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Abstract

Recent advancements in reasoning language models have demonstrated
remarkable performance in complex tasks, but their extended chain-of-
thought reasoning process increases inference overhead. While quanti-
zation has been widely adopted to reduce the inference cost of large lan-
guage models, its impact on reasoning models remains understudied. In
this paper, we conduct the first systematic study on quantized reasoning
models, evaluating the open-sourced DeepSeek-R1-Distilled Qwen and
LLaMA families ranging from 1.5B to 70B parameters, QwQ-32B, and
Qwen3-8B. Our investigation covers weight, KV cache, and activation
quantization using state-of-the-art algorithms at varying bit-widths, with
extensive evaluation across mathematical (AIME, MATH-500), scientific
(GPQA), and programming (LiveCodeBench) reasoning benchmarks. Our
findings reveal that while lossless quantization can be achieved with W8A8
or W4A16 quantization, lower bit-widths introduce significant accuracy
risks. We further identify model size, model origin, and task difficulty
as critical determinants of performance. Contrary to expectations, quan-
tized models do not exhibit increased output lengths. In addition, strate-
gically scaling the model sizes or reasoning steps can effectively enhance
the performance. All quantized models and codes are open-sourced in
https://github.com/ruikangliu/Quantized-Reasoning-Models.
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Figure 1: Performance of the quantized DeepSeek-R1-Distill-Qwen models on five bench-
marks: AIME-120, MATH-500, GSM8K, GPQA-Diamond, and LiveCodeBench. Each chart
presents the performance of different quantization strategies compared to the BF16 baseline.

1 Introduction

Recent large language models (LLMs) (Jaech et al., 2024; Team et al., 2025; Guo et al., 2025;
Team, 2025) trained with enhanced reasoning abilities demonstrate strong performance on
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complex reasoning tasks, such as multi-disciplinary question answering (Rein et al., 2024)
and mathematical competitions (Maxwell-Jia, 2025). However, their improved performance
increases inference overhead from prolonged reasoning processes, often causing them to
“overthink” simple tasks and generate outputs hundreds of times longer than non-reasoning
models (Chen et al., 2024).

To promote efficient LLM inference, various compression and acceleration techniques have
been proposed, including quantization (Bai et al., 2021; Frantar et al., 2022; Xiao et al., 2023;
Liu et al., 2024), pruning (Frantar & Alistarh, 2023; Sun et al.; Zhang et al., 2024; Chen et al.,
2025), and knowledge distillation (Gu et al., 2023; Liu et al., 2023; Muralidharan et al., 2024).
Among these methods, quantization, which reduces the numerical precision of weights
or activations, is particularly favored due to the good balance between model size and
performance preservation. Nonetheless, most existing quantization methods are proposed
for non-reasoning LLMs (Li et al., 2025), and their performance on reasoning models
remains under-explored. Intuitively, reasoning models are at higher risks of performance
degradation by quantization, since the quantization error may accumulate along the long
chain-of-thought (CoT) reasoning steps (Wei et al., 2022).

In this study, we provide a comprehensive empirical study on the quantization of reason-
ing models, as outlined in Figure 1. We evaluate state-of-the-art quantization methods
across weight-only, weight-activation, and KV cache quantization. The reasoning models for
evaluation span form 1.5B to 70B parameters, such as the series of the open-source DeepSeek-
R1-Qwen-Distill (Yang et al., 2024; Guo et al., 2025), DeepSeek-R1-LLaMA-Distill (AI@Meta,
2024; Guo et al., 2025), QwQ (Team, 2025), and Qwen3 (Yang et al., 2025), with preva-
lent reasoning benchmarks such as AIME-120 (Maxwell-Jia, 2025), MATH-500 (Lightman
et al., 2023), GSM8K (Cobbe et al., 2021). GPQA-Diamond (Rein et al., 2024) and Live-
CodeBench (Jain et al., 2024). The key findings of this study are summarized below:

1. Lossless Quantization (§3.2) : 8-bit weight-activation quantization preserves accu-
racy across tasks and model sizes, while 4-bit weight-only quantization or KV cache
quantization also achieves near-lossless results (≤1% drop).

2. Quantization Algorithm (§3.3) : Among the evaluated quantization algorithms, we
suggest AWQ for weight-only quantization and QuaRot for KV cache quantization.
While SmoothQuant suffices for 8-bit weight-activation quantization, FlatQuant takes
the lead in the 4-bit scenario.

3. Impact of Task Difficulty (§3.4) : Harder tasks (e.g., AIME-120) suffer up to 4× greater
degradation than simpler ones (e.g., GSM8K).

4. Model Origins Matter (§3.5) : Distillation-based and RL-based reasoning models dis-
play varying levels of tolerance to quantization, even when derived from the same base
model. Additionally, different model families (e.g., Qwen and LLaMA) exhibit distinct
sensitivities to quantization.

5. Analysis of Output Length (§4.1) : Quantized models with minor performance drops
do not exhibit longer reasoning steps, but aggressive low-bit quantization can lead to
increased output lengths, particularly in smaller models.

6. Scaling Effects (§4.3 and §4.4) : Larger quantized models achieve superior accuracy-
latency trade-offs compared to smaller BF16 models, and while longer reasoning steps
improve performance, the gains diminish at lower rates than in BF16 models.

This work is among the first attempts to comprehensively evaluate the quantization of
reasoning models, concurrent to Kurtić et al. (2025). We hope our research provides valuable
guidance for the community toward better quantization methods for reasoning models.

2 Preliminary and Related Work

2.1 Quantization

Quantization converts high-precision values in X ∈ Rm×n to lower-precision representations.
In this study, we focus mainly on hardware-efficient uniform quantization, where the b-bit
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quantization function Q( · ; b) can be represented by

X̂ = Q(X; b) = s · ΠΩ(b)(X/s), (1)

where s = max(X)−min(X)
2b−1

∈ R+ is the quantization step size, Π(·) is the projection function

that maps the value to the closest element in the set Ω(b) = {0, 1, ..., 2b − 1} of b-bit integer
points. The scope of this study includes the following quantization configurations, where
more implementation details of these quantization algorithms can be found in Appendix A.

Weight-only Quantization. Following the conventional practice (Frantar et al., 2022), we
quantize the weight matrices of all linear layers in the Transformer. and leave the rest
parameters in BF16. By quantizing the values of weight matrix W into low-bit integers, the
model size and memory access can be effectively reduced during runtime. We focus mainly
on GPTQ (Frantar et al., 2022) and AWQ (Lin et al., 2023), two widely applied approaches
in the research community. We adopt asymmetric quantization with a group size of 128, i.e.,
the step size is calculated per 128 consecutive elements per channel in W.

KV Cache Quantization. The KV cache temporarily stores intermediate results during
autoregressive generation to improve computational efficiency. The quantization of the KV
cache is particularly helpful in reducing the memory access in long sequences, i.e., reasoning
with long chain-of-thought steps. We study the recently popular methods, including
QuaRot (Ashkboos et al., 2024) and KVQuant (Hooper et al., 2024). For QuaRot, we adopt
asymmetric per-token KV cache quantization with a group size of 128. We implement
KVQuant∗ as a simplified baseline, with details in Appendix A.2. KVQuant∗ adopts static
per-channel asymmetric quantization for K cache and per-token asymmetric quantization
for V cache with a group size of 128.

Weight-activation Quantization. Weight-activation quantization employs low-precision
arithmetic for matrix multiplications to further save computation. The evaluated algorithms
include SmoothQuant (Xiao et al., 2023), QuaRot (Ashkboos et al., 2024), and FlatQuant (Sun
et al., 2024). Following the convention of these methods, we apply per-channel symmetric
quantization to weights and per-token asymmetric quantization to activations. We quantize
all linear layers in the Transformer, including the KV cache. The KV cache is quantized
using group-wise asymmetric quantization with a group size of 128. We leave the queries in
full precision, following Ashkboos et al. (2024). Additionally, inspired by the recent progress
on FP4 inference (NVIDIA, 2025), we evaluate MXFP4 (Rouhani et al., 2023) quantization,
where every contiguous 32 elements share the same scale.

2.2 Related Work

Families of Reasoning Models. Recent advancements in reasoning models like OpenAI’s
o1 (Jaech et al., 2024) and DeepSeek’s R1 (Guo et al., 2025) have demonstrated the potential
to solve complex tasks that require logical deduction, multi-step reasoning, and contextual
understanding. These models can be broadly categorized based on how they achieve their
reasoning abilities. The first category of reasoning models achieves the reasoning ability
by distilling from the outputs of existing stronger models. For instance, DeepSeek-R1-
Distill-Qwen and DeepSeek-R1-Distill-LLaMA are distilled from 800K curated samples
from DeepSeek-R1 (Guo et al., 2025). The other type of reasoning models obtain the
reasoning ability via self post-training techniques like supervised finetuning (Ye et al., 2025;
Muennighoff et al., 2025), reinforcement learning (RL) (Guo et al., 2025; Team, 2025), or their
combinations (Team, 2025; Team et al., 2025; Guo et al., 2025).

Efficient Reasoning. Despite the enhanced reasoning abilities, the long chain-of-thought
reasoning process also incurs a greater challenge of inference overhead due to the increased
output length. To reduce the inference cost, several approaches have been proposed. For
reasoning models trained with reinforcement learning, a common way is to add a length
penalty term on the reward in addition to the accuracy (Luo et al., 2025; Aggarwal & Welleck,
2025; Team et al., 2025). Supervised fine-tuning with variable-length Chain-of-Thought

3



Published as a conference paper at COLM 2025

(CoT) data is another effective approach. For instance, Token-Budget (Han et al., 2024)
guides LLMs to complete reasoning within a specified token limit, while S1 (Muennighoff
et al., 2025) controls the output length through forcefully terminating the model’s thinking
process or lengthening it by appending “Wait” multiple times. One can also reduce the
reasoning lengths via direct performance optimization (DPO), where short and long CoT
data can be curated as positive and negative data pairs (Chen et al., 2024; Team et al., 2025),
or merging the long CoT model with a short CoT model (Team et al., 2025). Apart from
training, efficient reasoning can also be realized by better test-time scaling with parallel
inference (Rodionov et al., 2025; Wang et al., 2025; Pan et al., 2025).

Among the above efforts, quantization is an orthogonal method to achieve efficient rea-
soning. We believe a comprehensive empirical study on quantized reasoning models is
essential to fully understand the trade-offs between reasoning efficiency and accuracy.

