
Published as a conference paper at ICLR 2021

UMEC: UNIFIED MODEL AND EMBEDDING COMPRES-
SION FOR EFFICIENT RECOMMENDATION SYSTEMS

Jiayi Shen1, Shupeng Gui2*, Haotao Wang3*, Jianchao Tan4 , Zhangyang Wang3 , Ji Liu4

1Texas A&M University, 2University of Rochester, 3University of Texas at Austin, 4Kwai Inc.
asjyjya-617@tamu.edu,sgui2@ur.rochester.edu,{htwang,atlaswang}@utexas.edu,
{jianchaotan,jiliu}@kuaishou.com

ABSTRACT

The recommendation system (RS) plays an important role in the content recom-
mendation and retrieval scenarios. The core part of the system is the ranking
neural network, which is usually a bottleneck of whole system performance during
online inference. Hammering an efficient neural network-based recommendation
system involves entangled challenges of compressing both the network parameters
and the feature embedding inputs. We propose a unified model and embedding
compression (UMEC) framework to jointly learn input feature selection and neural
network compression together, which is formulated as a resource-constrained opti-
mization problem and solved using the alternating direction method of multipliers
(ADMM) algorithm. Experimental results on public benchmarks show that our
UMEC framework notably outperforms other non-integrated baseline methods. The
codes can be found at https://github.com/VITA-Group/UMEC.

1 INTRODUCTION

As the core component of a recommendation system (RS), recommendation models (RM) based
on ranking neural networks are widely adopted in general content recommendation and retrieval
applications. In general, an effective recommendation model consists of two components: a feature
embedding sub-model and a prediction sub-model, as illustrated in Figure 1. Usually, an RM adopts
neural networks to serve two sub-models. Formally, we denote an RM as f(·;W), whereW is the
learnable parameters of f . For the inference, the model f takes the input feature data x to predict the
confidence of the content, serving the recommendation applications. Specifically, we further define
the embedding and prediction sub-models as fe(·;We) and fp(·;Wp) respectively, whereWe andWp

are their own learnable parameters andW = {We,Wp}. The embedding feature, v := fe(x;We), is
the input of fp with the input data x. Hence, we can express the RM as f(·;W) , fp(fe(·;We);Wp).
Given a ranking training loss `(·) (i.e., binary cross entropy (BCE) loss), the learning goal of the
ranking model can be written as

min
W

∑
(x,y)∈D

`(f(x;W),y),

where y is the ground-truth label, and D is the training dataset.

Nowadays, extremely large-scale data have been poured into the recommendation system to predict
user behavior in many applications. In the online inference procedure, the heaviest computation
component is the layer-wise product between the hidden output vectors and the model parametersW ,
for a neural network-based RM. A slimmed neural network structure would save a great amount of
power consumption during the inference. Hence, the main idea of an RM compression is to slim the
structural complexity of f(W) and reduce the dimension of hidden output vectors.

To obtain an efficient ranking model (for example, MLP based) for an RS, one may apply existing
model compression methods to MLPs directly. For example, Li et al. (2016) removes the entire filters
in the network together with their connecting feature maps in terms of magnitudes, which can also
∗Equal Contribution.
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be applied to MLP structures to remove a specific neuron as well as its connections. Molchanov
et al. (2019) approximates the importance of a neuron (filter) to the final loss by using the first
and second-order Taylor expansions, which can also be applied to pruning the neurons without
hassle. There are also some compression methods focusing on dimension reduction of embedding
feature vectors. Ginart et al. (2019) proposes a mixed dimension embedding scheme by designing
non-uniform embedding dimensions scaling with popularity of features. Joglekar et al. (2020) uses
Neuron Input Search (NIS) to learn the embedding dimensions for the sparse categorical features.
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Figure 1: An example of the neural network-
based recommendation system: the deep
learning recommendation model (DLRM),
proposed by Naumov et al. (2019).

However, the performance of these compression
methods highly depends on the hyper-parameter tun-
ing and the background knowledge of the specific
recommendation model. For example, an embedding
dimension compression method may require the user
to search for the best dimension with multiple train-
ing and search rounds.

