
Learning the Structure of Sum-Product Networks

Robert Gens rcg@cs.washington.edu
Pedro Domingos pedrod@cs.washington.edu

Department of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA

Abstract

Sum-product networks (SPNs) are a new
class of deep probabilistic models. SPNs can
have unbounded treewidth but inference in
them is always tractable. An SPN is either
a univariate distribution, a product of SPNs
over disjoint variables, or a weighted sum of
SPNs over the same variables. We propose
the first algorithm for learning the structure
of SPNs that takes full advantage of their ex-
pressiveness. At each step, the algorithm at-
tempts to divide the current variables into
approximately independent subsets. If suc-
cessful, it returns the product of recursive
calls on the subsets; otherwise it returns the
sum of recursive calls on subsets of simi-
lar instances from the current training set.
A comprehensive empirical study shows that
the learned SPNs are typically comparable to
graphical models in likelihood but superior in
inference speed and accuracy.

1. Introduction

Graphical models can compactly represent many com-
plex distributions, but inference in them is generally
intractable (Roth, 1996). Deep architectures, with
many layers of hidden variables, are particularly ex-
pressive, but inference in them is correspondingly more
difficult (Bengio, 2009). Recently, Poon and Domingos
(2011) turned this around by introducing sum-product
networks (SPNs), a class of models where adding lay-
ers increases expressiveness without losing tractabil-
ity. SPNs are defined recursively, as weighted sums
and products of smaller SPNs, with univariate distri-
butions as the base case. SPNs have many interesting
and important classes of probabilistic models as special
cases, including mixture models, thin junction trees,
non-recursive probabilistic context-free grammars, and
others. They are also significantly more general than
each of these. SPNs’ combination of expressiveness
and tractability makes them potentially a very attrac-
tive representation for many applications. In particu-

lar, they have achieved impressive results in several
vision problems (Poon & Domingos, 2011; Amer &
Todorovic, 2012; Gens & Domingos, 2012).

Given the structure of an SPN, its weights can be
learned generatively or discriminatively. For the gen-
erative case, Poon and Domingos (2011) proposed an
online hard EM algorithm, where each example is pre-
sented in turn to the SPN and the weight of each sum
node’s MAP child is incremented. They showed that
this algorithm can successfully learn very deep SPNs,
but they used a pre-defined SPN structure that was
both expensive to learn (because of the large number
of nodes) and insufficiently flexible (because the best
nodes were often not in the predefined structure). For
the discriminative case, Gens and Domingos (2012)
proposed a backpropagation-style gradient descent al-
gorithm which obtained state-of-the-art results on im-
age classification problems, but again faced a trade-off
between flexibility and cost of learning.

This trade-off can be avoided, or at least ameliorated,
by learning the structure of the SPN from data. How-
ever, the only algorithm for SPN structure learning to
date, proposed by Dennis and Ventura (2012), is quite
limited. It essentially forms a set of hierarchical clus-
terings of the variables and builds the SPN based on
them, and as a result is not able (except at the root) to
take advantage of the context-specific independences
that are crucial to SPNs’ expressiveness. It clusters
variables that have similar values in similar instances,
and is therefore prone to splitting highly dependent
variables, causing a large loss of likelihood. (For ex-
ample, if X is the negation of Y , they will never be
clustered.) The cost of learning and size of the SPN
are worst-case exponential (order of the number of sum
nodes raised to the number of sub-regions in a region
of the SPN). The number of sum nodes in a region is
a fixed input parameter, and not learnable. Weights
are learned as a post-processing step, and cannot be
optimized during structure learning. The algorithm is
quite complex and ad hoc, with no guarantee of finding
even a local optimum of the likelihood, and no sense of
how good the output SPN is. It has only been tested
on an image completion task.

Learning the Structure of Sum-Product Networks

SPNs are related to multilinear formulas (Raz, 2004),
arithmetic circuits (Darwiche, 2003), AND-OR graphs
(Dechter & Mateescu, 2007), and other compact repre-
sentations. Lowd and Domingos (2008) and Gogate et
al. (2010) proposed algorithms for learning tractable
models that are related to SPNs but more restricted.
Lowd and Domingos’ algorithm learns a Bayesian net-
work with context-specific independence using the net-
work’s inference cost as the regularization penalty.
Gogate et al. learn tractable high-treewidth Markov
networks by recursively searching for features that
split the remaining variables into approximately in-
dependent subsets.

