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Abstract

This work presents the first theoretically justified simultaneous inference framework
for off-policy evaluation (OPE). In contrast to existing methods that focus on point
estimates or pointwise confidence intervals (CIs), the new framework quantifies
global uncertainty across an infinite or continuous initial state space, offering
valid inference over the entire state space. Our method leverages sieve-based
Q-function estimation and (high-dimensional) Gaussian approximation techniques
over convex regions, which further motivates a new multiplier bootstrap algorithm
for constructing asymptotically correct simultaneous confidence regions (SCRs).
The widths of the SCRs exceed those of the pointwise Cls by only a logarithmic
factor, indicating that our procedure is nearly optimal in terms of efficiency. The
effectiveness of the proposed approach is demonstrated through simulations and
analysis of the OhioT1DM dataset.

1 Introduction

Off-policy evaluation (OPE) is a fundamental topic in reinforcement learning (RL), aiming to
assess the performance of a target policy using data collected under a different behavior policy,
before adopting the target policy in practice. For this purpose, much effort has been made on the
statistical inference of the value of the target policy, including obtaining an accurate estimate and valid
confidence intervals for quantifying the uncertainty. See|Uehara et al.|(2022) for a comprehensive
review.

In many real-world applications, such as healthcare (Murphy et al.[2001} Matsouaka et al.|2014} Shi.
Lu & Song|2020), ridesharing (Xu et al.| (2018)), and autonomous driving (Sallab et al.|(2017)), it is
often necessary to evaluate a policy across a range of initial states. For instance, in the OhioT1DM
dataset (Marling & Bunescu, (2020)), each patient begins in a different state of continuous glucose
monitoring (CGM) blood glucose levels and self-reported life events. The evaluation of a potentially
effective off-policy must be conducted without direct deployment, and it requires quantification of
uncertainties across multiple initial states. However, constructing pointwise confidence intervals (CIs)
for each state with Bonferroni correction inflates the overall significance level, which is well-known
as the multiple testing problem. The inflation becomes especially pronounced when the state space is
infinite, for example, R. To address this, we consider the following question:

Is it possible to simultaneously quantify the uncertainty of off-policy value estimators over the entire
state space?
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In this paper, we provide an affirmative answer. Specifically, this can be achieved by constructing
simultaneous confidence regions (SCRs) that cover the whole value functions at a given significance
level.

1.1 Related work

Existing methods for statistical inference in reinforcement learning can be categorized into three
categories: (i) Direct estimation: This approach constructs CIs by directly learning the system
dynamics or Q-function under the target policy. The estimations include kernel-based Q-function
methods (Feng et al.| (2020)), batch learning (Le et al.|(2019)), and sieve estimation methods (Chen
(2007)), Shi et al.| (2021)) or equivalently, called linear function approximation Sutton et al.| (2008]),
Lagoudakis| (2017)). (ii) Importance sampling: This method re-weights the observed rewards with
the density ratio of the target and behavior policies. Bootstrap methods, concentration inequalities,
and empirical likelihood-based methods have been applied to construct CIs for importance sampling
estimators (Thomas et al.|(2015)),[Hanna et al.|(2017), |Dai et al.| (2020)). (iii) Double reinforcement
learning (DRL): This framework combines the first two for more robust and efficient value evaluation
(Jiang & Li (2016) Thomas & Brunskill| (2016), Jiang & Huang| (2020)). For instance, Kallus &
Uehara| (2022) achieves consistent DRL estimation of the value function and computes a marginalized
density ratio to build a CI.

While existing methods largely focus on point estimation or pointwise intervals, approaches tailored
for a large number of states remain limited. Works such as/Duan et al.|(2020) and |Shi et al.| (2021)
advanced this direction by constructing confidence intervals not only pointwise (for the value at a
given state) but also for integrated value functions under a known reference distribution of initial states.
However, both leave important gaps. The asymptotic theory in|Shi et al.| (2021]) establishes validity
in large samples but does not provide non-asymptotic error control. In contrast, Duan et al.[(2020)
supports finite-sample inference, but its confidence bounds are conservative. Neither framework
provides the simultaneous inference that is uniformly valid across all states. Our work addresses
these gaps by developing a framework that enables distribution-free, asymptotically correct inference
for the value function at any state simultaneously, while also delivering finite-sample guarantees
through the non-asymptotic bound obtained from the Gaussian approximation.

1.2 Contributions

In this paper, we propose a novel framework for constructing asymptotically correct SCRs for the OPE.
To the best of our knowledge, this is the first work to introduce a simultaneous statistical inference
framework in policy evaluation of RL. Our method shares a similar spirit to Q-learning, which
estimates the state-action value function (Q-function) under the target policy. The estimation of Q-
function is achieved by the linear function approximation (i.e., sieve method). Our key contributions
are as follows:

1. We establish a convex Gaussian approximation result for the sieve estimation of the Q-
function. This approximation enables us to characterize the distribution of the sieve estimator
over arbitrary convex sets, thereby facilitating simultaneous inference when the initial state
is not fixed. Moreover, the convex Gaussian approximation theory only requires the number
of trajectories or decision points to diverge, which naturally allows the infinite-horizon
setting. Our theoretical results are built upon non-asymptotic results, which do not involve
any convergence from extreme value theory in statistics.

2. Based on the convex Gaussian approximation, we construct an asymptotically correct SCR
whose stochastic behavior is depicted by the maxima of a Gaussian random field. The width
of the SCR exceeds that of the pointwise confidence intervals only by a logarithmic factor.

3. To implement our methodology, we develop a multiplier bootstrap algorithm for constructing
SCRs, which avoids the need to estimate the limiting joint distribution of policy value
estimators across different initial states. We further assess the performance of the proposed
simultaneous inference framework through both numerical simulations and real data analysis.

The rest of the article is organized as follows. We introduce the model setup in Section 2] In Section
[3] we present the construction of SCR based on sieve estimation, convex Gaussian approximation,
and the bootstrap algorithm. Simulation studies and real data analysis on the OhioT1DM dataset are



conducted in Section[d] Finally, we conclude our paper in Section[5] All proofs, along with additional
simulation results, are given in the supplementary material.

2 Preliminaries

Consider a Markov Decision Process (MDP) represented by the tuple M = (S, A, R), where S
denotes the state space, A the action space, and R : S x A — R the reward function. In this
paper, we assume that S is a subspace of R? with a fixed dimension d, and A is the discrete set
{0,1,...,m — 1} with a fixed cardinality m. Let (Sp ¢, Ao ¢, Ro,+) denote the state-action-reward
triplet collected at time ¢. In the MDP framework, the following Markov assumption is imposed:

P(So,t+1 € BlSo,t = s, Aot = a, {50,k }e<ts {Aok tr<t, {Ro,k }k<t) = P(Bls, a), 2.1

where P denotes the transition probability kernel, which is time-homogeneous. Additionally, we
assume that the conditional mean of the reward R ; depends only on the current state and action, i.e.,

E(Ro,¢|S0,: = s, A0 = a, (So,k, Ao,k Ro.k)k<t) = E(Rot|So,t = 5, A0 = a) =7(s,a), (2.2)

where 7(+) is a reward function 7 : § x A — R. We note that if the reward Ry ; is a deterministic
function of Sp ¢, Ao,1, So,1+1, condition (2.2) follows directly from (Z.I). Both 2.I) and (Z.2) are
standard assumptions in the reinforcement learning literature.

Let 7(|-) denote a policy which satisfies 7(a|s) > 0 forall s € S,a € A, and ), , 7(als) =1
for any s € S. The objective of RL can then be expressed through the following value function:

V(r;s) = 7'E"(RoulSo0 = s), 2.3)
>0
where the expectation E™ is taken under the rule that actions are selected according to the policy ,
and ~y refers to a given discount factor, 0 < v < 1.

In this paper, we consider an offline setting where data is pre-collected and can be written as
(Ri,tv Ai,tv Si,tv Si,t—‘rl)a 0 S t S ﬂ7 1 S { S n,

where n denotes the number of trajectories, and 7; is the termination time of the i-th trajectory. For
the sake of brevity, we assume 7; = T',¢ = 1, ..., n, and the sample size is denoted as N = nT". Our
framework only requires that either 7" or n diverges (namely, N — 00).

3 Simultaneous inference for OPE

In this paper, we shall construct the asymptotically correct SCR for the OPE at significance level
1 —a, a € (0,1) via finding C\, (which might depend on N) such that

A}gn P (V(ﬂ',s) — CoL(s) < V(m;s) < V(m;s) + CoL(s),Vs € 8) =1-q, 3.1

where V(W; s) is the estimated policy values and L(s) is a scaling factor related to the covariance.
When only a fixed 5o € S is considered (instead of Vs € S), (3.1) reduce to the pointwise confidence
interval. Since the state space S can be continuous and infinite, to achieve asymptotic correct
simultaneous coverage, we need to well control the family-wise error rate in contrast with previous
pointwise CIs in RL (e.g., Luckett et al.|(2020)), |Shi et al.|(2021),Shi et al.| (2024))).

Without loss of generality, we focus on stationary policies (- | -) that do not vary with time ¢. For
the justification, we refer to Lemma 1 of |Shi, Wan, Song, Lu & Leng|(2020) and proof of Theorem
6.2.10 in [Puterman| (1994). To enable simultaneous confidence inference, we impose three main
assumptions, which are adopted from the literature on pointwise inference (e.g., Shi et al.| (2021)).
The detailed assumptions and illustrations are listed as (A1)-(A3) in Section[3.2]

3.1 Q-learning with linear function approximation

We adopt a Q-learning approach to develop valid inference procedures for both deterministic and
random policies. The Q-function under a policy 7 is defined as

Q(’ﬂ'; S, a) = Z’}/tEﬂ—(R()’t‘SO’O =S, AO’() = a). (32)

>0



Under conditions (2.1) and (2.2), the Q-function satisfies the Bellman equation:
Q(m;s,a) =r(s,a) + yE™ [Q (5 50,1, Ao,1) | So,0 = 5,400 = a]. (3.3)

We consider the linear function approximation for learning the Q-function. Let
@1 (s), Po(s),...,Px(s) be a collection of K basis functions and ®(s) = (®4(s),...,Px(s))".
We approximate Q(7; s, a) based on a linear combination of the basis functions, i.e.,

Q(m;s,a) ~ ®(s)" Bra Vs €S,a€ A (3.4)

Related approximation results are presented in Section F.1 of the supplementary materials, assuming
that Q(7; -, a) belongs to a Holder space of smoothness p for any policy 7 and action a € A. This
condition holds under standard assumptions on the transition probability P and a smooth reward
function (s, a) (see Section F.1 for details). The basis functions can be chosen from orthogonal
splines, Legendre polynomials, or wavelets, forming a sieve basis commonly used in sieve estimation
(Chen|2007, |[Huang| 1998, |Cohen et al.[|[1993} Timan|2014)).

