaVA-1.5962

7B, LLaVA-1.5 13B, LLaVA-NeXT 7B, LLaVA-963

NeXT 13B). As shown in Tables 10 to 14, the964

findings from Sections 4 to 6 hold across different965

combinations of draft and target models.966

B Implementation Details of TABED967

In this section, we examine two key factors in-968

fluencing the dynamic ensembling approach: the969

observation window length h used for computing970

adaptive weights (Appendix B.1), and the weight971

sampling policy Sw that determines how ensem-972

ble weights are selected in our experiments (Ap-973

pendix B.2).974

B.1 Observation Window Length h975

The responsiveness of the dynamic weights pre-976

dicted by TABED can be controlled by the ob-977

servation window length h. In Algorithm 1, we978

introduce an observation window of length h for979

the drafting method to compute dynamic weights980

based on information within this window. By vary-981

ing h, we further examine how this approach ad-982

dresses the inherent nature of autoregressive de-983

coding, which relies solely on past context for984

next-token prediction. For both benchmark and985

OOD datasets, we explore the effect of varying986

h by setting it to 1, 4, 16, and to include all pre-987

vious tokens. As shown in Table 3, there is no988

clear winner among the different window lengths989

h. Therefore, by default, using all previous infor-990

mation (i.e., ALL) before the current timestep is a991

reasonable choice.992

B.2 Weight Sampling Policy Sw993

There are numerous variants of TABED, obtained994

by varying the weight sampling policy Sw in Algo-995

rithm 1. Here, we describe the representative policy996

used in our experiments throughout the paper. For997

SW in MT*, we sample Wt = [wj
t ], where wj

t =998

[1− j
n ,

j
n ] ∈ Rm and n = 10, to succinctly repre- 999

sent linear combinations with non-negative integer 1000

coefficients. For MTCP*, we sample Wt = [wt], 1001

where wt = softmax([1/e(1)t , . . . , 1/e
(m)
t ]; τ) ∈ 1002

Rm using soft labels, temperature τ , and n = 1, 1003

offering an efficient alternative as m increases. We 1004

set temperature τ = 1 by default. 1005

C More Qualitative Samples of Dynamic 1006

Ensemble Weights 1007

In this section, we provide further qualitative ex- 1008

amples of dynamic ensemble weights. In Fig. 4, 1009

the y-axis denotes the proportion of w(M) relative 1010

to w(M) + w(T ), and the x-axis indicates decod- 1011

ing steps. In comparison to other single drafting 1012

methods, M and T (y = 1 and 0), or the static 1013

ensembling method MT (y = 0.5), adaptive en- 1014

semble weights w∗ predicted by TABED (the blue 1015

graph) effectively explore the region shaded, repre- 1016

senting the weights that lead to token acceptance 1017

by the target model. 1018

D Details for Caption Drafting 1019

In this section, we describe various types of 1020

lightweight image captioning models that can be 1021

used for caption drafting (Appendix D.1). We 1022

then demonstrate that captioning model inference 1023

completes earlier than the target model’s prefill- 1024

ing by analyzing the captioning model’s latency 1025

(Appendix D.2). 1026

D.1 Captioning Models 1027

BLIP (Li et al., 2022) A vision-language model 1028

trained on bootstrapped synthetic captions. It uses 1029

a visual transformer and the text encoder of BERT 1030

(Devlin et al., 2019) to separately encode image 1031

and text. 1032

https://huggingface.co/Salesforce/ 1033

blip-image-captioning-base 1034

BLIP-2 (Li et al., 2023a) A vision-language 1035

model using a frozen off-the-shelf image encoder 1036

and LLM. A querying transformer trained using 1037

boostrapped data is included for cross-modal align- 1038

ment. 1039

https://huggingface.co/Salesforce/ 1040

blip2-opt-2.7b 1041

Florence-2 (Xiao et al., 2024) A vision-language 1042

model that is instruction-trained for a variety of 1043

tasks. Its architecture consists of a single sequence- 1044

to-sequence transformer and a vision encoder. 1045
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Draft Model Benchmark Datasets OOD Datasets

Type Size h LLaVA-W DocVQA POPE MMVet IEdit MB Spot PSV VIST

LLaVA 1.5 68M

1 2.26 2.15 2.54 2.21 2.30 2.36 2.35 2.00 2.02
4 2.25 2.16 2.54 2.20 2.29 2.40 2.36 2.05 2.05
16 2.26 2.17 2.53 2.21 2.31 2.42 2.36 2.04 2.05
ALL 2.26 2.16 2.52 2.21 2.29 2.39 2.36 2.02 2.04

Table 3: Experimental results with different observation window length h, which constrain the number of previous
timesteps used to compute adaptive weights. h = 1 indicates that the weights are based only on the ground truth
from the previous decoding step.