In this paper, we propose the first algorithm for learn-
ing the structure of SPNs that does not sacrifice any
of their expressiveness. We start by introducing a sim-
plified definition of SPN that incorporates Poon and
Domingos’ conditions for tractability, avoids the use
of indicator functions and network polynomials, and
generalizes more easily to continuous variables. Our
algorithm takes advantage of it by having a recursive
structure that parallels the recursive structure of the
definition. It can be viewed as an intimate combina-
tion of mixture model EM (for learning sum nodes)
and graphical model structure learning (for learning
product nodes). We test our algorithm on a large num-
ber of datasets from a wide variety of domains. Sur-
prisingly, the learned SPNs typically have comparable
likelihoods to unrestricted graphical models learned on
the same data. At inference time they dominate in
both speed and accuracy.

2. Sum-Product Networks
The scope of an SPN is the set of variables that appear
in it. A univariate distribution is tractable iff its par-
tition function and its mode can be computed in O(1)
time.

Definition 1 A sum-product network (SPN) is de-
fined as follows.

1. A tractable univariate distribution is an SPN.
2. A product of SPNs with disjoint scopes is an SPN.
3. A weighted sum of SPNs with the same scope is

an SPN, provided all weights are positive.
4. Nothing else is an SPN.

It would be straightforward to relax Part 2 of this def-
inition to allow for non-decomposable but consistent
SPNs, as in Poon and Domingos (2011), but there is
no advantage in doing it for this paper’s purposes.

An SPN can be represented as a rooted directed acyclic
graph with univariate distributions as leaves, sums and
products as internal nodes, and the edges from a sum
node to its children labeled with the corresponding

weights. The sub-SPN Si rooted at a node i represents
a probability distribution over its scope. For simplic-
ity, we focus on the case of SPNs over discrete vari-
ables, but the extension to continuous ones is straight-
forward.

Let x = (x1, . . . , xd) ∈ X be a state. The unnormal-
ized probability S(x) of x according to the SPN S is
the value of S’s root when each leaf is set to the prob-
ability of the corresponding variable’s value in x. The
partition function of an SPN is Z =

∑
x∈X S(x). The

normalized probability of x is S(x)/Z. It is easily seen
that, if the weights at each sum node sum to one and
the leaf distributions are normalized, then Z = 1 and
P (x) = S(x).

Theorem 1 The following quantities can be computed
in time linear in the number of edges in an SPN.

1. The partition function of the SPN.
2. The probability of evidence in the SPN.
3. The MAP state of the SPN.

Proof. The proof is recursive, starting from the
leaves of the SPN. By definition, the partition func-
tion of a leaf distribution can be computed in O(1)
time. Let Zi be the partition function of node
i, and Zij the partition functions of its children.
Let Xi be the set of possible states of i’s scope,
and similarly for Xij . If i is a product node,
its partition function is Zi =

∑
xi∈Xi

Si(xi) =∑
xi,1∈Xi,1

. . .
∑

xij∈Xij
. . . Si,1(xi,1) . . . Sij(xij) . . . =∏

j

∑
xij∈Xij

Sij(xij) =
∏
j Zij . If i is a sum node,

its partition function is Zi =
∑

xi∈Xi
Si(xi) =∑

xi∈Xi

∑
j wijSij(xi) =

∑
j

∑
xi∈Xi

wijSij(xi) =∑
j wij

∑
xij∈Xij

Sij(xij) =
∑
j wijZij , where wij is

the weight of the ith child. Therefore the partition
function of a node can be computed in time linear in
its number of children, and the partition function of
the root can be computed in time linear in the number
of edges in the SPN.

The probability of evidence in an SPN S is just the
ratio of the partition functions of S′ and S, where S′

is an SPN obtained from S by replacing the univari-
ate distributions over the evidence variables by delta
functions centered on the evidence values. Therefore
it can also be computed in linear time.

