
Exploring Monotonicity in Early-Exiting Language Models

Filipe Laitenberger 1 Max Belitsky 1 Denys Sheremet 1 Oliver Savolainen 1 Mark Bodracska 1

Abstract
Large Language Models (LLMs) have shown im-
pressive results across the board, but inference can
be costly. A promising solution is posed by early
exiting methods that assume that not all tokens
need the same amount of computation, exiting
the LLM at earlier layers. Several early exiting
methods have been proposed, which rely on the
implicit assumption that as the network does more
computation, it will become more confident in its
prediction. We investigate this assumption for two
early exiting methods and propose three new con-
fidence measures for early exiting based on the
insights. We find early evidence for monotonicity
benefitting the quality of token generation.

1. Introduction
Large Language Models (LLMs) are showing abilities that
are beyond what was deemed possible even two or three
years ago (Wei et al., 2022; Achiam et al., 2024; Anil
et al., 2024; Touvron et al., 2023). These unprecedented
results originate from ever-increasing model and dataset
sizes which in turn lead to immense consumption of energy
and resources, as well as environmental pollution (Strubell
et al., 2019; Li et al., 2023; Patterson et al., 2021).

Because of this problem, research has been invested in mak-
ing LLMs more efficient. One possible way of achieving
this is adaptive computation allocation, which can be re-
alized as a network solely utilizing certain sub-networks
for specialized tasks (Jiang et al., 2024), skipping layers
(Raposo et al., 2024) or early exiting a network (Panda et al.,
2016; Teerapittayanon et al., 2016; Xin et al., 2021; Man-
grulkar et al., 2022; Elbayad et al., 2019; Schuster et al.,
2022; Bae et al., 2023; Geva et al., 2022; Del Corro et al.,
2023; Elhoushi et al., 2024).

The current work focuses on early exiting in Transform-

*Equal contribution 1Department of Artificial Intelligence, Uni-
versity of Amsterdam, Amsterdam, Netherlands. Correspondence
to: Filipe Laitenberger <filipe.laitenberger@student.uva.nl>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

ers. Early exiting builds on the implicit assumption that the
confidence of a model in its prediction will increase, the
more computation it performs on a token, which we refer
to as the monotonicity assumption. We (1) investigate the
monotonicity assumption in prominent early exiting archi-
tectures (Schuster et al., 2022; Bae et al., 2023). We confirm
that a weighted cross-entropy learning objective drives the
model to decide on a prediction as early as possible, leading
to mostly monotonic behavior after a certain layer. Fur-
thermore, we (2) explore the hidden states of a network
produced by processing sequences of different difficulty
levels and examine the effects of the difficulty levels on
hidden state saturation and monotonicity. Based on the find-
ings, we (3) propose new confidence measures that exploit
monotonic behavior and study their effect.

2. Related work
2.1. Early Exiting in Neural Networks

While neural networks are traditionally composed of many
layers that sequentially process input tokens, early exiting as-
sumes that not all inputs need the same amount of computa-
tion. Consequently, ”easy” token sequences could be output
at earlier layers than ”difficult” ones, which need to traverse
the entire network. Having been pioneered in CNN archi-
tectures (Panda et al., 2016; Teerapittayanon et al., 2016),
early exiting has been studied in Transformers as well, in-
cluding encoder (Xin et al., 2021; Mangrulkar et al., 2022),
encoder-decoder (Elbayad et al., 2019; Schuster et al., 2022;
Bae et al., 2023) and decoder models (Geva et al., 2022;
Del Corro et al., 2023; Elhoushi et al., 2024). We specifi-
cally look at two works that aim to model the confidence or
uncertainty of a model when generating tokens:

CALM. Schuster et al. (2022) fine-tune an LLM with a
weighted cross-entropy objective that optimizes each layer
to output the correct output probabilities given a shared
LM-head:

L =
∑L

i=1 αiLi where αi =
i∑L

j=1 j

where Li is the cross-entropy loss using each layer’s hidden
state, and αi favors higher layers according to the equation
above.

The authors further experiment with three different confi-

1

Exploring Monotonicity in Early-Exiting Language Models

dence measures: (1) computing the word probabilities from
the current hidden state after each Transformer layer and
exiting if the difference between the top two probabilities
exceeds a calibrated threshold; (2) computing the cosine
similarity between the current and last hidden state, and
exiting if the similarity surpasses a calibrated threshold; (3)
using a classifier that predicts the likelihood of early exiting
based on the current hidden state.

