
Under review as a conference paper at ICLR 2023

FUNCTIONAL RELATION FIELD: A MODEL-AGNOSTIC
FRAMEWORK FOR MULTIVARIATE TIME SERIES FORE-
CASTING

Anonymous authors
Paper under double-blind review

ABSTRACT

In multivariate time series forecasting, the most popular strategy for modeling
the relationship between multiple time series is the construction of graph, where
each time series is represented as a node and related nodes are connected by edges,
i.e. spatial-temporal graph neural networks. The graph structure is either given
apriori or learned based the similarity between nodes. However, the relationship
between multiple time series is typically complicated, for instance, the sum of
outflows from upstream nodes may be equal to the inflows of downstream nodes.
Such relations widely exist in many real-world multivariate time series forecasting
scenarios, yet are far from well studied. In these cases, graph might only be a
crude description on the dependency between nodes. To this end, we explore a
new framework to model the inter-node relationship in a more precise way based
our proposed inductive bias for graphs, Functional Relation Field, where a group
of functions parameterized by neural networks are learned to characterize the
dependency between multiple time series. These learned functions are versatile:
they can then be used to discover the underlying graph structure by identifying
the most relevant neighbors of the target node; and on the other hand, the learned
functions will form a “field” where the nodes in the backbone prediction networks
are enforced to satisfy the constraints defined by these functions. The experiment
is conducted on one toy dataset to show our approach can well recover the true
constraint relationship between nodes. And two real-world MiniApp calling traffic
and road networks datasets are also considered with various different backbone
networks. Results show that the prediction error can be reduced remarkably with
the aid of the proposed functional relation field framework.

1 INTRODUCTION

A

B

D

C

𝑤!
𝑤"

𝑤#
𝑥$

𝑥!𝑤! + 𝑥"𝑤" + 𝑥#𝑤# = 𝑥$
A

B

D
√×

C

×
√

(a) Time-series similarity (b) Node constraints

Target
Node

Constraint
Node

𝑥"

𝑥!

𝑥#

Figure 1: Comparison between traditional graph-
based modeling and our approach. (a) Graph struc-
ture learning with time-series similarity; (b) Func-
tional relation field, modeling inter-node functional
relationship in a linear form, where D is the target
node and {A,B,C} represent dependent nodes.

Multivariate time series forecasting has surged
recently due to its strong expressiveness of the
spatio-temporal dependence among the data and
its enormous popularity in vast application ar-
eas, such as the prediction of urban traffic, com-
puter network flow, cloud micro-services calling
flow, and rigid body motion, to name a few (Li
et al., 2018; Yu et al., 2018; Bai et al., 2020; Yan
et al., 2018; Liu et al., 2020). The most popular
and straightforward strategy for modeling the
relationship between multiple time series is the
introduction of graph, where each time series
is represented as a node and related nodes are
connected by edges. This particular inductive
bias for multivariate time series prediction results in the so called spatial-temporal graph neural
networks (Yu et al., 2018). The graph structure is either given apriori (e.g. in traffic flow prediction,
each road as a node has connected roads forming the graph.) or learned based the similarity between
nodes (Yu et al., 2019; Bai et al., 2020; Shang et al., 2021). However, in practice, the relationship

1

Under review as a conference paper at ICLR 2023

between multiple time series is typically complicated. For instance, there often exist constraints
among the nodes, ranging from the equality between the inflow and the outflow for a node in a traffic
network to the geometric constraints of the rigid body motion. Such relations widely exist in many
real-world multivariate time series forecasting scenarios, yet are far from well studied. In these cases,
graph might not be sufficient for characterizing the dependency between nodes.

As a remedy, in this work, we explore a new framework to model the inter-node relationship in
a more precise manner than graph, Functional Relation Field (FRF), where a group of functions
parameterized by neural networks are learned to characterize the dependency between multiple time
series explicitly. These learned functions are versatile: first they can then be used to discover the
underlying graph structure by identifying the most relevant neighbors of the target node; and on the
other hand, the learned functions will form a “field” where the nodes in the backbone prediction
networks are further enforced to satisfy the constraints defined by these functions. As illustrated in
Fig.1, the left panel shows the traditional graph neural networks assuming similar time series have
edge connections, while our framework on the right panel models the dependency between nodes
through a functional relationship, e.g. a linear form to enforce the constraints between the flows of
target and dependent nodes. In our framework, we mainly solve the following two issues: (i) How to
learn the functional field? We need to select the dependent nodes that have a relationship with the
target node, and express the constraint in a functional form; (ii) How to guarantee the constraints
satisfaction? The (functional) constraints relationship should be maintained in the predicted output in
both training and test process.

To address these issues, we propose a two-stage approach that can discover the functional relations
(i.e. constraints) from data and further integrate the constraints seamlessly when forecasting the
multivariate time series. Specifically, we first train a neural network with a selected target node as
its output and all the other nodes as dependent variables (i.e. the input of this neural network), and
identify the most relevant dependent nodes based on this trained network. We then re-train it to learn
the relationship among the target and the discovered relevant nodes. Next, we incorporate these
functional constraints into the network backbones by imposing them to the predicted output during
both training and test process. More precisely, the output of the network could be guaranteed to
satisfy the constraints by utilizing the constraint-satisfied transformation and loss minimization. We
compare the proposed approach with SVM, fully connected networks, fully connected LSTM, and
five backbone models (i.e., STGCN (Yu et al., 2018), AGCRN (Bai et al., 2020), Autoformer (Wu
et al., 2021), FEDformer (Zhou et al., 2022), SCINet (Liu et al., 2022)). Experimental results show
that our approach significantly improves the performance over the original network backbones and
other baseline models.

RELATED WORK

Univariate time series forecasting. Recently, much research focuses on time series forecasting with
deep learning models due to their powerful representational capability and prediction performance,
including feed-forward neural network, RNN (Rumelhart, 1986) and its variants LSTM (Hochreiter
& Schmidhuber, 1997) and GRU (Cho et al., 2014). The transformer architecture and its variants
(Vaswani et al., 2017; Simm et al., 2020; Zhou et al., 2021; Child et al., 2019; Lim et al., 2020; Li
et al., 2019; Wu et al., 2021; Zhou et al., 2022) also made much progress on univariate time-series
forecasting on learning long-range dependence. In order to model the trend and seasonality of time
series in an interpretable way, N-beats (Oreshkin et al., 2020) network that stacked very deep full-
connection network based on backward and forward residual links has improved the multi-horizon
prediction accuracy significantly. Moreover, DeepAR (Salinas et al., 2020) and Deep State-Space
Model (DSSM) (Rangapuram et al., 2018) stack multi-layer LSTM network to generate parameters
of one-step-ahead Gaussian predictive distributions for multi-horizon prediction.