By (3:3) and (3-4), the mK-dimensional vector 33 = (8;1,..., 85, 1) satisifies

s Mrom—1

{ it T Z Sit+1) Bram(alSiir1) — @(Sm)Tﬁ;a/} (S 1)I(Aiy =a') =0, (3.5)

acA
foralla’ € A. Denote &; ; = £(Si ¢, Ait), Urit = Ur(Si,t) Where

£(s,0) = {®(s) I(a = 0),8(s) T(a=1),...,8(s) Ta=m—1)}
Ux(s) = {®(s) Tr(0]s), ®(s) T (1]s),...,®(s) "7w(m — 1\5)}T
Then (3.3) reduces to E&; ¢ (Ri ¢ + U, ; 11165 — &,85) = 0, and 35 can be estimated by

n T;,—1
Be =371 ( I t> : (3.6)

lzltO

where 5, = ( 7—:717~"a571—,m71)—r and
n T;—1

71' - Z Z Z fzt fzt 7U7th+1) . (37)

i=1 t=0

Consequently, the value for policy 7 can be estimated by

V(m;s) = Z m(als)Q(m;s,a) = Z 7(a|s)®(s)" B (3.3)

acA acA

By (34), we have V (m;s) — V(m;s) — Y aca 7(als)®(s)T0, = O(ex) where 0, = B, — =
and € = maXqe 4 sup,cs |Q(m;s,a) — (s) " Bz ,|. By Chenl (2007), there exists 5 such that
ex = O(K~P/4) when the Q-function lies in a d-dimensional space with Holder smoothness p.

3.2 Convex Gaussian approximation

In this section, we establish a general convex Gaussian approximation theory for learning the
distribution behavior of é,r = Bﬁ — B for all Euclidean convex sets in R™E  To allow K to diverge,
we apply convex Gaussian approximation theorem (Fang| (2016), Fang & Koike| (2024)), which
supports moderately high-dimensional scenarios. We consider the state s within a compact region
S C R, For unbounded S, modifications such as introducing a weighting or mapping function are
discussed in, e.g., Tjgstheim & Auestad| (1994)Huang & Shen|(2004), Chen & Christensen|(2015).
We impose the following assumptions.

(A1) The Markov chain {S ; } >0 has an unique invariant distribution with some density function

11(s). Denote vg(s) as the probability density function of S o. The density functions y(s)
and v (s) are uniformly bounded away from 0 and co.



(A2) Suppose the following (i) and (ii) hold when T — oo and (i) holds when 7T is bounded.
() Amin { f:_ol E {&0.¢0.s — 7V*unr (So,t Aoe) gy (Soe, AO,t)}:| > T for some constant

¢ > 0, where u,(x,a) = E{U, (So01) | So,0 =z, Ao,0 = a} and Ayin(M) denotes the
minimum eigenvalue of a matrix M. (i) {So ¢}, is geometric ergodicity in dependence
measure. a

2
(A3) Define wy(s,a) = E [{RQO + 92 qeam(@lS0,1)Q(m; S0,1,a) — Q(W;So,on,o)} } .
Assume wy (s,a) > 061 and P(maxo<i<7—1|Rot| < ¢o) = 1 for some constant co > 1.

Remark 3.1. Assumptions (Al)—(A3) are mild assumptions and serve as the minimal requirement for
the goodness of the offline dataset to support feasible evaluation. The first condition in Assumption
(Al) ensures that the Markov chain would not be trapped in a small subset of the entire space.
Moreover; the second conditon ensures that every state is possible to be the initial state. Assumption
(A2) relaxes the condition on sample size. Previous work (Jiang & Li|2016|) requires the number of
trajectories n. — 00. (A2) additionally allows fixed n, but length T' — oo when the action variety is
sufficiently large on each chain. The geometrical decay is similar with the geometrical ergodic for the
Markov chain, which is a technical assumption in theoretical deduction, and is commonly assumed as
a weaker requirement of i.i.d. in deriving limit theory. Assumption (A3) requires the reward signal
diversity. wy(s,a) > ¢ ! requires that the reward random variable is nondegenerate (not always the
same). P(maxo<i<r—1|Ro.¢| < co) = 1 means the rewards are bounded. The detailed definitions of
the geometrical ergodicity and dependence measure are presented in Section G of the supplementary
materials to save space.

The following Theorem shows that there exists m K -dimensional Gaussian random vector Z
such that probability of 6, = 5. — 5% can be approximated by Z, over any convex sets.

Theorem 3.1. Denote Z, as the mK -dimensional Gaussian random vector possesses the same
covariance structure of V N0, i.e.,

Zr ~ Npi (0,A;), A, =E {i;lﬂﬂ(ilrl} : (3.9)
where
R 1 n Ti—l . R 2
Q= =3 Gl { Rue 90T Be — €81} (3.10)
i=1 t=0
Under Assumptions (Al), (A2), and (A3), suppose that K = o (N2/7(10g N)fl), then we have
sup |P(VNO, € Q) — P(Z, € Q)| = 0, (3.11)
0eO

where © is the collection of all the convex sets in R™¥ .

Remark 3.2. Note that the SCR based on estimation V (;s) = ®(s)7 Y acA 7(als)Bx can be
written as ﬂseg{\/ﬁé € Or s} where

d(s)" Z m(als)6

Oy = {9 e R™K .
acA

< L(s)} . (3.12)

Onr,s is a convex set since for any 6,8 € Or, N+ (1 — X0 € Oy, for any A € [0,1].
Therefore, NscsOr s is a convex set and the probability P(ﬂseg{\/ﬁﬂ € O s}) can be learned by
P(QSES{ZW S (O)TF,S})‘

Remark 3.3. Theorem|3.1|provides a higher-order convex Gaussian approximation for HAW = Bﬂ — B;
in the OPE estimation error V (m;s) — V (m;s) = ®(s) T D aca 7(a|s)0x. Existing approaches for
constructing pointwise confidence intervals typically rely on the central limit theorem, deriving the
limiting distribution of the inner product ®(s)T > . 4 7(a|s)0x for each fixed s € S. However,
extending these results from a fixed s to arbitrary s € S is nontrivial, as it requires controlling

Ag = ‘P (\/Né,, € (O)) —P(Z, € Q)| for some convex set O (see Remarkfor details).



Regarding the finite-sample properties, we provide the following bound on Ag with respect to the
sample size N and the number of basis functions K, derived from the proof of Theorem 3.1}

sup Ag < C (\/KiNéw}V_%%N + KSNimy %+ KiN~273 log? N) :
0eO ’ ’

From the proof of Theorem m it follows that the above bound converges to 0 as N — oo when
K=o (N2/7’C) for any given ¢ > 0.

By Theorem the SCR in (3.1) can be achieved by finding appropriate critical value C, v > 0
(which may depend on V) such that

1aP{

=P {sup

seS

The probability in (3.13) involves the supremum of functional linear combinations of the high-
dimensional Gaussian vector Z,. In practice, we can approximate C,, n in (3.13) by generating
simulations of the Gaussian random vector Z, and computing the empirical quantile of the supremum.
This approach, known as the Gaussian multiplier bootstrap, is detailed in Section[3.3] In theory, we

leverage properties of Gaussian processes along with approximation techniques from Sun & Loader
(1994) to analyze the desired C, n.

Proposition 3.2. For any two positive real sequences a,, and b,,, we write a,, < b,, if there exists
constants 0 < ¢ < C < oo such that ¢ < liminf,,_, a, /b, <limsup,, .., a,/b, < C. We write
an S by (an 2 by) if there exists constant C > 0 such that a,, < Cb,, (Ca,, > by,) for all n. Denote
matrix

o(s)" Y w(als)Zx
acA

D(s)" Y camlals)Zy
L(s)

< CQ,NL(S),VS c S} s

< cmN} . (3.13)

M =: (My(s), ..., Mq(s)), M,(s) =: aasj (ég;) . (3.14)

Under same conditions in Theorem[3.1] if there exists constant ¢y, c1, ¢z, ¢ > 0 such that

sup |[V®(s)| < N sup \V2<I>(s)| SN inf |P(s)] 2 NCO,/ )\mm(MTM)ds > N€, (3.15)
seS s€ES seS s

then we have appropriate Co, N < logl/2 N such that
Vim;s) = V(m;s)| < Co.N

lelooP{ VU()TAUL(s)| ~— VN

where « is the given significance level and o € (0, 1).

Remark 3.4. The scaling factor L(s) = \/Ur(s)T AzUx(s) aligns with the pointwise ClIs in |Shi
et al.|(2021)) so that we only need to compare the critical value C, n with that in pointwise CIs.
The rates N+, N2, N in condition (3.13) are mild assumptions which have been frequently used
in the literature of sieve nonparametric estimation and inference; see Assumption 4 of |Chen &
Christensen) (2015) and Example 1-2 in|Quan & Lin| (2024)) for more details. The rate N< for
Js Amin(M " M)dscan be derived in practice given basis ®(s), which would be verified in Section
E.2 of the supplementary materials.

