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Abstract

The previous works fused lexicon information
while ignored two important Chinese language
characteristics: glyph and pinyin, which carry
significant syntax and semantics information
for sequence tagging tasks. This paper pro-
poses CLGP', which utilizes four specific ex-
tractors to obtain the embeddings of character,
glyph, pinyin and lexicon, and further uses a
network based on cross-attention to perform
multi-embedding fusion. Specifically, we in-
troduce the embedding scheme to preserve the
lexicon matching results, and design two spe-
cific CNN to extract glyph and pinyin embed-
dings. Moreover, we fuse the four embeddings
by cross-attention based network to enhance
the Chinese NER. The experimental results on
four famous datasets show that CLGP achieves
the state-of-the-art (SOTA) performance.

1 Introduction

Named Entity Recognition(NER) aims to auto-
matically recognize named entities in plain text.
In English NER, LSTM-CRF models (Lample
et al., 2016; Ma and Hovy, 2016; Liu et al., 2018;
Chiu and Nichols, 2016; Huang et al., 2015) have
achieved the state-of-the-art results by integrating
character information into word representations.
Compared with English NER, Chinese NER is
more complicated because it has no obvious word
boundaries. One intuitive way is first to perform
word segmentation using existing Chinese word
segmentation tools and then apply the word-based
NER model (Jie et al., 2016; He and Sun, 2017b).
However, such methods suffer from error propa-
gation because named entities may encounter out-
of-vocabulary problems in segmentation. Conse-
quently, some works show that the character-based
methods for Chinese NER have been empirically
proven to be effective (He and Wang, 2008; Liu

!The source code of the proposed method is publicly avail-
able at: https://github.com/acl-2022/CLGP

et al., 2010; Li et al., 2014; Sui et al., 2019; Ding
et al., 2019; Liu et al., 2019). A drawback of the
character-based NER model is that explicit word
information is not fully exploited. To solve this
issue, Zhang and Yang (2018) proposed Lattice-
LSTM that incorporates the word information into
the character-based NER model to avoid the error
propagation of word segmentation.

However, Lattice-LSTM still faces several chal-
lenges. First, it is limited by the structure of no-
parallelizable sequential LSTM. Second, the model
architecture is not only quite complicated but also
difficult to transfer to other neural network archi-
tectures. With this consideration, the LR-CNN
model (Gui et al., 2019a) fully utilizes the parallel
computation of GPU. Ma et al. (2020) proposed
a more straightforward method to implement the
idea of Lattice-LSTM. Moreover, FLAT (Li et al.,
2020) converts the lattice structure into a flat struc-
ture that enables characters to interact with any
potential words directly. However, the NER task is
initially designed for English without considering
the language characteristics of Chinese. There-
fore, two critical aspects specific to the Chinese
language are missing in the current lexicon-based
Chinese NER model: glyph and pinyin information.
Previous works (Sun et al., 2014; Shi et al., 2015;
Liu et al., 2017; Dai and Cai, 2017; Su and Lee,
2017; Meng et al., 2019; Sehanobish and Song,
2020; Xuan et al., 2020; Wu et al., 2021b; Sun
et al., 2021) proved that the rich semantics behind
Chinese character glyph can enrich the expressive-
ness of the Chinese NER task. As shown in Ta-
ble 1,“i#(lake)”, “{f(sea)” and “JZ(bay)” all have
the radical “ { (water)”, which indicates that they
are all related to water in semantics. Furthermore,
other works (Meng et al., 2019; Sun et al., 2021)
showed that pinyin is very important in modeling
semantics features, which cannot be captured by
contextualized or glyph. As can be seen in Table
2, the Chinese character “47” has two distinctly
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Rds Characters Meaning
i 1(ake),iB(sea),iB(bay)  7K(water)
+  ZRk(tea),?f(bud), 75 (litchi)  Fi(grass)
5 BB(roc),f(crow), M (duck) L (birds)
[ FZ(eat), B (shout),"t:(spit) I (mouth)

Table 1: Some examples of Chinese radicals, including
“¥ ”(water), “F.”(grass),“ 2 (birds),* 1 (mouth).