Even though CALM aims to make token prediction faster by
exiting early, a challenge that remains is handling attention
between tokens when some have exited earlier than others,
requiring individual copying of hidden states, which slows
down the computation, especially as the number of layers
increases (Bae et al., 2023).

FREE. Bae et al. (2023) extend CALM, trading compute
adaptability for decreased overhead. Specifically, the au-
thors reduce the number of exit points to two compared to
every layer so that the model can either exit at, e.g., the
fourth layer or use the entire network. Accordingly, FREE
can copy missing hidden states in parallel to reduce over-
head. Lastly, FREE replaces the expensively calibrated
confidence thresholds used in CALM by learned ones. In
addition to the weighted cross-entropy objective, FREE uses
a layerwise knowledge distillation loss

LKD =
1

|LS |

LS∑
i=1

MSE
(
Hi

S ,H
m(i)
D

)

where Hi
S refers to the hidden state in the shallow mod-

ule, i.e., the hidden state after layer smaller than the total
number of layers, and H

m(i)
D refers to the hidden state in

the deep module, i.e., the hidden state after the full net-
work pass. m(i) either (1) maps to the last layer, (2) is
a uniform mapping from shallow to deep layers, or (3)
maps to the closest hidden state in the deep module, i.e.,
m(i) = argmin

j
MSE

(
Hi

S ,H
j
D

)
.

3. Do Early-Exiting Networks Behave
Monotonically?

Early exiting only makes sense under the assumption that
a model becomes more confident of a decision over time.
Conversely, if a model exhibited purely unpredictable behav-
ior throughout the evolution of hidden states across layers,
there would be no notion of a ”saturated” hidden state that
can be used for prediction since the prediction could always
change completely after the current later. We performed
extensive experiments to uncover whether this assumption
holds, detailed in appendix A. We conclude that for the
layerwise weighted cross-entropy used in CALM, the as-
sumption holds, leading the model to decide on predictions

as early as possible while showing consitently increasing
confidence in the prediction.

In addition to that, we examine hidden state saturation, i.e.,
the development of hidden states across transformer layers,
in greater detail in appendix B. Specifically, we visualize
the saturation of the hidden states at each layer by using the
cosine similarity between the current and eventual hidden
state of CALM throughout the evaluation dataset, showing
how the model handles sequences of varying difficulty. The
results give additional evidence for monotonic behavior in
this model.

4. Monotonic Early Exiting
Based on our observations above, we hypothesize that an
exit mechanism could be improved in terms of performance
on the metric of interest while retaining the benefits of early
exiting if conditioned on multiple previous layers’ hidden
states. If the model is trained using the weighted cross-
entropy objective, the monotonic patterns in the hidden
states could inform the exit mechanism to be more confident
of a decision based on the evolvement of hidden states rather
than just the current hidden state. Henceforth, we develop,
train, and test three new confidence measures:

LSTM-based classifier. A two-layered LSTM network
(Hochreiter & Schmidhuber, 1997) with the input dimen-
sionality equal to the transformer’s hidden dimensionality,
and two outputs representing exit and no-exit.

Classifier based on three previous hidden states. A two-
layered MLP with three times the transformer’s hidden di-
mensionality as inputs, ReLU activation (Agarap, 2018), the
transformer’s hidden dimensionality as hidden neurons, and
two outputs representing exit and no-exit.

A heuristic method based on the last three top-1 softmax
scores. The network makes an exit decision if and only
if the last three layer’s softmax scores are monotonically
increasing and the current top-1 confidence is above 0.9.
This handcrafted rule is based on the observations from
our monotonicity experiments where three consecutively
increasing top-1 scores above the named threshold would
almost never change later on.

We hypothesize that the quality of the generation will be
higher than CALM’s confidence measures due to the in-
creased quality of exit decisions and that latency will be
higher due to increased computational complexity.