,VsES}zl—a. (3.16)

Proposition [3.2] specifies the essential scale of the width of SCR. In contrast with previous pointwise
confidence intervals proposed in [Shi et al. (2021)), C,, xy =< +/log N shows that only an additional
logarithmic rate y/log N is introduced to extend the pointwise confidence in|Shi et al.|(2021) to the
global region S.

3.3 Bootstrap implementation

In the asymptotically correct SCR provided by (3.16), calculating an approximation of C' n is rather
complicated, and the convergence would be slow. We propose the Gaussian multiplier bootstrap
algorithm to circumvent these problems and derive a feasible SCR in Algorithm T}



Algorithm 1 Gaussian multiplier bootstrap for SCR

Input: Observed data {(Ri,tv Ai,tv Si,tv Si,tJrl)}OStSTi,lgiSn-

Step 1: Calculate 3., 3, Q according to (3.6), (3.7), and (3.10). Obtain the estimator of the
value function

V(m;s) = ®(s)" Z 7(als)Bx- 3.17)

acA
Step 2: Generate m K -dimensional Gaussian random vector zSZ’) ~ Nk (0, i; 1(2#(21)‘1).

Step 3: Repeat Step 2 for B times and document the outcomes 259, b=1,...,B.
Step 4: For a given level a € (0, 1), denote G, as the (1 — «)-th sample quantile of

B
{sup } .
seS
b=1

Output: (1 — a)-th SCR V(m;5) + §1_oL(s)/V/N.
It is worth noting that by the convex Gaussian approximation results, Algorithm[I]can yield different
asymptotically correct SCRs by modifying the scaling factor L(s). The function L(s) provides
flexibility to adjust the relative weighting of states s € S, where larger L(s) prioritizes tighter
confidence bounds for state s. For instance, if one is interested in the uncertainty of maximal

deviation sup, g |V (m;5) — V (m; )|, then L(s) = 1 can be a convenient choice.

L(s)"'®(s)" Y m(als)Z

acA

Remark 3.5 (Computational remarks). Our procedure is computationally efficient and can, for

instance, be executed on a personal laptop. The term B in is analogous to a least squares
estimate and can be computed efficiently. Moreover, Steps 1 and 4 of the bootstrap procedure are
linear due to the use of a linear approximation. Overall, the time complexity of our method is
O(NK? + K? + BK) and the space complexity is O(N + BK).

4 Experiments

4.1 Simulation studies

In this section, we conduct numerical studies to evaluate the performance of the proposed SCR.
Both univariate (d = 1) and multivariate (d > 1) scenarios are considered. The code is available
at https://github.com/xinyuanfan0O1/Simultaneous-Statistical-Inference-for-Off-Policy-Evaluation-
in-Reinforcement-Learning.

In our settings, the state vector Sy may not have bounded support. To address this, we apply a
1
1+exp(—Sé’ft) )
with bounded support. The basis functions are constructed using the tensor product of K Legendre or
spline functions. The number of basis functions is determined through cross-validation (Qiu et al.
2021)). We put the detailed cross-validation procedure in Section D of the supplement. Moreover, we
performed sensitivity analyses and found that both the empirical coverage and the average length of

the SCRs are robust to the choice of K.

sigmoid transformation, defined as sigmoid(Sé{t) )= for 1 < j < d, to obtain features

We evaluate the SCRs using two metrics, each computed across 500 independent replications: (i)
Empirical Coverage Probability (ECP): The proportion of times the true value function lies within
the SCR across multiple simulations. (ii) Average Length (AL): The average width of the SCRs,
approximated by averaging the widths at equally spaced grid points. The experiments can be readily
conducted on a standard workstation, for example, an Apple M1 machine with 16 GB of RAM
running macOS Sonoma.

For the method in [Shi et al.| (2021) (referred to as SAVE), we apply the Bonferroni correction to
adjust the pointwise confidence intervals. For each setting, we compute the SCRs over equally spaced
grid points. We emphasize that, in principle, pointwise confidence intervals cannot be naturally
extended to SCRs, due to the continuous nature of our state space. Overall, the proposed SCR



achieves coverage close to the nominal level (we set = 0.05), while the Bonferroni-adjusted SAVE
results in a coverage rate well above 0.95.

(Scenario 1 (univariate).) Let v = 0.5,n = 25,50, 75, T = 30, 50, 70, and

2 2
1 eSO.t+1 — e_SO,t+1

Sot+1 = So0,t + (240t — 1)U, Ro,t = 5 & 5
e 0,t+1 + e 0,t+1

for t > 0, where Uy ; vrd U(0,1) and Sp,0 ~ U(—2,2). We consider a completely randomized

behavior policy, i.e., Ag bk Bernoulli(0.5) for ¢ > 0. The target policy is designed as 7(1|s) =
1 —I(s > 0). We construct SCRs for V' (7, s) over the domain s € [—2, 2]. The true value function
is approximated from Monte Carlo simulation. We generate 10000 of independent trajectories with
initial state being sj) = —2 + 4i/999 for each i = 0,...,999. Actions are selected according to the
target policy. We approximate V (7, s{)) by taking the average over the 10000 trajectories, and use
linear interpolation to approximate V (7, s) for s ¢ {s§, i = 0,...,999}.

For Scenario 1, we employ the Legendre basis, and the results for ECPs and ALs are presented in
Figure[1} Moreover, we perform the sensitivity analysis by taking (rn,T") = (25,50), (50, 50) as two
illustrative examples and examining the results by varying the specification of K over a relatively
wide range. The corresponding results are presented in Table S.1 in the supplement. Figure [T] shows

1.00 o ohe mA Al =
[
0.20
0854 mmmdommmmoo B AL
o o o
NS o
[ ]
0.90
5 015 A® 4
w < o VAN A
0.85 A0 g B
| ]
0g0] © SAVE(n-25) o SCR (n-25) 010 o
A SAVE (n=50) A SCR (n=50)
o75] ® SAVE(n=75) 0 SCR (n=75)
0 2000 4000 6000 0 2000 4000 6000

Figure 1: Comparison of the methods based on empirical coverage probability (ECP, left) and average
length (AL, right) for Scenario 1.

that SCR consistently achieve the nominal coverage level in various choices of (n, T'). In contrast,
the Bonferroni-adjusted SAVE method exhibits substantial over-coverage. As N = nT increases, the
empirical performance of our method converges more closely to the nominal target. Additionally, the
average width of the SCRs produced by SAVE is approximately 20% greater than that of ours, which
highlights the improved efficiency of our approach. Table S.1 further shows that our method is robust
to the choice of the number of basis functions, enhancing its practical applicability.

(Scenario 2 (multivariate).) Let v = 0.5,

3 (QAW -1 0 2

1
So,t+1 = 1 0 1— 2A0’t> Sot + z0.s Rot = S0 441 (1> - 1(2A07t - 1),

for ¢ > 0, where 2, S N(0,415) and Spo ~ U([—2,2]?) , where the two components are
independent. For behavior policy, we consider Ag; ~ Bernoulli(pg;) independently, where

po.t = 0.5 (Sigmoid(Séylt)) + Sigmoid(Sé?)) . The target policy is designed as 7(1|s) = I(s(}) >

0,5 > 0). We construct SCRs for V(, s) over the domain s € [—1,1]2. Similar to that in
Scenario 1, we simulate 10000 independent trajectories, each initialized at a point in the grid
{s:sM) = —14+2i/29, s(2) = —142j/29, for1 < i,j < 30}, to approximate the true value
function V (7, s), s € [—1,1]2. We construct SCRs using tensor products of Legendre and spline
basis functions, respectively. The results are summarized in Table E} Moreover, we conducted
additional simulations employing SAVE with the Sidak correction (Abdi et al.[2007)), and the results
are summarized in Table[S.2]in the supplement.

Furthermore, we modified the state transition rule to assess the performance of our method under high
noise and non-Gaussian errors. Specifically, we set 2o ; to be an i.i.d. two-dimensional ¢(8) random



variable, while keeping all other components unchanged. The results are presented in Table [S.3]
where the coverage and length remain robust.

In addition to the comparison with SAVE, we also evaluated our method against the importance sam-
pling approach (Jiang & Li[2016| [Hanna et al.[2017) based on Scenario 2. The detailed experimental

settings and results are provided in Section B in the supplement.

Table 1: Results for Scenario 2. Format: ECP(AL).

n T Legendre Spline
SCR SAVE SCR SAVE
30 50 0.926 (8.472) 0.982(9.445) 0.936(9.452)  0.978 (9.793)
50 30 0.946(9.553) 0.970(10.492) 0.922(11.101) 0.942 (11.131)
40 50 0.924(7.225) 0976 (8.193)  0.938 (8.087)  0.976 (8.606)
50 40 0.944(7.138) 0.990 (8.136)  0.930(7.247)  0.984 (7.753)
50 50 0.942(7.299) 0.978(8.249)  0.930(8.156)  0.966 (8.630)
50 150 0.952(6.985) 0.966 (7.402)  0.934 (5.771)  0.978 (6.080)
50 200 0.944(5.978) 0.978(6.436)  0.950(7.733)  0.960 (7.418)
50 250 0.942(5.957) 0.968 (6.234)  0.930(5.177)  0.960 (5.446)
200 70 0.934 (4.924) 0.988(5.370)  0.926 (4.766)  0.968 (5.045)
250 70  0.936 (4.374) 0.986 (4.800)  0.906 (4.245)  0.968 (4.521)
300 70 0.934 (4.430) 0.974(4.737)  0.936(5.029)  0.978 (5.031)

Table [T] provides several key insights. First, it illustrates the theoretical claim that our method is
primarily governed by the product N = n7". In addition, it indicates that both spline and Legendre
bases lead to similar results, with the SCRs constructed using spline bases being slightly wider. This
suggests some robustness of our method to the choice of basis functions, which is appealing for
practical applications.

Remark 4.1. Note that the empirical coverage probability (ECP) is the mean of binary outcomes.
Therefore, we can derive the confidence interval for it. Specifically, the 95% confidence interval for

ECP is given by [p—1.96+/p(1 — p)/500, p+ 1.961/p(1 — p)/500], where p denotes the empirical

coverage.