We would like to solve the RM compression prob-
lem with a unified resource-constrained optimization
framework. It only relies on the resource consump-
tion of the RM f(W) to compress both the MLP
and the embedding dimensions, without any multi-
stage heuristics nor expensive hyper-parameters tun-
ing. Our novel unified model and embedding com-
pression (UMEC) framework directly satisfies both
the requirement of resource consumption of the rank-

ing neural network model and the prediction accuracy goal of the ranking model, with end-to-end
gradient-based training. We reformulate the optimization of training loss associated with hard con-
straints into a minimax optimization problem solved by the alternating direction method of multipliers
(ADMM) method (Boyd et al., 2011).

To summarize our contributions, we present the merits of UMEC as the following:

• To the best of our knowledge, UMEC is the first unified optimization framework for the
recommendation system scenario. Unlike those existing works that treat the selection of
input feature and compression of the model as two individual problems, UMEC jointly learns
both together via unifying both original prediction learning goal and the model compression
related hard constraints.

• We reformulate the joint input feature selection and model compression task as a constrained
optimization problem. We convert resource constraints and L0 sparsity constraints into soft
optimization energy terms and solve the whole optimization using ADMM methods.

• Extensive experiments performed over large-scale public benchmarks show that our method
largely outperforms previous state-of-the-art input feature selection methods and model
compression methods, endorsing the benefits of the proposed end-to-end optimization.

2 RELATED WORK

Recommendation Models With the recent development of deep learning techniques, plenty of
works have proposed learning-based recommendation systems to grapple with personalized recom-
mendation tasks. Hidasi et al. (2015) applies recurrent neural networks (RNN) on long session data
to model the whole session and achieve better accuracy than the traditional matrix factorization
approaches. Covington et al. (2016) proposes a high-level recommendation algorithm for YouTube
videos by specifying a candidate generation model followed by a separate ranking model, which
demonstrates a significant performance boost thanks to neural networks. Wu et al. (2019) proposes
a recommendation algorithm based on the graph neural network to better capture the complex
transitions among items, achieving a more accurate item embedding. Their method outperforms
traditional sequential approaches. Naumov et al. (2019) exploits categorical features and designs a
parallelism scheme for the embedding tables to alleviate the limited memory problem. Huang et al.
(2020) proposes a multi-attention based model to mitigate the low efficiency problem in the group
recommendation scenarios.
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Input Feature Compression for Recommendation Models The numerous input features for
practical recommendation scenarios necessitate the selection of useful ones to save memory resources
and facilitate computational efficiency during inference. In factorization machines(FM)-based and
context-aware recommendation systems, for example, Mao et al. (2017) conducts input feature
selection in an automatic manner by feature ranking and feature sub-sampling, while managing to
improve the prediction quality. Ginart et al. (2019) designs a mixed dimension embedding layers
scheme and adjusts the dimension of a particular embedding feature according to the frequency
of that item. Joglekar et al. (2020) performs Neural Input Search (NIS) method to search for the
embedding sizes for the sparse categorical features, and designs the multi-size embedding framework
to leverage the model capacity more efficiently. Song et al. (2020) proposes a discovering framework
to automatically find the interaction architecture of the prediction model.

Model Compression Model compression aims to reduce the complexity of Deep Neural Network
(DNN) models to achieve inference efficiency and resource saving. Generally, model compression
techniques can be categorized into pruning (Han et al., 2015; Wen et al., 2016; Molchanov et al., 2019),
quantization (Hubara et al., 2017; Wu et al., 2018; Ajanthan et al., 2019) and distillation (Hinton et al.,
2015; Polino et al., 2018; Tung & Mori, 2019). Han et al. (2015) proposes a magnitude-based and
element-wise pruning technique, which does not guarantee the reduction of computation efficiency,
energy and memory costs. Structured pruning can solve this issue by removing whole certain types of
structures from the network, such as filter pruning and channel pruning methods (Li et al., 2016; He
et al., 2017; Molchanov et al., 2019). Recent works (Frankle & Carbin, 2019; Chen et al., 2020b;a;
2021c;b;a; Ma et al., 2021) reveal that with appropriate compression techniques, the identified sparse
subnetworks are capable of training in isolation to match the dense model performance. In the
meanwhile, researchers also develop great interest in investigating hardware-aware compression,
which utilizes practical resource requirements(e.g., energy, latency, Flops) to guide the compression
(He et al., 2018; Yang et al., 2019; Liu et al., 2019).