Comparison to CALM. With its hidden state saturation
confidence measure, CALM experiments with one measure
informed by the current and previous hidden state, similar
to our method. Our endeavors into hidden state saturation
reveal its frequent presence. However, there may be cases
without hidden state saturation even though the model is

2

Exploring Monotonicity in Early-Exiting Language Models

10.0 12.5 15.0 17.5 20.0 22.5 25.0
Samples Per Second

76

78

80

82

84

86

88

F1
 S

co
re

F1 Score vs Samples Per Second
No Early Exit
Softmax
Hidden State Saturation
Last Three Top-1 Probabilities
Current Hidden State Classifier
Last Three Hidden States Classifier
Recurrent Classifier

Figure 1. F1-score vs. samples per second on the SQuAD
dataset.

2 4 6 8 10
Samples Per Second

5

10

15

20

25

30

35

40

45

RO
UG

E-
1

Sc
or

e

ROUGE-1 Score vs Samples Per Second
No Early Exit
Softmax
Hidden State Saturation
Last Three Top-1 Probabilities
Current Hidden State Classifier
Last Three Hidden States Classifier
Recurrent Classifier

Figure 2. ROUGE-1-score vs. samples per second on the
CNN-Dailymail dataset.

confident of a token, as very different hidden states can
lead to the same softmax scores. This further motivates
our classifier-based confidence measures conditioned on
previous hidden states, which can recover the hidden state
saturation behavior, and go beyond it if necessary. Com-
pared to the original classifier used in the CALM paper,
which didn’t show great performance, our MLP takes in
more hidden states as input which could give it useful infor-
mation about how hidden states are changing and therefore
perform better.

5. Experiments
Model. For all experiments, we use T5 models pre-trained
on a layerwise weighted cross-entropy objective for mono-
tonic behavior.

Datasets. We evaluate two datasets: (1) Open-book SQuAD
1.1 (Rajpurkar et al., 2016), a QA dataset out of Wikipedia
articles complemented with questions and a target answer
which is taken from the context article. (2) CNN/DM (Her-
mann et al., 2015), composed of news articles and target
summarizations.

Baselines. We test the three confidence measures proposed
by CALM: (1) The difference between top-1 and top-2 soft-
max score, (2) hidden-state saturation, and (3) a classifier
trained on the current hidden state. Despite describing a
framework for finding threshold values, the original CALM
paper does not have details about final threshold values.
Similar to Bae et al. (2023), we select 0.9 as the confidence
threshold.

Novel Confidence Measures. We additionally test our three
proposed confidence measures, comparing them to the three
baselines. We use an identical loss function and training
procedure proposed for the CALM classifier, training our
classifiers for 5 epochs.

6. Results
The results for the SQuAD and CNN-Dailymail datasets are
shown in Figure 1 and Figure 2 respectively. Two trends are
observable throughout all datasets: (1) firstly, the quality
of the generated tokens (measured in F1, and ROUGE-1
scores) increases substantially compared to the baseline
confidence measures. (2) Secondly, our confidence mea-
sures mostly exhibit poor latency, being slower than all
baselines (except for the last three hidden states classifier
on the SQuAD dataset). These two trends give evidence
that taking monotonicity into account greatly benefits the
model’s performance. However, the results also indicate that
our confidence measures are poorly optimized for parallel
computation or optimally frequent early exit decisions. A
detailed interpretation is provided in Section 7.

7. Discussion
In this study, we conducted an in-depth examination of the
monotonic behavior of early exiting models, initially for-
mulating hypotheses and subsequently demonstrating how
and under what conditions they exhibit increasing confi-
dence in predictions over time. Based on these findings, we
developed novel confidence measures leveraging this prop-
erty, resulting in significantly higher scores compared to
other confidence measures. Nevertheless, several questions
remain that require further investigation:

Can the advantages of monotonicity be integrated while
retaining low latency? Our methods show high quality of
token generations, whereas CALM’s latency seems to sig-
nificantly benefit from considering only the current hidden
state. While the current study focused on exploring whether
monotonicity benefits early exiting, its continuation should
give an overall picture of how fully optimized and calibrated
architectures compare, answering whether monotonic early
exiting can pose a new state-of-the-art.

