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Abstract

The previous works fused lexicon information001
while ignored two important Chinese language002
characteristics: glyph and pinyin, which carry003
significant syntax and semantics information004
for sequence tagging tasks. This paper pro-005
poses CLGP1, which utilizes four specific ex-006
tractors to obtain the embeddings of character,007
glyph, pinyin and lexicon, and further uses a008
network based on cross-attention to perform009
multi-embedding fusion. Specifically, we in-010
troduce the embedding scheme to preserve the011
lexicon matching results, and design two spe-012
cific CNN to extract glyph and pinyin embed-013
dings. Moreover, we fuse the four embeddings014
by cross-attention based network to enhance015
the Chinese NER. The experimental results on016
four famous datasets show that CLGP achieves017
the state-of-the-art (SOTA) performance.018

1 Introduction019

Named Entity Recognition(NER) aims to auto-020

matically recognize named entities in plain text.021

In English NER, LSTM-CRF models (Lample022

et al., 2016; Ma and Hovy, 2016; Liu et al., 2018;023

Chiu and Nichols, 2016; Huang et al., 2015) have024

achieved the state-of-the-art results by integrating025

character information into word representations.026

Compared with English NER, Chinese NER is027

more complicated because it has no obvious word028

boundaries. One intuitive way is first to perform029

word segmentation using existing Chinese word030

segmentation tools and then apply the word-based031

NER model (Jie et al., 2016; He and Sun, 2017b).032

However, such methods suffer from error propa-033

gation because named entities may encounter out-034

of-vocabulary problems in segmentation. Conse-035

quently, some works show that the character-based036

methods for Chinese NER have been empirically037

proven to be effective (He and Wang, 2008; Liu038

1The source code of the proposed method is publicly avail-
able at: https://github.com/acl-2022/CLGP

et al., 2010; Li et al., 2014; Sui et al., 2019; Ding 039

et al., 2019; Liu et al., 2019). A drawback of the 040

character-based NER model is that explicit word 041

information is not fully exploited. To solve this 042

issue, Zhang and Yang (2018) proposed Lattice- 043

LSTM that incorporates the word information into 044

the character-based NER model to avoid the error 045

propagation of word segmentation. 046

However, Lattice-LSTM still faces several chal- 047

lenges. First, it is limited by the structure of no- 048

parallelizable sequential LSTM. Second, the model 049

architecture is not only quite complicated but also 050

difficult to transfer to other neural network archi- 051

tectures. With this consideration, the LR-CNN 052

model (Gui et al., 2019a) fully utilizes the parallel 053

computation of GPU. Ma et al. (2020) proposed 054

a more straightforward method to implement the 055

idea of Lattice-LSTM. Moreover, FLAT (Li et al., 056

2020) converts the lattice structure into a flat struc- 057

ture that enables characters to interact with any 058

potential words directly. However, the NER task is 059

initially designed for English without considering 060

the language characteristics of Chinese. There- 061

fore, two critical aspects specific to the Chinese 062

language are missing in the current lexicon-based 063

Chinese NER model: glyph and pinyin information. 064

Previous works (Sun et al., 2014; Shi et al., 2015; 065

Liu et al., 2017; Dai and Cai, 2017; Su and Lee, 066

2017; Meng et al., 2019; Sehanobish and Song, 067

2020; Xuan et al., 2020; Wu et al., 2021b; Sun 068

et al., 2021) proved that the rich semantics behind 069

Chinese character glyph can enrich the expressive- 070

ness of the Chinese NER task. As shown in Ta- 071

ble 1,“湖(lake)”, “海(sea)” and “湾(bay)” all have 072

the radical “氵(water)”, which indicates that they 073

are all related to water in semantics. Furthermore, 074

other works (Meng et al., 2019; Sun et al., 2021) 075

showed that pinyin is very important in modeling 076

semantics features, which cannot be captured by 077

contextualized or glyph. As can be seen in Table 078

2, the Chinese character “行” has two distinctly 079
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Rds Characters Meaning
氵 湖(lake),海(sea),湾(bay) 水(water)
艹 茶(tea),芽(bud),荔(litchi) 草(grass)
鸟 鹏(roc),鸦(crow),鸭(duck) 鸟(birds)
口 吃(eat),喊(shout),吐(spit) 口(mouth)

Table 1: Some examples of Chinese radicals, including
“氵”(water), “草”(grass),“鸟”(birds),“口”(mouth).