Multivariate time series forecasting. Spatio-temporal graph neural networks (Yu et al., 2018; Chen
et al., 2019; Pan et al., 2021; Li et al., 2020) have been proposed to model the spatial correlation and
temporal dependency in multivariate time-series. Apart from capturing the temporal dependence,
these methods further model the spatial dependence among all time series via graph neural networks,
leveraging the information from the neighboring time series to help forecasting the target one. It
is well known that an informative graph structure is important to the graph time series forecasting.
Therefore, many algorithms (Bai et al., 2020; Seo et al., 2016; Shang et al., 2021) were proposed
to discovery the underlying graph structure. AGCRN (Bai et al., 2020) assumed the graph structure

2

Under review as a conference paper at ICLR 2023

is unknown and adopted an adaptive approach to learn the embedding vectors for all nodes, and
then replaced the adjacency matrix in graph convolutions with a function of the node embeddings.
However, the similarity graph calculated with the learned node embedding is a dense and continuous
graph instead of a sparse and discrete graph. Therefore, GTS (Shang et al., 2021) formulated the
graph structure learning problem as a probabilistic graph model to learn the discrete graph through
optimizing the mean performance over the graph distribution.

Different from the existing multivariate time series prediction methods, AGCRN (Bai et al., 2020)
(with a fully connected graph) and STGCN (Yu et al., 2018) (with a given graph), we consider
a more precise way, i.e. functional relations as constraints, to learn the connection between time
series. The new inductive bias expressed by these functional relations can be applied to different
backbone networks to help recover the graph structure and act as regularization in both training and
test process.

2 METHODOLOGY: FUNCTIONAL RELATION FIELD

Multivariate time series forecasting. Suppose we have N time series {xi}Ni=1 with length T ,
written compactly as X ∈ RN×T . Each time series can be denoted as a node, where xi,t ∈ R for
each node i and time step t. xt ∈ RN is the time slice of X at the t-th time step. The multi-step
forecasting problem of a multivariate time series can be formulated as predicting the future M frames
of the multivariates given the last H time slices:

{ŷt+1, ..., ŷt+M} = argmax P ({yt+1, ..., yt+M}|{xt−H+1, ..., xt}), (1)

where {yt+1, · · · , yt+M} and {ŷt+1, · · · , ŷt+M} represent the true and predicted values at the future
time steps, M is the number of future steps. Note that here we use y to denote the output so as to
differentiate it from the input x.

Forecasting with functional relations. In many real-world scenarios, the relationship between
multiple time series is typically complicate, graph might not be sufficient for modelling their depen-
dency, particularly for the cases values of multivariate time series at each time step are subject to some
intrinsic constraints. Existing methods have not incorporated these constraints into their models. In
this work, we intend to show that models with the account of constraints (expressed with functional
relationship) are superior to those without constraints in terms of prediction performance. As an
example, suppose that the flow in a computer network satisfies the homogeneous linear constraints, at
each time step t, the following linear constraints hold for slice xt:

Axt = 0,∀t, (2)

where A ∈ RM×N is a matrix that is constant across time. In other more complex cases, the
constraints can be non-homogeneous, non-linear, or even intertemporal. Here, we concentrate on
time-invariant constraints that is not intertemporal. As such, the constraints can be described by a set
of functions f with size m, i.e. functional relation field,

f = (f1, f2, ..., fm). fi(xt) = 0, ∀i, ∀t. (3)

Based on the constraints defined above, we consider the following constrained multivariate time
series prediction problem,

{ŷt+1, ..., ŷt+M} = arg max P ({yt+1, ..., yt+M}|{xt−H+1, ..., xt}),
s.t. fi(ŷt+τ) = 0, 1 ≤ τ ≤M, 1 ≤ i ≤ m. (4)

However, in most real-world scenarios, neither the functional form F nor the specific weights
variables involved in the constraints are given, and one of our objectives is to extract such information
from the data and solve the problem (4). We now elaborate the functional relation field for multivariate
times series prediction in the following.

The schematic diagram of the proposed framework is depicted in Figure 2, including two parts. The
first part displayed Figure 2(a) shows how we learn the functional relations, i.e. the constraints
between nodes. Assuming that the constraints are unknown, we aim to find the constrained nodes
and the specific functional form for these constraints. The constraint function in this paper is

3

Under review as a conference paper at ICLR 2023

Constraint nodes set and
relevant nodes 𝒩!

Retraining the functional
relation networkTrain constraint network 𝑤! 𝑤"

𝑤# 𝑤$ 𝑤% 𝑤&

Training Phase: Constraint-Satisfaction loss
minimization in in Eq.(10)

(a) Functional Relation Field

(b) Applying Functional Relation Field

Testing Phase: Constraint-Satisfaction
transformation in Eq.(15)Output Layer

Input

Backbone
Network

Predict value "𝑦"#$

ℒ%&%

Function:	
𝐟 "𝑦"#$ = 0

Predict output
"𝑦"#$

Constraint-satisfied output 1𝑦"#$

Predict output
"𝑦"#$

Learned function
relation:
𝐟 𝑥 = 0
𝑤! 𝑤"

𝑤# 𝑤$𝑤% 𝑤&

Independent nodes Learned function relation ℱ

1𝑔 "𝑦"#$,(

Figure 2: The schematic diagram of functional relation field framework. The two subfigures denote
the two stages: (a) The training data is employed to discover the nodes in each constraint function and
these functions are expressed by constraint network; (b) The learned constraints are incorporated in
the backbone models (cf. Section 2.2) in three complementary ways so as to improve the forecasting
performance.

approximated by a neural network, named as functional relation network or constraint network. After
training the functional relation network, we can identify the most relevant neighbors and produce a
more informative graph structure. Then we can proceed to integrate the learned constraints into the
backbone graph neural networks for multivariate time series prediction, as shown in Figure 2(b). We
enforce these constraints to the output of spatio-temporal graph neural networks during both training
and test phases. For the outputs of the networks, we add a constraint-satisfied transformation layer
during the inference process such that the outputs strictly satisfy the constraints. Altogether, we refer
to the proposed framework as functional relation field-enhanced spatio-temporal graph networks
(FRF-STG). It is model-agnostic and can be applied to different backbone graph networks. In the
following, we will describe the two stages including learning functional relation network and how to
apply the constraints induced by the functional relation between nodes in more details.