Latency (s)

Model Type n = 1 n = 2 n = 5

Target LVLM (prefilling) LLaVA-1.5 7B 0.112 0.207 0.540

Image Captioning
BLIP 0.054 0.055 0.074

Florence-2 0.105 0.149 0.292

Table 4: Latency analysis of image captioning models.
BLIP and Florence-2 captioning latencies are lower than
the target LVLM’s prefilling latency. Parallel processing
can therefore hide captioning latency without affecting
time to first token.

https://huggingface.co/microsoft/1046

Florence-2-large-ft1047

D.2 Latency Analysis1048

It is important to ensure that the captioning model1049

runs fast enough so that it does not delay drafting.1050

In this line, we measure in Table 4 the time taken1051

by the two captioning models, BLIP and Florence-1052

2, to generate captions. The results demonstrate1053

captioning completes earlier than target model’s1054

prefilling.1055

E Evaluation of Target Model1056

Datasets

Model Spot-the-Diff MagicBrush

GPT-4o 19.1 10.5
GPT-4o-mini 12.0 9.1
LLaVA-1.5 7B 13.9 9.6
LLaVA-1.5 7B (text-only) 11.1 8.4

Table 5: Evaluation results for the target model on
benchmark datasets. Our target model, LLaVA-1.5 7B,
demonstrates performance comparable to GPT-4o-mini.
The injection of multimodal information in the input
scenarios of the benchmark datasets benefits the target
model, LLaVA-1.5 7B.

In this section, we present both quantitative re-1057

sults (Appendix E.1) and qualitative samples (Ap-1058

pendix E.2) produced by LLaVA-1.5 7B, which1059

serves as the target model in our experimental set- 1060

ting. 1061

E.1 Quantitaive Evaluation 1062

We assess the output quality of LLaVA-1.5 7B us- 1063

ing benchmark datasets, as shown in Table 5. The 1064

results demonstrate that the quality of LLaVA-1.5 1065

7B is comparable to GPT-4o-mini.The injection of 1066

multimodal information benefits the target model, 1067

LLaVA-1.5 7B, from the perspective of output qual- 1068

ity. 1069

E.2 Generated Samples 1070

Spot The Difference [Fig. 8e] 1071

Q: What has changed from the first image to the 1072

second? 1073

A: The image shows a city street with a grassy 1074

area in the middle of the road. In the first image, 1075

there are several cars parked along the street, and a 1076

few people are walking around. The street appears 1077

to be relatively empty, with no traffic or significant 1078

activity. In the second image, the street is bustling 1079

with activity. There are numerous cars parked along 1080

the street, and several people are walking around. 1081

The scene is more lively and dynamic, with a higher 1082

level of activity compared to the first image. 1083

MagicBrush [Fig. 8f] 1084

Q: Please provide the image edit instruction that 1085

can transfrom the source image to the target image. 1086

A: To transform the source image into the target 1087

image, follow these steps: 1. Remove the red- 1088

haired girl from the scene, as she is not part of the 1089

target image. 2. Replace the girl with a back pack, 1090

which should be placed on the stairs. 3. Add a bus 1091

in the background, making sure it is yellow and 1092

occupies the entire width of the image. 4. Place 1093

a person in the background, standing near the bus, 1094

to give a sense of scale and context. 5. Adjust 1095

the lighting and shadows to create a more realistic 1096

scene. 1097
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PororoSV [Fig. 8g]1098