Character Pronunciation Meaning
行 xíng, háng walking, line
乐 yuè, lè music, happy
重 zhòng, chóng weight, repeat
好 hào, hǎo like, good

Table 2: In different context semantics, different
pronunciations represent different meanings, such as
“行”,“乐”,“重”,“好”.

different pronunciations: One can be pronounced080

as “xíng” , which means “walking”; and the other081

is “háng” , which means “line”.082

This paper proposes a novel multi-feature fusion083

model. We use the embedding scheme to preserve084

the lexicon matching results, and design two spe-085

cific CNN architectures to extract glyph and pinyin086

embeddings. Moreover, we deeply fuse the four087

embeddings by cross-attention based network to088

enrich the expressiveness of the Chinese NER. The089

main contributions of this work are as follows:090

• The use of multi-feature embedding of the091

Chinese characters enhances NER task.092

• We proposed CLGP, a novel multi-feature em-093

bedding fusion model, which first extracts dif-094

ferent features from character, lexicon, glyph,095

and pinyin information, then deeply fuses096

them by cross-attention based network.097

• CLGP has flexible scalability that can be098

widely used in various sequence architectures,099

and can be easily combined with pre-trained100

models (such as BERT).101

• The experimental results show that our CLGP102

yields SOTA results on four well-known Chi-103

nese NER benchmark datasets.104

2 Related Work105

There are two main types of Chinese NER enhance-106

ment methods, including word segmentation infor-107

mation fusion and glyph feature fusion.108

2.1 Lexicon-based Chinese NER 109

Zhang and Yang (2018)2 proposed a Lattice- 110

LSTM that integrates latent word information into 111

character-based LSTM-CRF. Gui et al. (2019a) in- 112

troduced a CNN with a rethinking mechanism to 113

model all the characters and potential words that 114

matched the sentence in parallel. However, those 115

methods are limited by efficiency and cannot be 116

fixed long-distance dependencies issues. As a re- 117

sult, other methods converted the lattice structure 118

into the graph and used a graph neural network 119

(GNN) to encode it, such as Lexicon-based Graph 120

Network (LGN) (Gui et al., 2019b) and Collabora- 121

tive Graph Network (CGN) (Sui et al., 2019). How- 122

ever, the above methods need use LSTM as the bot- 123

tom encoder, which makes the model complicated. 124

Based on this consideration, SoftLexicon (Ma et al., 125

2020)3 implemented the Lattice-LSTM by a sim- 126

pler approach that incorporates all the matched 127

words for each character to a character-based NER 128

model in order to avoid complicated model archi- 129

tecture. Moreover, FLAT (Li et al., 2020) also 130

simplified the Lattice architecture that designs an 131

ingenious position encoding for the lattice-structure 132

to reconstruct a lattice from a set of tokens. Never- 133

theless, unlike the English language, Chinese has 134

its syntax, lexicon, and pronunciation character- 135

istics. Therefore, the Chinese language features 136

(glyph and pinyin) should be considered to enrich 137

the expressiveness of the Chinese NER task. 138

2.2 Glyph-based Chinese NER 139

As a logographic language, the Chinese characters 140

encode rich information of their meanings. Intu- 141

itively, the rich semantics behind Chinese charac- 142

ter glyphs can enhance the expressiveness of NLP 143

tasks. In order to improve the model’s performance 144

in Chinese NLP taks, some works (Mikolov et al., 145

2013; Sun et al., 2014; Shi et al., 2015; Li et al., 146

2015; Yin et al., 2016; Dong et al., 2016) used in- 147

dexed radical embedding to capture Chinese char- 148