Character Pronunciation Meaning
1T xing, hang walking, line
R yue, le music, happy
H zhong, chéng  weight, repeat
38 hao, hiio like, good
Table 2: In different context semantics, different

pronunciations represent different meanings, such as

“//T:‘[‘.”’“% n’uﬁ:”’“ﬂ%”.

different pronunciations: One can be pronounced
as “xing” , which means “walking”; and the other
is “hang” , which means “line”.

This paper proposes a novel multi-feature fusion
model. We use the embedding scheme to preserve
the lexicon matching results, and design two spe-
cific CNN architectures to extract glyph and pinyin
embeddings. Moreover, we deeply fuse the four
embeddings by cross-attention based network to
enrich the expressiveness of the Chinese NER. The
main contributions of this work are as follows:

* The use of multi-feature embedding of the
Chinese characters enhances NER task.

* We proposed CLGP, a novel multi-feature em-
bedding fusion model, which first extracts dif-
ferent features from character, lexicon, glyph,
and pinyin information, then deeply fuses
them by cross-attention based network.

* CLGP has flexible scalability that can be
widely used in various sequence architectures,
and can be easily combined with pre-trained
models (such as BERT).

* The experimental results show that our CLGP
yields SOTA results on four well-known Chi-
nese NER benchmark datasets.

2 Related Work

There are two main types of Chinese NER enhance-
ment methods, including word segmentation infor-
mation fusion and glyph feature fusion.

2.1 Lexicon-based Chinese NER

Zhang and Yang (2018)%> proposed a Lattice-
LSTM that integrates latent word information into
character-based LSTM-CRF. Gui et al. (2019a) in-
troduced a CNN with a rethinking mechanism to
model all the characters and potential words that
matched the sentence in parallel. However, those
methods are limited by efficiency and cannot be
fixed long-distance dependencies issues. As a re-
sult, other methods converted the lattice structure
into the graph and used a graph neural network
(GNN) to encode it, such as Lexicon-based Graph
Network (LGN) (Gui et al., 2019b) and Collabora-
tive Graph Network (CGN) (Sui et al., 2019). How-
ever, the above methods need use LSTM as the bot-
tom encoder, which makes the model complicated.
Based on this consideration, SoftLexicon (Ma et al.,
2020)* implemented the Lattice-LSTM by a sim-
pler approach that incorporates all the matched
words for each character to a character-based NER
model in order to avoid complicated model archi-
tecture. Moreover, FLAT (Li et al., 2020) also
simplified the Lattice architecture that designs an
ingenious position encoding for the lattice-structure
to reconstruct a lattice from a set of tokens. Never-
theless, unlike the English language, Chinese has
its syntax, lexicon, and pronunciation character-
istics. Therefore, the Chinese language features
(glyph and pinyin) should be considered to enrich
the expressiveness of the Chinese NER task.

2.2 Glyph-based Chinese NER

As a logographic language, the Chinese characters
encode rich information of their meanings. Intu-
itively, the rich semantics behind Chinese charac-
ter glyphs can enhance the expressiveness of NLP
tasks. In order to improve the model’s performance
in Chinese NLP taks, some works (Mikolov et al.,
2013; Sun et al., 2014; Shi et al., 2015; Li et al.,
2015; Yin et al., 2016; Dong et al., 2016) used in-
dexed radical embedding to capture Chinese char-
acter semantics. However, other works (Liu et al.,
2017; Shao et al., 2017; Zhang and LeCun, 2017;
Dai and Cai, 2017) utilized CNNss to extract glyph
features from character images. Besides, Meng
et al. (2019) proposed glyph-vectors for Chinese
character representations. This vector employs sev-
eral historical Chinese scripts to enrich the pic-
https://github.com/jiesutd/
LatticeLSTM.