3

Exploring Monotonicity in Early-Exiting Language Models

Is early exiting the best way of making a model more effi-
cient? We investigated whether early exiting depends on the
monotonicity assumption, and that making the model decide
as early as possible benefits the exit mechanism. Analogous
to human thinking, we restrict the model to steer its thinking
process in one direction quickly, which takes away the abil-
ity to ponder freely. However, model performance might
benefit from the ability to explore many directions. There
are two further directions we want to mention here:
(1) Prior work shows that LLMs use their first few layers to
process the input without trying to make a final prediction
(leading to somewhat random predictions in the first layers),
while later layers are much more consistent in terms of the
end prediction (Wendler et al., 2024). Thus, we hypothe-
size that early exit LMs may benefit from constraining the
weighted cross-entropy objective to the last 70% layers of
the model, restricting the model to a lesser extent and giving
it more time to explore different directions at first.
(2) A different approach is Mixture-of-Depths (MoD) (Ra-
poso et al., 2024) which skips layers instead of exiting alto-
gether. This alleviates the model of having to be monotonic
and hence does not restrict it at all. The model can thus ex-
hibit completely random behavior, process tokens in many
different ways, and simultaneously decide to skip certain
parts, specializing different stages for different processing
steps of a token. MoD may be combined with a weighted
cross-entropy objective in the later layers, so that the first
part of the model can ponder freely while retaining the abil-
ity to skip layers, and the second part of the network can
decide when a token can exit altogether.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., Avila, R., Babuschkin, I., Balaji, S., Balcom,
V., Baltescu, P., Bao, H., Bavarian, M., (...), J. B., and
Zoph, B. Gpt-4 technical report, 2024.

Agarap, A. F. Deep learning using rectified linear units
(relu). CoRR, abs/1803.08375, 2018. URL http://
arxiv.org/abs/1803.08375.

Anil, R., Borgeaud, S., Alayrac, J.-B., Yu, J., Soricut, R.,
Schalkwyk, J., Dai, A. M., Hauth, A., Millican, K., Silver,
D., Johnson, M., Antonoglou, I., Schrittwieser, J., Glaese,
A., Chen, J., Pitler, E., Lillicrap, T., Lazaridou, A., (...),
O. F., and Vinyals, O. Gemini: A family of highly capable
multimodal models, 2024.

Bae, S., Ko, J., Song, H., and Yun, S.-Y. Fast and robust
early-exiting framework for autoregressive language mod-
els with synchronized parallel decoding. arXiv preprint
arXiv:2310.05424, 2023.

Del Corro, L., Del Giorno, A., Agarwal, S., Yu, B., Awadal-

lah, A., and Mukherjee, S. Skipdecode: Autoregressive
skip decoding with batching and caching for efficient llm
inference. arXiv preprint arXiv:2307.02628, 2023.

Elbayad, M., Gu, J., Grave, E., and Auli, M. Depth-adaptive
transformer. arXiv preprint arXiv:1910.10073, 2019.

Elhoushi, M., Shrivastava, A., Liskovich, D., Hosmer, B.,
Wasti, B., Lai, L., Mahmoud, A., Acun, B., Agarwal,
S., Roman, A., et al. Layer skip: Enabling early exit
inference and self-speculative decoding. arXiv preprint
arXiv:2404.16710, 2024.

Geva, M., Caciularu, A., Wang, K. R., and Goldberg, Y.
Transformer feed-forward layers build predictions by pro-
moting concepts in the vocabulary space. arXiv preprint
arXiv:2203.14680, 2022.

Hermann, K. M., Kocisky, T., Grefenstette, E., Espeholt,
L., Kay, W., Suleyman, M., and Blunsom, P. Teaching
machines to read and comprehend. Advances in neural
information processing systems, 28, 2015.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9:1735–80, 12 1997. doi: 10.1162/
neco.1997.9.8.1735.

Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary,
B., Bamford, C., Chaplot, D. S., de las Casas, D., Hanna,
E. B., Bressand, F., Lengyel, G., Bour, G., Lample, G.,
Lavaud, L. R., Saulnier, L., Lachaux, M.-A., Stock, P.,
Subramanian, S., Yang, S., Antoniak, S., Scao, T. L.,
Gervet, T., Lavril, T., Wang, T., Lacroix, T., and Sayed,
W. E. Mixtral of experts, 2024.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Li, P., Yang, J., Islam, M. A., and Ren, S. Making ai
less” thirsty”: Uncovering and addressing the secret water
footprint of ai models. arXiv preprint arXiv:2304.03271,
2023.