2.1 LEARNING THE FUNCTIONAL RELATION NETWORK

We start with discussing the first question: how to learn the unknown constraints (i.e. the functional
relations) from the multivariate time series data? As demonstrated in Figure 2(a), we assume
that there exists a constraint for each node. We first discover the relevant nodes involved in these
constraints and then express the constraint functions via neural networks.

Identifying constrained nodes and their relevant nodes. Here we consider a simplified case where
the functional relation between nodes can be formulated as:

xt,i = gi(xt,\i),∀t (5)
i.e. for each target node i, we use a constraint network gi to approximate the function relation taking
all the remaining (N − 1) nodes as input. We then train the constraint network to predict the value of
the i-th node with the loss function :

Lpred,(i) = ‖x̂t,i − xt,i‖2 (6)
where x̂t,i and xt,i represent the estimated and observed values of node i at time step t. Second,
a threshold εerr is set, and treat xi as a constrained node if both the training and validation error
are smaller than εerr. Otherwise, xi is unpredictable with the other nodes, indicating it has weak
dependency with other nodes. Then, to identify the most relevant nodes set Ni for target node i, we
introduce the sensitivity of input change to the output for the trained constraint network, measured by
the absolute value of the partial derivative:

δi,j =

∣∣∣∣ ∂g∂xt,j

∣∣∣∣ , j 6= i (7)

We calculate the average gradients over the training and the validation set for node j. Then, we
specify another threshold εgrad here and consider the node j as the most relevant node of target i
if δi,j is larger than εgrad. Besides, if the cardinality of Ni is larger than the scale threshold J , we
further shrink Ni by only keeping the top-J nodes with the largest δi,j .

Retraining the functional relation network. Since we filter out the irrelevant nodes for the discov-
ered constrained node xi, it is necessary to re-train the constraint network using the relevant nodes in
Ni as inputs, denoted as xt,Ni = {xt,ij |j ∈ Ni},

x̂t,i = g̃i(xt,Ni). (8)

4

Under review as a conference paper at ICLR 2023

Regarding the architecture of the functional relation network g̃i, we adopt a simple attention-based
structure for each node i, described as follows.

αt,i = Softmax(MLP i(xt,Ni)), x̂t,i = αTt,ixt,Ni , (9)

where αt,i is the attention weight vector generated from the relevant nodes xt,Ni , and x̂t,i is the
reconstructed input with the constraint nodes. Others alternatives for designing the functional relation
network is also possible.

2.2 APPLYING THE CONSTRAINTS

The constraints learned by the functional relation network are versatile. A naive usage is to construct
meaningful graph structure by drawing edges between the identified target and its dependent nodes.
Secondly, we propose to incorporate the learned constraints into the backbone prediction network
in both training and test process through constraint-satisfaction loss minimization and constraint-
satisfaction transformation, respectively. Both of them are used to guarantee that the constraints are
maintained in the outputs of the backbone network.

Constraint satisfaction in training phase. We expect the output of the backbone network, ŷ =
{ŷt+1, ŷt+2..., ŷt+M}, to satisfy the learned constraints that could reveal the underlying structure
of the multivariate time series. A straightforward yet effective way of implementing the constraint
satisfaction is loss minimization over the functional relation network based on the output of the
backbone prediction network,

LFRF (ŷ) =
N∑
i=1

M∑
τ=1

‖ŷt+τ,i − g̃({ŷt+τ,j}, j ∈ Ni)‖22 (10)

Therefore, the overall loss function for training the backbone prediction network include two terms,

Ltotal = L(ŷ, y) + λLFRF (ŷ), (11)

where λ is a tradeoff coefficient for balancing the supervised term and constraint satisfaction.

Constraint satisfaction in testing phase. Furthermore, although the constraints are fully utilized
during training, there is no guarantee that the constraints hold for the outputs during the inference
process. Therefore, it is necessary to perform constraint-satisfaction transformation on outputs of the
prediction networks.

Let us first consider the linear constraint Axt = 0,∀t. Suppose that ŷ = {ŷt+1, ŷt+2..., ŷt+M} and
y = {yt+1, yt+2, ..., yt+M} denote the predicted output of the backbone network and the ground
truth, respectively. To make the output ŷt+τ to satisfy the linear constraint, we can project the
predicted output onto the hyperplane Axt = 0 as ỹt+τ with a closed-form solution,

ỹt+τ = ŷt+τ −AT (AAT)−1Aŷt+τ . (12)

On the other hand, for non-linear constraint set f(y) = (f1(y), ..., fm(y))T = 0, where each
constraint fi(y) = 0 represents yi− g̃i(yt,Ni) = 0, there are no analytical solutions, but we can solve
an optimization problem with nonlinear equality constraints, i.e. finding the nearest projection point
on the plane f(y) = 0 given the reference point ŷt+τ for τ = 1, . . . ,m

min
ỹt+τ
‖ỹt+τ − ŷt+τ‖22, s.t. f(ỹt+τ) = 0. (13)

A simple approximate method for solving this equality-constrained quadratic programming is to
conduct iterative projections. Denote J = ∂f

∂x as the Jacobian matrix. Assuming ŷt+τ ≈ ỹt+τ ,
closed to the surface f(x) = 0. We derive the first-order Taylor expansion of f(x) at ŷt+τ as

f(x) ≈ f(ŷt+τ) + J T · (x− ŷt+τ). (14)

Equating f(x) to zero with x = ỹt+τ yields

ỹt+τ = ŷt+τ − J (J TJ)−1f(ŷt+τ). (15)

Then we can repeat the above transformation several times (e.g. number of projections K = 10
times used in our experiments) until the constraints are well satisfied by evaluating whether F (x) =∑m
j=1 |fj(x)| is small enough.