*https://github.com/v-mipeng/
LexiconAugmentedNER.
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Figure 1: The overall architecture of CLGP, where C, L, G and P are the initial letters of Character, Lexicon, Glyph
and Pinyin, respectively. Q, K and V are the query vector, key vector and value vector in the attention mechanism.

tographic evidence in character. Inspired by the
idea of (Meng et al., 2019; Xuan et al., 2020; Se-
hanobish and Song, 2020; Sun et al., 2021; Wu
et al., 2021a), we find that fusing the glyph into
the Chinese NER can achieve good performance.
However, it is hard to yield SOTA results that only
exploit the glyph features.

The feature extraction method and information
fusion mode have a great impact on the perfor-
mance. Therefore, we propose the embedding
scheme to preserve the lexicon matching results,
and design two specific CNN architectures to ex-
tract glyph and pinyin embeddings. We further fuse
the aforementioned embeddings by cross-attention
based network to enrich the Chinese NER.

3 Model

In this section, we mainly introduce CLGP in de-
tail. The overall architecture is shown in Figure
1, which consists of four parts. The first part is a
feature extractor that generates four different em-
beddings, the second part is cross-attention based
fusion network, the rest are the sequence modeling
and decoding layer.

3.1 Input Embedding layer

The input presentation layer is an important part
of our work, including the embedding generation
models of Character, Lexicon, Glyph and Pinyin.

3.1.1 Character Embedding

For character based Chinese NER model,
put sequence can be viewed as a character set
s={cy,c9,...,cnJ€D,, where D, denotes the charac-
ter vocabulary. Each character ¢; can be embedded
as follow:

in-

¢ =e(ci).

ey

X

where e¢ represents the character embedding
lookup table.

3.1.2 Lexicon Embedding

The lexicon-based embedding is constructed in two
steps. First, we classify all matched words of each
character into BMES sets. Then, we fuse each word
sets into a N-dimensional vector and add them into
corresponding character representation.
Classification matched words. For each char-
acter ¢; in the input sentence s={cj,c2,...,c,/, the
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Figure 2: The Lexicon Embedding. Fj, F,,, and F
denote the vectors obtained by adding all word vectors
in the corresponding group of the BMES set, and F is
the embedding of this character. Besides, & represents
the point-wise addition, and F} is the final fusion vector.

BMES set can be built as follow:

B(c;) + {ij € L Wj = [CZ’,Cm,Ce]}, 2

M(c;) < {Vw; € L w; = [cp,ci,ce]},  (3)
[va Cm, Ci]}7 (4)

S(ci) « {Ve; € L}. (5)

E(c;) + {ij e L wj; =

where L represents the lexicon that we apply in this
work, w; = [c;,cm,ce] denotes ¢; in the starting
position of wj, ¢, and c. are the characters of
middle and end positions in w;, and S(c;) stands
for ¢; itself. Especially, if a word set is empty, it is
represented by symbol /.

Fusion all word sets. After classifying the
“BMES” word set of each character, we map them
into a N-dimensional vector. In order to simplify
the structure as much as possible, we use point-
wise addition to combine the word set features,
which can not only simply implement but also effec-
tively improve computational efficiency compared
with weight-based methods. As an example shown
in Figure 2, the character ¢4 matches three words
w34 CBIF”), wa 5(“HFFE”), and w3 4 5 6(“FH G
#%"). Therefore, the word sets can be constructed
by {B, M, E, S} and hence the final fusion embed-
ding of corresponding character can be computed
by the following formula::

1

z[vs D vp D Uy, D V). (6)
Here, vy, v, and v, are vectors obtained by adding
all word vectors in the corresponding group of the
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Figure 3: CNN Architecture for Glyph Embedding.

BMES set, and v, is the character vector from em-
bedding lookup table. vff is the final fusion em-
bedding vector of character cy.

3.1.3 Glyph Embedding

The previous work (Meng et al., 2019) had shown
that directly using deep CNNs in Chinese NER re-
sults in inferior performance. Since the Chinese
character images are significantly smaller than Im-
ageNet images (800x600) and there are only about
10,000 distinct Chinese characters, they lack train-
ing examples.