The (or an) MAP state of an SPN can be computed
as follows: (1) replace sum nodes with max nodes;
(2) evaluate the SPN from the leaves to the root in a
manner identical to computing the partition function;
(3) starting from the root and following all children of
each product node, for each sum node Si choose the (or
a) child with highest value of wijMij , where Mij is the
child’s value computed in the previous step; (4) at each

Learning the Structure of Sum-Product Networks

3
7

2
7

2
7

Establish
approximate
independence

If no
independence,
group similar
instances

Training set
Return:

Return:

Recurse

Recurse

In
st

an
ce

s

Variables

When |V|=1,
return smoothed
univariate
distribution

In
st

an
ce

s

Variables

In
st

an
ce

s

Variables

Figure 1. A recursive algorithm for learning SPNs.

leaf node, choose the (or a) mode of the corresponding
distribution. The total number of operations is thus
also linear in the size of the SPN. �

3. Structure Learning

The method we propose for learning SPN structure is
summarized in Algorithm 1 and illustrated in Figure 1.
LearnSPN inputs an i.i.d. sample of a vector-valued
variable, in the form of a matrix of instances by vari-
ables. If the vector is of unit length, LearnSPN returns
the corresponding univariate distribution, with MAP
estimates of the parameters. For example, for discrete
variables the distribution may be a multinomial with
Dirichlet prior, and for continuous ones it may be a
normal with normal-Wishart prior. If the vector is of
length greater than one, LearnSPN recurses on subma-
trices with either fewer rows or fewer columns. If it is
able to split the variables into mutually independent
subsets, it recurses on those, and returns the prod-
uct of the resulting SPNs. Otherwise, it clusters the
instances into similar subsets, recurses on those, and
returns the weighted sum of the resulting SPNs. The
weight of an SPN is the fraction of instances in the
corresponding subset; it can also be smoothed using a
Dirichlet prior.

If there are no detectable dependencies among the vari-
ables, LearnSPN returns a fully factorized distribu-
tion. At the other extreme, if LearnSPN always fails to
find independent subsets of variables until |T | = 1 (at
which point all variables are independent), it returns
a kernel density estimate of the distribution (Parzen,
1962). More typically, if |T | � |V | LearnSPN will
likely split on subsets of instances, and if |V | � |T |
it will likely split on subsets of variables. Crucially,
LearnSPN can choose different variable splits for dif-
ferent sets of instances, resulting in tractable models
with few or no conditional independences.

Algorithm 1 LearnSPN(T, V)

input: set of instances T and set of variables V
output: an SPN representing a distribution

over V learned from T
if |V | = 1 then

return univariate distribution estimated
from the variable’s values in T

else
partition V into approximately independent

subsets Vj
if success then

return
∏
j LearnSPN(T, Vj)

else
partition T into subsets of similar instances Ti
return

∑
i
|Ti|
|T | · LearnSPN(Ti, V)

end if
end if

LearnSPN is an algorithm schema rather than a single
algorithm. It can incorporate a variety of methods for
splitting variables and instances into subsets. In par-
ticular, instances can be clustered using the EM algo-
rithm (Dempster et al., 1977), and this is the method
we will use in the rest of this paper. At each splitting
step, we assume a naive Bayes mixture model, where
all variables are independent conditioned on the clus-
ter: P (V) =

∑
i P (Ci)

∏
j P (Xj |Ci) , where Ci is the

ith cluster and Xj is the jth variable. For soft EM,
where instances can be fractionally assigned to clus-
ters, T needs to be extended with a weight for each
instance, and each instance is passed to each cluster
it has nonzero weight in. However, this is consider-
ably less efficient than hard EM, where each instance
is wholly assigned to its most probable cluster, and we
will use the latter method. In either case, the learned
SPN weights are now the mixing proportions P (Ci).
We use online EM with restarts, which automatically
determines the number of clusters by assigning each
new instance to its most likely cluster, possibly a new
one. Overfitting is avoided via an exponential prior on
the number of clusters.

Under this scheme, we can see that at each instance
splitting step LearnSPN(T, V) locally maximizes the
posterior probability of the sub-SPN over (T, V). The
mixture model’s posterior is also a lower bound on the
posterior of the SPN that LearnSPN will ultimately
return for (T, V), since the posterior can only increase
when the recursive calls attempt to model dependen-
cies between variables within each cluster.