5

Under review as a conference paper at ICLR 2023

2.3 FUNCTIONAL RELATION FIELD-ENHANCED SPATIO-TEMPORAL GRAPH NETWORKS

In this part, we integrate the proposed functional relation field framework into five representative
backbone models, STGCN (Yu et al., 2018), AGCRN (Bai et al., 2020), Autoformer (Wu et al.,
2021), FEDformer (Zhou et al., 2022) and SCINet (Liu et al., 2022) to boost their prediction
performance, referred as FRF-STGCN, FRF-AGCRN, FRF-Autoformer, FRF-FEDformer and FRF-
SCINet, respectively. In the first stage, we learn the functional relation network, based on which
the most relevant nodes can be identified. And the resultant graph structure could be used for the
five backbone networks. In the second stage, we enforce the learned constraints in the training and
inference process, as described in Figure 2.

Since different backbone networks has their own specific design, we need adapt FRF to these
backbones. For the constraint satisfaction of output, in AGCRN and SCINet, the networks produce
all the prediction results at multiple time steps in one batch, and therefore, the constraint-satisfied
transformation is applied to the prediction at each time step respectively for K times as described in
Eq. (15). For STGCN, we apply the above transformation sequentially to each future time step, obtain
the transformed predictions, and then feed the predictions to STGCN to produce the predictions at
the next time step. We repeat this procedure until we finish the multi-step forecasting task.

Algorithm 1: Training and inference of functional relation field
Input: Trained function relation networks f , hyper-parameters λ and K.
Output: constraint-satisfied output ỹt+τ
// Training Phase;
repeat

1 Forward on backbone network to get ŷt+τ . on training dataset;
2 Back-propagate with the loss Ltotal in Eq. 2.2 and run Adam. . constraint-satisfaction loss
3 until stopping criteria is met;
// Inference Phase;
Forward on the trained backbone network to obtain ŷt+τ . on test dataset;

4 for k in K do
5 Calculate ỹt+τ by Eq.(15) . constraint-satisfaction transformation;
6 end

3 EXPERIMENT

In this section, we conduct experiments on five datasets including one synthetic graph dataset, two
real-word MiniApp calling flow datasets and two traffic flow datasets to demonstrate the effectiveness
of FRF on learning the underlying relationship between nodes and boosting prediction performance
of these backbone networks. The code for reproducibility is attached in the Supplementary Materials.

The baseline models. We first compare our framework with two traditional forecasting models
including Historical Average (HA) and Support Vector Regression (SVR). Then, we also conduct
experiments on two classical univariate time series prediction models, including Feed-Forward Neural
Network (FNN) and Full-Connected LSTM (FC-LSTM (Sutskever et al., 2014)). We select the widely
used graph time series model STGCN (Yu et al., 2018), AGCRN (Bai et al., 2020), and the univariate
time series forecasting models based on transformer architectures Autoformer (Wu et al., 2021),
FEDformer (Zhou et al., 2022) and another state-of-the-art univariate prediction model SCINet (Liu
et al., 2022)) as our backbone networks. We refer the readers to the supplementary materials for the
detailed experimental settings.

3.1 DATASETS AND SETTINGS

Binary tree dataset. We first generate an artificial graph time series dataset. The graph structure
for this dataset is a complete binary tree with 255 nodes. For each leaf node i, its value is a noisy
sinusoidal wave across time, xi,t = ni,tAi sin(

2πt
Ti

+φ), where ni,t ∼ U(0.95, 1.05). We sort all leaf
nodes from left to right in an increasing order of their periods. For a non-leaf node p, we denote its
left and right child as l and r. We further set the value of node p to be the geometric mean of its two
children l and r, xp,t =

√
xl,t · xr,t. We sample one point every 5 minutes, so there are 288 points

per day. We generate the data for 40 days, including 30 days for training (i.e., 30× 288 = 8640 time
points), 5 days for validation, and 5 days for testing. We intentionally design this dataset since it
has true graph structure between different time series and the constraints between nodes are explicit,

6

Under review as a conference paper at ICLR 2023

and thus it is a suitable testbed to compare the superiority of FRF over those without FRF. In the
experiments, for the backbone with FRF, we assume the constraints are unknown and learn them
using the proposed method in Section 2.1.

MiniApp calling flow dataset 1 and 2. These two datasets are real-word flow data from two popular
online payment MiniApps, attached in the Supplementary Materials. For the two MiniApps, there
are N = 30, 23 filtered pages linking to each other in the calling process, which produces visiting
request flow from one page to another, constituting a graph with N = 30, 23 nodes. We aggregate
the flow with averaged value every 5 minutes for each node, so there are 288 points per day. For the
first MiniApp, we collect 21 days of data, including 15 days for training, 3 days for validation, and 3
days for test. For the second one, 24 days of data are collected, including 18 days for training, 3 days
for validation, and 3 days for testing.

PEMSD4 and PEMSD8 traffic datasets. This benchmark dataset is popular for multi-variate time
series prediction, describing the traffic speed in San Francisco Bay Area with 307 sensors on 29 roads
(https://paperswithcode.com/dataset/pemsd4). The other one consists of 170 detectors on
8 roads in San Bernardino area (https://paperswithcode.com/dataset/pemsd8).

Settings of constraint network and hyper-parameters. For the architectures of the constraint
network, we compare two a 4-layer MLP and a self-attention network, and the results show the
latter is more effective. We measure the constraint relationship with MAPE, where the large MAPE
indicates the time-invariate constraint is weak. Specifically, the MAPEs for BinaryTree, MiniAPP1,
MiniApp2, PEMSD4, PEMSD8 datasets are 0.10, 0.008, 0.01, 0.02, 0.07 respectively. The larger
MAPE means the weaker constraint relationship, therefore the proposed FRF model is applicable to
backbone network only when the MAPE of constraint network is small. In addition, we only tune the
parameters of FRF while keeping the other hyper-parameters setting the same as backbone networks.