Mangrulkar, S., MS, A., and Sembium, V. Be3r: Bert based
early-exit using expert routing. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 3504–3512, 2022.

Panda, P., Sengupta, A., and Roy, K. Conditional deep learn-
ing for energy-efficient and enhanced pattern recognition.
In 2016 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 475–480. IEEE, 2016.

Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L.-
M., Rothchild, D., So, D., Texier, M., and Dean, J. Car-
bon emissions and large neural network training. arXiv
preprint arXiv:2104.10350, 2021.

4

http://arxiv.org/abs/1803.08375
http://arxiv.org/abs/1803.08375

Exploring Monotonicity in Early-Exiting Language Models

Rajpurkar, P., Zhang, J., Lopyrev, K., and Liang, P. Squad:
100,000+ questions for machine comprehension of text.
arXiv preprint arXiv:1606.05250, 2016.

Raposo, D., Ritter, S., Richards, B., Lillicrap, T.,
Humphreys, P. C., and Santoro, A. Mixture-of-depths:
Dynamically allocating compute in transformer-based
language models, 2024.

Schuster, T., Fisch, A., Gupta, J., Dehghani, M., Bahri, D.,
Tran, V., Tay, Y., and Metzler, D. Confident adaptive
language modeling. Advances in Neural Information
Processing Systems, 35:17456–17472, 2022.

See, A., Liu, P. J., and Manning, C. D. Get to the point:
Summarization with pointer-generator networks. In Pro-
ceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers),
pp. 1073–1083, Vancouver, Canada, July 2017. Asso-
ciation for Computational Linguistics. doi: 10.18653/
v1/P17-1099. URL https://www.aclweb.org/
anthology/P17-1099.

Sharma, E., Li, C., and Wang, L. Bigpatent: A large-scale
dataset for abstractive and coherent summarization. arXiv
preprint arXiv:1906.03741, 2019.

Strubell, E., Ganesh, A., and McCallum, A. Energy and
policy considerations for deep learning in nlp. arXiv
preprint arXiv:1906.02243, 2019.

Teerapittayanon, S., McDanel, B., and Kung, H.-T.
Branchynet: Fast inference via early exiting from deep
neural networks. In 2016 23rd international conference
on pattern recognition (ICPR), pp. 2464–2469. IEEE,
2016.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B.,
Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., Met-
zler, D., et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

Wendler, C., Veselovsky, V., Monea, G., and West, R. Do
llamas work in english? on the latent language of multi-
lingual transformers, 2024.

Xin, J., Tang, R., Yu, Y., and Lin, J. Berxit: Early exiting for
bert with better fine-tuning and extension to regression.
In Proceedings of the 16th conference of the European
chapter of the association for computational linguistics:
Main Volume, pp. 91–104, 2021.

A. Do Early-Exiting Networks Behave
Monotonically?

All the methods discussed above assume that confidence
evolves monotonically, i.e., that the model will be more
certain of a prediction the more computation it performs
on a token. This assumption is central to the functioning
of early exit methods regarding the decision when to exit
and whether it is sensible to exit early in the first place -
it could be that the evolvement of hidden states is utterly
unpredictable and does not resemble any meaningful con-
nection to the eventual word probabilities at the final layer,
i.e., the network might be a black box whose intermediate
representations are meaningful to itself but not to the out-
side world. On the other hand, it might be that intermediate
hidden states can be seen as ”contemplation” of the model,
or that the model even tries to decide on a prediction as early
as possible in its contemplation process.

Experiment To test whether this monotonicity assumption
holds, we conduct an experiment on three different settings
of a T5 model - a default variant without early exiting,
a CALM model optimized on the weighted cross-entropy
objective, and a FREE model that uses the additional lay-
erwise knowledge distillation term. For each model, we
use publicly available pre-trained checkpoints and evaluate
each model on summarization using the BigPatent dataset
(Sharma et al., 2019). Specifically, we leverage the models’
LM-heads after each of the twelve layers to compute two
things: (1) the fraction of tokens for which the prediction
does not change after the respective layer, i.e., whether the
model could have exited early at the respective layer without
a loss in the performance metric of interest. (2) A plot show-
ing the mean and standard deviation of the confidence in the
eventual prediction at each layer. (3) Plots showing the top-3
predictions at each layer for individual token generations.