4.2 Real data application

In this section, we apply our method to the OhioT1DM dataseﬂ which contains records of continuous
glucose monitoring (CGM), insulin administration, and self-reported life events for six individuals
diagnosed with type 1 diabetes. The data is partitioned into consecutive three-hour intervals and has a
three-dimensional state variable S; ; for each patient ¢ at time step ¢. Due to the space limitation, we
leave the specific construction in the supplement. The action A, ; is constructed as a binary variable.
A;+ = 1 if the cumulative insulin administered during the interval exceeds one unit; otherwise
A;+ = 0. The discount factor is set as v = 0.5 to weight future outcome. The reward, R; ;, is derived
from the Index of Glycemic Control (IGC), a piecewise function that penalizes both hypoglycemia
and hyperglycemia while assigning zero cost to glucose values within a clinically optimal range, i.e.,

Rio=—(30-59.,) 1 30— (s, —140) "1 30
it = T Mt {Sg,lt)+1<80}/ - i t+1 {S,i(,lt)+12140}/ .
The downloaded dataset has been separated as training group and testing group. Our objective is
to conduct the simultaneous OPE on the testing group under the target policies obtained from the
training group. In specific, we evaluate two kinds of target policies on the testing group. The first is
an optimal policy 7w°P obtained by the double fitted Q-iteration algorithm ((Hirdle & Song[2010)) in
the training group; implementation details are provided in Section E of the supplementary material.
The second is the behavior policy b obtained by the random forest from the training data. We then

estimate value functions V (7P, Sy) and V (b, Sp) on the testing set by (3.8). SCRs for V (7°P*, S)
and V' (b, Sp) are constructed for all states in the test set by Algorithm

The results show that V (7°Pt, Sy) exceeds V (b, Sy) by an average of 2.61, and improvements are
observed in 87.1% of the initial states. To characterize uncertainty, we examine the proportion of
states under which the SCRs do not cover 0 (i.e., the average CGM blood glucose level is not within

*https://www.kaggle.com/datasets/ryanmouton/ohiot1dm


https://www.kaggle.com/datasets/ryanmouton/ohiot1dm

the normal range) for both target policies. Owing to the uniform property of the SCR, the proportion
of states for which the SCRs do not cover zero reflects the fraction of patients who remain in a
significantly poor condition under the target policy. The results show that, at the 5% significance
level, for policy b, the value function V(b, Sop) is significantly less than 0 in 90.7% of the states,
whereas for policy V(W"pt, Sp), this proportion is 23.3%. We visualize the SCRs where the upper
bound of 95% SCR is below than 0, sorted by the value estimates, in Figure[2] In terms of the average
length, for V(w"”t, So), our method yields an averaged length of 27.0, while SAVE with Bonferroni
correction produces an AL of 32.4, which is 20% larger than ours. Moreover, for V(b, So), our
method yields an average length of 7.02, compared to 7.58 for SAVE (approximately 8% longer).
These findings suggest that, in the medical context, applying reinforcement learning algorithms
alongside simultaneous inference could improve health outcomes for patients.
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Figure 2: Left: Visualization of values where IA/(b7 Sp) is sufficiently negative (the upper bound of

95% SCR is below 0). Right: Visualization of values where V(W”pt, Sp) is sufficiently negative (the
upper bound of 95% SCR is below 0).

5 Conclusion and future work

In this work, we present a novel simultaneous statistical inference framework for off-policy evaluation,
proving that our SCRs are asymptotically correct via convex Gaussian approximation. The SCRs
have widths exceeding pointwise confidence intervals by only a logarithmic factor. This establishes
near-optimal efficiency while achieving uniform coverage. The method’s validity and efficiency are
demonstrated both theoretically and empirically.

The current results are limited to offline settings. Extending this framework to online RL represents a
natural next research direction. Additionally, the simultaneous inference framework shows potential
for extension to more general Q-learning estimation in RL, including robust value estimation (e.g.,
Panaganti et al.| (2022)), |Cayci & Eryilmaz| (2023)).
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the contributions and scope —
introducing a theoretically justified simultaneous inference framework for off-policy evalua-
tion. These claims are well supported by the theoretical analyses and empirical evaluations
presented in the paper.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The paper discusses several limitations in the final section of the main article.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The paper clearly states the assumptions required for its theoretical results. All
theorems are formally stated and proofs are provided in full in the supplementary material.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experimental setup, including data generation processes, parameter set-
tings, algorithms, and evaluation metrics, is described in detail.

Guidelines:

» The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code is available at https://github.com/xinyuanfan01/Simultaneous-
Statistical-Inference-for-Off-Policy-Evaluation-in-Reinforcement-Learning. The datasets
used were obtained from Kaggle.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This paper provides complete details of the experimental setup, including
data generation schemes, model parameters, and the rationale behind their selection (e.g.,
cross-validation).

Guidelines:

* The answer NA means that the paper does not include experiments.
* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper provides a way to measure the randomness of the simulation results
in Remark 4.1.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper specifies that experiments were conducted on a standard personal
computer. The computational requirements are minimal, and all experiments can be run
efficiently on CPUs without specialized hardware.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research adheres to the NeurIPS Code of Ethics. The dataset used is
publicly available on Kaggle, and the algorithms proposed do not pose known ethical or
societal risks.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.
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Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any high-risk models or datasets and poses no
identifiable risk of misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The dataset used is publicly available on Kaggle.
Guidelines:

» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not introduce any new datasets or models. It proposes a new
theoretical framework.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

 The paper should discuss whether and how consent was obtained from people whose
asset is used.
* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve any human subjects or crowdsourced data collec-
tion.

Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This study does not involve human subjects and does not require IRB approval.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: No large language models (LLMs) were used as part of the method develop-
ment, experimentation, or analysis.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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The supplementary materials are organized as follows. In Section[A] we discuss the key challenges
in policy evaluation for offline reinforcement learning and describe methods for assessing dataset
quality. In Section B} we report the additional simulation results described in the main article. In
Section[C] we detail the construction of the state space in the real data example. In Section[D] we
present the cross-validation method for selecting the number of basis functions. In Section|[E] we
provide the double fitted Q-learning algorithm. In Section[F] we introduce commonly used basis
functions and verify the related conditions stated in the main paper. Section [G|contains the proofs of
the theorems, along with the relevant lemmas.

Notations in this supplement are summarized as follows. For a vector v =: (v, v2,...,vp) € RP,

let [v| = (320, v,?)l/Q. For a random vector V and probability measure P, denote ||V|p , =:

[Ep (\V|q)]1/ 7 q > 0 where Ep(-) is the expectation with respect to probability P. For simplicity,
we shall use E(-), || - ||q. || - || instead of Ep(-), || - ||p,¢» || - ||p,2. respectively if no confusion arises.
For a matrix A, the determinant of a matrix A is denoted as det(A). If the matrix A is real and
symmetric, we use Apin(A) (Amaz(A)) to denote the smallest (largest) eigenvalue of A. For any
two positive real sequences a,, and b,,, write a,, < b, if there exists 0 < ¢ < C' < oo such that
¢ < liminf, o an /b, < limsup,,_, an/b, < C. We write a,, < by, (an, 2 by,) to mean that
there exists a universal constant C' > 0 such that a,, < Cb,, (Ca,, > b,,) for all n.

A Offline Reinforcement Learning: Evaluation Challenges and Dataset
Quality

Unlike online environments (e.g., Go or MiniGrid), collecting data through online interaction in many
real-world applications, such as healthcare or autonomous driving, can be costly or even hazardous.
This limitation hinders the widespread adoption of traditional online RL methods. As an alternative,
offline RL leverages large historical datasets, and it is particularly suited to situations where online
interaction is infeasible but existing data is available for learning.

Nevertheless, offline RL introduces unique challenges compared to online RL. From the learning
perspective, key difficulties include distributional shift, where the behavior policy used to collect
the dataset may differ from the target policy being learned, potentially leading to poor performance
or overfitting; and sample inefficiency, since learning relies entirely on a static dataset, preventing
online exploration. From the evaluation perspective, estimating policy performance without online
deployment necessitates off-policy evaluation (OPE), which is the focus of our work. A central
challenge in OPE is the gap between estimated off-policy performance and real-world outcomes.
Recent methods, such as pointwise confidence intervals, aim to quantify this gap probabilistically.

*Equal contribution.
fCorresponding author.
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Our work extends these tools from pointwise to global inference, providing more reliable guarantees
for decision-making.

The quality of an offline dataset critically affects learning and evaluation. Important factors include
state-space coverage, reward signal diversity, action variety, and compatibility between the data distri-
bution and the RL algorithm. As noted in |Levine et al.|(2020), formalizing a non-trivial sufficiency
condition for dataset quality remains an open problem. In our framework, these considerations are
captured through Assumptions (A1)—(A3), under which the dataset’s quality can be roughly quantified
by its sample size N. Our empirical results demonstrate reliable performance of our large-sample
theory with dataset sizes around N = 2000, outperforming modified classical methods such as SAVE
when sample sizes are larger. This scale is modest compared to typical offline RL applications: for
instance, the HiRID |Rodemund et al.| (2023)) and MIMIC-III Johnson et al.|(2016)) datasets contain
extensive ICU records collected over multiple years, and datasets like D4RL (Datasets for Deep
Data-Driven Reinforcement Learning) provide large-scale data for computer science applications.
These examples highlight that our approach can be reliably applied across a wide range of real-world
scenarios.

B Additional simulation results

B.1 Sensitivity analysis for scenario 1

We perform the sensitivity analysis for scenario 1 by taking (n,T) = (25,50), (50,50) as two
illustrative examples and examining the results by varying the specification of K over a relatively
wide range. The results are presented in Table[S.T] It can be seen that our method is not sensitive to
the choice of the number of basis functions K.