3 UNIFIED MODEL AND EMBEDDING COMPRESSION ON RS

For an arbitrary NN-based recommendation model f(·) in an RS, the terminology of "compression"
refers to reduce the power consumption with respect to all the computation operations for the inference.
The learning parameters of f(W) can be expressed asW :=

{
W (l)|l ∈ [L]

}
, where L is the number

of layers in the f(W). For an arbitrary layer l, the layer’s weight is denoted as W (l) ∈ Rdout×din . The
recommendation inference on the layer l is executed as

x(l+1) = σ
(
W (l)x(l) + b(l)

)
,

where x(l) ∈ Rdin is the input of l-th layer, and b(l) is the corresponding learning bias term. Since
the RM consists of two components: feature embedding sub-model and neural network prediction
sub-model, the "compression" can be interpreted as shrinking the dimension of embedding feature v
and reducing the number of parameters inW and b.

Perspective of model parameters W and b It is to reduce the input or output neurons for the
specific layer l. For example, the i-th neuron of x(l+1) and j-th neuron of x(l) are chosen to remove,
then the weight matrix W (l) will be reshaped to (dout − 1)× (din − 1).

Perspective of feature embedding vectors v The reduction of din would result in the elimination
of the input features. For example, v(1) is defined as the concatenation of a series of embedding
vectors, v(1) = [e1; e2; · · · ; en], where [·; ·; ·] represents the concatenation operator, and n denotes
the number of embedding feature vectors in the RS. Without loss of generality, for the first embedding
vector e1 ∈ Rd1 , the zero-out of first d1 columns in W (1) will result in the elimination of the whole
embedding vectors for e1. On the other hand, the compression on fe(We) would reduce the feature
embedding vectors’ dimensions.

3.1 A COMPRESSION EXAMPLE: GROUP LASSO FOR WEIGHT PRUNING

We first consider a simple example with an RS model consisting of fe(We) and fp(Wp). For this RS,
to reduce the computation consumption, we present a straightforward model compression method
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with Group Lasso. The method considers both the feature embedding selection and network slimming.
We only need to apply the sparse regularization terms to the weight matrices. The optimization
problem can be expressed as

min
W

`(W) + λ1
∑
i

∥∥∥W (1)
.,gi

∥∥∥
1

+

L∑
l=2

λl
∑
i

∥∥∥W (l)
.,i

∥∥∥
1
, (1)

where `(W) is the original objective function . The λs are hyper-parameters to control the importance
of these regularization terms. g· denotes the feature groups for the input layer. ‖ · ‖1 indicates the
L1 norm. The optimization problem (1) restricts the group-wise sparsity for the input layer and the
neuron-wise sparsity (or group size = 1) for the rest model layers while training with the original
objective function `(W). The optimization problem can be solved with the projected gradient descent
method. However, the optimization problem (1) has its own limitation. The hyper-parameters λs only
have the latent impact on the model size and we could not directly affect the model size. It is not
friendly when the users would like to restrict the model size to a specific number. On the other hand,
the hyper-parameters also make the optimization problem hard to tune, requiring multiple arguments
searching rounds. To avoid these shortages, we are supposed to have new approaches to handling the
compression of RS.

3.2 RESOURCE-CONSTRAINED MODEL COMPRESSION

In this section, we propose a novel unified model and embedding compression method on RS and treat
it as a constrained optimization problem. We discuss how to solve the problem using a gradient-based
optimization algorithm.

Computation Resource Function for RS Model To avoid the hyper-parameter tuning in the
optimization of problem (1), we define the resource function to measure the resource consumption for
a specific RS model structure, which can be used to guide the compression of structure. For example,
if considering the computation Flops, the resource of an MLP can be defined as

RFlops =

L∑
l=1

(
2× d(l)

in × d(l)out + d(l)
out

)
,

where d(l)in and d(l)out indicate the number of input and output neurons. For a pruned layer l, the input
and output dimension are restricted by the number of pruned neurons, annotated as s(l) and s(l+1).
Therefore, we can define a resource consumption function in terms of s from each layer as

RFlops(s) ,
L∑
l=1

(
2×

(
d(l)

in − s
(l)
)
×
(

d(l)out − s(l+1)
)

+
(

d(l)
out − s(l+1)

))
.

For simplicity, the resource function RFlops only takes the s as the number of neurons. In a more
general case, s can be substituted with the product between the number of pruned groups and the size
of each pruned group.