We design a specific CNN structure to extract
glyph features from character images. Moreover,
we select four different types of fonts for each char-
acter — Song, LiShu, CaoShu and ZhuanShu, whose
each image size is 24 %24 and pixel value ranges
from 0 to 255. Our motivation for choosing fonts is
to use as many different writing styles as possible
to help to capture more features. As we can see in
Figure 3, the input feature map first goes through
a convolution layer with kernel size 5x5, and its
output has 1024 channels. Next, a max-pooling
with kernel size 4 x4 is used to reduce the feature
map size. Then the feature map goes through an-
other pair convolution and max-pooling layer both
with kernel sizes 2x2. After that, we convert the
2x2x512 output to a 2048 vector. Finally, the flat-
tened vector is fed to an FC layer in order to build
the glyph embedding.

3.1.4 Pinyin Embedding

The same Chinese character may have different se-
mantic meanings. Therefore, pinyin embedding
can avoid this situation. We use open-sourced
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Figure 4: The process of pinyin embedding generation.

pypinyin package* to generate the corresponding
character’s pinyin sequence. As shown in Figure 4,
we employ a CNN model with width 2 for each Chi-
nese character’s pinyin sequence, which is followed
by average-pooling to obtain the pinyin embedding.
Especially, we append the tones at the end of the
character’s pinyin sequence as a unique token. The
length of the input pinyin sequence is fixed at 8,
When the actual length of a pinyin sequence does
not reach 8, the remaining slots are filled with a
special letter "/".

3.2 Cross-attention Fusion Layer

After generating the character, glyph, pinyin and
lexicon embeddings from the above step, we use
four cross-attention encoders to fuse them. We first
get the input Q;, K;, V; by linear transformation of
character, glyph, pinyin and lexicon embeddings:

T T
Qi Wi
K; =Lk | I ; (7N
Vi Wiv

where E; is the embedding from character, glyph,
pinyin and lexicon. W; is the learnable parame-
ter, and I; denotes the identity matrix. Then we
calculate the attention scores as follows:

Az,i = (Qz,z + ei)TEyv (8)

Atty(Ay, Vi) = Softmax(Ay)Vy, 9)

Atte(Ag,Ve) = Softmax(Ag)Ve,  (10)
Atty(A, V,) = Softmaz(Ac)V,,  (11)
Att)(Ap, Vi) = Softmaz(A,)Vi, (12)
Atty(A;,V,) = Softmaz(A)V,, (13)

where 0; is the learnable parameter for attention
bias, z,y € {C,G, L, P} represent different em-
beddings, A, @, E are attention score, query
vector and embedding in Eq.(8), and Atf, is

*nttps://pypi.org/project/pypinyin/.

Models P R F1

Yang et al.(2016)¢ 65.59 71.84 68.57
Yang et al.(2016)¢*T 7298  80.15 76.40
Che et al.(2013)%* 7771 7251 7251
Wang et al.(2013) &* 7643 7232 72.32
Zhang et al.(2018)*  78.62 78.62 75.77
Zhang et al.(2018)*® 7336 70.12 71.70
Lattice-LSTM 7635 71.56 73.88
PLTE 76.78 7254 76.40
LR-CNN 76.40 72.60 74.45
FLAT - - 76.45

LGN 76.13  73.68 74.89
SoftLexicon 7728 74.07 75.64

+ bichar 7713 7522 76.16
MECT 7157 7627 76.92
CLGP+LSTM 78.39 77.63 77.49
BERT-Tagger 76.11 7996 77.85
Glyce 80.87 80.40 80.62
ChineseBERT 80.77 83.65 82.18
MECT+BERT - - 82.57
CLGP(LSTM)+BERT 82.19 8235 82.83

Table 3: Results on OntoNotes 4.0 (%), where ‘£’ de-
notes gold segmentation and ‘a’ represents the auto
segmentation.

cross-attention under y’s attention score in Eq.(9).
Eqs.(9)-(13) are the cross-attentions for the imple-
mentation of Figure 1. We can implement other
cross-attentions in a similar way from Eq.(9).