An alternative to clustering instances is to split them
according to the value of a specific variable or subset of
variables. The best variables to split on can be chosen
using a mutual information criterion. This results in

Learning the Structure of Sum-Product Networks

an algorithm similar to Gogate et al.’s (2010) and with
some of the flavor of learning graphical models with
context-specific independence.

Variable splits can also be found in a number of ways.
Since mutual information is a submodular function,
Queyranne’s algorithm can be used to find in cubic
time a split of the variables into two subsets with min-
imum empirical mutual information (Queyranne, 1998;
Chechetka & Guestrin, 2008). However, we have found
this to be too slow in practice. Alternatively, we can
consider only pairwise dependencies. In this case, we
can apply an independence test to each pair of vari-
ables, form a graph with an edge between each pair of
variables found to be dependent, and recurse on each
connected component. If the graph has only one con-
nected component, the variable split fails, and Learn-
SPN proceeds to form an instance split.

Let an independence oracle be an independence test
that declares two variables X1 and X2 to be indepen-
dent iff all subsets of variables V1 3 X1 and V2 3 X2

are independent. Using such an oracle, factorizing the
sub-SPN into the connected components found causes
no loss of likelihood. Let a granularity sequence be
a choice of the number of clusters at each step of
LearnSPN, and assume LearnSPN uses soft EM for
instance clustering and maximum likelihood estimates
for univariate distributions. Then LearnSPN returns
a locally optimal SPN, in the sense that no higher-
likelihood SPN can be reached from it by a local repar-
tition of variables or instances. This can be summa-
rized in the following proposition.

Proposition 1 Given a granularity sequence, Learn-
SPN with an independence oracle for variable splitting
and EM for instance clustering returns a locally max-
imum likelihood SPN.

4. Experiments

We evaluated LearnSPN on twenty real-world datasets
and compared with popular graphical model structure
learning algorithms. This is a much greater number
of datasets than is typical in empirical evaluations
of graphical model structure learning. The diverse
set of domains includes click-through logs, plant habi-
tats, nucleic acid sequences, collaborative filtering, and
many others. The number of variables in a dataset
ranges from 16 to 1556, and the number of instances
varies from 2k to 388k.

We used the WinMine toolkit (Chickering, 2002) to
learn Bayesian network structure. WinMine allows
context-specific independence in the form of a deci-
sion tree at each node (Chickering et al., 1997), and
is the most sophisticated graphical model structure

Table 1. Structure learning summary.

SPN WM SPN DP L1
Data set LL LL PLL PLL PLL
NLTCS -6.11 -6.02 -5.23 -4.94 -4.95
MSNBC -6.11 -6.04 -4.37 -5.13 -6.06
KDDCup -2.18 -2.18 -2.08 -2.06 -2.06
Plants -12.97 -12.64 -9.69 -9.63 -9.40
Audio -40.50 -40.50 -38.60 -38.56 -36.21
Jester -75.98 -51.07 -74.17 -50.25 -46.61
Netflix -57.32 -57.02 -55.48 -56.41 -51.06
Accidents -30.03 -26.32 -19.37 -26.76 -12.44
Retail -11.04 -10.87 -10.59 -10.34 -10.32
Pumsb-star -24.78 -21.72 -14.56 -23.66 -9.65
DNA -82.52 -80.64 -63.43 -96.69 -58.55
Kosarak -10.98 -10.83 -9.92 -10.57 -9.92
MSWeb -10.25 -9.69 -8.91 -8.94 -8.72
Book -35.88 -36.41 -34.15 -38.44 -36.34
EachMovie -52.48 -54.36 -49.68 -64.80 -50.49
WebKB -158.20 -157.43 -151.67 -174.44 -146.95
Reuters -85.06 -87.55 -79.77 -104.17 -79.83
Newsgrp. -155.92 -158.94 -151.88 -171.05 -148.31
BBC -250.68 -257.86 -245.34 -272.91 -260.31
Ad -19.73 -18.34 -11.32 -50.00 -6.62

learning package available. For Markov network struc-
ture learning, we ran algorithms by Della Pietra et al.
(1997) and Ravikumar et al. (2010). The Della Pietra
et al. algorithm is the canonical Markov network struc-
ture learner. Ravikumar et al. learns structure by in-
ducing sparsity in a large set of weights with an L1
penalty.