Table S.1: Sensitivity analysis under Scenario 1 for different values of K.
n T K ECP AL
10 092 0.121
11 093 0.127

25 50 15 004 0133
13 092 0137
20 093 0.120
s 5o 22 094 0127

24 096 0.135
26 095 0.143

B.2 SAVE with the Sidak correction for Secnario 2

The results for SAVE with the Sidak correction in Scenario 2 are summarized in Table Results
with high noise and non-Gaussian errors are reported in Table [S.3]

Table S.2: Results for Scenario 2 using SAVE with Sidak correction. Format: ECP(AL).

n T  Legendre SAVE (Sidak) Spline SAVE (Sidak)
30 50 0.980 (9.431) 0.976 (9.778)
50 30 0.968 (10.476) 0.942 (11.115)
40 50 0.976 (8.181) 0.974 (8.593)
50 40 0.990 (8.124) 0.984 (7.741)
50 50 0.978 (8.237) 0.966 (8.617)
50 150 0.974 (7.393) 0.972 (6.075)
50 200 0.974 (6.435) 0.966 (7.385)
50 250 0.952 (6.223) 0.980 (5.431)
200 70 0.972 (5.360) 0.978 (5.050)
250 70 0.972 (4.804) 0.958 (4.503)
300 70 0.986 (4.726) 0.972 (5.020)




Table S.3: Results for Scenario 2 with #(8) noises. Format: ECP(AL).

Legendre SAVE  Legendre SAVE

Spline SAVE

Spline SAVE

n T LegendreSCR = g roroni) (Sidak) Spline SCR B 1 ferroni) (Sidak)
30 50 0940 (4.706) 0934 (4431) 0980 4.424) 0936 (3.716) 0934 (3.967) 0986 (3.961)
50 30 0944(2721)  0932(3.316) 0990 (3311) 0934 (3.694) 0.932(3.959) 0.988 (3.953)
40 50 0946(3349) 0934 (3.658)  0.992(3.652)  0952(3.632) 0.950(3.755) 0.990 (3.749)
50 40 0932(2.876)  0928(3279) 0990 (3.274) 0944 (3.104) 0.942 (3.393) 0.988 (3.388)
50 50 0.934(3.488) 0926 (3448)  0.986(3.443)  0.934(2776) 0932 (3.043) 0.994 (3.044)
50 150 0948 (2333)  0.944 (2.498) 0988 (2.494)  0.948 (2.415) 0.944 (2.524) 0.988 (2.520)
50 200 0.942(2012) 0946 (2.168)  0.984(2.165  0.936(2.078) 0934 (2.184) 0988 (2.181)
50 250 0932(1.962) 0934 (2.111)  0.994(2.108) 0950 (2.330) 0.944 (2.332) 0.986 (2.329)
200 70 0946(1.970)  0.996(2.024)  0.996(2.021)  0.944 (2.176) 0.944 (2.196) 0.980 (2.192)
250 70 0948 (1.644)  0.980(1.784) 0980 (1.780)  0.944 (1.943) 0.944 (1.968) 0.982 (1.965)
300 70 0930(1495)  0.986(1.625) 0986 (1.623) 0948 (1.770) 0.944 (1.800) 0.980 (1.797)

B.3 Comparison with the importance sampling method for Scenario 2

We evaluated our method against the importance sampling (IS) approach (Jiang & Li/2016, [Hanna
et al.|2017) under Scenario 2. Specifically, we set Sy = (—2+0.4i, —2+0.45) ' where 0 < 4,5 < 10.
For each combination of ¢ and j, we generated ng = 100 trajectories, each of length 10, while keeping
all other settings unchanged. For bootstrapping IS, we employed the algorithm from Hanna et al.
(2017), which provides confidence intervals for each V' (, Sp). The Bonferroni correction was then
applied to obtain the simultaneous confidence bands (SCB).

It is worth noting that IS approach estimates the value function by directly reweighting trajectories,
whereas in Scenario 2, the target policy 7(1|s) = I(s") > 0,53 > 0) is discontinuous in s.
Moreover, the choice of target policy frequently results in weights of zero, reducing the effective
sample size and causing the IS estimates to be dominated by a small subset of samples. This leads to
biased estimates and, consequently, degraded performance. We mention that Hanna et al.| (2018)) also
highlighted the same issue in their Section 7. Our method is not impacted by this problem, further
showecasing its practical applicability.

From the results, under this setting, the IS method achieves an empirical coverage probability (ECP)
of 0.638, with an average length (AL) of 5.300. This is below the nominal level of 0.95. Increasing the
sample size can improve the coverage of the IS method, however, the associated bootstrap procedure
becomes computationally expensive. In contrast, our method performs well even with a smaller
sample size (ng = 10), achieving an empirical coverage probability (ECP) of 0.954 and an average
length (AL) of 4.575.

C Specific construction for states in the real data example

In the real data example in the main article, we construct a three-dimensional state variable .S; ; for

S . 1)
each patient 7 at time step ¢. Specifically, .S; ;

.+, represents the average CGM blood glucose level over

the preceding three-hour interval. SZ-(_Qt) is a decayed sum of carbohydrate intake within the same
period, where each meal’s carbohydrate estimate is discounted according to its temporal distance
from the current interval. Specifically, if meals are recorded at times t1, to, ...ty € [t — 1,t) with

corresponding carbohydrate estimates CE;, CE,, ..., CEy, then Si(?t) = Zj\;l CE; - 0.536(t;=t+1),

Si(? denotes the average basal rate over the same three-hour window, capturing the background level.

D Cross-validation for choosing the number of basis functions

The method of cross-validation is widely used in machine learning and sieve methods (see, for
example, [Van Der Laan & Dudoit| (2003, Hansen| (2014)), Bates et al.| (2024))). Based on the key
equation (3.5) in the main article, we adopt the following 5-fold cross-validation approach, as
described in Algorithm |S.1

Algorithm S.1 5-Fold Cross-Validation




—_

: Input: Observed data D = {(R; ., Ait, Sit, Si+1) bo<i<T;, 1<i<n; candidate set of choices
Kean = {k1,..., ki }.

2: Randomly partition D into 5 approximately equal-sized folds: Dy, Do, D3, Dy, Ds.
3: forj=1to5do
4:  Set the j-th fold as validation set: Dy, < D;.
5:  Set the remaining 4 folds as training set: Dy + J it D;.
6: fork=1toldo
7: Obtain Bﬁr *) based on Dirain using equation (3.6) with &y, basis functions.
8: Let
CV(j k)= Z { (Ri,t +7 Z O(Sye41) " B m(al Sy e41)
Dyal acA
‘ 2
~a(s,) T8 ) @(si,t)} .
9:  end for
10: end for

11: Let k* = argming—y ... ; 23:1 CV(j, k).
12: Output: Select k.« as the number of basis functions.

E Double-fitted Q-iteration algorithm

The double-fitted Q-iteration algorithm (Hasselt|2010) is presented in Algorithm[S.2] The Q-function
Q(-,;0) can be specified using any model indexed by 6, and we use a linear model with basis
functions to approximate Q).

Algorithm S.2 Double Fitted Q-Iteration Algorithm

1: Input: Observed data {(R; ¢, A; ¢, 51, Sit+1) Yo<t<Ti, 1<i<n; initialize parameters 04,05
repeat
Step 1: For all ¢, ¢, compute target values:

QY =Rt +1Q (Si,t+17 arg max Q(Sit11.d'504), éB)

QP =Ry +1Q <Si,t+17 arg max Q(Si41.d50), éA)

4:  Step 2: Update parameters by minimizing squared errors:

04 arglrelinzz HQ(Xi,taAi,t;eA) - th i
it

) 2
0p argrgin E E HQ(Xi,t,Ai,t§93) - th
Bt

5: until convergence
6: Output: Learned parameter 6 4.

F Sieve method

In this section, we introduce commonly used sieve basis and verify the related conditions in the main
paper. We list several commonly used sieve basis as follows, which can be used in our simultaneous
inference framework.

Example F.1 (Legendre). Define Legendre polynomials
1 &
b@) = S a

Then continuous function f(z) on [—1,1] can be written as

00 1 1
f@) =Y aPi@). o=+ [ P
j=0 -1

(% = 1), xe€[-1,1].



Example F.2 (Fourier). Consider real-valued function f(x) € La[—1,1] i.e. fil f(z)dz < co. By
Fourier transformation, f(x) can be written as

o) 1
f@ = Y aoi@h 0= [ 6@
j=—o0 -
where {$;(2)}52_, = {(cos(jmx) + isin(jrz)) /\/5};";_00 forms an orthonormal basis for

Lo[-1,1].

Example F.3 (Harr wavelet). The Haar sequence was proposed in 1909 by Haar{ (1910). Haar
used these functions to give an example of an orthonormal system for the space of square-integrable
functions. For every pair n, k of integers in Z, the Haar function h,, i, is defined on the real line R by
the formula

B i (t) = 2720 (27t — k),

where h(t) is the Harr wavelet’s mother wavelet function

1 0<t<i
h(t)=< -1 i<t<1.
0 otherwise

The Haar system on the real line is the set of functions
{hpx(t) :n €L, kel},

which is an orthonormal basis.
Example F.4 (Daubechies wavelet). For N € N, a Daubechies mother wavelet of class Daubechies-
N is a function ¢ € Lo (R) defined by

2N—-1

¢(x) :=v2 Y (=) han 1 k(2w — k),
k=1

. N-1 N-1
where ho, hy,--- ,han_1 € R are constant and satisfy Y, _, hor = - Y ko hort1, as well

V2
as, forl =0,1,--- N — 1,

2Ni+2l - {1’ 1=0
klg—21 =
= 0, 1#0

The p(x) is the scaling wavelet function supported on [0,2N — 1) and satisfies the recursion
equation o(x) = \/52?;]0_1 hio(2x — k), as well as the normalization [, p(z)dz =1, [, o(22 —
k)p(2x — l)dx = 0,k # 1. As listed in|\Daubechies|(1992), the filter coefficients hg, . .., han_1 can
be efficiently computed. The order N decides the support [0,2N — 1) and provides the regularity
condition

/:cj¢>(x)dx:0,j:0,--~ ,N.
R

The Harr wavelet as introduced above can be regarded as a special Daubechies wavelet with N = 1.
In our simulations and data analysis, we employ Daubechies wavelet with a sufficiently high order N
to construct a sequence of orthogonal sieve basis as proposed in|\Daubechies|(1988)). For a given J,
and Jy, we consider the following periodized wavelets on [0, 1]

{osr(@),0 <k <27 —Lig(x),Jo <j<J,—1,0< k<2 — 1}, where

Paon(x) =273 "0 (200 + 2700 — k) | gj(a) = 22 ¢ (22 + 21 — k)
IEZ lez

or equivalently, by |Yves|(1989),
{@rk(2),0 <k <2/71),

The 2. equals to our basis number K. Additionally, we refer to|Chen|(2007) for a more general
example of orthogonal wavelets.