Q: Taking the stories from the initial images1099

into account, can you conclude the story using the1100

elements of the final image?1101

A: The image features a group of cartoon charac-1102

ters, including a penguin, a fox, and a pink charac-1103

ter, standing in a snowy environment. The charac-1104

ters are positioned in various locations, with some1105

standing closer to the foreground and others further1106

back. The scene appears to be a part of a video1107

game or animated series, as the characters are in-1108

teracting with each other and their surroundings.1109

VIST [Fig. 8h]1110

Q: With the narratives paired with the initial1111

images, how would you conclude the story using1112

the last picture?1113

A: The image captures a thrilling moment during1114

a volley ball game, with a woman leaping into the1115

air to hit the ball. She is wearing a purple shirt1116

and is in the process of jumping to make contact1117

with the sports ball. The scene is filled with excite-1118

ment and anticipation as the players on the court1119

watch her performance. The volley ball game is1120

taking place on a court, and the players are actively1121

engaged in the match.1122

F Empirical Validation of Remarks 1-31123

In this section, we validate the Remarks from Sec.1124

3.1 with empirical timing measurements. Focus-1125

ing on the case where the remarks apply to spec-1126

ulative decoding settings, we use LLaVA-1.5 7B1127

and LLaVA-1.5 68M to measure Tp(B,S, γ) for1128

Remark 1 and Tq(B,S, 1) for Remarks 2 and 3,1129

respectively. All experiments are conducted on an1130

A100 80GB GPU using the fp16 data type for the1131

models. Under moderate S (e.g., S ≤ 3k) and suffi-1132

ciently small B (e.g., B ≤ 4) and γ (e.g., γ ≤ 10),1133

the decoding phase displays the following observa-1134

tions:1135

Remark 1. For given B and S, regardless of γ,1136

T (B,S, γ) remains approximately constant (e.g.,1137

|∆T/T | < 0.05).1138

Remark 2. For a given B, regardless of S,1139

T (B,S, 1) remains approximately constant (e.g.,1140

|∆T/T | < 0.05).1141

Remark 3. For a given S, regardless of B,1142

T (B,S, 1) remains approximately constant (e.g.,1143

|∆T/T | < 0.05).1144

Fig. 5 shows Tq(B,S, 1) in milliseconds for1145

sequence lengths up to 3k for each batch size1146

B ∈ {1, 2, 3, 4}. For moderate sequence lengths 1147

S ≤ 3k, Tq varies by no more than 5% for each B, 1148

which supports Remark 2. Similarly, when com- 1149

paring different Bs with a fixed S, Tq varies by no 1150

more than 5%, which supports Remark 3. 1151

Fig. 6 shows Tp(B,S, γ) in milliseconds for 1152

each γ ∈ {1, 3, 5, 7}. We test the case of B=1, 1153

which aligns with our experimental settings where 1154

the target model always performs inference on a 1155

single batch. Over the values of γ considered, Tp 1156

varies by no more than 5%. 1157

G Empirical measurements of 1158

draft-to-target latency ratio Tq/Tp 1159

In this section, we present empirical measurements 1160

of the draft-to-target latency ratio (Tq/Tp) across 1161

well-known LVLM benchmarks (Li et al., 2024c). 1162

By providing detailed results on improvements in 1163

wall-clock time, we show that SD performance 1164

is proportional to block efficiency, as we empiri- 1165

cally validate in Remarks 1 to 3. This allows us 1166

to calculate the expected speedup by inputting the 1167

draft-to-target latency ratio into Eq. (1). All mea- 1168

surements in Table 6 and averaged across datasets 1169

and performed on an Nvidia A6000 48GB GPU. 1170

Target Model Size Draft Model Size draft-to-target latency ratio Tq/Tp

7B
68M 0.063
160M 0.206

13B
68M 0.042
160M 0.137

Table 6: Empirical measurements of the draft-to-target
latency ratio (Tq/Tp), covering all model sizes.

H Training and Evaluation of Draft 1171

Models 1172

In this section, we present a more detailed overview 1173

of our custom training procedure for the draft mod- 1174

els (Appendix H.1). We then evaluate our primary 1175

draft model, LLaVA-1.5 68M, on multimodal tasks 1176

to ensure it has the capability to properly perceive 1177

multimodality, and we provide some qualitative 1178

samples from the draft model (Appendix H.2). 1179

H.1 Details of Training 1180

LLaVA-1.5 (Liu et al., 2024a) The process for 1181

developing draft models with the LLaVA-1.5 (68M, 1182

160M) training recipe was divided into two stages: 1183

pre-training and instruction fine-tuning (IFT). Pre- 1184

training focused on training the projector while the 1185

parameters of the LLM and vision encoder were 1186
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frozen. During the IFT stage, visual instruction1187

tuning was used to teach the LLM to follow multi-1188

modal instructions. The vision encoder remained1189

frozen throughout both stages. The hyperparame-1190

ters used for each stage are described in Table 7.1191

We trained the draft model using datasets curated1192

by the original author of LLaVA-1.5. For more1193

training details, see https://github.com/haotian-1194

liu/LLaVA/tree/main.