Finally, we directly concatenate all features and
input them into a fully connected layer for informa-
tion fusion:

F, = (Att. & Att, & Att; & Att, )W, + b, (14)

where @ represents the concatenation operation,
W, and b are the learnable parameters.

3.3 Sequence Modeling and Decoding Layer

For CLGP, the different application scenarios can
be modeled with different models of sequence. In
this paper, we mainly utilize a Bi-LSTM to im-
plement sequence modeling. And a standard CRF
(John et al., 2001) layer is utilized to capture the
dependencies between successive labels.

4 Experiments

We carry out extensive experiments to assess the
effectiveness of our CLGP. Standard precision
(P), recall (R), and F1 scores are used as eval-
uation metrics. We evaluate our model on four
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Models P R F1 Models NE NM  Overall
Chen et al. (2006) 91.22 81.71 86.20 Peng et al.(2015) 5196 61.05 56.05
Zhang et al. (2006)* 92.20 90.18 91.18 Peng et al.(2016)* 55.28 6297 58.99
Zhou et al. (2013) 91.86 88.75 90.28 He et al.(2016) 50.60 59.32 54.82
Lu et al. (2016) - - 87.94 He et al.(2017)* 5450 62.17 58.23
Dong et al. (2016) 91.28 90.62 90.95 Cao et al.(2018) 5434 57.35 58.70
Lattice-LSTM 93.57 92.79 93.18 Lattice-LSTM 53.04 6225 58.79
PLTE 94.25 9230 93.26 PLTE 5355 6490 59.76
LR-CNN 9450 9293 93.71 LR-CNN 57.14 66.67 59.92
FLAT - - 94.12 FLAT - - 60.32
LGN 94.19 92.73 9346 LGN 55.34 6498 60.21
SoftLexicon 94.63 92.70 93.66 SoftLexicon 59.08 6222 6142
+ bichar 9473 93.40 94.06 +bichar 58.12 6420 59.81
MECT 94.55 94.09 94.32 MECT 61.91 62.51 63.30
CLGP+LSTM 95.03 94.65 95.17 CLGP+LSTM 61.57 6337 64.29
BERT-Tagger 93.41 94.15 93.62 BERT-Tagger 65.69 6221 63.74
Glyce 95.57 95.51 95.07 Glyce 67.68 67.71 67.70
GLYPH - - 95.07 GLYPH - - 69.20
MECT+BERT - - 96.24 ChineseBERT 68.75 7297 70.80
CLGP(LSTM)+BERT 96.29 95.84 96.37 MECT+BERT - - 70.43
CLGP(LSTM)+BERT 71.33 70.59 71.63

Table 4: Results on MSRA (%).

Chinese NER datasets, including Ontonotes 4.0
(Weischedel et al., 2011) , MSRA (Levow, 2006),
Weibo NER (Peng and Dredze, 2015; He and Sun,
2017a), and Resume (Zhang and Yang, 2018).

4.1 Implementation Details

In this paper, the most implementation details of
lexicon embedding follow SoftLexicon (Ma et al.,
2020), including embedding initialization, charac-
ter, word embedding sizes, dropout, and the number
of sequence modeling layers. And we set AdamW
(Loshchilov and Hutter, 2017) optimizer to 0.05
for the Weibo dataset and 0.015 for other datasets.

4.2 Results & Analysis

Tables 3-6°show the experimental results of our
method. Each table is divided into three blocks.
The first block reports classical Chinese NER meth-
ods. The second one shows the SOTA results ob-
tained by lexicon enhanced approaches recently.
The last one is the results combining with BERT
(Devlin et al., 2018). We use BiLSTM for sequence
modeling and a standard CRF layer to capture the
dependencies between successive labels.
OntoNotes. Table 3 shows the results on
OntoNotes 4.0 dataset, where the ‘£’ denotes gold

STable 3-6, * indicates the uses of external labeled data.
denotes the model uses discrete features.