3 Evaluation of Quantized Reasoning Models

3.1 Setup

Evaluation Benchmarks. We evaluate the quantized models with the algorithms in § 2.1
on the following reasoning benchmarks. 1) Three mathematical reasoning benchmarks
sorted by their difficulty: AIME-120 which consists of 120 problems from the American
Invitational Mathematics Examination (AIME) from 2022 to 2025 to minimize evaluation
variations; MATH-500 (Lightman et al., 2023), a benchmark that contains a mix of easy
and hard mathematical problems designed to test comprehensive reasoning abilities; and
GSM8K (Cobbe et al., 2021), a dataset composed of primary school level questions focused
on basic arithmetic and algebra. 2) LiveCodeBench (Jain et al., 2024), a benchmark for
evaluating large language models on code generation tasks, designed to assess their ability
to produce high-quality and functional code. 3) GPQA-Diamond (Rein et al., 2024), a
graduate-level proof question and answer benchmark that tests the ability of models to
generate accurate mathematical proofs. We use Lighteval (Fourrier et al., 2023) with the
vLLM (Kwon et al., 2023) backend for evaluation, with a sampling temperature of 0.6 and
top-p of 0.95. The maximum number of generation tokens is limited to 32,768. For all results,
we repeat the experiments with three different seeds to reduce the evaluation variations.

The Evaluated Reasoning Models. We evaluate the two categories of reasoning models
as described in § 2.2. For distillation-based reasoning models, we adopt the series of
DeepSeek-R1-Distill-Qwen (Yang et al., 2024) with varying sizes from 1.5B, 7B, 14B and
32B, and DeepSeek-R1-Distill-LLaMA (AI@Meta, 2024), with both 8B and 70B models. For
reasoning models obtained via reinforcement learning, we choose QwQ-32B (Team, 2025)
and Qwen-3-8B (Yang et al., 2025), the recent performant open-source models.

We study the following research questions in the next sections.

RQ1 (§3.2): What are the lossless quantization configurations for reasoning models?
RQ2 (§3.3): What are the preferred quantization algorithms on reasoning tasks?
RQ3 (§3.4): How does the task difficulty influence the quantized LLMs?
RQ4 (§3.5): What is the impact of LLM origins on quantization?

3.2 Lossless Quantization Bit-width

The overall results for the DeepSeek-R1-Distill-Qwen models are summarized in Table 1.
Results on more models (including DeepSeek-R1-Distill-LLaMA, QwQ-32B, and Qwen3-8B)
can be found in Appendix B.1. For ease of interpretation, we categorize the performance
degradation into three classes: lossless (≤1%), fair (1% − 3%), and risky (≥3%). We draw
the following conclusions based on best-performing quantization algorithms, and leave the
algorithm comparisons in § 3.3.
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Model Quantization W-A-KV
# Bits Methods AIME-
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Bench Avg. Drop↓
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BF16 - - 23.3±2.2 84.7±1.5 84.5±1.3 36.2±0.8 16.4±1.1 49.0±0.3 -

Weight-only

AWQ 21.1±2.1 81.4±1.6 82.7±0.7 35.4±2.7 13.9±1.5 46.9±1.2 -2.14-16-16 GPTQ 21.4±3.9 83.0±1.0 83.3±0.6 32.0±5.2 13.4±0.8 46.6±1.9 -2.4

3-16-16 AWQ 4.4±1.3 48.1±0.3 64.5±1.3 31.8±6.1 3.2±1.1 30.4±1.3 -18.6
GPTQ 15.6±1.3 75.3±0.4 77.8±0.7 29.8±4.0 8.7±0.8 41.4±0.7 -7.6

KV Cache
16-16-4 KVQuant∗ 20.3±1.0 83.9±0.3 84.2±0.6 34.0±2.8 15.9±1.4 47.7±0.4 -1.4

QuaRot 0.3±0.5 1.5±0.1 0.9±0.2 9.6±2.6 0.0±0.0 2.5±0.5 -46.6

16-16-3 KVQuant∗ 6.7±2.5 65.7±1.2 70.2±0.7 30.5±1.1 10.8±0.4 36.8±0.9 -12.3
QuaRot 0.0±0.0 1.3±0.4 0.9±0.3 21.0±2.8 0.0±0.0 4.7±0.6 -44.4

Weight-Act.

SmoothQuant 16.9±2.4 78.9±1.0 83.0±0.8 31.3±2.2 15.7±1.0 45.2±0.4 -3.9
8-8-8 QuaRot 22.8±1.3 84.2±0.9 83.8±0.8 38.4±2.2 15.7±2.3 49.0±1.0 -0.1

FlatQuant 22.5±0.8 85.0±0.5 84.7±0.4 37.0±4.1 16.8±0.4 49.2±0.6 0.2

4-4-4
MXFP4 0.0±0.0 1.1±0.5 0.6±0.2 18.4±2.5 0.0±0.0 4.0±0.4 -45.0
QuaRot 0.0±0.0 1.4±1.1 0.9±0.3 12.0±1.1 0.0±0.0 2.9±0.2 -46.2
FlatQuant 8.6±1.3 66.1±1.7 76.8±2.0 32.0±0.8 7.5±0.8 38.2±0.3 -10.9
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B BF16 - - 46.1±1.0 93.9±0.7 91.2±0.6 51.0±1.0 36.7±2.5 63.8±0.6 -

Weight-only

AWQ 42.2±1.0 92.5±1.4 90.7±0.4 48.1±2.8 35.1±2.9 61.7±1.1 -2.14-16-16 GPTQ 44.4±3.4 93.3±0.1 91.0±0.7 49.0±1.0 33.3±1.1 62.2±0.8 -1.6

3-16-16 AWQ 32.2±3.2 91.0±1.4 89.5±0.4 47.8±1.2 27.2±1.0 57.6±0.8 -6.3
GPTQ 37.2±2.9 91.2±0.2 89.7±0.6 47.6±2.5 26.4±1.1 58.4±0.8 -5.4

KV Cache
16-16-4 KVQuant∗ 44.4±3.8 93.4±0.2 90.9±0.7 49.0±1.5 36.3±0.8 62.8±1.0 -1.0

QuaRot 0.0±0.0 1.0±0.6 0.7±0.1 22.9±5.3 0.0±0.0 4.9±1.2 -58.9

16-16-3 KVQuant∗ 33.6±3.9 91.5±0.8 90.5±0.6 46.1±0.8 28.1±3.1 58.0±1.4 -5.9
QuaRot 0.3±0.5 0.8±0.2 0.4±0.3 24.6±1.8 0.0±0.0 5.2±0.4 -58.6

Weight-Act.

SmoothQuant 45.0±3.8 94.0±0.7 90.8±0.3 50.7±1.3 35.7±1.1 63.2±0.6 -0.68-8-8 FlatQuant 47.8±2.7 93.8±0.8 91.0±0.6 49.3±0.6 36.2±1.0 63.6±0.5 -0.2

4-4-4 MXFP4 0.0±0.0 0.5±0.1 0.2±0.1 20.0±2.3 0.0±0.0 4.1±0.5 -59.7
FlatQuant 26.1±1.3 84.1±1.3 90.9±0.4 46.6±4.6 12.4±2.3 52.0±0.9 -11.8
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BF16 - - 54.7±0.5 95.5±0.4 93.7±0.2 62.6±1.8 50.9±0.8 71.5±0.2 -

Weight-only

AWQ 53.9±1.7 94.7±0.8 93.3±0.6 60.6±1.0 49.6±0.8 70.4±0.2 -1.14-16-16 GPTQ 52.5±2.2 94.9±0.3 93.7±0.3 60.3±2.0 48.3±0.6 69.9±0.3 -1.6

3-16-16 AWQ 42.2±1.3 94.1±0.6 93.0±0.4 53.7±2.3 43.3±1.0 65.3±0.7 -6.2
GPTQ 47.2±4.7 94.1±0.2 93.5±0.4 55.2±1.5 44.8±2.0 67.0±1.5 -4.5

KV Cache

KVQuant∗ 55.3±4.2 94.7±0.6 93.8±0.2 61.3±1.5 49.6±0.4 70.9±0.8 -0.616-16-4 QuaRot 54.7±3.2 95.0±0.5 93.8±0.3 60.9±1.9 52.6±1.5 71.4±0.8 -0.1
KVQuant∗ 42.8±3.2 93.2±0.7 93.1±0.3 56.1±1.3 45.5±1.3 66.1±0.7 -5.416-16-3 QuaRot 52.8±3.2 95.1±0.5 93.5±0.1 60.1±1.8 44.2±2.7 69.1±0.9 -2.4

Weight-Act.

SmoothQuant 59.4±1.3 95.5±0.5 94.0±0.4 60.9±2.4 50.6±1.8 72.1±0.5 0.6
8-8-8 QuaRot 56.7±2.5 95.2±0.7 94.0±0.3 58.8±3.0 51.0±0.6 71.1±0.2 -0.4

FlatQuant 57.5±0.8 95.1±0.1 93.8±0.2 61.3±3.8 50.8±1.0 71.7±0.7 0.2
MXFP4 23.3±4.2 87.5±0.8 91.3±0.4 47.5±3.6 32.8±2.0 56.5±1.1 -15.0

4-4-4 QuaRot 42.5±4.4 92.7±0.9 93.0±0.3 55.7±3.0 45.7±1.3 65.9±0.5 -5.6
FlatQuant 50.3±2.4 94.7±0.3 93.3±0.1 55.7±2.0 48.4±1.2 68.5±0.4 -3.0
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BF16 - - 61.7±1.7 96.3±0.5 94.2±0.2 65.7±1.8 56.0±2.3 74.8±0.4 -

Weight-only

AWQ 63.6±1.3 95.9±0.6 94.4±0.2 63.5±1.9 54.6±1.5 74.4±0.6 -0.44-16-16 GPTQ 57.5±1.4 95.9±0.8 94.3±0.1 62.3±1.5 54.2±0.4 72.9±0.5 -1.9
AWQ 53.1±1.7 94.1±1.1 94.1±0.1 62.6±1.5 50.4±1.6 70.9±1.0 -3.93-16-16 GPTQ 51.7±4.4 94.7±0.3 94.1±0.2 57.6±2.7 50.1±1.5 69.6±1.0 -5.1

KV Cache

KVQuant∗ 57.5±1.4 96.0±0.4 94.7±0.4 64.3±1.9 55.9±0.8 73.7±0.5 -1.116-16-4 QuaRot 63.1±1.9 95.8±0.2 94.2±0.4 63.1±1.8 56.3±1.1 74.5±0.9 -0.3
KVQuant∗ 50.8±4.2 94.8±0.9 94.4±0.1 62.3±2.1 51.6±0.6 70.8±0.8 -4.016-16-3 QuaRot 57.2±2.7 94.9±0.5 94.1±0.5 63.8±1.1 48.6±2.3 71.7±0.8 -3.0

Weight-Act.