Resource-Constrained RS Model Compression With the definition of the resource function, we
can formulate the following optimization problem,

min
W

`(W), s.t. RFlops(W) ≤ Rbudget, (2)

where Rbudget denotes the upper bound of the overall model computation Flops set by users.
Since we consider the group-wise sparsity for each layer, we utilize the set of variables s :=
{s(1), s(2), . . . , s(L)} to control the model’s Flops. The s(l) defines the lower bound of the l-th layer’s
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zero group number for the pruned model. Therefore, we reformulate the optimization problem (2) as

min
W,s

`(W) (3a)

s.t. RFlops(s) ≤ Rbudget (3b)∑
i

I
(∥∥∥W (l)

.,i

∥∥∥2
2

= 0

)
≥ s(l), ∀ l = 2, . . . , L, (3c)

∑
i

I
(∥∥∥W (1)

.,gi

∥∥∥2
2

= 0

)
≥ s(1), (3d)

where I(·) is an indicator function with the output {0, 1}. When the condition is satisfied, the

indicator function results in a value of 1, otherwise, it would be 0.
∑
i I
(∥∥∥W (l)

.,i

∥∥∥2
2

= 0

)
denotes the

zero group number for the l-th layer. The resource constraint (3b) bounds the resource consumption of
the recommendation model. The inequalities in both (3c) and (3d) regularize the Flops consumption
for each layer.

3.3 OPTIMIZATION

To address the optimization problem (3), we adopt the alternating direction method of multipliers
(ADMM) for the reformulation. In details, the optimization problem contains non-continuous
indicator function in constraint (3c, 3d), and non-convex constraint (3b), which makes the problem
difficult to solve. Therefore, we first reformulate the inequality constraints as soft regularizations and
introduce minimax optimization with dual variables. Then we tackle the non-differentiable objective
function using self-defined numerical differentiation. At last, we summarize all the optimization
details into a gradient-based optimization formulation.

Minimax Optimization Reformulation Let ‖W·,g‖s,2 be the bottom-(s, 2) "norm", which de-
notes the Frobenius-norm of the sub-matrix (group) composed of bottom-s groups, by sorting from
top to bottom in terms of norm of each group. The equivalent formulation of the sparsity constraint
(3c, 3d) can be

‖W·,g‖2s,2 = 0⇔
∑
i

I
(
‖W.,gi‖

2
2 = 0

)
≥ s. (4)

The above equivalence (4) is proved by Tono et al. (2017), where the LHS is called DC (difference of
convex functions) representation of the L0-constraint. With the transformation, we can reformulate
the problem in Eq. (3), into this minimax optimization problem:

min
W,s

max
y,z≥0

`(W) + y(1)
∥∥∥W (1)

.,g

∥∥∥2
ds(1)e,2

+

L∑
l=2

y(l)
∥∥∥W (l)

.,.

∥∥∥2
ds(l)e,2︸ ︷︷ ︸

sparsity loss: S(y,s,W)

+ z (RFlops(s)−Rbudget) ,︸ ︷︷ ︸
resource loss

(5)

where y and z are dual variables. The operator d·e indicates the ceiling function. In the problem (5),
the importance of regularization terms are tuned automatically based on the minimax optimization.

The sparsity loss S(y, s,W) := y(1)
∥∥∥W (1)

.,g

∥∥∥2
ds(1)e,2

+
∑L
l=2 y

(l)
∥∥W (l)

.,.

∥∥2
ds(l)e,2 and the resource

loss z (RFlops(s)−Rbudget) are introduced to substitute the original constraints (3b, 3c, 3d). Therefore,
the optimal solution to the new problem (5) can serve as the optimal for the original problem (3). To
solve it, we present the details of update rules for all learnable variables in appendix A.1.

We wrap up all the update rules together to be a unified optimization algorithm, as described in
Algorithm 1. In this algorithm, we only show an example that the input layer is column-wise grouped.
For a more general case, the column-wise group sparsity can be applied to an arbitrary layer in the
RS model.

Prune and Finetune Solving the minimax optimization problem (5) will make some channel
weights extremely close but not exactly equal to zeros. In order to extract the slimmed network, for
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each W (l), we discard the s(l) groups with smallest L2 norms ‖W (l)
·,gi‖2 (extremely close to 0) after

we have solved problem (5). Then we finetune the explicitly pruned network to further improve the
performance.

Algorithm 1: Gradient-based algorithm to solve problem (5) for UMEC.
Input: Resource budget Rbudget, learning rates η1, η2, η3, η4, number of total iterations τ .
Result: DNN pruned weightsW∗.