Results (1) Figure 3 shows that at the second layer already,
the weighted cross entropy objective optimizes the model to
be confident of a token, i.e. not change its top-1 prediction
after layer two, in 75% of the cases. Additionally, after the
fourth layer, the model keeps its prediction in 90% of the
cases. Contrastingly, the default T5 and even FREE exhibit
much less certainty in their predictions. Even though FREE
uses the weighted cross-entropy objective as well, its addi-
tional layerwise distillation objective seems to be inhibiting
the same monotonic behavior as in CALM.
(2) In addition, Figure 4 demonstrates that CALM increases
monotonically in its top-1 prediction at early layers on aver-
age. Meanwhile, the vanilla T5 gains confidence much later.
On the other hand, FREE displays locally monotonic behav-
ior, i.e., its confidence increases until its first exit point, then
drops and increases again until the end of the network.

(3) To illustrate this behavior in individual cases, figure
?? - 7 depicts three example forward passes of the same

5

https://www.aclweb.org/anthology/P17-1099
https://www.aclweb.org/anthology/P17-1099

Exploring Monotonicity in Early-Exiting Language Models

0 2 4 6 8 10
Layer Index

0.0

0.5

1.0
%

 n
on

-c
ha

ng
in

g
pr

ed
ict

io
ns

Default
CALM
FREE

Figure 3. The fraction of top-1 predictions that do not change after each layer, measured across the BigPatent evaluation dataset.

sequence for the three models, with the default T5 on the
left, CALM in the middle, and FREE on the right. The plots
exemplify the rather unpredictable behavior of the default
and FREE models, while CALM decides on a prediction
as early as possible. While CALM’s confidence increase
shows slightly non-monotonic evolvement in earlier layers,
the plots exemplify its monotonicity in later layers.

Conclusion We show that the weighted cross-entropy ob-
jective encourages the model to decide on a prediction as
early as possible while exhibiting monotonically increasing
behavior in its predictions. These results indicate that an
early exit mechanism could benefit from taking this behav-
ior into account, exiting early based on whether it observes
monotonically increasing predictions.

B. Sequence types: which sequences are ”easy”
and which are ”difficult”?

In the previous section, we have seen that a Transformer
model trained with a weighted cross-entropy objective ex-
hibits a monotonic pattern in token predictions. However,
even having this property does not make the model confident
to exit early on every possible sequence. Naturally, some
sequences in a language are more ambiguous than others.
For instance, the sequence One of the biggest cities in the
world is New can be considered ”easy” as the next word is
most likely to be York due to this being factual knowledge.
On the other hand, the sequence The students went to is not
that easy to predict even for a human being, as it bears an

inherent degree of uncertainty without having any context.

In this section we look at the properties of the hidden states
of such a monotonic network and what they can tell us about
the difficulty of the input sequences.

Experiment In order to identify which sequences are ”dif-
ficult” or ”easy” for a model we conduct the following
experiment: we select 2500 examples from the validation
set of the CNN Daily Mail summarization dataset (See et al.,
2017), iteratively feed the sequences to the model in an
autoregressive manner and record the hidden states of each
sequence. This procedure produces n sequences. Since we
use T5 large, we get 24 hidden states for each sequence.
We then compute the cosine similarity between the last hid-
den state (which is used for the next token prediction) and
hidden states after each other layer. The resulting vector
shows how saturated the hidden states of an input sequence
are. If the hidden states saturate quickly (become similar to
the last hidden state after 4-6 layers), the benefits of further
computations can be considered small. That means that the
network can exit earlier on such sequences. We deem the
sequences on which the network exhibits the described be-
havior ”easy” sequences. On the other hand, the sequences
that require almost a full pass through the network for the
hidden states to saturate are deemed ”difficult”.

We compute the mean of the hidden state similarities for
each sequence of tokens, sort the means in descending order,
and select the first 1000 items to obtain the ”easy” sequences.
The same procedure but in ascending order is repeated to
obtain the ”difficult” sequences. Additionally, to investigate

6

Exploring Monotonicity in Early-Exiting Language Models

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y
of

 E
nd

 P
re

di
ct

io
n

Vanilla
Mean
Std Dev

0 2 4 6 8 10
Layer Index

CALM
Mean
Std Dev

0 2 4 6 8 10

FREE
Mean
Std Dev

Figure 4. The mean and standard deviation of the end prediction across the BigPatent evaluation dataset, with the default T5 on the left,
CALM in the middle, and FREE on the right.