SmoothQuant 59.2±2.2 95.4±0.4 94.2±0.3 64.0±1.2 56.7±1.7 73.9±0.5 -0.9
8-8-8 QuaRot 56.9±2.6 95.3±0.3 94.3±0.3 63.0±0.8 55.5±1.7 73.0±0.7 -1.7

FlatQuant 62.2±3.4 95.9±0.6 94.4±0.3 65.2±0.5 56.1±0.6 74.7±0.8 -0.0
MXFP4 35.3±3.5 92.4±0.4 93.7±0.6 57.1±3.6 36.2±0.7 62.9±0.7 -11.8

4-4-4 QuaRot 46.9±2.1 94.1±0.4 93.9±0.2 60.1±2.2 49.4±0.6 68.9±0.3 -5.9
FlatQuant 57.8±4.3 95.1±0.6 94.2±0.0 58.1±2.2 54.2±1.3 71.9±1.6 -2.9

Table 1: The overall assessment of quantized DeepSeek-R1-Distill-Qwen models on various
reasoning benchmarks. QuaRot for the 7B model weight-activation quantization is skipped
because of the incompatible hidden dimension for Hadamard transformation. The green,
orange and red cells stand for the lossless (≤1%), the fair (1%-3%) and the risky (≥3%)
respectively. Note that 1.5B and 7B models are exceptions with severe degradation for
low-bit KV cache and weight-activation quantization, as will be discussed in Appendix C.2.
Results on more models are available in Appendix B.

For weight-only quantization, 4-bit is nearly lossless, but 3-bit becomes risky. From
Table 1, quantizing the weights of the distilled Qwen models to 4 bits incurs a slight
performance drop compared to their BF16 counterparts, i.e., 2.1% and 0.4% for the 1.5B
and 32B models, respectively. However, when reducing to 3 bits, there is a sharp drop in
performance for each model, e.g., over 7% accuracy drop for the 1.5B model and 3% for the
32B model. Meanwhile, smaller reasoning models tend to suffer more from quantization,
which aligns past experiences on non-reasoning models (Li et al., 2024). Similar observations
can be found on other sizes and families of LLMs in Appendix B.1.
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For KV cache, we suggest 4-bit quantization. We find that 4-bit quantized KV cache
achieves lossless performance on large models (e.g., 14B or 32B). In particular, the accuracy
drop can remain smaller than 1% even on AIME-120, where the model generates lengthy
output of over 10K tokens, as will be discussed in §4.1. In addition, the performance of
smaller LLMs is also relatively fair, with an average drop of 1.4% on 1.5B and 1.0% on 7B,
respectively. However, for more aggressive KV cache quantization, the performance incurs
a sharp drop, especially for smaller LLMs, i.e., smaller models (1.5B and 7B) and larger
models (14B and 32B) incur over 5% and 2% accuracy drop when the bitwidth of KV cache
quantization reduces to 3 bits, respectively.

We recommend 8-bit quantization for weights, activation, and KV cache, which is lossless
across various LLM sizes and reasoning tasks. It can be observed that for all reasoning
models and tasks evaluated, the best-performing W8A8KV8 quantization algorithm achieves
a performance drop of less than 1 point. This holds true even for the smallest DeepSeek-R1-
Distill-Qwen-1.5B model. Nevertheless, when we apply more aggressive quantization with
4 bits, even the large 32B model incurs an accuracy drop of 2.9%. The degradation becomes
significantly more pronounced for smaller LLMs, with accuracy drops exceeding 10% on
the 1.5B and 7B models. Thus, improving 4-bit weight-activation quantization for reasoning
models remains an open challenge for the community.

3.3 Comparisons of Quantization Algorithms

AWQ is preferred over GPTQ for weight quantization, considering its comparable per-
formance but more efficient implementation. According to Table 1, AWQ performs on
par with GPTQ for both 4-bit and 3-bit quantization. For instance, it surpassed GPTQ three
times and lost once for 4-bit quantization over the evaluated models. In addition, AWQ is
usually faster to implement compared with GPTQ, since it does not require the iterative
update of LLM parameters. Besides, AWQ is also more robust to the choice of calibration
data than GPTQ, as discussed in Section 4.2. We thus recommend AWQ as the default
algorithm for the weight-only quantization of reasoning models.

QuaRot is generally preferred over KVQuant∗ for KV cache Quantization, except for
Qwen 1.5B and 7B models which have unexpected huge outliers over bias. According to
Table 1, QuaRot generally outperforms KVQuant∗ on the 14B and 32B models. For instance,
on the DeepSeek-R1-Distill-Qwen-32B model, QuaRot with 3-bit quantization achieves an
average performance of 71.7%, while KVQuant∗ only reaches 70.8%. However, exceptions
are observed in the 1.5B and 7B models, where KVQuant∗ significantly surpasses QuaRot.
We find that this is due to the huge outliers over biases in the key and value layers of these
two models. While KVQuant∗ can mitigate this by quantizing the output before bias, it is
not applicable for QuaRot. More discussions can be found in Appendix C.2.

For 8-bit weight-activation quantization, SmoothQuant proves sufficient, while FlatQuant
emerges as the leading algorithm for 4-bit quantization. In the 8-bit scenario, all algo-
rithms achieve near-lossless results across most models, with no clear leading algorithm.
We therefore recommend SmoothQuant for 8-bit quantization due to its zero-overhead ad-
vantage. However, in the more challenging 4-bit setting, FlatQuant demonstrates significant
superiority over competing algorithms while introducing only minimal latency overhead.
For instance, FlatQuant achieves an average performance of 71.9% on the 32B model, with a
performance drop of only 2.9%, significantly surpassing both MXFP4 (11.8%↓) and QuaRot
(5.9%↓). Note that substantial accuracy loss still exists under W4A4KV4 quantization on
1.5B and 7B models even for FlatQuant. We analyze its reason in Appendix C.2.

In the rest of this study, we adopt AWQ for weight-only quantization, QuaRot for KV cache
quantization, and FlatQuant for weight-activation quantization if not otherwise specified.

3.4 Impacts of Task Difficulty

Quantization is prone to fail on more difficult tasks. Based on Table 1, we compare the
performance drop caused by quantization on the three math reasoning benchmarks with
varying difficulty levels, and find that more difficult tasks incur a more severe performance
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(a) Weight-only Quant. (b) KV cache Quant. (c) Weight-Act. Quant.

(d) Weight-only Quant. (e) KV cache Quant. (f) Weight-Act. Quant.

Figure 2: (a)-(c) shows the comparisons between DeepSeek-R1-Distill-Qwen-32B (SFT-
based) and QwQ-32B (RL-based) on different quantization configurations. (d)-(f) shows
comparisons between DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-LLaMA-8B
on different quantization configurations.

drop. Among them, AIME-120 is the most challenging task, with samples selected from
American Math Competition questions. MATH-500 contains a mix of easy and hard prob-
lems, followed by GSM8K with easy primary school-level questions. The performance
degradations are in descending order among the three benchmarks. For instance, for the
32B model with W4A4KV4 quantization, the performance drops are 3.9% on AIME-120,
1.2% on MATH-500, and 0.0% on GSM8K.

In addition to Table 1, we also examine the accuracy at the 5 different difficulty levels explic-
itly defined by MATH-500 (Lightman et al., 2023) in Appendix B.2, where the observations
remain consistent.

3.5 The Impacts of the Origin of Reasoning LLMs

In this section, we compare the quantization performance on reasoning models trained from
different methods, with the suggested algorithms in § 3.3. Specifically, we study

1. the reasoning models obtained with either distillation (i.e., DeepSeek-R1-Distill-Qwen-
32B) and reinforcement learning (i.e., QwQ-32B); and

2. different LLM families (i.e., LLaMA and Qwen) distilled from DeepSeek-R1.

Qwen-32B is more robust to KV cache quantization, while QwQ-32B is more resilient
to weight-only and weight-activation quantization. As seen in Figure 2 (a)-(c), when
comparing Qwen-32B and QwQ-32B, we observe that the models exhibit varying tolerance
to different quantization configurations. For instance, Qwen-32B experiences a larger
accuracy drop of 6.4% for W3G128 and 3.8% for KV3 compared to QwQ-32B’s 5.4% and 2.5%,
respectively. However, Qwen-32B gains an edge in KV cache quantization, with 3.1% less
quantization loss. We hypothesize that although both models originate from the same base
model, differences in their training recipes lead to distinct training dynamics, shaping their
intermediate representations differently and ultimately influencing quantization accuracy.

Qwen-7B is more robust to weight-only quantization, while LLaMA-8B is more resilient
to KV cache and weight-activation quantization. To study the impact of LLM origins,
we compared DeepSeek-R1-Distill-Qwen-7B and DeepSeek-R1-Distill-LLaMA-8B, which

7
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(a) DS-R1-Distill-Qwen-1.5B. (b) DS-R1-Distill-Qwen-14B. (c) QwQ-32B.

Figure 3: The lengths of generated tokens across different datasets and models.

are of similar size and distilled from DeepSeek-R1 with the same data. As shown in
Figure 2 (d)-(f), Qwen-7B is more robust to weight-only quantization (e.g., 8.9% vs. 10.0%
for W3G128 on AIME-120). However, it is more sensitive for KV cache and activation
quantization (e.g., 12.5% vs. 4.7% drop for KV3 on AIME-120, and 20.0% vs. 11.4% drop
for W4A4KV4 on AIME-120). Potential reasons include differences in pretraining data,
fine-tuning configurations, and training dynamics.

More detailed results of QwQ-32B and DeepSeek-R1-Distill-LLaMA for different quantiza-
tion configurations and algorithms can be found in Appendix B.1.

4 Discussions

In this section, we provide further analysis for quantized reasoning models, including their
output length, choice of calibration data, scaling effects w.r.t both model size and latency,
as well as test-time scaling. The analysis is based on the best-performing quantization
algorithms according to Section 3.3. Due to limited space, we provide more analysis on the
choice of calibration data in Appendix C.1, quantization of DeepSeek-R1-Distill-Qwen-1.5B
and 7B model in Appendix C.2, and qualitative examples in Appendix D.