1 Initialize t = 1,W1 ; // random or a pre-trained dense model
2 for t← 1 to τ do
3 Wt+1 = Proxη1S(yt,st,Wt)

(
Wt − η1∇̂W`

(
Wt
))

; // Proximal-SGD

4 st+1 = st − η2
(
∇̃sS

(
yt, st,Wt+1

)
+ ∇̃sz

t
(
RFlops

(
st
)
−Rbudget

))
; // Gradient (STE)

Descent

5 y(1)
t+1

= y(1)
t
+ η3

(∥∥∥W (1)
.,g

t+1
∥∥∥2⌈

s(1)
t+1

⌉
,2

)
; // Gradient Ascent

6 y(l)
t+1

= y(l)
t
+ η3

(∥∥∥W (l)t+1
∥∥∥2⌈

s(l)
t+1

⌉
,2

)
, ∀ l = 2, · · · , L

zt+1 = zt + η4
(
RFlops

(
st
)
−Rbudget

)
; // Gradient Ascent

7 W∗ =W

4 EXPERIMENTS

To demonstrate the effectiveness of UMEC, we run experiments on a standard public RM over the
real-world recommendation dataset. And we would like to answer the following questions: Whether
our unified optimization framework that jointly considers input feature selection and prediction model
compression has superiority over previous state-of-the-art RS compression methods which solve the
problem from only one aspect? If yes, why?

4.1 EXPERIMENTAL SETUP

Dataset and Model We conduct all our experiments on the state-of-the-art ads CTR prediction
model named DLRM (Naumov et al., 2019), as illustrated in Figure 1. Following Naumov et al.
(2019), we use the Criteo AI Labs Ad Kaggle1 and Terabyte2 datasets for our experiments. The Criteo
AI Labs Ad Kaggle dataset contains approximately 45 million click log samples collected over seven
days. The Terabyte dataset consists of approximately 4.4 billion click log samples collected over 24
days and we perform uniform sampling with 12.5% sampling rate from the raw data following the
sampling scheme in Naumov et al. (2019). Both datasets contain samples that have 13 continuous
and 26 categorical input features. Following the official setting, for both datasets we split the data of
the last day into validation and testing sets, and use data from the rest days as the training set.

Baseline methods The latency of an ads CTR prediction model mainly comes from two sources:
feature embedding and prediction model inference. Feature embedding layers map categorical input
values into a vector space. Both the number of input categorical values and the output feature space
dimension can affect the latency of feature embedding stage. The inference latency of the predication
model mainly depends on the prediction model size. Following the above analyses, methods to
accelerate ads CTR prediction models mainly fall into three categories:

• Prediction model compression: compressing the prediction model with traditional model
compression methods, such as Li et al. (2016); Molchanov et al. (2019); Yang et al. (2019).

• Input feature selection: reducing the number of categorical input features by filtering out
non-essential ones.

1https://www.kaggle.com/c/criteo-display-ad-challenge
2https://labs.criteo.com/2013/12/download-terabyte-click-logs/
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• Embedding dimension reduction: shrinking the dimension of embedding layers’ output
space. Two recent works (Ginart et al., 2019; Joglekar et al., 2020) fall into this category.

Our unified optimization framework jointly considers input feature selection and model compression.
We will further show that our method can be generalized to considering input feature dimension-
reduction as well. So we compare our method with baselines from all three categories to show the
superiority of our method over those baselines tackling the RS compression problem from only one
aspect.

General Training and Evaluation Details We use the following settings for our experiments on
the Criteo Ad Kaggle dataset: we use SGD optimizer with learning rate 0.1 to optimize the BCE
loss (`(W) in our method); we set training batch size to 128, initial feature embedding dimension to
16, and use the three-layer MLP prediction model with hidden dimensions 512 and 256.

For our method, we choose Adam optimizer (Kingma & Ba, 2014) for s and SGD optimizer forW ,
y, and z. We set learning rates η1, η2, η3, η4 in Algorithm 1 to be [0.1, 0.05, 0.1, 2.0] respectively,
and set τ to be 306,969 which equals to 1 epoch. In our experiments, we initialize the model
weights from a dense model that has been pre-trained for 1 epoch using `(W) to facilitate training.
After the training process in Algorithm 1, we zero out the redundant neurons (as described in the
last paragraph in Section 3) and extract the sub-network as the pruned model. We then perform
fine-tuning for 2 epochs. For a fair comparison, we also fine-tune 2 epochs for all baseline methods.
Following Naumov et al. (2019), the best accuracy on the validation set is reported.