Hyperparameter Value

Training Epochs 1
Batch Size 256

Learning Rate (LR) 1e-3
LR Schedule Type Cosine

Warm-up Ratio 0.03
Weight Decay 0.0

(a) Pretraining stage

Hyperparameter Value

Training Epochs 1
Batch Size 128

Learning Rate (LR) 2e-5
LR Schedule Type Cosine

Warm-up Ratio 0.03
Weight Decay 0.0

(b) Instruction fine-tuning
stage

Table 7: Details of hyperparameters used in LLaVA-1.5
training

1195

LLaVA-OneVision (Li et al., 2024a) The de-1196

velopment of draft models using the LLaVA-1197

OneVision (LLaVA-OV) training recipe was di-1198

vided into three stages: language-image alignment,1199

high-quality knowledge learning, and visual in-1200

struction tuning. In the language-image alignment1201

stage, visual features were aligned with the word1202

embedding space of LLMs. High-quality knowl-1203

edge learning balanced computational efficiency1204

with the integration of new knowledge into LVLMs.1205

Visual instruction tuning consisted of two phases:1206

(i) Single-Image Training, where the model learned1207

to perform visual tasks using instructions from sin-1208

gle images, and (ii) OneVision Training, where the1209

model learned to execute multi-image visual tasks1210

using a blend of video, single-image, and multi-1211

image data. During the language-image alignment1212

stage, only the projector for aligning visual fea-1213

tures was updated, whereas all components in-1214

cluding LLM were updated in the following three1215

stages. We trained the draft model using datasets1216

curated by the original author of LLaVA-OV (Li1217

et al., 2024a). The hyperparameters used for each1218

stage are described in Table 8, and the learning1219

rate for the vision encoder is one-fifth of that for1220

the LLM across all stages. For more details, visit1221

https://github.com/LLaVA-VL/LLaVA-NeXT.1222

H.2 Evaluation Results1223

Table 9 presents the evaluation results of our pri-1224

mary draft model, LLaVA-1.5 68M, on the OCR-1225

Hyperparameter Value

Training Epochs 1
Batch Size 512

Learning Rate (LR) 1e-3
LR Schedule Type Cosine

Warm-up Ratio 0.03
Weight Decay 0.0

(a) Image alignment stage

Hyperparameter Value

Training Epochs 1
Batch Size 512

Learning Rate (LR) 1e-5
LR Schedule Type Cosine

Warm-up Ratio 0.03
Weight Decay 0.0

(b) High-quality knowledge
learning stage

Hyperparameter Value

Training Epochs 1
Batch Size 512

Learning Rate (LR) 1e-5
LR Schedule Type Cosine

Warm-up Ratio 0.03
Weight Decay 0.0

(c) Visual instruction tuning
stage: Single-image training

Hyperparameter Value

Training Epochs 1
Batch Size 512

Learning Rate (LR) 1e-5
LR Schedule Type Cosine

Warm-up Ratio 0.03
Weight Decay 0.0

(d) Visual instruction tuning
stage: OneVision training

Table 8: Details of hyperparameters used in LLaVA-OV
training

Bench (Liu et al., 2024d) and TextCaps (Sidorov 1226

et al., 2020) datasets. We assess the output quality 1227

of the draft model with and without image inputs 1228

and compare the results with those of the target 1229

model, LLaVA-1.5 7B. In terms of output qual- 1230

ity, the draft model with image inputs consistently 1231

outperforms the one without, illustrating that the 1232

injection of multimodal information benefits the 1233

custom-trained draft model. 1234

Fig. 7 presents qualitative samples from the 1235

OCRBench dataset. Both LLaVA-1.5 7B and 68M 1236

models provided accurate responses, whereas the 1237

text-only LLaVA-1.5 68M model failed to answer 1238

correctly due to its lack of image-processing capa- 1239

bilities. 1240

OCRBench TextCaps

Model Accuracy METEOR ROUGE

LLaVA-1.5 7B 0.207 0.249 0.480
LLaVA-1.5 68M 0.048 0.133 0.254
LLaVA-1.5 68M (text-only) 0.014 0.064 0.132

Table 9: Evaluation results for the off-the-shelf target
model and the custom-trained draft model on MLLM
tasks. Since the draft model is trained to perceive multi-
modality, the injection of multimodal information bene-
fits the custom-trained draft model.

I Prompts for Each Dataset and Drafting 1241

In this section, we describe the formats of prompts 1242

used for inference on each dataset, including sys- 1243

tem prompts and how to organize prompts with text 1244

and image inputs (Appendix I.1). We then provide 1245
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details on replacing image tokens in text-only and1246