4.1 Do Quantized Reasoning Models Think Longer?

Since quantization inherently reduces model capacity due to precision loss, one concern
with quantized LLMs is whether quantized models need to think longer to compensate
for the reduced representation power, which could prolong the end-to-end latency. We
analyze the output length statistics of quantized reasoning models in Figure 3. It is found
that for various quantization configurations (e.g., W4G128, W8A8KV8, and KV4), the
generated output lengths closely align with those of the BF16 models. However, under
more aggressive low-bit quantization (e.g., W3G128 and W4A4KV4), LLMs tend to produce
longer outputs. This effect is particularly pronounced in smaller models like DeepSeek-R1-
Distill-Qwen-1.5B, where lower-bit quantization results in more pronounced performance
degradation, as previously discussed in Table 1.

While more difficult tasks tend to generate longer outputs, they do not inherently trig-
ger longer reasoning steps in quantized LLMs. Similar observations are provided in Ap-
pendix B.3, where we analyze the output lengths across five difficulty levels on MATH-500.

4.2 Choice of Calibration Data

Calibration data has always been an important part of post-training quantization. While
previous studies (Williams & Aletras, 2023; Lin et al., 2023) suggest that the overall perfor-
mance of quantization methods on pre-trained and instruction-tuned models is robust to
the source domain of calibration data, we find this is not true for reasoning models. Instead,
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Methods W-A-KV
# Bits

Calibration
Domains

AIME-
120

MATH-
500 GSM8K GPQA-

Diamond
LiveCode-

Bench Avg. ∆

BF16 - - 21.7 84.4 84.6 36.9 16.0 48.7 -

AWQ WikiText2 5.8 54.4 68.4 31.8 3.7 32.83-16-16 Numina-Math-1.5 5.8 60.2 71.3 28.8 6.7 34.6 1.8

GPTQ WikiText2 3.3 49.4 57.5 27.3 3.7 28.33-16-16 Numina-Math-1.5 10.0 71.6 75.7 23.7 9.3 38.1 9.8

KVQuant∗ WikiText2 20.8 84.6 84.0 33.8 13.4 47.316-16-4 Numina-Math-1.5 20.0 83.8 84.5 33.8 16.4 47.7 0.4

SmoothQuant WikiText2 17.5 79.8 83.2 34.3 15.7 46.18-8-8 Numina-Math-1.5 20.8 79.8 82.7 35.9 15.7 47.0 0.9

FlatQuant WikiText2 10.0 64.8 78.6 31.8 6.7 38.44-4-4 Numina-Math-1.5 8.3 65.6 78.0 33.3 7.5 38.6 0.2

Table 2: The impact of calibration data domain on different quantization methods. The
evaluation is conducted on the quantized DeepSeek-R1-Distill-Qwen-1.5B model across
various reasoning benchmarks. The green, orange and red cells stand for the robust (≤1%),
the fair (1%-3%) and the sensitive (≥3%) quantization methods respectively.

the choice of calibration data domain may have a huge impact on the quantization accuracy.
In addition, this effect is highly dependent on the quantization method used. Due to limited
space, we leave more details in Appendix C.1, including the analysis on the distributions of
calibration data from different domains.

The domain of calibration data affects GPTQ, but not the rest of the quantization algo-
rithms. Prior works (Frantar et al., 2022; Lin et al., 2023) on post-training quantization
usually sample calibration data from pre-training datasets like WikiText2 (Merity et al.,
2016) or C4 (Raffel et al., 2020). However, we find that using reasoning data for calibration
is crucial for quantization methods that rely heavily on the calibration data for quantization
error compensation (e.g. GPTQ (Frantar et al., 2022)). In Figure 9, we visualize the activation
distributions from different source domains. It can be seen that domain gaps exist between
reasoning (i.e. Numina-Math-1.5 and LiveCodeBench) and pre-training (i.e. WikiText2)
data, which can cause training-inference inconsistency issues that seriously deteriorate the
quantized model if it is calibrated on the pre-training data. As shown in Table 2, switching
the GPTQ calibration set from WikiText2 to Numina-Math-1.5 leads to an average accuracy
gain of 9.8%. Also, note that the source domain of the calibration data has a relatively
small impact on other quantization methods such as KVQuant∗ (Hooper et al., 2024), and
FlatQuant (Sun et al., 2024). These methods only rely on calibration data for quantization
parameter computation or outlier channel pattern identification. Given the high consistency
of channel-wise magnitude distribution across different domains as shown in Figure 8, these
methods are more robust to domain shift than GPTQ.

4.3 Scaling Effects of Quantized Reasoning Models

In this section, we study the performance change when we scale the size and latency of the
quantized model. Specifically, we aim to identify cost-effective quantization configurations
that optimally balance accuracy with model size or latency.

Model Size Scaling. In Figure 4(a), we present the trade-off between accuracy and model
size based on the series of DeepSeek-R1-Distill Qwen and QwQ-32B. We evaluate different
weight-only quantization bit-widths with AWQ (i.e., 8-bit, 4-bit, and 3-bit) against the BF16
model, and report the accuracy on LiveCodeBench. It can be found that as the model size
increases, accuracy improves rapidly. Under the same model size, the large LLMs in low
precisions are more accurate than small LLMs in BF16. For instance, while both the 3-bit
quantized QwQ-32B and Qwen-32B are similar in size (i.e., ∼14.5GB) with Qwen-7B in BF16,
they significantly outperform Qwen-7B by around 17%.

Latency Scaling. While large models demonstrate better accuracy-size trade-off, they are
inevitably slower for inference. Here we also study the scaling effect of latency w.r.t. the
accuracy. The latency is measured as the end-to-end time cost over the LiveCodeBench
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(a) Model Size (GB). (b) Latency (s).

Figure 4: Model size and average latency v.s.
accuracy (%) on LiveCodeBench.

(a) Qwen-1.5B. (b) Qwen-32B.

Figure 5: Average reasoning tokens v.s. accu-
racy (%) on DS-R1-Distill-Qwen models.

dataset, i.e., the multiplication between the number of generated tokens with the Time Per
Output Token (TPOT)1. According to Figure 4(b), 4-bit quantized models provide superior
accuracy–latency trade-off than the 8-bit and BF16 counterparts, which mainly benefits from
increased generation speed while maintaining the same reasoning length.

4.4 Test-time Scaling of Quantized Reasoning Models

Test-time scaling has become a prevalent technique for enhancing reasoning model per-
formance (Snell et al., 2024; Muennighoff et al., 2025; Liu et al., 2025). To investigate the
behavior of quantized reasoning models under test-time scaling, we adopt the method
of Muennighoff et al. (2025) by controlling reasoning length through dynamic adjustment
of average reasoning tokens. For suppression, early termination forces partial reasoning
integration; for promotion, ”wait” tokens extend reasoning until token budgets are met.

From Figure 5, longer reasoning lengths can generally enhance the performance of each
model. For example, on MATH-500, both AWQ-W4G128 and AWQ-W3G128 exhibit clear
improvements with extended reasoning. However, the increasing rates of quantized LLMs
are generally lower than that of BF16. We speculate that it is due to the quantization error
accumulated along the sequence, which hinders effective reasoning. In addition, excessively
long reasoning lengths also result in performance degradation, as also discovered in Muen-
nighoff et al. (2025). The output of unnecessary steps could degrade overall accuracy. These
findings highlight the importance of only scaling the reasoning length within an appropriate
range. How to achieve consistent improvement over a longer range is an open challenge.

5 Conclusion

In this study, we present the first systematic study on the quantization of reasoning models.
We examine the performance of different state-of-the-art quantization methods on different
reasoning models under various quantization configurations. We also recommend the loss-
less quantization settings like W8A8 and W4A16 quantization, as well as the corresponding
preferred quantization methods. Additionally, we find that task difficulty and model origins
have a large impact on the quantized model’s performance. In particular, more difficult
tasks incur more severe performance degradation caused by quantization. Besides, both
the training recipes and model families influence the quantization sensitivity. Like the BF16
models, quantized models also show consistent improvement when gradually increasing
test-time compute budget over a certain range, but may behave worse afterward. While
our study identifies critical factors influencing the performance of quantized reasoning
models, the underlying mechanisms driving these effects remain incompletely understood.
Future work will focus on elucidating these causal relationships while advancing systematic
methods to optimize the accuracy-efficiency trade-off in reasoning systems.

1For TPOT, we refer to the official latency report by Qwen: https://qwen.readthedocs.io/en/
latest/benchmark/speed benchmark.html
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A Quantization Algorithms and Implementation Details

Below, we briefly review the quantization algorithms implemented in this study, including
weight-only quantizaiton, KV-Cache quantization, and weight-activation quantization.

A.1 Weight-only Quantization

GPTQ (Frantar et al., 2022) aims to construct the optimal weights Ŵ∗ that mini-
mize the squared error between full-precision and quantized outputs given input X, i.e.,
arg minŴ ∥ŴX − WX∥F. Specifically, it iteratively quantizes weights and updates the re-
maining ones using approximate second-order information derived from the inverse Hes-
sian matrix. This process is optimized via Cholesky decomposition to enhance numerical
stability and computational efficiency. In this work, we adopt asymmetric quantization
with a group size of 128, i.e., the step size is calculated per 128 consecutive elements per
channel in W. We use activation reorder to deal with outlier channels, with static group
activated to reduce latency overhead except for DeepSeek-R1-Distill-LLaMA-70B model. To
mitigate the effects of domain shift as detailed in Appendix C.1, we use reasoning models
to self-generate reasoning data on Numina-Math-1.5 (LI et al., 2024) dataset, and randomly
sample 128 text sequences of length 2048 to construct the calibration set.

AWQ (Lin et al., 2023) aims to identify and protect salient weights to improve the quan-
tized LLMs. Since activations X of LLMs are rich in outliers, AWQ employs per-channel
scaling, e.g., Y = (X · c−1)(c · W⊤), where the channel-wise scaling factor c ∈ Rn can
be analytically derived to balance the magnitudes of input activations and weights. The
optimal c can be obtained by c = cα

X · c−β
W , where cX and cW are the average channel statistics

of activations and weights, and α, β ∈ [0, 1] are the associated hyper-parameters. Moreover,
the scaled weights c · W⊤ can be merged together to eliminate runtime overhead. Similar to
GPTQ, we adopt asymmetric quantization with a group size of 128. For the calibration data,
we follow Lin et al. (2023) and sample 128 text sequences of length 512 from Pile (Gao et al.,
2020) dataset.