We used discrete datasets because the three compari-
son systems do not support continuous variables. Thir-
teen of the datasets were processed by Lowd and Davis
(2010); seven were assembled by Van Haaren and
Davis (2012). We used the authors’ train-validation-
test splits, where most datasets reserve 10% of in-
stances for validation and 15% for testing.

4.1. Learning

To cluster instances, we used hard incremental EM
(Neal & Hinton, 1998) over a naive Bayes mixture
model with the exponential prior P (S) ∝ e−λC|V |,
where C is the number of clusters and λ is the cluster
penalty. We ran ten restarts through the subset of in-
stances T four times in random order. We estimated
P (Xj |Ci) with Laplace smoothing, adding 0.1 to each
count.

For variable splits, we used a G-test of pairwise inde-

pendence: G(x1, x2) = 2
∑
x1

∑
x2

c(x1, x2)·log c(x1,x2)·|T |
c(x1)c(x2)

,

where the summations range over the values of each
variable and c(·) counts the occurrences of a setting
of a variable pair or singleton (Woolf, 1957). For each
dataset, the cluster penalty λ and G-test significance
p were chosen based on validation set performance1.

1Grid search: λ∈{0.2, 0.4, 0.6, 0.8}, p∈{0.0015, 0.0001}.

Learning the Structure of Sum-Product Networks

We compared with Bayesian networks learned by the
WinMine (WM) toolkit on test set log-likelihood (LL).
We chose WinMine’s per-parameter penalty κ accord-
ing to validation set likelihood.

Since computing likelihood is intractable for the
learned Markov networks, we instead compared test
set pseudo-log-likelihood (PLL). This comparison
greatly favors the Markov networks since they are
trained to optimize PLL, and PLL is known to be a
poor surrogate for likelihood. The methods of Della
Pietra et al. (1997) and Ravikumar et al. (2010) are
denoted as DP and L1, respectively. For DP, struc-
ture was learned using the open source code of Davis
and Domingos (2010). L1 structure was learned using
the OWL-QN package (Andrew & Gao, 2007) for L1
logistic regression. Weights were learned by optimiz-
ing PLL with the limited-memory BFGS algorithm.
Markov networks with learned structure and weights
were provided by Van Haaren and Davis (2012).

Table 1 shows the log-likelihood and pseudo-log-
likelihood of learned methods. In all tables, bold in-
dicates p=0.05 significance on a paired t-test. For a
majority of datasets, the SPN’s likelihood is not sig-
nificantly different from WinMine’s likelihood. SPN
PLL is also comparable to DP and L1 on more than
half of the datasets, even though those systems have
the advantage of directly optimizing it. Presumably, if
the Markov networks’ likelihoods could be measured,
they would be systematically worse than the SPNs’.

LearnSPN’s learning times ranged from 4m to 12h,

Table 2. Average conditional log-likelihood normalized by number of query
variables for two proportions of query and evidence. The last line shows the
average time per query (ms/query).

10% Query, 30% Evidence 50% Query, 30% Evidence
Data SPN WM DP L1 SPN WM DP L1
NLTCS -0.232 -0.232 -0.231 -0.231 -0.371 -0.373 -0.374 -0.375
MSNBC -0.236 -0.234 -0.237 -0.237 -0.337 -0.338 -0.341 -0.348
KDDCup -0.030 -0.030 -0.033 -0.089 -0.032 -0.036 -0.038 -0.077
Plants -0.159 -0.158 -0.178 -0.174 -0.161 -0.226 -0.252 -0.246
Audio -0.394 -0.401 -0.417 -0.397 -0.390 -0.780 -0.808 -0.773
Jester -0.722 -0.638 -0.550 -0.110 -0.727 -0.910 -0.910 -0.095
Netflix -0.573 -0.588 -0.612 -0.569 -0.566 -0.910 -0.910 -0.909
Accidents -0.300 -0.526 -0.377 -0.564 -0.245 -0.790 -0.837 -0.805
Retail -0.075 -0.076 -0.077 -0.638 -0.078 -0.130 -0.128 -0.496
Pumsb-star -0.151 -0.364 -0.443 -0.480 -0.125 -0.553 -0.804 -0.648
DNA -0.486 -0.675 -0.791 -0.702 -0.444 -0.820 -0.820 -0.820
Kosarak -0.055 -0.057 -0.067 -0.424 -0.053 -0.111 -0.108 -0.297
MSWeb -0.036 -0.038 -0.039 -0.040 -0.033 -0.079 -0.082 -0.080
Book -0.068 -0.099 -0.105 -0.101 -0.066 -0.295 -0.344 -0.307
EachMovie -0.100 -0.191 -0.228 -0.203 -0.101 -0.439 -0.704 -0.481
WebKB -0.182 -0.504 -0.578 -0.518 -0.184 -0.708 -0.723 -0.723
Reuters -0.091 -0.258 -0.307 -0.566 -0.090 -0.604 -0.722 -0.656
Newsgrp. -0.166 -0.498 -0.532 -0.603 -0.167 -0.715 -0.722 -0.719
BBC -0.238 -0.770 -0.789 -0.793 -0.233 -0.718 -0.718 -0.718
Ad -0.010 -0.294 -0.126 -0.158 -0.009 -0.652 -0.518 -0.428
Time 24 1621 2397 5003 23 1629 2386 4858