Table 1. The properties of sequence types.

Easy Difficult
First similar state 8.65 (1.34) 18.46 (0.76)
Similar states 14.35 (1.34) 4.54 (0.76)
Sequence length 58.16 (31.81) 11.48 (20.69)

Monotonic (all) 24% 3%
Monotonic (after l4) 78% 97%
Monotonic (after l8) 85% 98%

the properties of these sequences, we compute the following
metrics: the index of the first layer with a saturated hidden
state, the number of similar hidden states, the sequence
length, and a boolean variable that indicates whether the
hidden state similarities are strictly increasing after layers 0,
4 and 8. The last metrics were added to further investigate
the monotonicity property and aid in coming up with better
confidence measures. The similarity threshold was set at
0.9.

Results Table 1 shows the results of the above experiment.
The first finding is that (1) the mean layer index of the first
similar state for ”easy” sequences is 8.65, whereas for the
”difficult” sequences that number is 18.46, which is close to
the total number of layers in the model (24). In addition to
that, the average number of similar hidden states in ”easy”
sequences is much larger than in ”difficult” sequences with
14.35 and 4.54 hidden states respectively. This suggests
that the hidden states of the ”easy” sequences saturate much
faster and do not require the full pass through the model,
whereas the ”difficult” sequences tend to saturate closer to
the last layer.

Another significant observation is that (2) ”easy” sequences
tend to be considerably longer than ”difficult” sequences,

with 58.16 and 11.48 tokens on average respectively. This
phenomenon is logical, as the space of potential tokens that
can be generated is substantially larger at the beginning of
the sequence generation process. In contrast, with longer
sequences, the model is able to leverage contextual infor-
mation, thereby making the distribution over vocabulary
sharper, narrowing the scope of possible tokens.

Finally, the results on the monotonicity of the hidden
state similarities indicate that 24% of ”easy” sequences are
strictly increasing from the layer, which is not the case for
”difficult” sequences. However, the ”difficult” sequences
do exhibit monotonic behavior later in the network: 97%
are monotonic after 4 layers and 98% are monotonic after 8
layers.

In addition to the quantitative analysis, we have plotted the
hidden state similarities to inspect the differences visually.
Appendix C shows examples of how the hidden states evolve
over layers on some examples of sequences of both types.

Conclusion These results indicate that an early exit mech-
anism could benefit from taking the sequence length into
account. Additionally, it can be noted that even for the ”eas-
iest” sequences the first few layers of the network cannot be
used for early exiting, which should be accounted for by the
early exiting mechanism as well to not waste computation
on confidence measures for these layers.

C. Sequence type examples

7

Exploring Monotonicity in Early-Exiting Language Models

0 5 10 15 20
Layer

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Si
m

ila
rit

y
wi

th
 th

e
la

st
 h

id
de

n
st

at
e

<pad> New -> York
<pad> -> First

0 5 10 15 20
Layer

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Si
m

ila
rit

y
wi

th
 th

e
la

st
 h

id
de

n
st

at
e

<pad> The Pakistan -> i
<pad> -> War

Figure 6. Similarities between the last and every other hidden state. The green line corresponds to the ”easy” sequence and the blue line
corresponds to the ”difficult” sequence.

8

Exploring Monotonicity in Early-Exiting Language Models

0 5 10 15 20
Layer

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Si
m

ila
rit

y
wi

th
 th

e
la

st
 h

id
de

n
st

at
e

<pad> Manchester United striker Radamel Falcao left training in a Range -> Rover
<pad> -> A

0 5 10 15 20
Layer

0.5

0.6

0.7

0.8

0.9

1.0

Si
m

ila
rit

y
wi

th
 th

e
la

st
 h

id
de

n
st

at
e

<pad> FBI says it believes AWOL rookie police -> man
<pad> This page includes the show Transcript. -> Use

Figure 7. Similarities between the last and every other hidden state. The green line corresponds to the ”easy” sequence and the blue line
corresponds to the ”difficult” sequence.

9