caption drafting (Appendix I.2).1247

I.1 Prompt Formats for Each Dataset1248

We use the following prompt formats for their re-1249

spective tasks. Based on the template for chat1250

(USER: and ASSISTANT:), each system prompt is1251

prepended with the start token <s>. The <image>1252

token is used to represent image data within a1253

prompt. [QUESTION] and [CAPTION] are place-1254

holders denoting information unique to each sam-1255

ple of a dataset.1256

LLaVA-Bench (In-the-Wild) <s> USER:1257

<image> For the following question, provide a1258

detailed explanation of your reasoning leading to1259

the answer. [QUESTION] ASSISTANT:1260

DocVQA <s> USER: <image> For the follow-1261

ing question, provide a detailed explanation of your1262

reasoning leading to the answer. [QUESTION] AS-1263

SISTANT:1264

POPE <s> USER: <image> For the following1265

question, provide a detailed explanation of your1266

reasoning leading to the answer. [QUESTION]1267

ASSISTANT:1268

MMVet <s> USER: <image> For the follow-1269

ing question, provide a detailed explanation of your1270

reasoning leading to the answer. [QUESTION] AS-1271

SISTANT:1272

IEdit <s> USER: Please provide instructions1273

for editing the source image to match the target1274

image. Source Image: <image> Target Image:1275

<image> Instruction: ASSISTANT:1276

MagicBrush <s> USER: Please provide in-1277

structions for editing the source image to match1278

the target image. Source Image: <image> Target1279

Image: <image> Instruction: ASSISTANT:1280

Spot The Difference <s> USER: Explain the1281

disparities between the first and second image.1282

<image> <image> Difference: ASSISTANT:1283

PororoSV <s> USER: Given the progression of1284

the story with the first few images, can you write a1285

fitting end considering the last image? <image>1286

Caption #1: [CAPTION] <image> Caption #2:1287

[CAPTION]. <image> Caption #3: [CAPTION]1288

<image> Caption #4: [CAPTION] <image> Cap-1289

tion #5: ASSISTANT:1290

VIST <s> USER: With the narratives paired 1291

with the initial images, how would you conclude the 1292

story using the last picture? <image> Caption #1: 1293

[CAPTION] <image> Caption #2: [CAPTION]. 1294

<image> Caption #3: [CAPTION] <image> Cap- 1295

tion #4: [CAPTION] <image> Caption #5: AS- 1296

SISTANT: 1297

I.2 Replacing Image tokens in Draftings 1298

For text-only drafting, the <image> token is re- 1299

placed by the escape character “\n”. We exper- 1300

imented with several replacement methods: (1) 1301

tokenizing the string “<image>” into three to- 1302

kens, and (2) retaining the special token <image> 1303

without replacing it with an image embedding. 1304

Method (2) resulted in very poor block efficiency, 1305

but method (1) showed comparable block efficiency. 1306

Our replacement approach is simple because it en- 1307

sures that the prompt length remains consistent 1308

before and after replacement. 1309

For caption drafting, the <image> token is re- 1310

placed by a generated caption with a prefix. Specif- 1311

ically, after the lightweight captioning model gen- 1312

erates a caption based on the image inputs in the 1313

sample, we prepend the string “image: ” to the 1314

caption and replace the <image> token. 1315

J Details of Each Dataset 1316

In this section, we describe each of the curated 1317

datasets in benchmark (Appendix J.1) and OOD 1318

(Appendix J.2) datasets and provide links to them 1319

for convenience and reproducibility. 1320

J.1 Benchmark Datasets 1321

LLaVA-Bench (In-the-Wild) (Liu et al., 2023) 1322

A dataset for comparing the performance of vision- 1323

language models against state-of-the-art propri- 1324

etary models. Each prompt is provided with an 1325

image, a caption, and a reference answer from text- 1326

only GPT-4. Prompt styles include question an- 1327

swering, image description, and complex reasoning. 1328

In total, the dataset contains 60 unique prompts and 1329

24 unique images. 1330

https://huggingface.co/datasets/ 1331

lmms-lab/llava-bench-in-the-wild 1332

DocVQA (Mathew et al., 2021) A dataset de- 1333

signed for visual question answering on document 1334

images, comprising 50,000 questions over 12,000+ 1335

diverse document images. 1336

https://huggingface.co/datasets/ 1337

lmms-lab/LMMs-Eval-Lite 1338
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POPE (Li et al., 2023b) A multimodal question1339