WinMine’s from 1s to 10m, DP’s from
16m to 24h, and L1’s from 9s to 6h.
The current implementation of Learn-
SPN could be made faster in a num-
ber of ways, such as reusing counts,
as is done in WinMine.

4.2. Inference

High likelihood is not very useful if
approximate inference hurts accuracy
at query time. In this section we test
the speed and accuracy of the learned
models at query time, where the goal
is to infer the probability of a subset
of the variables (the query) given the
values of another (the evidence).

We generated queries from the test
set of each dataset, varying the frac-
tion of randomly selected query and
evidence variables. For each pro-
portion of query and evidence vari-
ables (e.g., 10% query, 30% evidence),

a thousand instances were randomly selected from
the test set. For each selected test instance, a
query P (Q=q|E=e) was created by randomly choos-
ing the appropriate fraction of variables and assign-
ing their values. We report the average conditional
log-likelihood (CLL) of the queries given the evidence,
which approximates the KL-divergence between the in-
ferred probabilities and the true ones, sampling from
the test set. We normalize the CLL by the num-
ber of query variables to facilitate comparison among
datasets and query proportions.

The SPN performs exact inference in time linear in the
number of edges. Since exact inference is intractable
for the learned graphical models on these domains,
we used Gibbs sampling as implemented by the open
source Libra package (Lowd, 2012). We used the Libra
default of 1000 samples with 100 iterations of burn-in.

As detailed in Table 2, SPNs are two orders of magni-
tude faster and significantly more accurate. We show
two representative query-evidence proportions of the
ten we tested2. The learned SPNs have much higher
CLL, a disparity that becomes more pronounced with
longer queries and larger datasets. We also ran Gibbs
sampling with more chains and iterations; even when
we allowed Gibbs sampling a factor of 10 or 100 more
time, it did not close the gap in accuracy.

To be sure that the difference between SPNs and the

210-50% (10% intervals) query with 30% evidence, and
0-50% (10% intervals) evidence with 30% query.

Learning the Structure of Sum-Product Networks

other methods was not just due to Gibbs sampling, we
also ran loopy belief propagation (BP). This only com-
putes single-variable marginals, so we measured the
conditional marginal log-likelihood (CMLL) instead
of CLL: CMLL(X=x|e) =

∑
xi∈Q logP (Xi=xi|e),

where Q is the set of query variables and e is the set of
evidence variable values. We used the same ten query-
evidence proportions as above, running loopy BP3 for
the Bayesian and Markov networks. Averaged across
the ten proportions, SPNs achieved higher CMLL than
WinMine on 11 datasets, 17 compared with DP, and
15 compared with L1. This is remarkable, considering
that the PLL training of Markov networks naturally
pairs with testing CMLL.

Overall, these experiments show that learning SPNs
is a very attractive alternative to learning graphical
models. In learning accuracy, SPNs were comparable
to Bayesian networks on most data sets, and compara-
ble to or better than Markov networks. For inference
accuracy and speed, SPNs are clearly the representa-
tion of choice. Further, inference in SPNs does not
involve tuning settings or diagnosing convergence as
with MCMC or BP, and an SPN predictably takes the
same amount of time to compute any query.