A.2 KV-Cache Quantization

KVQuant (Hooper et al., 2024) leverages the outlier channels in K cache, proposing
to quantize K Cache with static per-channel quantization. To better preserve the outlier
patterns of K cache, it quantizes K cache before applying RoPE (Su et al., 2024). Additionally,
to accommodate the non-uniform distribution of the KV cache, it incorporates non-uniform
and mixed-precision quantization. In this work, we skip the non-uniform and mixed-
precision quantization in KVQuant and implement KVQuant∗ as a simplified baseline,
employing static per-channel quantization for K cache and dynamic per-token quantization
for V cache with a group size of 128. For DeepSeek-R1-Distill-Qwen-1.5B and 7B models, we
further incorporate pre-bias K cache quantization to suppress the extreme outlier channels
in K cache, with more details in Appendix C.2. We randomly sample 128 text sequences of
length 512 from Pile (Gao et al., 2020) dataset as the calibration set.

QuaRot (Ashkboos et al., 2024) can be applied for both KV cache quantization and
weight-activation quantization. It enables end-to-end 4-bit inference by using Hadamard
transformations to eliminate outliers in activations and KV caches. Based on the orthog-
onality of Hadamard matrices (i.e., H⊤H = I), the output of quantized linear layer is
Ŷ = Q(XH) · Q(H⊤W⊤), where the transformed weight WH can be pre-processed of-
fline to reduce additional runtime overhead. It also integrates GPTQ (Frantar et al., 2022)
to reduce quantization error on weights. For KV cache quantization, we use per-token
asymmetric quantization with a group size of 128. For weight-activation quantization, we
apply per-channel weight symmetric quantization and per-token activation asymmetric
quantization for computing efficiency. We leave the queries in full precision to leverage the
memory-bound nature of self-attention operation following Ashkboos et al. (2024).
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Model Quantization W-A-KV
# Bits Methods AIME-

120
MATH-

500 GSM8K GPQA-
Diamond

LiveCode-
Bench Avg. Drop↓

Q
w

Q
-3

2B

BF16 - - 75.0±2.5 97.5±0.2 95.6±0.2 65.0±1.8 60.2±0.8 78.7±0.8 -

Weight-only

AWQ 73.3±2.9 97.3±0.5 95.7±0.3 64.3±1.8 58.7±0.6 77.9±1.1 -0.84-16-16 GPTQ 73.1±2.9 97.3±0.2 95.5±0.2 64.1±3.8 58.6±1.4 77.7±0.3 -0.9

3-16-16 AWQ 60.0±1.4 96.1±0.5 95.4±0.2 57.1±1.3 50.3±1.1 71.8±0.6 -6.9
GPTQ 65.3±3.5 96.3±0.6 95.5±0.0 61.5±4.1 53.0±1.0 74.3±1.0 -4.4

KV Cache

KVQuant∗ 75.8±0.0 97.7±0.2 95.3±0.2 65.0±0.6 58.0±1.1 78.4±0.1 -0.316-16-4 QuaRot 76.7±2.9 97.3±0.3 95.7±0.2 64.0±3.6 60.8±0.7 78.9±0.8 0.3
KVQuant∗ 60.3±1.0 95.7±0.1 95.5±0.6 58.8±1.2 54.7±0.6 73.0±0.6 -5.716-16-3 QuaRot 66.1±1.3 96.7±0.5 95.0±0.5 59.4±4.4 47.1±1.1 72.9±0.3 -5.8

Weight-Act.

SmoothQuant 75.8±0.8 98.0±0.4 95.7±0.0 65.5±5.1 60.0±1.2 79.0±1.2 0.3
8-8-8 QuaRot 73.6±1.0 97.2±0.6 95.7±0.2 65.7±2.3 60.8±1.0 78.6±0.5 -0.1

FlatQuant 76.4±2.7 97.2±0.5 95.8±0.4 63.6±1.3 59.3±1.6 78.5±0.7 -0.2
MXFP4 34.4±4.1 92.7±0.4 94.6±0.2 55.1±2.7 34.5±1.7 62.2±0.5 -16.4

4-4-4 QuaRot 55.3±4.1 96.0±0.4 94.9±0.0 58.4±1.6 51.2±1.8 71.2±1.3 -7.5
FlatQuant 71.4±1.0 96.5±0.2 95.5±0.2 61.5±3.4 58.5±0.4 76.7±0.5 -2.0

Table 3: The overall assessment of quantized QwQ-32B model on various reasoning bench-
marks. The green, orange and red cells stand for the lossless (≤1%), the fair (1%-3%) and
the risky (≥3%) respectively.

A.3 Weight-Activation Quantization

SmoothQuant (Xiao et al., 2023) employs per-channel scaling, i.e., Y = (X · c−1)(c · W⊤),
which migrates the quantization difficulty from activations to weights, achieving the optimal
balance between weight quantization and activation quantization. SmoothQuant enables
8-bit weight-activation quantization without compromising accuracy. To facilitate the
quantization of weights, we further integrate GPTQ. We randomly sample 128 text sequences
of length 2048 from the self-generated reasoning dataset as the calibration set and leave the
other quantization settings the same as QuaRot.

FlatQuant (Sun et al., 2024) is the recently proposed approach. Different from QuaRot,
it adaptively learns separate Kronecker-decomposed affine transformations to mitigate
outliers for each linear layer, i.e., P∗ = arg minP ∥Y −Q(XP)Q(P−1W⊤)∥2

F. In addition,
FlatQuant also introduces learnable clipping and channel-wise scaling to further reduce
the quantization error. By default, we use 128 text sequences of length 2048 from Wiki-
Text2 (Merity et al., 2016) as the calibration set following Sun et al. (2024). For DeepSeek-
R1-Distill-Qwen-1.5B and 7B models, we extend the sequence length to 4096 to mitigate
the extreme outlier issues in the K cache as discussed in Appendix C.2. The quantization
settings are the same as QuaRot.

MXFP4 (Rouhani et al., 2023) is part of the Microscaling (MX) data format family, which
aims to improve the representation ability of low-precision formats through fine-grained per-
group quantization. MXFP4 uses a 4-bit floating-point representation with an E2M1 (2-bit
exponent and 1-bit mantissa) format for each element, and a shared 8-bit exponential scaling
factor for every group of 32 elements. Similar to QuaRot, we employ a mixed-precision
strategy for queries in the self-attention module.

B Additional Experiments

B.1 Results on More Quantized LLMs

Below, we present the complete results of QwQ, DeepSeek-R1-Distill-LLaMA, and Qwen3-
8B on various reasoning benchmarks.

Results on QwQ. From Table 3, it can be seen that conclusions from § 3.1 remain consistent.
For example, 4-bit weight-only quantization reaches lossless results while 3-bit induces
non-negligible accuracy loss, e.g., over 7% degradation on LiveCodeBench for both AWQ
and GPTQ. For KV cache quantization, both KVQuant∗ and QuaRot achieve lossless 4-bit
quantization, but all suffer from severe quantization loss when the KV cache is further quan-
tized into 3 bits. The degradation is most pronounced on difficult tasks with long response
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Model Quantization W-A-KV
# Bits Methods AIME-

120
MATH-

500 GSM8K GPQA-
Diamond

LiveCode-
Bench Avg. Drop↓

D
ee
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ee
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-8

B

BF16 - - 33.3±0.8 91.0±1.1 88.7±0.4 49.5±2.3 36.6±3.2 59.8±0.8 -

Weight-only

AWQ 30.3±3.4 86.9±0.1 87.9±0.7 41.1±0.3 33.6±2.0 56.0±0.7 -3.94-16-16 GPTQ 30.6±2.1 90.0±0.2 89.0±0.5 47.0±0.5 34.6±1.5 58.2±0.2 -1.6

3-16-16 AWQ 14.4±1.0 77.3±1.4 83.5±1.1 37.2±1.1 22.5±0.2 47.0±0.2 -12.8
GPTQ 23.3±2.9 78.8±0.9 73.1±0.6 39.1±5.6 27.9±1.8 48.4±0.6 -11.4

KV Cache

KVQuant∗ 36.7±3.8 88.5±0.8 87.8±0.1 45.5±2.2 35.5±1.9 58.8±1.6 -1.016-16-4 QuaRot 33.9±2.9 90.0±0.7 89.1±0.4 49.7±1.1 36.8±0.9 59.9±0.5 0.1
KVQuant∗ 19.4±2.7 82.0±0.2 87.4±0.4 41.6±0.8 27.1±0.6 51.5±0.6 -8.316-16-3 QuaRot 28.6±4.3 87.1±0.2 87.9±0.9 45.3±3.7 31.5±3.0 56.1±0.8 -3.7

Weight-Act.

SmoothQuant 36.7±2.2 89.3±0.5 88.8±0.5 47.8±4.4 36.4±1.4 59.8±0.3 0.0
8-8-8 QuaRot 38.9±2.9 89.9±0.9 88.7±0.6 48.3±2.8 37.7±2.3 60.7±0.9 0.9

FlatQuant 35.8±1.4 89.0±1.5 88.7±0.3 48.8±2.5 38.1±2.3 60.1±1.1 0.3

4-4-4
MXFP4 8.9±1.0 71.1±1.4 81.4±0.4 28.5±1.2 16.0±0.4 41.2±0.3 -18.7
QuaRot 16.4±1.0 77.3±1.2 71.4±1.4 32.8±3.2 23.3±0.6 44.2±1.1 -15.6
FlatQuant 21.9±1.3 85.5±1.8 85.5±0.6 42.6±1.8 30.0±2.4 53.1±1.3 -6.7
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BF16 - - 58.3±3.8 95.6±0.2 94.1±0.4 67.7±1.8 55.9±0.6 74.3±0.9 -

Weight-only

AWQ 58.3±5.5 95.3±0.5 93.7±0.3 66.3±1.5 54.1±0.4 73.6±1.2 -0.84-16-16 GPTQ 59.4±1.3 94.4±0.7 94.2±0.3 63.3±2.5 54.6±1.3 73.2±0.6 -1.1

3-16-16 AWQ 42.8±2.7 93.3±1.2 93.5±0.3 62.5±3.3 48.4±0.9 68.1±1.1 -6.2
GPTQ 51.4±1.3 93.6±0.4 94.4±0.2 64.0±2.5 48.8±2.4 70.4±0.8 -3.9

KV Cache

KVQuant∗ 55.6±4.6 95.1±0.8 94.1±0.2 69.5±2.4 52.5±0.4 73.4±1.1 -1.016-16-4 QuaRot 55.6±1.7 95.1±0.4 94.2±0.0 67.5±2.0 54.1±1.5 73.3±0.4 -1.0
KVQuant∗ 51.4±4.6 93.3±0.8 93.8±0.1 63.0±1.1 50.1±0.6 70.3±1.4 -4.016-16-3 QuaRot 50.6±1.7 94.5±0.3 94.2±0.4 65.0±2.6 52.2±1.3 71.3±0.6 -3.0

Weight-Act.