3.2 RESULTS

Overall performance Table 1 summarizes the performance of all the compared models on the five
datasets, including the proposed FRF approach coupled with STGCN, AGCRN, Autoformer, FED-
former and SCINet, denoted as FRF-STGCN and FRF-AGCRN, FRF-Autoformer, FRF-FEDformer
and FRF-SCINet, respectively.

For the binary tree dataset, we predict the future 12 time steps and evaluate the performance in terms
of three metrics (MAE, RMSE, MAPE). Since the underlying true constraints are known, we report
the experimental results of our models with both true and learned constraints, denoted as “T” and
“L”. We can observe that deep learning-based models typically outperform the traditional ones, as
expected. Furthermore, the proposed functional relation field can further improve the performance of
the original backbone models. Regardless of the differences between the two backbone networks,
FRF can consistently improve the prediction accuracy for both of the backbones. indicating that the
FRF framework could be potentially applied to a wide variety of backbones.

For the two MiniApp datasets, we omit the metric MAPE since the scale of data changes dramatically
across time such that MAPE fails to characterize the performance of different models. Due to the
error accumulation problem for multi-step prediction in STGCN, the performance of this model
pales in comparison with its non-iterative counterpart. As a result, we only report the results of the
non-iterative version of STGCN. Since the underlying true constraint relationship between nodes
are not available, we only report the FRF with learned constraints. We can easily observe that
augmentation of the proposed FRF can consistently boost the performance of the five backbone
networks. Specifically, FRF improves STGCN by 36.3% and 6.9% on the two datasets, also improves
AGCRN by 14.6% and 7.0%, respectively.

For traffic datasets PEMSD4 and PEMSD8, one particular reason we choose SCINet as the baseline
is that the reported results can achieve state-of-the-art prediction performance on this task. We can
observe that even relying on such a strong baseline, FRF framework can still improve its performance
of with a margin 0.6% and 0.3% on both datasets, respectively. For other backbones, we again
see that FRF further improves the prediction performance, showing the effectiveness of FRF as a
model-agnostic framework.

Learning the relationship between nodes. We further test whether FRF could discover the under-
lying true constraints between nodes. First, we investigate whether we can reliably estimate the

7

https://paperswithcode.com/dataset/pemsd4
https://paperswithcode.com/dataset/pemsd8

Under review as a conference paper at ICLR 2023

Table 1: Model performance on BinaryTree and MiniApp datasets. “(T)” and “(L)” represent the
models with true and learned constraints, respectively. Bold font is used to show the advantage over
backbones. “-” represents that the ground truth of the functional relationship is not available.

Methods Binary tree MiniApp 1 MiniApp 2
MAE RMSE MAPE MAE RMSE MAE RMSE

HA 12.64 19.19 22.16% 3.97 9.77 11.02 35.23
SVR 8.71 14.00 15.85% 2.56 7.06 6.83 21.68
FNN 5.77 10.04 9.73% 2.09 6.26 5.43 16.84

FC-LSTM 17.08 22.83 32.40% 2.05 4.08 8.14 19.64
STGCN 2.65 5.82 4.36% 1.90 5.26 4.50 14.14

FRF-STGCN (T) 2.40 5.68 3.94% - - - -
FRF-STGCN (L) 2.50 5.71 4.12% 1.21 3.32 4.19 11.11

AGCRN 2.56 5.77 4.25% 0.41 1.17 1.43 3.79
FRF-AGCRN (T) 2.30 5.54 3.87% - - - -
FRF-AGCRN (L) 2.37 5.57 4.00% 0.35 0.92 1.33 3.39

Autoformer 8.54 13.16 15.41% 1.03 2.79 2.69 6.85
FRF-Autoformer (T) 8.34 12.79 14.75% - - - -
FRF-Autoformer (L) 8.34 12.83 14.38% 0.77 2.18 2.46 5.70

FEDformer 8.54 13.24 15.45% 0.60 1.80 2.08 5.13
FRF-FEDformer (T) 8.10 12.80 14.40% - - - -
FRF-FEDformer (L) 8.29 12.99 14.79% 0.58 1.76 2.03 4.98

SCINet 5.43 9.37 9.46% 0.52 1.51 1.78 3.88
FRF-SCINet (T) 5.36 9.34 9.53% - - - -
FRF-SCINet (L) 5.37 9.27 9.43% 0.47 1.34 1.71 3.65

Table 2: Model performance on two traffic datasets, PeMSD4 and PeMSD8. “-” represents the value
is too large and thus ignored.

Model Type Methods PEMSD4 PEMSD8
MAE RMSE MAPE MAE RMSE MAPE

Multivariate

STGCN (Yu et al., 2018) 21.61 35.25 13.84% 17.28 27.19 11.14%
FRF-STGCN 20.70 33.90 13.46% 16.46 26.05 10.68%

AGCRN(Bai et al., 2020) 19.81 32.58 13.18% 16.52 26.12 10.53%
FRF-AGCRN 19.59 31.85 13.08% 16.04 25.28 10.30%

Univariate

Autoformer 21.42 34.09 - 18.49 28.78 -
FRF-Autoformer 21.24 33.93 - 18.23 28.66 -

FEDFormer 21.59 34.23 - 18.52 29.23 -
FRF-FEDFormer 21.29 33.82 - 18.15 28.61 -

SCINet(Liu et al., 2022) 19.27 31.27 11.91% 15.71 24.60 10%
FRF-SCINet 19.15 31.09 11.80% 15.67 24.57 10%

0.1% 0.5% 1.0% 5.0%
Influence of err on BinaryTree

2.0
2.2
2.4
2.6
2.8
3.0
3.2

M
AE

AGCRN
FRF-AGCRN (L)

0 0.001 0.01 0.1 1.0
Influence of on BinaryTree

2.0
2.2
2.4
2.6
2.8
3.0
3.2

M
AE

AGCRN
FRF-AGCRN (L)
FRF-AGCRN (T)

0 5 10 15 20 25
Influence of K on BinaryTree

2.0
2.2
2.4
2.6
2.8
3.0
3.2

M
AE

AGCRN
FRF-AGCRN (L)
FRF-AGCRN (T)

Figure 3: Performance comparison of three kinds of hyper-parameters including εerr, λR and K on
binary tree dataset with the SOTA backbone AGCRN.

target node given the values of constraint nodes. To be exact, we compute x̂t,i = g̃({xt,Ni}) and
compare x̂t,i with xt,i in terms of MAPE. For the test data of the synthetic binary tree, the resulting
MAPE is 0.399%. Note that the MAPE of AGCRN or STGCN reported in Table 1 is around 4%
without considering the constraints. Therefore, using the learned constraints can well regularize
the predictions given by the original network backbones as well as further improve the forecasting
performance. On the other hand, we compare the performance of the proposed algorithm when
using the true and estimated constraints, showing the results in Table 1. We can observe that the
performance based on both the true and estimated constraints is almost the same, indicating that the
constraints are accurately learned. Additionally, we visualize the learned constraints by connecting
each constrained node with their most relevant neighbors as a graph, shown in Figure 4. The structure
of the binary tree is well recovered, although some extra edges are involved.