answering dataset that asks binary (yes or no) ques-1340

tions about whether certain objects are present in1341

an image. The subset used for evaluation in our1342

work contains 100 pairs of images and questions.1343

https://huggingface.co/datasets/1344

lmms-lab/LMMs-Eval-Lite1345

MMVet (Yu et al., 2023) A benchmark designed1346

to evaluate large multimodal models on complex1347

tasks, focusing on the integration of six core vision-1348

language capabilities: recognition, OCR, knowl-1349

edge, language generation, spatial awareness, and1350

math.1351

https://huggingface.co/datasets/1352

lmms-lab/MMVet1353

Spot the Difference (Jhamtani and Berg-1354

Kirkpatrick, 2018) A dataset of crowd-sourced1355

descriptions of differences between a pair of im-1356

ages. The subset used for evaluation in our work1357

contains 100 annotated image pairs collected using1358

individual frames of security-footage data.1359

https://huggingface.co/datasets/1360

lmms-lab/LLaVA-NeXT-Interleave-Bench1361

IEdit (Tan et al., 2019) A dataset to train mod-1362

els to describe the relationship between images via1363

editing instructions. The subset used for evaluation1364

in our work contains 100 image pairs of a source1365

image and a target image, accompanied by instruc-1366

tions on how to transform the source image into the1367

target.1368

https://huggingface.co/datasets/1369

lmms-lab/LLaVA-NeXT-Interleave-Bench1370

MagicBrush (Zhang et al., 2024c) A dataset1371

for text-guided image editing containing manually1372

annotated editing instructions to transform one real1373

image into another. The subset used for evaluation1374

in our work contains 100 triplets of a source image,1375

a target image, and editing instructions.1376

https://huggingface.co/datasets/1377

lmms-lab/LLaVA-NeXT-Interleave-Bench1378

J.2 OOD Datasets1379

Pororo-SV (Li et al., 2019) A dataset of stories1380

each created by pairing 5 consecutive frames from1381

the animated series Pororo with a text description.1382

The subset used for evaluation in our work contains1383

100 stories.1384

https://huggingface.co/datasets/1385

lmms-lab/LLaVA-NeXT-Interleave-Bench1386

VIST (Huang et al., 2016) A dataset of sequen- 1387

tial images paired with three types of descriptions 1388

ranging from isolated factual descriptions to causal, 1389

narrative interpretations. The subset used for eval- 1390

uation in our work contains 100 sequences of 3 1391

images. 1392

https://huggingface.co/datasets/ 1393

lmms-lab/LLaVA-NeXT-Interleave-Bench 1394

J.3 Time Analysis of LVLM Inference Stages 1395

To analyze how the number of input images af- 1396

fects the LVLM inference time, we select ChartQA 1397

(Masry et al., 2022), Spot the Difference (Jham- 1398

tani and Berg-Kirkpatrick, 2018), and PororoSV 1399

(Li et al., 2019) datasets representing 1, 2, and 5 1400

images with corresponding visual context lengths 1401

of 0.6k, 1.2k, and 3k, respectively. We visualize 1402

the generation time by component in Fig. 9 with 1403

100 generated tokens for analysis, with actual av- 1404

erage decoding lengths of 92, 117, and 88, respec- 1405

tively. The execution time of the vision encoder 1406

and prefilling stages increases in proportion with 1407

the number of input images, as each image is con- 1408

verted into several hundred context tokens. In con- 1409

trast, the decoding stage shows little difference in 1410

execution time across varying numbers of input 1411

images, while dominating the total generation time. 1412

Hence, although reducing the number of visual to- 1413

kens (Shang et al., 2024; Chen et al., 2024b; Lin 1414

et al., 2024) would significantly improve the effi- 1415

ciency of vision encoder and prefilling stages, it 1416

would have only marginal impact on the dominant 1417

decoding stage. 1418
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Draft Model Benchmark Datasets (First Turn) OOD Datasets

Type Size Method LLaVA-W DocVQA POPE MMVet IEdit MB Spot Avg. PSV VIST

LLaVA-1.5 68M

M 2.28 2.15 2.56 2.21 2.19 1.96 2.34 2.24 1.19 1.16
T 2.19 2.08 2.31 2.16 2.23 2.34 2.27 2.23 2.05 2.05
C 2.22 2.15 2.50 2.17 2.29 2.36 2.31 2.29 2.08 2.10
P 2.22 2.08 2.42 2.17 2.22 2.27 2.23 2.23 2.07 2.09
MT 2.25 2.15 2.47 2.21 2.31 2.37 2.40 2.31 1.94 1.91
MT* 2.26 2.16 2.52 2.21 2.29 2.39 2.36 2.31 2.02 2.04
MTCP 2.27 2.15 2.49 2.22 2.32 2.39 2.40 2.32 2.10 2.13
MTCP* 2.29 2.17 2.51 2.22 2.30 2.40 2.35 2.32 2.11 2.14

Draft Model Benchmark Datasets (Second Turn) NLP Datasets

Type Size Method LLaVA-W DocVQA POPE MMVet IEdit MB Spot Avg. NQ GSM8K

LLaVA-1.5 68M

M 2.1 1.96 2.78 2.18 1.61 1.53 1.83 2.00 1.98 2.25
T 2.32 2.23 2.91 2.56 1.87 2.01 2.08 2.28 2.03 2.30
C 2.28 2.29 2.94 2.58 1.87 2.01 2.10 2.30 2.03 2.29
P 2.28 2.09 2.95 2.49 1.86 2.00 2.08 2.25 2.01 2.26
MT 2.29 2.24 2.93 2.54 1.81 1.91 2.02 2.25 2.02 2.28
MT* 2.29 2.23 2.93 2.56 1.85 1.99 2.05 2.27 2.03 2.29
MTCP 2.32 2.29 3.03 2.59 1.86 2.00 2.08 2.31 2.02 2.27
MTCP* 2.34 2.31 3.04 2.59 1.86 2.01 2.09 2.32 2.02 2.28

Table 10: Full experimental results with LLaVA-1.5 68M (draft model) and LLaVA-1.5 7B (target model)

Draft Model Benchmark Datasets (First Turn) OOD Datasets

Type Size Method LLaVA-W DocVQA POPE MMVet IEdit MB Spot Avg. PSV VIST

LLaVA-1.5 68M

M 2.01 1.96 2.58 2.14 1.89 1.77 2.05 2.06 1.19 1.15
T 1.97 1.92 2.27 2.11 1.85 2.12 2.03 2.04 1.79 1.90
C 2.00 1.97 2.48 2.14 1.92 2.16 2.04 2.10 1.78 1.93
P 2.00 1.90 2.41 2.11 1.87 2.05 1.97 2.04 1.78 1.92
MT 2.02 1.97 2.47 2.14 1.94 2.14 2.08 2.11 1.75 1.80
MT* 2.02 1.97 2.50 2.14 1.94 2.15 2.07 2.11 1.79 1.89
MTCP 2.02 1.99 2.50 2.15 1.94 2.18 2.09 2.12 1.81 1.93
MTCP* 2.03 1.99 2.52 2.15 1.94 2.19 2.08 2.13 1.82 1.95