Table 5: Results on Weibo (%). NE, NM and Overall
represent F1 scores of named entities, nominal entities,
and both, respectively.

segmentation and the symbol ‘a’ represents auto-
mated segmentation.The other methods have no
segmentation and apply lexical matching. From
the table, we can draw several conclusions. Firstly,
when combining BERT method replaces a lexi-
con fusion approach, the F1 score increases from
77.49% to 82.83%, which shows that combining
with BERT can effectively enhance the F1 score
on this dataset. Second, we can observe that CLGP
achieves a relatively high precision rate, recall rate,
and F1 score. Finally, CLGP can obtain the highest
F1 value, which outperforms MECT by 0.57%.
MSRA. The results obtained on MSRA are
shown in Table 4. In this table, the first block
results are from (Dong et al., 2016). Compared
to other methods, we find that the F1 score of our
CLGP is higher than the previous SOTA methods
by 0.85% without BERT. Besides, both precision
and recall rate also achieve higher performances.
Weibo. From the Table 5, our method can
achieve SOTA performance in F1 scores Overall.
Compared with the ChineseBERT, CLGP+BERT
improves 0.83%. And the performance of named
entities (NE) also yields the highest F1 score.
Resume. The first block results of Table 6 came



Models P R F1

—+— Lattice-LSTM
Zhang etal.2018)% 9372 9344 93.58 ” Lo
Zhang et al.(2018)*  94.07 94.07 94.24 210 —— LGN
Zhang et al.(2018)¢  93.66 93.31 93.48 %
Zhang et al.(2018)”  94.53 9429 94.41 2
Lattice-LSTM 94.81 94.11 94.46 8
PLTE 9534 9546 9540 £
LR-CNN 95.37 94.84 95.11
FLAT - - 95.45 10
LGN 95.28 9546 95.37 20 0 60 80 100
SoftLexicon 9530 9577 95.53 Sentence fendth
+bichar 9571 95.77 95.74 Figure 5: The inference speed of LGN is compared with
MECT 96.40 95.39 95.89 other baselines under different sentence lengths.
CLGP+LSTM 96.34 96.69 96.63
BERT-Tagger 9479 96.53 95.71 Fusion ontonote msra weibo resum
Glyce 96.62 9648 9654 “Concat 7659 9452 6391 95.63
GLYPH - - 9561 +BERT 8170 9513 7154 96.72
MECT+BERT - - 9589 Self-Att 7732 9473 6230 9621
Table 6: Results on Resume (%). To categorize the CL+GP 77.89 9472 6350 95.89
Zhang and Yang (2018) different experimental settings, CP+GL 76.28 93.62 63.33  95.65
we use & to represents ‘word-based LSTM’, & to de- Average 76.22 94.50 63.71 96.05

notes ‘word-based+char+bichar LSTM’, < to indicates
‘char-based LSTM’, and © to stands for the ‘char-based
+bichar+softword LSTM’ model.

from Zhang and Yang (2018) different implemen-
tations of character-level and word-level models.
Different from those methods, our model integrates
multiple features by cross-attention network to en-
hance Chinese NER. From the Table 6, the perfor-
mance of our CLGP is better than other baselines.

As shown in Figure 5, we also conducted an
experiment to evaluate the inference speed of sen-
tences with different lengths. In this experiment,
we set the batch size of all models to 1. The results
show that CLGP has a great speedup compared
with Lattice-LSTM and LR-CNN when the sen-
tences are short. Compared with MECT model,
our model needs more embeddings and more com-
plicated fusion networks. Therefore, MECT has
advantages in processing short sentences, but there
is no obvious difference between CLGP with the
increase of sentence length. In conclusion, CLGP
has relatively better computational efficiency.

4.3 Ablation Study

We conducted two sets of ablation studies to demon-
strate the effectiveness of our model. One is that dif-
ferent information fusion methods are introduced.
The other is that the specific embedding is removed

Table 7: Ablation studies on different feature fusion
methods, including concat, self-attention, and cross-
attention between different embeddings.

to verify its effectiveness.

4.3.1 Effectiveness of Cross-Attention

As shown in Figure 6, we validate the effects of
cross-attention for CLGP. First, we preform concat
directly for all embeddings. Then, we execute the
self-attention for each embedding. Finally, We use
Eq.(8) and Eq.(9) to calculate the cross attention of
all other combinations to verify the effectiveness
of its mechanism.