For experiments on the Criteo Ad Terabyte dataset, the training settings generally follow those
mentioned above with several exceptions: batch size equal to 4096 , τ equal to 157,655, the hidden
dimensions of the three-layer MLP prediction model equal to 256 and 128.

Evaluation Metrics We evaluate the performance with the following two metrics: Accuracy and
Compression Ratio (CR). Accuracy: CTR prediction accuracy on the validation set. Compression
ratio (CR): the ratio between the Flops that has been deducted and original model Flops. More
formally, CR = 1− pf (W)/pf (W0), where pf (·) calculates the Flops of a (sub-)model. W andW0

are the pruned and original dense prediction models, respectively. The larger CR, the more compact
model we will obtain.

4.2 PREDICTION MODEL COMPRESSION FOR RS MODEL

We design and conduct extensive experiments to examine the compression performance among our
method and several state-of-the-arts model compression methods. The baseline methods include
handcrafted structures, one-shot magnitude pruning (MP) (Li et al., 2016), and two recent state-of-
the-art methods, namely Taylor pruning (TP) (Molchanov et al., 2019) and energy-constrained model
compression (ECC) (Yang et al., 2019).

In Figure 2 and 3, we demonstrate the best accuracy on validation set under different compression
ratios (CRs) on the Criteo AI Labs Ad Kaggle and Terabyte datasets. Each curve shows the CR-
Accuracy trade-off of one compression method. The doted magenta line represents the accuracy
achieved by the original dense DLRM model.

Several observations can be drawn from this comparison figure. First, our method continuously
outperforms all other methods with a margin of at least 0.01%. Second, only our method can
successfully compress the original dense model to the ideal budget while still manages to maintain
the performance without any degradation within a certain CR scope.

These results show that our joint model compression and input selection method can achieve much
better balance of efficiency vs accuracy than traditional model compression methods.

4.3 INPUT FEATURE SELECTION FOR RS MODEL

We evaluate the effectiveness of our proposed method on input feature selection task. The input
feature selection task can be easily realized using our proposed framework, by keeping the resource
constraint for the features groups in input layer (i.e., Eq. (3c)) and ignoring constraint for weights
of hidden layers(i.e., Eq. (3d)). We use Group Lasso as a self-designed baseline. The loss function
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Figure 2: Results on RS prediction model com-
pression by different methods on the Criteo AI
Labs Ad Kaggle dataset.

Figure 3: Results on RS prediction model com-
pression by different methods on the Criteo AI
Labs Ad Terabyte dataset.

of Group Lasso is shown in Eq. (1). Since we are only considering input feature selection in this
sub-section, the sparsity regularization on hidden layers (e.g., the second term in S(y, s,W)) is
ignored. We tune hyper-parameter λ1 among 0.0005, 0.001, 0.005, 0.01 for the Criteo AI Labs Ad
Kaggle dataset, and 0.001, 0.003, 0.005 for the Terabyte dataset, in order to get different compression
ratios. After Group Lasso training, all input features whose L2 norms are below a threshold th will be
removed, and the Flops for the new model are calculated accordingly. We empirically find that setting
th to 0.01 on the Kaggle dataset and 0.001 on the Terabyte dataset can achieve good performance.
For both our method and Group Lasso, we train and fine-tune for 1 epoch and 2 epochs, respectively.
In Figure 4 and 5, the performance on the holdout validation set at the end of the compressing

Figure 4: Results on RS input feature selection
by different methods on the Criteo AI Labs Ad
Kaggle dataset.

Figure 5: Results on RS input feature selection
by different methods on the Criteo AI Labs Ad
Terabyte dataset.

process is reported. We demonstrate the effectiveness of our method in input feature selection task,
by showing its superior performance under all the compress ratios. Another observation is that the
pruned model of both methods will fail to recover the performance of the original dense model if too
many input features are removed. For example, at a 0.21 compression ratio on the Kaggle dataset,
which corresponds to removing 9 out of the total 27 input features, both methods have a considerable
drop of accuracy. This indicates that reducing the number of input features will cause considerable
harm to the model’s performance.