SmoothQuant 58.1±2.7 95.3±0.5 94.3±0.4 69.2±2.7 54.0±1.4 74.2±0.7 -0.1
8-8-8 QuaRot 59.7±3.4 95.3±0.3 94.1±0.3 65.0±0.8 53.7±1.5 73.6±0.4 -0.7

FlatQuant 62.5±2.5 95.7±0.8 94.2±0.2 66.8±1.8 54.9±2.3 74.8±0.9 0.5
MXFP4 6.1±0.5 68.7±0.6 88.8±0.3 37.9±0.5 12.9±0.2 42.9±0.1 -31.4

4-4-4 QuaRot 9.4±2.7 70.0±0.4 86.5±0.4 33.3±1.8 22.1±0.8 44.3±0.9 -30.0
FlatQuant 54.2±0.8 94.7±0.6 94.1±0.5 66.8±4.1 49.5±1.1 71.9±0.9 -2.5

Table 4: The overall assessment of quantized DeepSeek-R1-Distill-LLaMA models on various
reasoning benchmarks. The green, orange and red cells stand for the lossless (≤1%), the fair
(1%-3%) and the risky (≥3%) respectively.

Model Quantization W-A-KV
# Bits Methods AIME-

120
MATH-

500 GSM8K GPQA-
Diamond

LiveCode-
Bench Avg. Drop↓

Q
w

en
3-

8B

BF16 - - 68.6±1.3 97.1±0.6 95.3±0.4 60.6±0.9 57.2±0.4 75.8±0.5 -

Weight-only

AWQ 66.1±1.3 97.0±1.0 95.0±0.2 59.6±0.5 54.7±2.1 74.5±0.2 -1.34-16-16 GPTQ 66.9±2.1 96.5±0.6 95.2±0.1 59.4±2.0 53.2±0.4 74.3±0.6 -1.5

3-16-16 AWQ 44.7±2.4 92.9±1.0 94.1±0.3 46.8±1.5 35.3±1.7 62.8±0.1 -13.0
GPTQ 43.3±2.5 92.8±0.7 94.1±0.2 44.6±1.5 31.5±1.6 61.3±0.4 -14.5

KV Cache

KVQuant∗ 66.7±2.2 97.0±0.2 95.4±0.2 60.9±0.6 56.6±0.4 75.3±0.5 -0.516-16-4 QuaRot 70.0±6.0 97.3±0.1 95.2±0.2 59.6±1.0 56.7±1.1 75.8±1.2 0.0
KVQuant∗ 54.4±3.5 95.3±0.2 94.7±0.3 54.0±1.8 43.3±0.4 68.4±0.6 -7.416-16-3 QuaRot 57.8±2.7 95.7±1.1 94.1±0.2 50.7±2.4 43.5±2.7 68.3±0.6 -7.4

Weight-Act.

SmoothQuant 71.1±4.1 96.6±0.4 95.3±0.2 59.8±1.1 56.3±1.4 75.8±0.4 0.1
8-8-8 QuaRot 71.1±2.6 96.7±0.1 95.5±0.1 59.6±1.3 56.8±0.6 76.0±0.3 0.2

FlatQuant 73.6±2.6 96.9±0.8 95.3±0.3 59.3±2.8 57.2±1.6 76.5±1.4 0.7
QuaRot 50.0±1.4 94.9±0.4 94.1±0.1 49.5±2.0 40.6±1.5 65.8±0.8 -10.04-4-4 FlatQuant 61.1±2.1 95.5±0.3 94.8±0.2 53.7±0.8 47.1±0.8 70.5±0.5 -5.3

Table 5: The overall assessment of quantized Qwen3-8B model on various reasoning bench-
marks. The green, orange and red cells stand for the lossless (≤1%), the fair (1%-3%) and
the risky (≥3%) respectively.

lengths such as AIME-120 and LiveCodeBench. For weight-activation quantization, 8-bit
quantization remains lossless. For the more challenging 4-bit weight-activation quantization,
only FlatQuant maintains the accuracy.

Results on DeepSeek-R1-Distill-LLaMA. As shown in Table 4, the findings align with
the conclusions presented in § 3.1. LLaMA models can have lossless quantization results
for 4-bit KV cache quantization and 8-bit weight-activation quantization. The 4-bit weight
quantization is nearly lossless. For lower bits, all of the evaluated quantization methods
become risky, e.g. W3G128 incurs accuracy loss over 11% for the 8B model.

Results on Qwen3-8B. We further evaluate the performance on the recently released
Qwen3-8B. As shown in Table 5, the overall findings remain consistent with our previous
analysis in § 3.1. For weight-only quantization, 4-bit methods yield minimal degradation
(within 1.5%). However, reducing weights to 3 bits results in substantial performance drops,
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(a) DS-R1-Distill-Qwen-1.5B. (b) DS-R1-Distill-Qwen-14B. (c) QwQ-32B.

Figure 6: The accuracy of different difficulty levels on MATH-500.

(a) DS-R1-Distill-Qwen-1.5B. (b) DS-R1-Distill-Qwen-14B. (c) QwQ-32B.

Figure 7: Number of generated tokens of different difficulty levels on MATH-500.

exceeding 13% on average. For KV cache quantization, both KVQuant∗ and QuaRot achieve
lossless results in 4-bit settings. Yet, when further quantized to 3 bits, they suffer over
7% accuracy loss. Finally, 8-bit weight-activation quantization remains essentially lossless
across all evaluated tasks.

B.2 Performance v.s. Difficulty Levels

Figure 6 presents the performance across varying difficulty levels on the MATH-500 bench-
mark. The results reveal that quantization-induced accuracy loss becomes more pronounced
as task difficulty increases. For example, FlatQuant-W4A4KV4 achieves comparable perfor-
mance to the full-precision 14B model, while it suffers over 2% accuracy loss at level 5. This
indicates that complex tasks exhibit greater vulnerability to precision reduction.

B.3 Output Length v.s. Difficulty Levels

Here we further examine the impact of task difficulty on the MATH-500 benchmark, which
categorizes problems into five difficulty levels. We have the following observations from
Figure 7: 1) Reasoning models tend to generate more tokens at test time when solving
harder problems. 2) Quantized LLMs with minor accuracy degradation (e.g., W4G128,
W8A8KV8) do not generate longer responses than the BF16 model. However, lower bit-
width on smaller LLMs (in particular, DeepSeek-R1-Distill-Qwen-1.5B with W3G128 and
W4A4KV4 quantization) could lead to increased output, which is similar to the conclusion
in § 4.1.
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Transformer layer in
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Figure 8: Channel-wise magnitude distri-
butions of activations from different source
domains. Reasoning (i.e. Numina-Math-
1.5 and LiveCodeBench) and pre-training
(i.e. WikiText2) data share similar distri-
butions. The statistics are computed over
32K tokens. Xg and Xq denote the inputs of
the feed-forward gate projection layer and
the self-attention query projection layer in a
Transformer layer, respectively.
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(a) Xg of the 14th

Transformer layer in
DeepSeek-R1-Distill-
Qwen-1.5B.
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(b) Xq of the 21st

Transformer layer in
DeepSeek-R1-Distill-
Qwen-1.5B.

Figure 9: t-SNE visualization of activa-
tions from different source domains. Do-
main gaps exist between reasoning (i.e.
Numina-Math-1.5 and LiveCodeBench) and
pre-training (i.e. WikiText2) data. We ran-
domly sample 128 tokens from each domain.
Xg and Xq denote the inputs of the feed-
forward gate projection layer and the self-
attention query projection layer in a Trans-
former layer, respectively.

C Additional Discussions

C.1 Choice of Calibration Data

Calibration Data Collection. We collect calibration data from different source domains,
including reasoning (i.e. Numina-Math-1.5 (LI et al., 2024) and LiveCodeBench (Jain et al.,
2024)) and pre-training (i.e. WikiText2 (Merity et al., 2016)) data. The reasoning data is
self-generated by the reasoning model, given the problems in the original dataset, with
generation configurations defined in § 3.1.

The Distribution of Calibration Data from Different Domains. In Figure 8 and Figure 9,
we visualize the channel-wise magnitude and activation distributions from different source
domains, respectively. It can be seen that the channel-wise magnitude distributions across
different source domains share the same outlier channels, demonstrating notable similarity.
Besides, the activation distributions across different reasoning datasets are also close to each
other, regardless of the dataset category. However, as shown in Figure 9, activations of the
reasoning data exhibit a completely distinct distribution from those of the pre-training data,
although their channel-wise magnitude distributions resemble each other. This domain
gap may raise issues for post-training quantization methods if pre-training data is used for
calibration.

C.2 Analysis on DeepSeek-R1-Distill-Qwen-1.5B and 7B Models

As discussed in § 3.5, different LLM origins can have various impacts on the quantization
of reasoning models. We find that the K cache of DeepSeek-R1-Distill-Qwen-1.5B and 7B
models exhibit extreme outlier channels due to the huge bias terms in the self-attention
key projection layer, which significantly increases the difficulty of KV cache quantization
on these two models. In this section, we first reveal the phenomenon of extreme outlier
channels in DeepSeek-R1-Distill-Qwen-1.5B and 7B models as well as its root, and then
propose some practical solutions to mitigate its impact on KV cache quantization.

C.2.1 Extreme Outlier Channels in K Cache

Qwen (Bai et al., 2023) models add biases in the self-attention query, key, and value projection
layers for better length extrapolation ability. However, we find that the bias terms of key
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Transformer layer in
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0th Transformer layer
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Qwen-7B.
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Figure 10: Visualizations of K cache before and after the bias term of key projection layers
in DeepSeek-R1-Distill-Qwen-1.5B and 7B models. Ypre bias

k denotes the outputs of the
self-attention key projection layer before adding the bias term.