F.1 Sieve approximation

For the approximation (3.4), we show that the sieve method can approximate any function in the
Holder space with smoothness p. Given d-tuple « = («q, ..., a4) of nonnegative integers and
[a] = a1 + - -+ + agq, the Holder space with smoothness p, AZ(S), is defined as

D _ D
AZ(S)=: < heC™(S): sup sup|D*h(s)| < C, sup  sup |D%h(z) hw)l <C
[a]<m seS [a]=m x,yeS, x#y ‘.’E - y|7

S.1)
where C' > 0 is a constant, p = m + v,y € (0, 1], C™(S) is the class of m-times continuously
differentiable real-valued functions on S, and the differential operator

9lel

1 Qg
Ox™ -+ 0z

For function Q(; -, a) € AL(S), sup,cs ea |Q(m;s,a) — ®(s) Bz 4| = O(K~P/4) if ®(s) is the
tensor product of sieve bases such as B-splines, Legendre polynomials, orthogonal wavelets, or Fourier
series if it is periodic; see Section 2.3.1 in|Chen| (2007) or [Timan|(2014),Y ves| (1989),Chen| (2007).
As discussed in|Shi, Wan, Chernozhukov & Song| (2021)), there exists some transition density function
g such that P(ds’, a) = q(s'|s, a)ds if the transition kernel P(:|s, a) is absolutely continuous with
respect to the Lebesgue measure. The following Lemma shows that Q(7; -, a) € AL(S) if ¢(s'|-, a)
and reward (s, a) follow certain mild conditions.

Lemma F.1 (Lemma 1 in|Shi, Zhang, Lu & Song| (2021))). If there exist some p, C > 0 such that
r(-,a),q(s'|-,a) € AL(S) forany a € A,s' € S, then there exists constant C' > 0 such that
Q(m;,a) € AL, (S) for any policy w and a € A.

DY =

F.2 Geometric properties of sieve space

In this section, we verify the condition (3.13)) in Proposition [3.2] Condition (3.13) are simplified
requirement on the sieve basis which will yield a polynomial rate N¢ (¢ > 0) for the geometric
quantities, including volume, curvature, and boundary of the manifold {®(s)/|®(s)| : s € S}. For

simplicity, we only verify [ A d/2 (MTM)ds > N¢in condition (3.13). We refer to Assumption

mm

4 of |Chen & Christensen|(2015) and Example 1 2 in |Quan & Lin|(2024) for the rest polynomial
rate conditions in (3.15). Define {x n =: sup,cs |P(s)] and A y =: sup,c5 |V®(s)|. Then there

exists @, wo, w1, w) > 0s.t. &gy SN and Ag v S N“1 and N® < K < N“o,
Lemma F.2 (Lemma E.1 in|Shi, Zhang, Lu & Song| (2021))). There exists some constant c* > 1 such

that
()" < Amin { / @(s)@T(s)ds} < Amax { / fIJ(s)q)T(s)ds} <c*
seS seS
and ércy < VK.

We verify condition (3.15)) using trigonometric basis functions as a representative example. A similar
procedure applies to other types of basis functions.

Suppose that d = 1,8 = [—m, 7], the number of basis functions is K = 2K + 1,K 2 1,
and ®(s) = (1,sin(s),cos(s),-- ,sin(Ks),cos(Ks))T. Then |®(s) \/K+ ,M(s) =
(0, cos(s), —sin(s), - - -, K cos(Ks), —K sin(Ks))" /v K + 1,and MTM = Zi:l i /(KJrl) >

K?. As aresult, we have [¢ Apin(MTM)ds > K = N©.

—m, 7|2, Suppose that the number
d(s1) ® ¢(s2) where ¢(s) =
(s2)/(K +1), Mz( ) =9(s1) ®

Now consider the case where d = 2 and & = |
of basis functions is K = (2K + 1)>. Then ®(s) =
(1,sin(s), cos(s), - -- ,sin(Ks),cos(Ks))". Mi(s) = 1(s1) ®

2 (51) © ¢
¥(s2)/(K + 1) where ¢ (s) = (0, cos(s), —sin(s), - - - , K cos(Ks), —K sin(Ks)) .
ey (¢(51)T¢(81)¢(82)T¢( 2) ¢(81)T¢(51)¢(52)T¢(82))
(K +1)2 \W(s2) To(s2)0(s1) "¥(s1)  @(s1) " d(51)(52) "(s2)
1 1~ 1 0 1 - 1 0
_ mgK(K F1)2(2K +1) (o 1) = K@K +1) (o 1) .



Then we have [¢ Apin(MTM)ds > K 2 N°.

G Technical proofs

G.1 Dependence measure and geometric ergodicity

To measure the dependence in the Markov chain, we introduce the concept of physical dependence
measure in/Wul (2005). For a pair of jointly distributed random variables (X,Y), let Fxy (z,y) =
P(X <,Y <y),7,y € R, be the joint distribution function and Fy | x (y | ) = P(Y <y | X = )
the conditional distribution function of Y given X = z. For u € (0, 1), define the conditional quantile
function G(z,u) = inf {y € R: Fy|x(y | ) > u}. Let U be a uniform (0, 1) distributed random
variable and assume that U and X are independent. Then we can view Y as the outcome of the
bivariate function Y =4 G(X, U) such that

(X,Y) =4 (X,G(X,U)). (S.1)

For many standard constructions of stochastic processes (see e.g. |[Deak|(1990), chapter 5), a stochastic
process { X} can be represented as

X1 X1 Hy (Uy)
X -, Ga (X1,U2) -, Hj (Uz) (S2)
Xn Gn (anlaUn) Hn (Un)

where Hy, ..., H,, are measurable functions. The above representation can characterize many Markov

sequences (see e.g. Riischendorf & de Valk! (1993). If { X; } is a Markov chain, then the conditional
quantile G (X;_1,U;) can be viewed as a function of X;_. Wiener| (1958) first considered this
representation problem for stationary and ergodic processes. For a Markov chain { X;} with the form

X; = G; (X;-1,U;),Wu & Mielniczuk (2010) asserts that, there exists a copy X; of X; such that
()Z’l e 4 (Xi);ez and 5(:1 is expressed as H; (...,U;_1,U;), a function of iid random variables.
Lemma G.1 (Theorem 4.1 in|Wu & Mielniczuk! (2010)). Assume that {X;} satisfies the recursion
X, =G; (X;21,U;) =: F; (X;-1) ,i € Z, (8.3)
where U; are i.i.d. standard uniform random variables. Here F; are independent random maps

Fi(z) = G, (x,U;). Assume that for some o > 0 we have

Gi 7U - Gi ,U
sup L; < 1, where L; = sup |Gi(z,U) (y )Ha
i€Z z#y |l‘ _ yl

and for some x,

sup |G (zo,U)||,, < oc.

i€z
Then the backward iteration F; o F;_q o F;_o ... converges almost surely and the limit forms a
non-stationary Markov chain which is a solution to (S.3).

Lete;, i € Z, be i.i.d. random variables and let H; = (..., {;—1,¢;). Based on Lemma we can
consider the irreducible and aperiodic Markov chain {X;} as

X, = H; (H,) , 1€ Z S.4)

where H,; are measurable functions. We view ¢; as the input and X; as the output of the system. If
H; does not depend on i, i.e., H; = H, then the process (X;) is stationary. Then we introduce the
following definition to measure the dependence of { X} in (S:4): Let {¢/} be an i.i.d. copy of {(;},
denote H; p = (Hi—k—-1,C_ g, Cimbt1,- -5 G).

Definition G.1 (physical dependence measure). Assume that sup; ||H;(H;)||, < oo for ¢ > 0, then
we can define the physical dependence measure of {X;} as

Gra(,0) = sup [, (Hs) — H(Ms.0)l (8.5)
1€

where M = (Hi—k—1,C_ s Gimkt1s - - Ci)-



Note that the Lemma|[G.1] and Definition [G.T|allow a nonstationary Markov chain; our theorem can
actually be generalized to nonstationary cases, which can be a promising future work.

For our stationary state observation { S ¢ }, by Lemma|G.1} our geometric ergodicity assumes { S, }
is an irreducible and aperiodic Markov chain where there exists {Sp;} = S(#;) in the form of
(S:4) such that {So :} =4 {So,+} and the physical dependence measure is geometrically decaying,

i.e. 65(k,1) = O(x*) for some constant y € (0, 1). In fact, for contracting Markov chains (e.g.,
autoregressive models), this assumption generally holds. Notice that

5s(k,q) < sup[s|T" D/ (55 (k, 1)1/, (S.6)
sES

§5(k,q) = O(x*) holds for any given ¢ € N since state space S is bounded. Furthermore, denote
D(Sp ) = G(H:) = D o S(Hy), then the physical dependence measure

0o (k,q) =t |G(Hi) = G(Hip)llq = O(Ak,nOs(k,q)) = O(Ak nX").
Note that |®(Sp )| < sup, |®(s)| = £k, n. Using the fact min{z, 1} < z*,x > 0 for any given
a € (0,1), we can have dg (k,q) = O(EK,NA?@NXM) for any given « € (0, 1).