4.4 EMBEDDING DIMENSION REDUCTION FOR RS MODEL

We show that our method can also be applied to embedding dimension reduction. In this new scenario,
W in Eq. (3) is embedding layer weights, instead of previous prediction model weights. Eq. (3d) is
removed (i.e., no longer to prune the input dimension). The rest parts of the objective function remain
the same.
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Figure 6: The number of pruned features/neurons for each layer during the training process using
UMEC withRbudget = 0.5×pf (W0) on the Criteo AI Labs Ad Kaggle dataset, where pf (W0) denotes
the Flops of the original dense model. For the input layer, the mentioned dense model has 27 features
in total. For the two hidden layers, it has 512 and 256 neurons respectively. The convergency of the
binary cross entropy (BCE) loss during training is shown in Figure 7 in the appendix.

We compare our method with the state-of-the-art embedding dimension reduction method named
mixed dimension embedding layers (MDEL) (Ginart et al., 2019). Following Ginart et al. (2019),
we use size of the embedding layers to help define compression ratio. More specifically, in this
setting, CR = 1−ps(W)/ps(W0), where ps(·) calculates the number of parameters in a (sub-)model.
W and W0 are the pruned and original dense embedding sub-models, respectively. To evaluate
performance change after pruning, we define ∆acc = AccW − AccW0 , where AccW and AccW0 are
CTR prediction accuracy of a pruned and original dense model, respectively.

Table 1: Results on embed-
ding dimension reduction.

Method CR ∆acc

MDEL 0.5 0.10%

Ours 0.5 0.24%
0.6 0.16%

MDEL only provides results on the Criteo AI Labs Ad Kaggle
dataset, so we conduct the comparison on this single dataset. Exper-
iment results are shown in Table 1. As we can see, both methods
have slight improvement in accuracy at around 50% CR, while the
accuracy improvement of our method is larger than that of MDEL.
Also, our method can still achieve better accuracy improvements
than MDEL with even 10% larger CR. These results show that our
ADMM based compression algorithm is better than MDEL.

4.5 SPARSITY ANALYSES OF UMEC

Below we present how the sparsity of the prediction model evolves during the pruning phase in
Section 4.2. As a recall, the aforementioned prediction model consists of one input layer and two
hidden layers, with 27 input features, 512 and 256 neurons respectively. We take the Criteo AI Labs
Ad Kaggle dataset as an example. As shown in Figure 6, when Rbudget = 0.5× pf (W0), the pruned
input features/neurons converge to 0, 102 and 250 respectively. During training, the last hidden layer
gets the most percentage of neurons removed and the input layer gets the least percentage. We can
come to several conclusions from this result. First, such phenomenon aligns with the observation
in Section 4.3 and serves as a piece of evidence that we need enough input features to adequately
represent the raw input information and contribute to the downstream classification task. Second,
to perform the relatively easier task, i.e., binary classification, the requirement of neurons from the
last hidden layer falls far below the original design. Thus considerable resource consumption can be
saved here. Third, it demonstrates that our resource-constrained unified optimization plays a smart
role in globally finding the optimal resource allocations across all layers.

5 CONCLUSION

The goal of this paper is to tackle with the new problem that jointly compressing input features
and neural network structures in the recommendation models. We propose UMEC framework by
integrating these two objectives into one unified constrained optimization problem, solved by the
ADMM method. We conduct extensive experiments and demonstrate the effectiveness of our proposed
UMEC method by observing its superior performance than other state-of-the-art baseline methods.
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A APPENDIX

A.1 UPDATE RULE FOR ALL LEARNABLE VARIABLES

To solve the optimization problem (5), we utilize the ADMM strategy to solve a series of sub-problems
as follows.

UpdateW The optimization problem onW can be solved with proximal-SGD (Nitanda, 2014).
The definition of the proximal operator is as follows:

ProxηS(y,s,W)(W̄) = arg minW
1

2

∥∥W − W̄∥∥2 + ηS (y, s,W)

where W̄ is the direct stochastic gradient descent update of W . The sub-problem above has the
closed-form solution forW∗ :=

{
W (1)∗,W (2)∗, . . . ,W (L)∗}:

W ∗
i =

{
W̄i, if

∥∥W̄i

∥∥ >=
∥∥W̄least-dse

∥∥,
1

1+2ηyW̄i, otherwise,

where Wi denotes the i-th sub-matrix, and W is the weight for an arbitrary layer.