Model Methods W-A-KV
# Bits

AIME-
120

MATH-
500 GSM8K GPQA-

Diamond
LiveCode-

Bench Avg. Drop↓

1.5B

BF16 - 21.7 84.4 84.6 36.9 16.0 48.7 -
KVQuant∗ 16-16-4 7.5 58.2 67.9 29.8 10.5 34.8 -13.9
+Pre bias 20.8 83.6 84.9 31.3 16.4 47.4 -1.3
KVQuant∗ 16-16-3 4.2 62.4 67.2 23.7 10.5 33.6 -15.1
+Pre bias 9.2 66.2 71.3 31.3 10.5 37.7 -11.0

7B

BF16 - 45.0 94.6 91.4 50.0 35.5 63.3 -
KVQuant∗ 16-16-4 0.0 7.0 5.0 25.3 0.4 7.5 -55.8
+Pre bias 40.8 93.2 91.4 47.5 35.1 61.6 -1.7
KVQuant∗ 16-16-3 20.0 74.2 81.4 44.4 13.8 46.8 -16.5
+Pre bias 36.7 91.2 90.4 46.0 27.2 58.3 -5.0

Table 6: The effect of pre-bias quantization on DeepSeek-R1-Distill-Qwen-1.5B and 7B
models. The green, orange and red cells stand for the lossless (≤1%), the fair (1%-3%) and
the risky (≥3%) respectively.

projection layers can be extremely large in the pre-trained Qwen-1.5B and 7B models, e.g.
the maximum absolute value in key projection bias terms reaches 402 in Qwen-1.5B. The
distilled reasoning models inherit the large bias terms from pre-trained models, leading to
extreme outlier channels on K cache as shown in Figure 10. This phenomenon well explains
the large performance gap between KVQuant∗ and QuaRot on DeepSeek-R1-Distill-Qwen-
1.5B and 7B models in Table 1. The presence of extreme outlier channels severely degrades
the performance of per-token quantization methods like QuaRot. These outliers force an
expansion of the quantization range, leading to catastrophic failures in QuaRot’s accuracy. In
contrast, KVQuant∗ mitigates the outlier channels by employing per-channel quantization,
which effectively constrains the quantization range and achieves higher accuracy.

C.2.2 Recipes for Extreme Outlier Channels on K Cache

Based on the observations in § C.2.1, we propose two simple yet effective approaches to
improve the KV cache quantization of DeepSeek-R1-Distill-Qwen-1.5B and 7B models. In
Table 1, we adopt these approaches as default setups and report their results on DeepSeek-
R1-Distill-Qwen-1.5B and 7B models accordingly.

Pre-bias Per-channel K Cache Quantization for KVQuant∗. As detailed in Appendix A,
KVQuant∗ employs pre-RoPE per-channel K cache quantization. Given that the extreme
outlier channels are induced by bias terms, we propose to quantize K cache before adding
the bias term in the key projection layer to further reduce the quantization range. As shown
in Figure 10, the pre-bias K cache appears much smoother, suggesting greater compatibility
with quantization. In Table 6, it can be seen that pre-bias quantization shows consistent
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Figure 11: Channel-wise magnitude distributions of K cache before and after RoPE. The
statistics are computed over different sequence length ranges. Yk denotes the outputs of the
self-attention key projection layer.

Methods Sequence
Length

W-A-KV
# Bits

Group
Size

AIME-
120

MATH-
500 GSM8K GPQA-

Diamond
LiveCode-

Bench Avg. Drop↓
BF16 - - - 21.7 84.4 84.6 36.9 16.0 48.7 -

FlatQuant
2K

4-4-4 N/A
2.5 53.4 73.8 30.3 2.2 32.5 -16.3

4K 10.0 64.8 78.6 31.8 6.7 38.4 -10.3
8K 15.8 73.2 78.9 37.9 9.3 43.0 -5.7

Table 7: The effect of extending calibration sequence length on DeepSeek-R1-Distill-Qwen-
1.5B. The green, orange and red cells stand for the lossless (≤1%), the fair (1%-3%) and the
risky (≥3%) respectively.

improvements across different models and bit-widths. For instance, it brings an average
accuracy improvement of 7.81% for 3-bit KV cache only quantization.

Extending the Sequence Length of Calibration Data for FlatQuant. Reasoning models
tend to generate long thinking steps before giving the final answer, which makes it impor-
tant to maintain the quantization accuracy over very long sequences. However, we find
that the extreme outliers induced by bias terms pose a great challenge to learning-based
outlier smoothing quantization methods such as FlatQuant, severely degrading the accuracy
over long sequences. Specifically, the extreme outliers in the output of the key projection
layer are further rotated into adjacent channels through RoPE. As shown in Figure 11, the
channel-wise magnitude distributions vary significantly across sequence positions due
to differing rotation degrees. As a result, the outlier-smoothing transformations learned
on the calibration data with short sequence lengths (e.g. 2K) are unable to generalize to
longer sequences. Therefore, we choose to extend the sequence length of calibration data
for FlatQuant to mitigate this issue. In Table 7, we vary the lengths of the calibration data in
{2K, 4K, 8K}. The accuracy keeps increasing as the length of calibration data increases. In
Table 1, we report the results of FlatQuant with the calibration data length of 4K to achieve
a balance between training efficiency and quantization accuracy.

D Qualitative Examples

To learn the concrete behaviors of quantized reasoning models, We present several qualita-
tive examples in Table 8-11.

We divide the reasoning process into four parts — ”understand”, ”process”, ”check”,
and ”final answer” — and use different colors to represent each part. As shown, the
quantized models follow a similar reasoning pattern as the BF16 model, even if the problem
is incorrectly answered (Table 11). Nonetheless, the quantized models may occasionally
exhibit calculation errors or adopt slightly different verification strategies, but the overall
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reasoning structure remains consistent. This suggests that the model’s reasoning pattern is
relatively robust to quantization, even under aggressive low-bit settings like MXFP4.

Problem: In a class of 50 students, 28 participate in MATHCOUNTS, 21 participate in
science club, and 6 students participate in neither. How many students participate in
both MATHCOUNTS and science club?

Reasoning:
Okay, so I’ve got this problem here: In a class of 50 students, 28 participate in MATHCOUNTS, 21 participate in science club, and 6
students participate in neither. I need to find out how many students participate in both MATHCOUNTS and the science club. Hmm,
let me think about how to approach this.

First, I remember something about sets and maybe using a Venn diagram. Yeah, that sounds right. So, there are two
groups here: MATHCOUNTS participants and science club participants. Some students might be in both, and some might be in
neither. The total number of students is 50, and 6 are in neither, so that means 50 - 6 = 44 students are in at least one of the two clubs.

Alright, so 44 students are in MATHCOUNTS, science club, or both. Now, I know that the number of students in both
can be found using the principle of inclusion-exclusion. The formula is:

Total in either club = Number in MATHCOUNTS + Number in Science Club - Number in Both.

Let me write that down:

Total = M + S - Both.

We know the total number of students in either club is 44, MATHCOUNTS has 28 students, and science club has 21.
Plugging those numbers in:

44 = 28 + 21 - Both.

Let me compute 28 + 21 first. That’s 49. So:

44 = 49 - Both.

Hmm, so to find Both, I can rearrange the equation:

Both = 49 - 44 = 5.

Wait, so does that mean 5 students are in both MATHCOUNTS and the science club? Let me check if that makes
sense.

If 28 are in MATHCOUNTS and 5 of them are also in the science club, then 28 - 5 = 23 are only in MATHCOUNTS.
Similarly, 21 are in the science club, and 5 of those are also in MATHCOUNTS, so 21 - 5 = 16 are only in the science club. Adding
those together: 23 (only MATHCOUNTS) + 16 (only science club) + 5 (both) = 44, which matches the total number of students in at
least one club. And then the 6 students not in either club make the total 50. That all checks out.

So, yeah, I think 5 is the right answer. I don’t think I made any mistakes here. I used the inclusion-exclusion principle
correctly, and the numbers add up when I break it down. So I’m confident that 5 students participate in both MATHCOUNTS and the
science club.

**Final Answer**
The number of students participating in both MATHCOUNTS and science club is 5 .

Table 8: An example from MATH-500 correctly answered by the BF16 DeepSeek-R1-Distill-
Qwen-32B model.
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Problem: In a class of 50 students, 28 participate in MATHCOUNTS, 21 participate in
science club, and 6 students participate in neither. How many students participate in
both MATHCOUNTS and science club?

Reasoning:
Okay, so I’ve got this problem here: In a class of 50 students, 28 participate in MATHCOUNTS, 21 participate in science club, and 6
students participate in neither. The question is asking how many students participate in both MATHCOUNTS and science club.
Hmm, okay, let me think about how to approach this.

First, I remember that when dealing with overlapping groups like this, it’s a classic inclusion-exclusion problem. The
formula that comes to mind is:

Total = Number in MATHCOUNTS + Number in Science Club - Number in Both + Number in Neither

Wait, let me write that down to make it clearer. So, the total number of students is equal to those in MATHCOUNTS
plus those in science club minus those in both, plus those in neither. Hmm, let me make sure I have that right.

Actually, I think the formula is:

Total = (MATHCOUNTS + Science Club - Both) + Neither

Because the ones in neither are outside both groups. So, the total is the union of MATHCOUNTS and Science Club
plus the ones in neither. The union is calculated as MATHCOUNTS plus Science Club minus Both.

Let me write that out:

Total = (MATHCOUNTS + Science Club - Both) + Neither

So, plugging in the numbers:

50 = (28 + 21 - Both) + 6

Okay, let me compute that step by step. First, 28 plus 21 is 49. So, 49 minus Both plus 6 equals 50. So, 49 + 6 is 55,
right? So, 55 minus Both equals 50.

Hmm, so 55 - Both = 50. Then, subtracting 50 from both sides, we get 55 - 50 = Both, so Both = 5. So, does that mean 5
students are in both MATHCOUNTS and science club?

Wait, let me double-check because sometimes these inclusion-exclusion problems can be tricky. So, if there are 50 stu-
dents total, and 6 are in neither, that means 50 - 6 = 44 students are in at least one of the two clubs. So, 44 students are in
MATHCOUNTS, science club, or both.