G.2 Proof of Theorem[3.1]

We introduce the following lemmas before proving Theorem [3.1] In the proof of Theorem [3.1]and

the following Lemmas, we will omit the subscript 7 in U (+), ur(+), Xx, f),r, BW, B, wa, etc, for
brevity. For simplicity, we deduce our proof under the condition (3.4). In other words, we consider
the Q-function Q*(;s,a) = ®(s)"3* , instead of Q(;s,a). This can be achieved when the

T,a

@-function is smoothing enough as discussed in Section El We denote the dimension of 3 as
p =: mK where p < K since m is fixed. For the convex Gaussian approximation, we introduce a
smoothed function

hae (W) =: h <mf”€’46|w_y|) , S7)
where w € RP, convex set A C RP, and 1
1, r <0,
By = {125 0<T<y (S.8)

21-=)?, 3<z<]1,

0, x>1.

To show the convex Gaussian approximations, we introduce the following Lemmas.

Lemma G.2 (Lemma 5.3 in|Fang & Koike|(2024)). For any p-dimensional random vector W,

sup |P (W € Q) — P (Z € Q)| < 4p**e; + sup [Ehg., (W) — Ehg., (Z)|,
0eO 0eO

where Z is a p-dimensional Gaussian random vector with invertible covariance matrix and 9 is the
collection of all the convex sets in RP.

Lemma G.3 (Theorem 2.1 in[Fang (2016)). Let W = >""" | X, be a sum of p-dimensional random
vectors such that E (X;) = 0 and Cov(W) = 3. Suppose W can be decomposed as follows:

1. Vi € [n],3i € N; C [n], such that W — X, is independent of X;, where [n] = {1,--- ,n}.
2.Vie[n],j € N;,AN; C Nyj C [n], such that W — X, is independent of { X;, X }.
3. Vi € [n],j € Ni,k € Nyj,3Nsj C Nyp C [n] such that W — Xy, is independent of
{Xi, X, X}
Suppose further that for each i € [n],j € N;, k € N,
| X < B, |Ni| < na, [Nij| < ng, [Niji| < ns
where | - | is the Euclidean norm of a vector. Then there exists a universal constant C' such that
3
sup [P(W € Q) — P (21/22 e @)] < Cpt/in HE—WH B (m + ”—5)
0eo

where Z is a p-dimensional Gaussian random vector preserving the covariance structure of W and
where O denotes the collection of all the convex sets in RP.



Lemma G.4 (Lemma E.2 in |Shi, Zhang, Lu & Song| (2021)). Suppose the conditions in The-
orem hold. We have as N — oo that [|[X7'[, < 3¢ L [[Zr = O(1),[Z - X|r =

O, {Kl/Q(nT)_l/QlogN}, ’i_l —E_lHF = 0, {Kl/QN_l/QlogN} and HE_IHF < 6et
with probability approaching 1.

Lemma G.5 (Lemma E.3 in |Shi, Zhang, Lu & Song (2021)). Suppose the condi-
tions in Theorem H hold. As N — oo, we have Apax (Tfl Zthfol Eﬁo,tf&}) =

O(l) max { -1 21 1 ZtT 01 57, tf } = Op(l)’ )\min (T_l Z?:Bl EgO,t&(—)r,t) 2 6/2 and
Amin { DD Z;‘F 01 &, tf } > ¢/3 with probability approaching 1.

Proof of Theorem[3.1] By definition and the arguments in Section[F.1] we have

n T-1
é:ﬁ_ﬁ*zz Zzgit{ flt ’in7t+1)Tﬂ*}‘| 7
i=1 t=0
N 1 n T-1
- lN. fi’t{Ri’t_(I) (Si.e) Am"‘VZ(I) Si i1 BW(aSzt+1)}]a
i=1 t=0 =
1t n T—1
S o - p
=3 <N i fl,tfz,t) + (Z ( z:: Z:: 57, +tE; t) -+ O(K p ) (59)
where
gip =R+ Z Q* (73 Siv1,0) 7 (a | Sivr1) — QF (75 Sie, Ait) - (5.10)

acA

Denote G; ; as the sub-dataset {S; ¢, A; +} U {(R; ;, Ai j, Siaj)}1<j<t' By the Bellman equation and
conditions (2.1) and (2:2), we have B

E (et | Fir) =E (it | Sipes Aie) =0
Recall the definition &; ; = £(S; ¢, A;+) in (3.3), we have forany 0 < ¢; < t; <T —1
Eei,tlgﬁbgi—,rtlgi,b =K {Ei,hgi—,rtlgi,h]E (Ei,tz | ]:i,tz)} =0
Therefore, forany 0 < ¢; <ty <T —land 1 <4 < ip < n we have ]E€i1,t1€i2,t2f;t1€iz,t2 =0

and
n T— 2 n T-1 T-1
2 T 2 T
g E il = E E ]Egi,tfi,t&,t =n E E€o,t§o,t§0,t
i=1 t=0 i=1 t=0 t=0

By Assumption (A3) and Lemma[F2] we have
2

n T-— T-1
Z Zfz,t&,t < ”ZEfo ot S TLTSUPM)( )| = O(NK)
i=1 t=0 t=0

By Markov’s inequality, N ' >°" | Zt 0 e 1€t = Op(y/K/N), and together with Lemma

we have .
. 7 1 O 3
(OO Yl (N Z Z gmsw) =0, (KN"'logN). (S.11)

In the following, we show the convex Gaussian approximation on ! ( TN Zl 1 Zt 0 §, tEi f).
Denote Zy = ﬁ Z?:l ZtT;Ol z; and z; ; = &; +€; 4, define the truncated z; ; as

- Zit, |Zit| < TN
7, = ’ = S.12
bt {O, otherwise. (5.12)

Denote Zy = > i, Zt o Zit/VN and Zy =: Zy — EZy. Suppose T/m = k € N w.lo.g., and
define ( )
z, = E(z | Fin(t)), (S.13)



where Fp, (t) = 0(Ct—m1, - - -5 C¢). Then sz), E ) are independent as long as |k—7j| > m. Further

let Z\GY = 30 ST 2 VN and Z\Y = z(’"> EZ(™, then Z%, — ZW = Zy — Z20.

Denote the covariance matrices 2 and Q™) of Z and ZE\T)

standard Gaussian random vector G and denote

respectively. Introduce a p-dimensional

Gy =0%G, G = (mm))l/

so that G and GS\T) preserve the covariance structure 2, Q("), respectively. We then introduce
the convex Kolmogorov distance to measure the convex distribution probability difference between
p-dimensional random vectors X and Y,

K(X,Y)=:sup |[P(X € 0) —P(Y € 0), (S.14)
0ed
where O is the collection of all the convex sets in R”. Comblmng (S29) and (S.TT), it suffices to show
K(Zn,Gpn) = o(1). By Lemmamand |[Vha| <2e !, we can decompose the K(Zy, Gy ) as

K(Zn,Gn) < 4KY%e + sup IE [ho.c, (ZN) — hoe, (Gn)]]
< Kie + Slelg E {h@,q (ZN) = ho e, (z}k\zﬂ + Stelg E [h@,q (zj\r) ho,e ( (m))H

Zy
+ supE [h@,el (GE{Z”) — ho, (GN)} +sup [ [h@,sl (zx")) o, ( )] ‘

, 1
SKia+ - Zy -7

‘zN zm)‘+ E’G(m) G|

+sup |[E {h@ . (z< )) — hoe (G“"))H (S.15)
0eo

Based on decomposition (S:13), for ¢ > 4 and appropriate m < log n, we shall prove the following

assertions as follows:

(1) Truncation error

E|Zy - Zy| = O(VNry %€k ). (S.16)
(2) M-decomposition error
E|Z - Z;m)’ — o(v/nmh el ). (S.17)
(3) Gaussian comparison
E ’G%’” _ GN‘ —0 (wav—qufgn) . (S.18)

(4) Gaussian approximation
sup |E [ho.c, (Z) = ho, (Gﬁ@)” o) (K1/4N 2} log” N + - K1/4N 178 log* N) .
0eO

(S.19)

Truncation error Inview of EZy =0and z;; — Z;; = Zi 1)z, ,| >y WE have forq > 1,

E|Zy — Zy| <E|Zy — Zx| + [EZy — EZy|

9 n T-1
—=E Z ziﬁtl‘zi.t‘>7rN
VN i=1 t=0 '
|Zzt| -
< 2VNE ||z
= 2\/N7TN_ZIHZZ'¢||Z, (S.20)
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which yields (S16) using the fact ||z; ¢ ||, = O(sup, |®(s)|) = O({x,n) for any given g € NT.

Moreover, we can also have for ¢ > 1,

A7)

= O(Tny), (S.21)

|Zn — Z%| < NN{E l|z1,t|2 ( .

where Ty 4 = \fﬂ'N q||Zzt||2q

M-decomposition error Denote operator P¥)z; ; =: E(z; ;| Fx(t)) — E(z;,
fact z; ; = lim; o0 £(Z; ¢|F4;(t)), we have on a richer space,

ZN—ZSQ’”:TINZ > pltig, = WZ Z RiT,, (5.22)

i=1 t=0 j=m—t+1 1=1 j=m—-T+1

—1(t)) using the

T—

H

where R; 7 ; =: Z?:(m—j—i—l)\/l P(+9)z, ;. By Jensen’s inequality, for ¢ > 1,

e, <o
q

’q = {E |E(2i¢|Ct—kt15- - - Ct) — B(Zit|Cr—rg2, - - -,Ct)|q}1/q

_ {IE ‘E [E (it He 1) — E (2| He) ‘Ht_,m} q}l/q <oa(k—1,q). (S.23)

Note that for given i, process {R; 7 ;,j > m — n + 1} is martingale difference with respect to
filtration 0(¢_j41,C(—j+2,--.). If ¢ > 2, by Burkholder’s inequality, there exists constant Cy; > 0
such that

Y Rirg| <G Y IRizsl]
j=m—n+1 j=m—n+1
q
2
<c, Y 3 HPUH)zi,lH . (S.24)
j=m—n+1 \I=(m—j+1)V1 ?