Update dual variables z and y For the sub-optimization problem, we have

max
y,z≥0

y(1)
∥∥∥W (1)

.,g

∥∥∥2
ds(1)e,2

+

L∑
l=2

y(l)
∥∥∥W (l)

.,.

∥∥∥2
ds(l)e,2

+ z (RFlops(s)−Rbudget) ,

and we can adopt the gradient ascent method as the update rule.

Update s The optimization on s relies on both sparsity and resource loss. However, both of them
are non-differentiable due to the ceiling function dse. Straight-through estimator (STE) (Bengio et al.,
2013) is an effective approach for optimization through the non-differentiable functions. The main
idea is to adopt some simple proxy to be the derivative of the non-differentiable formulation. Thus,
the back-propagation can be applied as what happened in the differentiable case. For ‖W ‖2s,2, we
can apply the numerical differentiation ‖W ‖2s+1,2−‖W ‖

2
s,2 as the proxy derivative of ‖W ‖2s,2 with

respect to s:

∂̃ ‖W ‖2s,2
∂̃s

= W 2
least-min(Dim(W ), s+ 1),

where W 2 is the column-group wise L2 format of W , Dim(W ) is the total number of column groups
of W , and W 2

least−j is the j-th least column group in W 2.

For a general resource consumption function (e.g., Flops), the non-differentiable part of R is the
ceiling function dse, for which we can use a common STE (Bengio et al., 2013): ∂̃dse

∂̃s
= 1.

∂̃dse
∂̃s

= 1.

Now we can wrap up all the update rules together to be a unified optimization algorithm 1. In this
algorithm, we only show an example for the input layer to be column-wise grouped. For a more
general case, the column-group wise sparsity can be applied to an arbitrary layer in the RS model.

A.2 CASCADED PIPELINE AS A BASELINE
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Figure 7: The convergency of the bi-
nary cross entropy (BCE) loss during
training using UMEC with Rbudget =
0.5 × pf (W0), where pf (W0) denotes
the Flops of the original dense model.

We provide experimental results under a cascaded pipeline
using UMEC, where the compression processes for the
input feature and the prediction model are carried out
sequentially. Two scenarios are demonstrated: a) Con-
ducting input feature selection first, then prediction model
compression, of which the results are shown in Figure 8; b)
Conducting embedding dimension reduction first, then pre-
diction model compression, of which the results are shown
in Figure 9. We set CR values of first stage in cascaded
pipeline as 0.116, 0.116, 0.302, 0.302, 0.302 respectively
for a), and 0.1, 0.1, 0.1 for b). Then we try our best to
set the final CR values of the whole cascaded pipeline to
be similar to the CR values used in our joint framework
respectively for fair comparisons in both figures. As an
example, we conduct the experimental comparisons on the
Criteo AI Labs Ad Kaggle dataset.

Each curve shows the CR-Accuracy trade-off of one com-
pression method. Comparing the results of the cascaded
pipeline with the joint framework, Figure 8 and Figuire 9
both support the superiority of the joint framework.

Figure 8: Results on the pipeline with a cas-
cade of input feature selection and prediction
model compression, and comparison with the
corresponding jointly optimized framework.

Figure 9: Results on the pipeline with a cas-
cade of embedding dimension reduction and
prediction model compression, and compari-
son with the corresponding jointly optimized
framework.

Table 2: Real-device energy consumption and latency of different methods. Best values among all
compression methods are shown in bold.

Method Acc (%) Energy (10−3J) Latency (ms)
Ours 78.971 8.81 0.123
ECC 78.939 9.05 0.132

Handcrafted 78.963 9.32 0.140
MP 78.956 9.16 0.136
TP 78.958 9.23 0.137

Dense Model 78.978 9.49 0.144

A.3 ENERGY CONSUMPTION AND INFERENCE LATENCY OF THE NETWORK

We evaluate the energy cost and latency of all models on a GTX 2080 Ti GPU. Following Yang et al.
(2019), we use the nvidia-smi utility3 to monitor the energy consumption. We follow the settings
in Fu et al. (2020) to measure inference latency on the aforementioned real-device. All experiments
are implemented with PyTorch. As shown in Table 2, our method achieves the best accuracy with the
least energy consumption and latency among all compared compression methods.

3https://developer.download.nvidia.com/compute/DCGM/docs/nvidia-smi-367.
38.pdf
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