Hyperparameters Sensitivity. FRF enhanced model introduces additional three kinds of hyper-
parameters including validation error threshold εerr, the loss tradeoff coefficient λ and the number of
output transformation K. Therefore, we conduct hyper-parameters sensitivity experiments on binary

8

Under review as a conference paper at ICLR 2023

 = 2 = 3 = 4

Figure 4: The learned constraints of the Binary Tree Dataset by connecting each constrained node
with their most related nodes. We use J = 2, 3, 4 for every node to plot this figure, so there are lack
of connections when J = 2 and some redundant connections when J = 4.

Table 3: Ablation study on explicit graph, constraint graph learned from constraint network and
constraint satisfaction components using STGCN as the backbone network.

Explicit Constraint Constraint PeMSD4 PeMSD8 MiniApp1
Graph Graph Satisfaction MAE RMSE MAE RMSE MAE RMSE

1 X 21.61 35.25 17.28 27.19 1.90 5.26
2 X 21.26 35.13 16.79 26.61 1.48 3.87
3 X X 20.70 33.90 16.46 26.05 1.21 3.32

Table 4: Ablation study on constraint-satisfaction loss minimization and constraint-satisfaction
transformation. The backbone AGCRN is used for Binary Tree, MiniApp1 and MiniApp2; and
SCINet for PEMSD4.

#
FRF FRF Binary Tree MiniApp1 MiniApp2 PEMSD4

Training Inference MAE RMSE MAE RMSE MAE RMSE MAE RMSE

1 7 7 2.56 5.77 0.41 1.17 1.43 3.79 19.27 31.27
2 X 7 2.51 5.68 0.40 1.19 1.38 3.66 19.20 31.16
3 7 X 2.33 5.58 0.40 1.14 1.45 3.74 19.22 31.15
4 X X 2.30 5.54 0.35 0.92 1.33 3.29 19.15 31.09

tree dataset using backbone AGCRN as shown in Fig 3. We can observe that the performance slightly
improves when the εerr increases due to more constraints are discovered, while the performance
decreases with large εerr because of the introduced noise. Even more, the FRF enhanced model
performs worse than backbone network when εerr = 5.0. Consistently, FRF enhanced model
performs better when λ = 0.1 and worse than backbone with large λ. For the K, the larger K
improves the backbone more significantly than smaller k because iterating more times makes the
non-linear constraint optimization problem more accurate.

Ablation Study. We first conduct an ablation study on the constraint graph learned from constraint
network using the STGCN as backbone network in Table 3. We can observe that the constraint graph
performs better than explicit graph extracted from prior knowledge on both traffic and MiniApp
datases. In addition, for backbone networks without explicit graph structure such as AGCRN and
SCINet, we investigate the effectiveness of constraint-satisfaction loss minimization and constraint-
satisfaction transformation as shown in Table 4, finding that both of the two components contribute
to the forecasting performance. Specifically, for the backbone network AGCRN which achieves
the state-of-the-art performance on binary tree dataset, FRF enhances the backbone by 1.95% in
training phase and by 9.0% in inference phase, while the combination of two components improves
the performance by 10.16% in total.

4 CONCLUSION

In this paper, we have proposed to enhance the multivariate time series forecasting with a new
inductive bias, function relation fieild (FRF), which is model-agnostic. FRF can discover the intrinsic
graph structure, as well as improve flow forecasting performance by applying constraint function
relationship to the output in training and testing phases. The constraints learned by FRF can be
incorporated into existing backbone networks, consistently improving the prediction performance.
Experimental results show that the proposed FRF framework can reliably learn the constraints from
the time-series data and restore the graph structure. Moreover, these constraints in turn help improve
the prediction accuracy by a notable margin, regardless of the diversity of the network architecture in
different backbone models. We expect that this FRF inductive bias could be potentially employed in
other multivariate settings beyond times series scenarios.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolutional recurrent
network for traffic forecasting. In In proceedings of 34th Conference on Neural Information
Processing Systems, 2020.

Cen Chen, Kenli Li, Sin G. Teo, Xiaofeng Zou, Kang Wang, Jie Wang, and Zeng Zeng. Gated
residual recurrent graph neural networks for traffic prediction. Proceedings of the AAAI Conference
on Artificial Intelligence, 33(01):485–492, Jul. 2019.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. 2019.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder for
statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 1724–1734, Doha, Qatar, October 2014. Association
for Computational Linguistics. doi: 10.3115/v1/D14-1179. URL https://aclanthology.
org/D14-1179.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780,
1997.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. arXiv preprint arXiv:1802.04687, 2018.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time se-
ries forecasting. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
6775a0635c302542da2c32aa19d86be0-Paper.pdf.

Ting Li, Junbo Zhang, Kainan Bao, Yuxuan Liang, Yexin Li, and Yu Zheng. Autost: Efficient neural
architecture search for spatio-temporal prediction. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’20, pp. 794–802,
New York, NY, USA, 2020. Association for Computing Machinery. ISBN 9781450379984. doi:
10.1145/3394486.3403122. URL https://doi.org/10.1145/3394486.3403122.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural network:
Data-driven traffic forecasting. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=SJiHXGWAZ.

Bryan Lim, Sercan O. Arik, Nicolas Loeff, and Tomas Pfister. Temporal fusion transformers for
interpretable multi-horizon time series forecasting. 2020.

H. Liu, J. Lafferty, and L. Wasserman. The nonparanormal: Semiparametric estimation of high
dimensional undirected graphs. Journal of Machine Learning Research, 10(10), 2009.