5. Conclusion
Sum-product networks (SPNs) compactly represent all
marginals of a distribution, in contrast to graphical
models, which compactly represent only the probabil-
ities of complete states. As a result, inference in SPNs
is always tractable. In this paper, we proposed a sim-
ple schema for learning SPN structure from data. Our
algorithm recursively splits an SPN into a product of
SPNs over independent sets of variables, if they can
be found, or into a sum of SPNs learned from sub-
sets of the instances, otherwise. In experiments on
a large number of datasets, the SPNs obtained were
typically comparable in likelihood to graphical mod-
els, but inference in them was much faster, and also
more accurate.

Future work includes large-scale applications of SPNs,
further algorithms for SPN structure and weight learn-
ing, SPNs with multivariate leaf distributions, approx-
imating intractable distributions with SPNs, relational
SPNs, and parallelizing SPN learning and inference.

References

Amer, M. R. and Todorovic, S. Sum-product net-
works for modeling activities with stochastic struc-
ture. CVPR, 2012.

3We used Libra with its default of 50 maximum itera-
tions and convergence threshold of 0.0001.

Andrew, G. and Gao, J. Scalable training of L1-
regularized log-linear models. ICML, 2007.

Bengio, Y. Learning deep architectures for AI. FTML,
2009.

Chechetka, A. and Guestrin, C. Efficient principled
learning of thin junction trees. NIPS, 2008.

Chickering, D. M. The WinMine Toolkit. Microsoft,
Redmond, WA MSR-TR-2002-103, 2002.

Chickering, D. M., Heckerman, D., and Meek, C. A
Bayesian approach to learning Bayesian networks
with local structure. UAI, 1997.

Darwiche, A. A differential approach to inference in
Bayesian networks. JACM, 2003.

Davis, J. and Domingos, P. Bottom-up learning of
Markov network structure. ICML, 2010.

Dechter, R. and Mateescu, R. AND/OR search spaces
for graphical models. AIJ, 2007.

Della Pietra, S., Della Pietra, V., and Lafferty, J. In-
ducing features of random fields. PAMI, 1997.

Dempster, A. P., Laird, N. M., and Rubin, D. B. Max-
imum likelihood from incomplete data via the EM
algorithm. J ROY STAT SOC B MET, 1977.

Dennis, A. and Ventura, D. Learning the architecture
of sum-product networks using clustering on vari-
ables. NIPS, 2012.

Gens, R. and Domingos, P. Discriminative learning of
sum-product networks. NIPS, 2012.

Gogate, V., Webb, W., and Domingos, P. Learning
efficient Markov networks. NIPS, 2010.

Lowd, D. The Libra Toolkit, 2012. URL http://
libra.cs.uoregon.edu/. Version 0.5.0.

Lowd, D. and Davis, J. Learning Markov network
structure with decision trees. ICDM, 2010.

Lowd, D. and Domingos, P. Learning arithmetic cir-
cuits. UAI, 2008.

Neal, R.M. and Hinton, G.E. A view of the EM algo-
rithm that justifies incremental, sparse, and other
variants. NATO ADV SCI I D-BEH, 1998.

Parzen, E. On estimation of a probability density func-
tion and mode. ANN MATH STAT, 1962.

Poon, H. and Domingos, P. Sum-product networks: A
new deep architecture. UAI, 2011.

Queyranne, M. Minimizing symmetric submodular
functions. MATH PROGRAM, 1998.

Ravikumar, P., Wainwright, M. J., and Lafferty, J. D.
High-dimensional ising model selection using L1-
regularized logistic regression. ANN STAT, 2010.

Raz, R. Multi-linear formulas for permanent and
determinant are of super-polynomial size. STOC,
2004.

Roth, D. On the hardness of approximate reasoning.
AIJ, 1996.

Van Haaren, J. and Davis, J. Markov network struc-
ture learning: A randomized feature generation ap-
proach. AAAI, 2012.

Woolf, B. The log likelihood ratio test (the G-test).
ANN HUM GENET, 1957.

http://libra.cs.uoregon.edu/
http://libra.cs.uoregon.edu/