Using the fact 0 (k, q) = O(A% yx** €k ) for any given o € (0, 1), (S23) yields

fpe

= O(¢x N A% N X*). (S.25)

Combining (S:22)), (5:23), (S:24), and (S.23) elementary calculation yields

7 % 7 (m — ~(m ]- = > a am
1Z =257 =12y =257 = = 30| 30 Rurg| = O A vx*™): (526

j=m—n+1
Setting appropriate m-decomposition m < log V (e.g., m = (q74)|w1;r‘f;°g/(112/;)1/6| g N ), we have
for g > 4,
ExnAx nX"" < TNy (S.27)

with o < min{1, %;U_,?Wl +wo/12 — 1/6]}.

Gaussian comparison For a matrix A, denote ||A||F as the Frobenius norm of A i.e. ||A||r =
(tr(ATA)) /2 Recall @ = E (Zl D ri t) (Z?:l St z:t) /N and

11



Consider the difference of covariance matrix between ZE\T)

the fact EZy = 0 and EZ("” = EZy,

and Z based on Frobenius norm, using

lo—om| < |E(zy-25) @w)7|, + HEZS\T,”) (zv - 2")

F
+|[E @y -Z0)E 2y -2Z0)| - (S.28)

By (S21) and (S26),
|E(2n = 23") @) <112 = 2371 1Z8]) = O (Tagfin i x™™) . (529)
and similarly, we also have

~(m ~(m T 7 m 7
o2 (2 - 207) | <li2 - 2871 o) = O (Ticndican™™) . 530
F

Besides, by (S:20),

|E(Zy - 20)E(2Zn - 20)"|| < [BZy -2Z0)|" =0 (T2,). (S.31)
Combining (5:29), (S-30), (S:31),
HQ — Q0| = O (T2, + TogfrenBic i X™) (S.32)

By Assumption (A3) and Lemma we have inf, , w(s,a) > cgl and

T—1
Amin (Q) > cgl)\mm(% ; Eéo.404) 2 o 6, (S.33)
which yields
A (20™) > Ain () + Apin (2 — Q™) > 56 — HQ —Qm HF > 0. (S.34)
Combing (S:32)), (S:34) and sub-multiplicativity of Frobenius norm, we have
E[GI -~ Gy|=E ‘ (91/2 - (Q<m>)1/2) G‘

1/2
Ql/2 _ (Q(m)> =0 (T2 + Tn,qEK,nA(IX{,nXam) ) (S.35)

< ‘ n,q
F

By similar arguments in (S.27), {x n A% ,X*™ = 0o(Ty,q) by appropriate m and «, which yields

Gaussian approximation Plug n; = m, ny = 2m, ng = 3m, k = N~ /27y into Lemma

with (S:34), we have
K (Zg;”% C;E;")) -0 (K1/4N-1/27r§v log? n) . (S.36)
Moreover, in the proof of Lemmal|G.3} equation (4.23) in [Fang| (2016) yields

(s»tég E [h@,q (Zﬁ@“) — ho,e (G%”))} ' < Cnknynge; {Kl/‘i(el +n3B) + K (Z%”), Gg\r]n))} ,

by (5:36),
7 (m ~(m — 1 —
sup [E [h@ (z§v >) — howe, (va >)} ) =0 <K1/4N /273 log? N + aKl/‘w L6, log* N) .
(S.37)
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Let w1y = \/K1k2, Where
gp= NZED KT@DEL T gy = NSK 12 log™ % N. (S.38)
Combining (S.16), (S-17), (S-13), (S-19), and (S.13),

1 ,
K(Zx,Gn) =0 (Kiel +— (N%W}V*qggg N+ N7 L KE N 7 log? n) + KiN~ 273 log? N> .
o : :

Therefore, with appropriate €; and ¢ > 4, we have when K = o(n?/7~¢) for any given ¢ > 0,

K(Zy,Gn) =0 (\/KiN%w}VQg;gN + KSNTmy%€h o+ KN 273 log? N) = o(1).

(S.39)
Furthermore, combining Lemma and using the fact K < v/N/log N, by similar arguments in

(E.29) of |Shi, Wan, Chernozhukov & Song|(2021), one can show ||f]‘1Q(f]T)_1 -2y =
op(1), which yields the validation of the Bootstrap algorithm from the Slutsky’s theorem. O

G.3 Proof of Proposition[3.2]

Proof. It suffices to find C ny such that as N — oo,

P (sup IT(s) G| < c%N) —1-a, (S.40)
seS

where T(s) = 1(s)/|1(s)| = U(s) "AY/?/\/U(s)TAU(s) and G is standard p-dimensional random
vector. Denote manifold

M =:{T(s): s € S}, (5.41)

and let kg be the volume of the manifold M, and (; be the area of the boundary OM; Let k5 and (4

be measures of the curvature of M and 0 M respectively, and my measures the rotation angles in the
regions 9% M.

By Proposition 3 in[Sun & Loader] (1994), for the « in (S:40), we have
I'((d+1)/2) 2 2 G I'(d/2) 2 2
« :IﬁjowP (Xd+1 > Ca,N) + 5 7T-d/2 P (Xd > Ooz,N)
+ I'((d—1)/2
i Ko 4 C1 + mo T'(( )/ )P (X3—1 > Ci,N)
02
+0 <C§J\‘} exp <— ‘;’N >> , (S.42)

27 m(d=1)/2
where x? is the chi-square random variable with the degree of freedom d.

To bound the positive geometric quantities kg, (o, %2, (1, Mo appearing in (S-42)), we give the follow-
ing formulations for numerical computation. For simplicity, we suppose S = [0, 1]¢ and the boundary
0S consists of those points s with exactly one component O or 1. The regions where two faces of 0S
meet are denoted 92S. Denote matrix A = (T1(s),...,Tq(s)) where T;(s) = 0T (s)/0x; with
s = (21,...,24) " and indicator vector e = (e1,..., ejyd)T such thate; ; = land e;, = 0 if
k # j. By (3.2) and (3.3) in|Sun & Loader|(1994), the xq and k5 can be computed as

Ko = / det/2(AT A)ds, (S.43)
S
Ko = / {S(s) - ‘i(d_l)} det'/2(AT A)ds, (S.44)
s 2 2
where
d j—1
S(s) =2 oy (s) Tank(s) — ajr(s) Tar i (s)],
j=2k=1

13



—1 0AT

ani(s)" = ey (ATA) " ——
J

(1-A(ATA)"AT).

For (1, o measuring the boundary OM, by (3.4) in|Sun & Loader| (1994)) and the second and third
equation on Page 1335 of |Sun & Loader|(1994),

Co= / det'/2(ATA,)ds, (S.45)
as
G = / Ci(s) det'/?(AT A, )ds, (S.46)
as
where indicator vector €5 = (ej1,...,€;j4-1)" suchthate;; = land e, = 0if k # j.
d—1
_,0A]
== (e)T(A]A) 55 Uals),
j=1 55
Ua(s) = (I — Au(AJA)TIA)Ty(s),
A, = (T1(s), ..., Ta-1(s)), (8.47)

on the face s € OS at which s4 is maximized, with similar definitions for ¢; (s), U;(s), A, on other
faces where s; is maximized. Moreover, by the fifth and seventh equations on Page 1335 of |Sun &
Loader (1994),

mo = / mo(s) det'/?(A]LA,,)ds, (S.48)
928
where
mo(s) = cos™! (Ug_1(s) "Uy(s)),
A** = (T]_(S), ) Td—?(s))a (849)

at a point s at the meeting of the faces s;_1 = 1 and sy = 1, with similar definitions for mq(s) on
other meetings of the two faces of 0S.

Denote (s) = AY/2U(s) and s, B(s) = 85(5)/85j, then basic calculation yields

T . 2

s 10,32 (03" 305 _ 10, 3(5)
|®(s)]? |®(s)|* IO
Using the fact det'/?(ATA) < tr(ATA)/d and tr(ATA) = 2?21 IT;(s)|?, by (S-43), (S43),

(548). Note that |®(s)| > /Amin(A)|®(s)] = n by condition (3.13), Assumptions (A2) and
(A3), there exists constant ¢; > 0 such that

0 <|T;(s)]

/2
d/2 d = d
1 [V®(s)] ,
ﬁg/(trATA) dsg/ T,;(s)]? dsg/Nids:ON“,
o< [ (GuaTa | s = 0w

and similarly, (o = O (N*),mg = O(N) since tr(A], A..) <tr(ATA,) <tr(ATA).

For k9, note that matrix A(ATA)"'AT is idempotent, thus

0A 1 0A
(s)] < ATA < |Z=
o)) < G2 ATA) e < | O
By condition (3.T3), for some constant ¢, > 0,
1 0A
SN [ ———|%2 s+ O(N™) = O(Ner+e2).
R SN | A [ | 4o OV = O
thus ko = O(IN°®) and similarly, we have (; = O(N®) for some constant ¢z > 0.

To sum up, there exists constant ¢ > 0 such that
ma’X{KOaCO7I’€27ChmO} - O(NE) (SSO)
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By Theorem 6 in|{Zhang & Zhou (2020), for constants ¢, C , C > 0, the tail bounds of Xﬁ
cexp (—é’x) <P(x2—d>x) <exp (—C_'x) ,Va > d, (S.51)

Combining (S:30), (S-42), (S.31)) and the fact « is a fixed value, we have n® exp(fC'Cg’N) > 1,

which implies that C,, y = O(/log N). On the other hand, by condition (3.13])), there exists constant
¢ > 0, such that

Ko > / A2 (ATA)ds > N
S

min

Combining (S.42)), (S-31) and the fact « is a fixed value, we have N¢ exp(—éC’iﬂ ) S 1, which

shows Co v = v/Iog N. Combining (S40).(3.11), and (34), we have appropriate C v = log'/? N
such that (3.16)) holds. O
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