(1) Concat Fusion. We first directly concatenate
all the features as a baseline. From Table3-7 we ob-
serve that compared with SoftLexicon, the F1 scores
on the four datasets are higher than SoftLexicon,
our method has obvious performance advantages.
This reveals that glyph features and pinyin infor-
mation can significantly enhance Chinese NER. In
addition, we add BERT embedding on the basis of
concat, which also has obvious advantages com-
pared with GLYPH based on glyph + Bert structure.
This further illustrates that incorporating lexicon
information is critical for Chinese NER.

(2) Self-Attention Fusion. We adapt the fu-
sion network into four sets of self-attention without
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Figure 6: The ablation study to assess the effectiveness
of cross-attention in our model.

Reduce otnt4.0 msra weibo resum
-Char 7713 9485 63.59 95.48
-Lexicon 7597 9320 61.80 94.39
-Glyph 76.83 9483 6159 95.14
-Pinyin 76.45 94.61 6247 95.67
-Chars,Lex 73.64 9391 61.06 94.36
-Chars,Gly  74.56 9352 61.73 94.53
-Chars,Piy 7535 9439 6246 95.74
-Lex,Piy 7475 93.73 6131 94.25
-Gly,Piy 7529 9436 6249 94.39
-Gly,Lex 71.83 9338 61.04 94.17

Table 8: Ablation studies that remove different embed-
dings to verify their effectiveness.

modifying the query vector. As shown in Table
7, the F1 scores are higher than the direct concat,
except for the Weibo dataset. However, the per-
formance is worse than the best combination in
cross-attention but better than the average.

(3) Cross-Attention Fusion. We studied all pos-
sible embedding combinations in cross-attention.
From the second block of Table 7, we find that
the F1 difference between each combination and
the average is small. But there is still an obvious
gap between the best combination and the worst
combination. However, the best-combined perfor-
mance of cross-attention is obviously better than
the performances of concat and self-attention.

4.3.2 Effectiveness of Multi-Feature

We design a specific architecture to fuse the fea-
tures, it is necessary to demonstrate the impact of
different embeddings on our model.

(1) Remove an Embedding. In the first block of

models otnt msra weibo resm
LSTM 7749 9547 64.29 96.63
CNN 7372 9542 62.68 95.34
Transformer 71.81 9340 60.93 95.13

Table 9: The F1 scores of different sequence mod-
els. Otnt and resm represent ontonotes 4.0 and resume
datasets, respectively.

Table 8, we remove one embedding. Two embed-
dings perform cross-attention with the best combi-
nation while the last one directly uses self-attention.
As can be seen in Table 8, removing the character
embedding has the least impact, while removing
the lexicon has a great impact on our model.

(2) Remove two Embeddings. In the second
block of Table 8, two embeddings are removed, and
the rest employs cross-attention. The results show
that embedding without Pinyin and Characters has
the least impact on performance.

4.4 Scalability Study

Table 9 shows the results obtained with different
sequence models in CLGP. As we can see, the
model based on LSTM yields the best performance.

4.5 Combining BERT

The last blocks of Tables 3-6 are the results ob-
tained by combining BERT ©. We follow Ma et al.
(2020) by using a BERT encoder to obtain the con-
textual representations of each sequence and con-
catenate them into final embedding. The results
show that combining BERT outperform the BERT
tagger on all four datasets. Therefore, this result
shows that CLGP can be effectively integrated with
the pre-trained models, such as BERT.

5 Conclusion

This paper proposes CLGP, which uses the embed-
ding scheme to preserve the lexicon matching, and
two specific CNN architectures to extract glyph and
pinyin embeddings, then combine the four embed-
dings by cross-attention based network to enhance
the expressiveness of the Chinese NER task. The
experimental results on four Chinese public NER
datasets show that CLGP sets state-of-the-art per-
formance. We also conducted a series of ablation
experiments to demonstrate the effectiveness of our
method.

®https://github.com/google-research/
bert.
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