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet:
Time series modeling and forecasting with sample convolution and interaction. Thirty-sixth
Conference on Neural Information Processing Systems (NeurIPS), 2022, 2022.

Ziyu Liu, Hongwen Zhang, Zhenghao Chen, Zhiyong Wang, and Wanli Ouyang. Disentangling and
unifying graph convolutions for skeleton-based action recognition. In CVPR, 2020.

Boris N. Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis
expansion analysis for interpretable time series forecasting. In International Conference on
Learning Representations, 2020.

Zheyi Pan, Songyu Ke, Xiaodu Yang, Yuxuan Liang, Yong Yu, Junbo Zhang, and Yu Zheng.
Autostg: Neural architecture search for predictions of spatio-temporal graph. In Proceedings of
the Web Conference 2021, WWW ’21, pp. 1846–1855, New York, NY, USA, 2021. Association
for Computing Machinery. ISBN 9781450383127. doi: 10.1145/3442381.3449816. URL
https://doi.org/10.1145/3442381.3449816.

10

https://aclanthology.org/D14-1179
https://aclanthology.org/D14-1179
https://proceedings.neurips.cc/paper/2019/file/6775a0635c302542da2c32aa19d86be0-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/6775a0635c302542da2c32aa19d86be0-Paper.pdf
https://doi.org/10.1145/3394486.3403122
https://openreview.net/forum?id=SJiHXGWAZ
https://doi.org/10.1145/3442381.3449816

Under review as a conference paper at ICLR 2023

Syama Sundar Rangapuram, Matthias W Seeger, Jan Gasthaus, Lorenzo Stella, Yuyang
Wang, and Tim Januschowski. Deep state space models for time series forecasting.
In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper/2018/file/
5cf68969fb67aa6082363a6d4e6468e2-Paper.pdf.

D. E. Rumelhart. Learning representations by error propagation. 1986.

David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. Deepar: Probabilistic fore-
casting with autoregressive recurrent networks. International Journal of Forecasting, 36(3):1181–
1191, 2020. ISSN 0169-2070. doi: https://doi.org/10.1016/j.ijforecast.2019.07.001. URL https:
//www.sciencedirect.com/science/article/pii/S0169207019301888.

Y. Seo, Michal Defferrard, P. Vandergheynst, and X. Bresson. Structured sequence modeling with
graph convolutional recurrent networks. 2016.

Chao Shang, Jie Chen, and Jinbo Bi. Discrete graph structure learning for forecasting multiple
time series. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=WEHSlH5mOk.

Jaak Simm, Adam Arany, Edward De Brouwer, and Yves Moreau. Expressive graph informer
networks. 2020.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural networks. In In
proceedings of 34th Conference on Neural Information Processing Systems, 2014.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(eds.), Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with Auto-Correlation for long-term series forecasting. In Advances in Neural Information
Processing Systems, 2021.

S. Yan, Y. Xiong, and D. Lin. Spatial temporal graph convolutional networks for skeleton-based
action recognition. In AAAI, 2018.

B. Yu, M. Li, J. Zhang, and Z. Zhu. 3d graph convolutional networks with temporal graphs: A spatial
information free framework for traffic forecasting. 2019.

Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional networks: A deep
learning framework for traffic forecasting. In IJCAI, 2018.

H. Yu, S. Wu, L. Xin, and J. Dauwels. Fast bayesian inference of sparse networks with automatic
sparsity determination. Journal of Machine Learning Research, 21(124):1–54, 2020.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In The Thirty-
Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Virtual Conference, volume 35, pp.
11106–11115. AAAI Press, 2021.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In Proc. 39th International
Conference on Machine Learning (ICML 2022), 2022.

11

https://proceedings.neurips.cc/paper/2018/file/5cf68969fb67aa6082363a6d4e6468e2-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/5cf68969fb67aa6082363a6d4e6468e2-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S0169207019301888
https://www.sciencedirect.com/science/article/pii/S0169207019301888
https://openreview.net/forum?id=WEHSlH5mOk
https://openreview.net/forum?id=WEHSlH5mOk
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Under review as a conference paper at ICLR 2023

A PERFORMANCES ON MORE BACKBONES

GTS Shang et al. (2021). The discrete graph structure learning model learns a graph structure among
multiple time series and forecasts them simultaneously with a GNN. There are two differences
between GTS and our proposed FRF. On one hand, GTS performs prediction under GNN paradigm
which is model-specific while FRF is model-agnostic applying the function field to forecasting loss
optimization. On the other hand, existing studies including AGCRN and GTS construct the graph
based on the time-series similarity, while the FRF is the first proposed to exploiting the the constraint
function relation to enhance the multi-variate time-series forecasting. We conduct experiments on
Binary tree, Miniapp1 and Miniapp2 datasets using the opensource code (https://github.com/
chaoshangcs/GTS.git) shown in table.5, demonstrating that FRF can also improve the forecasting
performance on GTS. The code of FRF-GTS and the running log is released in the supplementary
material.

NRI Kipf et al. (2018). The neural relational inference (NRI) model is an unsupervised model
that learns to infer interactions and forecasting with a lstm. We conduct experiments on Bi-
nary tree, Miniapp1 and Miniapp2 dataset using the opensource code (https://github.com/
ethanfetaya/NRI.git). The results on NRI network in table.5 showing that there is a large
margin from the SOTA backbone AGCRN Bai et al. (2020).

Table 5: Performance comparison of FRF enhanced GTS and NRI Networks on BinaryTree and
MiniApp datasets. FRF-AGCRN is the SOTA model.

Methods Binary tree MiniApp 1 MiniApp 2
MAE RMSE MAPE MAE RMSE MAE RMSE

NRI Kipf et al. (2018) 22.77 30.15 39.58% 2.50 6.89 8.04 16.92
GTS Shang et al. (2021) 5.85 9.19 8.87% 1.92 2.32 3.88 7.26

FRF-GTS (T) 5.67 8.21 7.85% - - - -
FRF-GTS (L) 5.70 8.33 8.08% 1.77 1.84 2.70 5.14

FRF-AGCRN (SOTA) 2.30 5.54 3.87% 0.35 0.92 1.33 3.39

B EXPERIMENTAL SETTINGS

The error threshold. For the binary tree dataset and MiniApp calling flow datasets which have
strong constraint relationships, we set εerr = 0.01 to filter the constaint nodes. However, for traffic
dataset PEMSD4 and PEMSD8 with relative weak constraints, we set εerr = 0.025 to achieve the
best performance. The hyper-parameters sensitivity experiments of εerr on PEMSD4 and PEMSD8
datasets are shown in Fig 5.