Draft Model Benchmark Datasets (Second Turn) NLP Datasets

Type Size Method LLaVA-W DocVQA POPE MMVet IEdit MB Spot Avg. NQ GSM8K

LLaVA-1.5 68M

M 1.88 1.88 2.78 2.08 1.52 1.43 1.67 1.89 1.94 2.12
T 2.05 2.09 2.84 2.45 1.76 1.83 1.93 2.14 1.99 2.17
C 2.07 2.12 2.92 2.48 1.75 1.84 1.94 2.16 1.99 2.17
P 2.04 1.97 2.89 2.39 1.75 1.82 1.93 2.11 1.96 2.13
MT 2.03 2.08 2.88 2.41 1.69 1.75 1.86 2.10 1.97 2.15
MT* 2.04 2.10 2.88 2.42 1.71 1.78 1.87 2.11 1.97 2.15
MTCP 2.06 2.13 2.95 2.46 1.74 1.82 1.94 2.16 1.98 2.16
MTCP* 2.07 2.14 2.97 2.47 1.75 1.83 1.95 2.17 1.98 2.16

Table 11: Full experimental results with LLaVA-1.5 68M (draft model) and LLaVA-NeXT 7B (target model)
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Draft Model Benchmark Datasets (First Turn) OOD Datasets

Type Size Method LLaVA-W DocVQA POPE MMVet IEdit MB Spot Avg. PSV VIST

LLaVA-1.5 160M

M 2.29 2.29 3.06 2.44 2.17 2.04 2.26 2.36 1.23 1.24
T 2.25 2.19 2.56 2.36 2.20 2.41 2.24 2.32 1.96 2.08
C 2.26 2.26 2.87 2.42 2.26 2.46 2.29 2.40 2.05 2.19
P 2.29 2.23 2.94 2.42 2.27 2.49 2.32 2.42 2.08 2.20
MT 2.31 2.30 2.95 2.44 2.24 2.46 2.32 2.43 1.89 1.97
MT* 2.26 2.31 3.01 2.44 2.19 2.49 2.31 2.43 1.95 2.07
MTCP 2.31 2.30 3.02 2.44 2.30 2.54 2.34 2.46 2.06 2.20
MTCP* 2.31 2.31 3.06 2.45 2.31 2.54 2.33 2.47 2.07 2.22

Draft Model Benchmark Datasets (Second Turn) NLP Datasets

Type Size Method LLaVA-W DocVQA POPE MMVet IEdit MB Spot Avg. NQ GSM8K

LLaVA-1.5 160M

M 2.15 2.14 3.17 2.45 1.74 1.6 1.94 2.17 2.28 2.48
T 2.37 2.31 3.04 2.72 2.11 2.14 2.33 2.43 2.3 2.55
C 2.40 2.38 3.11 2.75 2.12 2.16 2.33 2.46 2.29 2.56
P 2.39 2.35 3.25 2.76 2.08 2.13 2.33 2.47 2.29 2.51
MT 2.37 2.37 3.21 2.77 2.04 2.06 2.23 2.44 2.29 2.54
MT* 2.34 2.36 3.21 2.75 2.11 2.18 2.27 2.46 2.30 2.53
MTCP 2.42 2.38 3.22 2.78 2.08 2.13 2.30 2.47 2.30 2.54
MTCP* 2.42 2.39 3.22 2.79 2.09 2.14 2.31 2.48 2.30 2.54

Table 12: Full experimental results with LLaVA-1.5 160M (draft model) and LLaVA-NeXT 7B (target model)

Draft Model Benchmark Datasets (First Turn) OOD Datasets

Type Size Method LLaVA-W DocVQA POPE MMVet IEdit MB Spot Avg. PSV VIST

LLaVA-1.5 160M

M 1.96 1.93 2.22 2.10 1.91 1.98 1.98 2.01 1.65 1.73
T 1.99 1.91 2.02 2.10 1.86 2.24 1.99 2.02 1.81 1.86
C 2.00 1.96 2.17 2.13 1.92 2.20 1.98 2.05 1.79 1.84
P 1.99 1.91 2.13 2.10 1.96 2.19 2.02 2.04 1.87 1.91
MT 2.01 1.95 2.21 2.14 1.93 2.22 2.02 2.07 1.84 1.89
MT* 2.01 1.96 2.23 2.13 1.96 2.27 1.99 2.08 1.83 1.88
MTCP 2.02 1.97 2.28 2.14 1.97 2.26 2.08 2.10 1.88 1.93
MTCP* 2.02 1.97 2.29 2.14 1.97 2.27 2.07 2.10 1.88 1.93