Now, MATHCOUNTS has 28 students, and science club has 21. If we add those together, 28 + 21 = 49. But wait, that’s
more than 44, which is the number of students in at least one club. So, that means the overlap must be 49 - 44 = 5. So, yeah, that
confirms it. 5 students are in both.

Let me make sure I’m not making a mistake here. So, if 5 students are in both, then the number only in MATHCOUNTS would be 28 -
5 = 23, and only in science club would be 21 - 5 = 16. Then, adding those up: 23 (only MATHCOUNTS) + 16 (only science) + 5 (both) +
6 (neither) = 23 + 16 is 39, plus 5 is 44, plus 6 is 50. That adds up correctly.

So, yeah, it seems like 5 is the right answer. I think that makes sense because when you have more students in both
clubs than the total number in at least one, the difference is the overlap. So, 28 + 21 = 49, but only 44 are in at least one, so 5 must be
in both.

Wait, another way to think about it is using a Venn diagram. Imagine two overlapping circles: one for MATHCOUNTS
with 28 and one for science club with 21. The total area covered by the circles is 44 students. The sum of the individual circles is 49, so
the overlapping part must account for the difference, which is 5. So, yeah, that’s consistent.

I guess another way to write the formula is:

Number in Both = MATHCOUNTS + Science Club - Total in at least one

Which would be:

Number in Both = 28 + 21 - 44 = 5

So, that also gives 5. So, all the methods point to 5. I think I’m confident that 5 is the correct answer.

Just to recap:

- Total students: 50
- Neither: 6
- Therefore, in at least one club: 50 - 6 = 44
- MATHCOUNTS: 28
- Science Club: 21
- Total in both clubs: 28 + 21 = 49
- But since only 44 are in at least one, the overlap is 49 - 44 = 5

Yeah, that seems solid. So, I think the answer is 5 students participate in both MATHCOUNTS and science club.

**Final Answer**
The number of students who participate in both MATHCOUNTS and science club is 5 .

Table 9: An example from MATH-500 correctly answered by the DeepSeek-R1-Distill-Qwen-
32B model quantized with GPTQ-W4A16G128
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Problem: Let A = (1,−11, 2), B = (3,−4, 1), and C = (−2, 1,−1). Compute ∠ABC, in
degrees.

Reasoning:
Okay, so I need to find the angle at point B in triangle ABC, which is angle ABC. The points are given as A = (1, -11,
2), B = (3, -4, 1), and C = (-2, 1, -1). Hmm, I remember that to find the angle between two vectors, I can use the dot prod-
uct formula. Since angle ABC is the angle at point B, I think I need to find the vectors BA and BC, and then find the angle between them.

Let me first visualize this. Point B is the vertex where the angle is, so BA is the vector from B to A, and BC is the vec-
tor from B to C. Once I have these two vectors, I can use the dot product formula to find the angle between them.

So, how do I find vectors BA and BC? Well, vectors can be found by subtracting the coordinates of the initial point
from the terminal point. So for vector BA, it’s A minus B, and for vector BC, it’s C minus B. Let me write that down.

Vector BA = A - B = (1 - 3, -11 - (-4), 2 - 1) = (-2, -7, 1)
Vector BC = C - B = (-2 - 3, 1 - (-4), -1 - 1) = (-5, 5, -2)

Okay, so now I have BA = (-2, -7, 1) and BC = (-5, 5, -2). Next step is to find the dot product of BA and BC, and then
divide it by the product of their magnitudes. That should give me the cosine of the angle between them, right?

Let me compute the dot product first. The dot product of BA and BC is calculated by multiplying corresponding com-
ponents and adding them up. So:

BA · BC = (−2)(−5) + (−7)(5) + (1)(−2) = 10 − 35 − 2 = −27

Hmm, that’s a negative number. That means the angle is obtuse, since the cosine is negative. Okay, moving on.

Now, I need the magnitudes of BA and BC. The magnitude of a vector is found by taking the square root of the sum of
the squares of its components.

First, magnitude of BA:

|BA| = sqrt[(−2)2 + (−7)2 + (1)2 ] = sqrt[4 + 49 + 1] = sqrt[54] = 3 ∗ sqrt(6)

Wait, sqrt(54) is equal to sqrt(9*6) which is 3*sqrt(6). That seems right.

Now, magnitude of BC:

|BC| = sqrt[(−5)2 + (5)2 + (−2)2 ] = sqrt[25 + 25 + 4] = sqrt[54] = 3 ∗ sqrt(6)

Oh, interesting, both vectors BA and BC have the same magnitude, 3*sqrt(6). So that simplifies things a bit.

Now, using the dot product formula:

cos(theta) = (BA · BC)/(|BA||BC|)

Plugging in the numbers:

cos(theta) = (−27)/(3 ∗ sqrt(6) ∗ 3 ∗ sqrt(6)) = (−27)/(9 ∗ 6) = (−27)/54 = −0.5

So, cos(theta) = -0.5. Now, to find theta, I need to take the arccosine of -0.5.

I remember that cos(120°) = -0.5, because cos(60°) is 0.5 and cosine is negative in the second quadrant. So, arccos(-0.5)
is 120 degrees.

Therefore, angle ABC is 120 degrees.

Wait, just to double-check everything. Let me recap:

1. Vectors BA and BC are correct. BA is (-2, -7, 1), BC is (-5, 5, -2). Yes, that’s right because we subtract B from A and B
from C.

2. Dot product: (-2)(-5) = 10, (-7)(5) = -35, (1)(-2) = -2. So 10 - 35 -2 = -27. That’s correct.

3. Magnitudes: sqrt(4 + 49 +1) = sqrt(54), and sqrt(25 +25 +4) = sqrt(54). So both are 3*sqrt(6). Correct.

4. So, cos(theta) = (-27)/(54) = -0.5. Yes, that’s right.

5. Arccos(-0.5) is 120 degrees. That’s correct because in the unit circle, 120 degrees is in the second quadrant with co-
sine -0.5.

Therefore, I think I did everything correctly, and the angle is indeed 120 degrees.

**Final Answer**
The measure of angle ABC is 120 degrees.

Table 10: An example from MATH-500 correctly answered by the BF16 DeepSeek-R1-Distill-
Qwen-32B model.
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Problem: Let A = (1,−11, 2), B = (3,−4, 1), and C = (−2, 1,−1). Compute ∠ABC, in
degrees.

Reasoning:
Okay, so I need to find the angle at point B in triangle ABC. The points given are A = (1, -11, 2), B = (3, -4, 1), and C =
(-2, 1, -1). Wait, hold on, the coordinates for point C are written as (-, 1, -1). That doesn’t look right. Is that a typo or a mistake? Maybe
it should be something like (-1, 1, -1) or (-2, 1, -1) with a specific number? Hmm, maybe it’s a typo and supposed to be (-1, 1, -1). I’ll
assume that for now, so point C is (-1, 1, -1). I think that makes sense.
So, points are A = (1, -11, 2), B = (3, -4, 1), and C = (-1, 1, -1). I need to compute angle ABC, which is the angle at point B between
points A, B, and C. So, angle ABC is the angle at vertex B, formed by sides BA and BC. So, to find this angle, I need to find the vectors
BA and BC, then compute the angle between these two vectors using the dot product formula.

First, I need to compute vectors BA and BC.
Vector BA is from B to A, so it’s A - B. Similarly, vector BC is from B to C, so it’s C - B.
Let me compute vector BA first.
A is (1, -11, 2), B is (3, -4, 1). So vector BA is A - B, which is (1 - 3, -11 - (-4), 2 - 1). Let me calculate each component:
1 - 3 is -2.
-11 - (-4) is -11 + 4, which is -7.
2 - 1 is 1.
So vector BA is (-2, -7, 1). Wait, hold on, that would be (-2, -7, 1). Wait, is that right? 1 - 3 is -2, so first component is -2. Second
component is -11 - (-4) is -11 + 4 is -7. Third component is 2 - 1 is 1. So vector BA is (-2, -7, 1). Wait, maybe the first component is -2, so
it’s (-2, -7, 1) or (-2, -7, 1). Hmm, I think it’s (-2, -7, 1). Maybe the person meant to write (-2, -7, 1), but the first component is -2. So, in
components, it’s (-2, -7, 1). So, BA = (-2, -7, 1). Wait, maybe it’s (-2, -7, 1), but the first component is -2.
. . .

Therefore, arccos(-0.588) is 180 - 54 = 126 degrees.

Wait, 54 degrees, so 180 - 54 is 126 degrees. So, the angle is approximately 126 degrees.

Wait, let me confirm.

If arccos(-0.588) is approximately 126 degrees because cos(126 degrees) is cos(180 − 54) = −cos(54) ≈ −0.5878, which
is about -0.588. So, that’s exactly what we have. So, cos(theta) ≈ −0.588, so theta is approximately 126 degrees.

So, the angle ABC is approximately 126 degrees.

Wait, let me double-check my calculations.

First, vectors BA and BC:

Vector BA : A − B = (1 − 3,−11 − (−4), 2 − 1) = (−2,−7, 1)

VectorBC : C − B = (−1 − 3, 1 − (−4),−1 − 1) = (−4, 5,−2)

. . .

Vector BC is from B to C, which is C − B, which is (−1 − 3, 1 − (−4),−1 − 1) = (−4, 5,−2). Correct.

Dot product: (−2) ∗ (−4) = 8, (−7) ∗ (5) = −35, (1) ∗ (−2) = −2. Total: 8 − 35 − 2 = −29. Correct.

Magnitudes: |BA| = sqrt[(−2)2 + (−7)2 + 12 ] = sqrt[4 + 49 + 1] = sqrt[54] = 3 ∗ sqrt(6). Correct.

|BC| = sqrt[(−4)2 + 52 + (−2)2 ] = sqrt[16 + 25 + 4] = sqrt[45] = 3 ∗ sqrt(5). Correct.

So, cos(theta) = (−29)/(3 ∗ sqrt(6) ∗ 3 ∗ sqrt(5)) = (−29)/(9 ∗ sqrt(30)).

Yes, that’s correct. So, the angle is arccos(-29/(9*sqrt(30))).

So, in degrees, that is approximately 126 degrees.

Therefore, the angle ABC is approximately 126 degrees.

I think that’s the answer.

*Final Answer**
The measure of angle ABC is 126 degrees.

Table 11: An example from MATH-500 that was incorrectly answered by the MXFP4-
quantized DeepSeek-R1-Distill-Qwen-32B model.
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