0% 2.5% 5% 7.5% 10% 12.5%
Influence of err on PEMSD4

19.2

19.4

19.6

19.8

20.0

20.2

M
AE

AGCRN
FRF-AGCRN

0% 2.5% 5.0% 7.5% 10% 12.5%
Influence of err on PEMSD8

15.0
15.5
16.0
16.5
17.0
17.5
18.0

M
AE

AGCRN
FRF-AGCRN

Figure 5: Performance comparison of εerr on PEMSD4 and PEMSD8 dataest on backbone AGCRN.

The function relation graph. Note that for the real datasets, the graph structure is not given in
advance. In order to use STGCN, we adopt Gaussian copula graphical models Liu et al. (2009); Yu
et al. (2020) to learn the graph structure from the data, and take the learned graph as benchmark
graph. For the FRF enhanced backbone network STGCN Yu et al. (2018), we replace the fixed graph
structure with the learned constraint graph then achieve better performance. As results shown in table

12

https://github.com/chaoshangcs/GTS.git
https://github.com/chaoshangcs/GTS.git
https://github.com/ethanfetaya/NRI.git
https://github.com/ethanfetaya/NRI.git

Under review as a conference paper at ICLR 2023

3, we can observe that constraint graph performs better than graph learned with copula graphical
model.

Besides, for uni-variate backbones SCINet, Autoformer and FEDformer taking no time-series rela-
tionship into consideration, As well as graph model AGCRN, which have optimized with learned
node embedding dynamically ignoring the origin graph, we don’t exploit constraint relation at graph
construction stage. The function relation is applied in training stage and output constraints.

The setting of J . For binary tree dataset, we set J = 4 to recover the function relation shown in Fig
4. We set J = 6 for two MiniApp flow calling datasets. For traffic dataset PEMSD4 with 307 nodes
and PEMSD8 with 170 nodes, we achieve best performance when J = 30.

The detailed settings at λ and k. In the training stage, we only tune the trade off coefficient λ and
iteration times K while keep all other parameters the same as SOTA settings in benchmark. The
detailed settings are shown in 6.

Table 6: Detailed hyper-parameter settings of all graph time-series and univariate backbone networks
on five datasets.

Methods Binary tree MiniApp 1 MiniApp 2 PEMSD4 PEMSD8
λ K λ K λ K λ K λ K

FRF-STGCN 0.1 10 0.01 5 0.01 10 0.01 5 0.001 10
FRF-AGCRN 0.1 10 0.01 5 0.01 10 0.01 5 0.1 10

FRF-Autoformer 0.01 20 0.001 5 0.001 5 0.001 5 0.001 10
FRF-FEDformer 0.01 20 0.001 5 0.001 5 0.001 5 0.001 10

FRF-SCINet 0.01 10 0.001 5 0.001 5 0.0001 5 0.0001 5

C VISUALIZATION OF LEARNED FUNCTION RELATION

The flow visualization of different relations. We show the comparison of learned function relation
and origin relation on MiniApp1 dataset in table 6. Note that, the origin relation of MiniApp is
learned by Gaussian copula graphical models Liu et al. (2009); Yu et al. (2020). We can observe that
the flows of the target node has the same pattern and scale with relevant node on learned function,
while has different scale on origin graph. The results demonstrating that learned function is more
effective to capture the flow relationship.

0 1000 2000 3000 4000 5000 6000
FRF Learned relation of target node 16

0

1

2

3

4

5

6

7

Fl
ow

target node 16
relevant node 20
relevant node 14

0 1000 2000 3000 4000 5000 6000
Origin relation of target node 16

0

20

40

60

80

100

120

140

Fl
ow

target node 16
relevant node 6
relevant node 15

0 1000 2000 3000 4000 5000 6000
FRF Learned relation of target node 17

0

5

10

15

20

25

30

35

40

Fl
ow

target node 17
relevant node 25
relevant node 20

0 1000 2000 3000 4000 5000 6000
Origin relation of target node 17

0

100

200

300

400

500

600

700

Fl
ow

target node 17
relevant node 3
relevant node 8
relevant node 10

Figure 6: Flow visualization of learned function and origin relation on MiniApp1 dataset.

13

Under review as a conference paper at ICLR 2023

D DISCUSSION ON HYPERPARAMETERS AND COMPUTATIONAL COMPLEXITY

Hyper-parameters. There are three newly-introduced hyper-parameters including error threshold
εerr, trade-off coefficient λ and number of iterations K. The εerr and λ can be easily chosen based
on the validation loss. And a largerK could be used to obtain more accurate optimization and achieve
better performance. So, there is a balance between performance gain and computation. We typically
set it as K = 10 which could work well for all the tasks we have considered.

Computational complexity. On one hand, the computational complexity increases in the forecasting
network training caused by the K iterations of output constraint satisfaction. The K is usually setted
as a small number 5 or 10, which is computationally easy. And the main time-consuming operations
come from forward and back propagation of backbones rather than the output constraint. On the other
hand, we need to train the constraint network for all time-series. Fortunately, the constraint network
is a simple two-layer attention network, which only has a small number of parameters but effective
enough to capture the complex function relation. For example, in MiniApp1 task, each constraint
network only has around 3,000 parameters, the training time is in the scale of seconds. Thus, we
believe training a constraint network is very fast and does not require much computational resources.
The small size of the constraint networks is amenable to a large-scale multi-variate time series.

14

	Introduction
	Methodology: Functional Relation Field
	Learning the Functional Relation Network
	Applying the Constraints
	Functional Relation Field-enhanced Spatio-Temporal Graph Networks

	Experiment
	Datasets and settings
	Results

	Conclusion
	Performances on More Backbones
	Experimental Settings
	Visualization of learned function relation
	Discussion on Hyperparameters and Computational Complexity