Draft Model Benchmark Datasets (Second Turn) NLP Datasets

Type Size Method LLaVA-W DocVQA POPE MMVet IEdit MB Spot Avg. NQ GSM8K

LLaVA-1.5 160M

M 1.97 1.96 2.37 2.11 1.63 1.64 1.77 1.92 1.87 2.16
T 2.06 2.08 2.57 2.39 1.79 1.86 1.96 2.10 1.97 2.23
C 2.07 2.12 2.67 2.43 1.79 1.86 1.94 2.13 1.96 2.23
P 2.04 2.09 2.62 2.44 1.78 1.85 1.93 2.11 1.94 2.23
MT 2.07 2.10 2.60 2.41 1.75 1.81 1.90 2.09 1.95 2.23
MT* 2.07 2.10 2.60 2.42 1.76 1.83 1.91 2.10 1.95 2.23
MTCP 2.09 2.14 2.71 2.45 1.78 1.86 1.93 2.14 1.96 2.24
MTCP* 2.09 2.14 2.69 2.46 1.79 1.86 1.93 2.14 1.96 2.24

Table 13: Full experimental results with LLaVA-OV 68M (draft model) and LLaVA-NeXT 7B (target model)
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Draft Model Benchmark Datasets (First Turn) OOD Datasets

Type Size Method LLaVA-W DocVQA POPE MMVet IEdit MB Spot Avg. PSV VIST

LLaVA-1.5 68M

M 2.01 1.97 2.44 2.04 1.87 1.75 1.95 2.00 1.18 1.15
T 1.98 1.93 2.23 2.02 1.86 2.07 1.94 2.00 1.73 1.89
C 1.98 1.96 2.40 2.05 1.89 2.09 1.92 2.04 1.74 1.90
P 1.97 1.91 2.35 2.02 1.87 1.98 1.87 2.00 1.74 1.90
MT 2.00 1.97 2.36 2.06 1.91 2.07 1.99 2.05 1.69 1.79
MT* 2.02 1.94 2.39 2.06 1.89 2.07 1.97 2.05 1.73 1.86
MTCP 2.00 1.99 2.39 2.06 1.93 2.11 2.00 2.07 1.75 1.91
MTCP* 2.01 1.99 2.40 2.06 1.93 2.11 1.99 2.07 1.75 1.93

Draft Model Benchmark Datasets (Second Turn) NLP Datasets

Type Size Method LLaVA-W DocVQA POPE MMVet IEdit MB Spot Avg. NQ GSM8K

LLaVA-1.5 68M

M 1.85 1.82 2.73 2.02 1.52 1.43 1.72 1.87 1.97 2.18
T 2.00 2.03 2.70 2.31 1.77 1.81 1.98 2.09 2.01 2.22
C 2.03 2.08 2.77 2.35 1.77 1.81 2.00 2.12 2.01 2.23
P 2.01 1.91 2.75 2.27 1.76 1.79 1.98 2.07 1.99 2.19
MT 2.02 2.02 2.74 2.29 1.69 1.73 1.91 2.06 1.99 2.20
MT* 2.01 2.01 2.79 2.30 1.74 1.78 1.95 2.08 2.00 2.22
MTCP 2.04 2.07 2.82 2.32 1.74 1.79 1.97 2.11 2.00 2.21
MTCP* 2.04 2.07 2.82 2.32 1.75 1.79 1.98 2.11 2.00 2.22

Table 14: Full experimental results with LLaVA-1.5 68M (draft model) and LLaVA-NeXT 13B (target model)
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Figure 4: Additional qualitative samples of dynamic
ensemble weights
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Figure 5: Empirical demonstration of Remarks 2 and 3.
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Figure 6: Empirical demonstration of Remark 1.
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What is written in the image?

(a) Instruction

The image has the word “friend”
written on it.

(b) LLaVA-1.5 7B

The word “friend” is written in
the image.

(c) LLaVA-1.5 68M

The image is a type of text that is
written in the image.

(d) LLaVA-1.5 68M (text-
only)

Figure 7: Qualitative evaluation samples from the OCRBench dataset by LLaVA-1.5 7B and 68M. Both the target
(b) and the draft (c) models recognize the text “friend” written on the image by multimodal reasoning whereas the
text-only model (d) fails, as expected.

(a) LLaVA-Bench (In-the-
Wild) (b) DocVQA (c) POPE (d) MMVET

(e) Spot the Difference (f) MagicBrush

(g) PororoSV

(h) VIST

Figure 8: Qualitative image samples of benchmark and OOD datasets. The corresponding questions and answers
are presented in Appendix E.
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Figure 9: Inference time analysis for the LLaVA-1.5 7B
model. Although the time for vision encoder and prefill-
ing increases with the number of images, the decoding
stage still dominates.
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