acter semantics. However, other works (Liu et al., 149

2017; Shao et al., 2017; Zhang and LeCun, 2017; 150

Dai and Cai, 2017) utilized CNNs to extract glyph 151

features from character images. Besides, Meng 152

et al. (2019) proposed glyph-vectors for Chinese 153

character representations. This vector employs sev- 154

eral historical Chinese scripts to enrich the pic- 155

2https://github.com/jiesutd/
LatticeLSTM.

3https://github.com/v-mipeng/
LexiconAugmentedNER.
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Figure 1: The overall architecture of CLGP, where C, L, G and P are the initial letters of Character, Lexicon, Glyph
and Pinyin, respectively. Q, K and V are the query vector, key vector and value vector in the attention mechanism.

tographic evidence in character. Inspired by the156

idea of (Meng et al., 2019; Xuan et al., 2020; Se-157

hanobish and Song, 2020; Sun et al., 2021; Wu158

et al., 2021a), we find that fusing the glyph into159

the Chinese NER can achieve good performance.160

However, it is hard to yield SOTA results that only161

exploit the glyph features.162

The feature extraction method and information163

fusion mode have a great impact on the perfor-164

mance. Therefore, we propose the embedding165

scheme to preserve the lexicon matching results,166

and design two specific CNN architectures to ex-167

tract glyph and pinyin embeddings. We further fuse168

the aforementioned embeddings by cross-attention169

based network to enrich the Chinese NER.170

3 Model171

In this section, we mainly introduce CLGP in de-172

tail. The overall architecture is shown in Figure173

1, which consists of four parts. The first part is a174

feature extractor that generates four different em-175

beddings, the second part is cross-attention based176

fusion network, the rest are the sequence modeling177

and decoding layer.178

3.1 Input Embedding layer 179

The input presentation layer is an important part 180

of our work, including the embedding generation 181

models of Character, Lexicon, Glyph and Pinyin. 182

3.1.1 Character Embedding 183

For character based Chinese NER model, in- 184

put sequence can be viewed as a character set 185

s={c1,c2,...,cn}∈Dc, where Dc denotes the charac- 186

ter vocabulary. Each character ci can be embedded 187

as follow: 188

xci = ec(ci). (1) 189

where ec represents the character embedding 190

lookup table. 191

3.1.2 Lexicon Embedding 192

The lexicon-based embedding is constructed in two 193

steps. First, we classify all matched words of each 194

character into BMES sets. Then, we fuse each word 195

sets into a N-dimensional vector and add them into 196

corresponding character representation. 197

Classification matched words. For each char- 198

acter ci in the input sentence s={c1,c2,...,cn}, the 199
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Figure 2: The Lexicon Embedding. Fb, Fm, and Fs

denote the vectors obtained by adding all word vectors
in the corresponding group of the BMES set, and Fs is
the embedding of this character. Besides, ⊕ represents
the point-wise addition, and Ft is the final fusion vector.

BMES set can be built as follow:200

B(ci)← {∀wj ∈ L, wj ⇒ [ci, cm, ce]}, (2)201

202
M(ci)← {∀wj ∈ L, wj ⇒ [cb, ci, ce]}, (3)203

204
E(ci)← {∀wj ∈ L, wj ⇒ [cb, cm, ci]}, (4)205

206
S(ci)← {∀ci ∈ L}. (5)207

where L represents the lexicon that we apply in this208

work, wj ⇒ [ci,cm,ce] denotes ci in the starting209

position of wj , cm and ce are the characters of210

middle and end positions in wj , and S(ci) stands211

for ci itself. Especially, if a word set is empty, it is212

represented by symbol ‘/’.213

Fusion all word sets. After classifying the214

“BMES” word set of each character, we map them215

into a N-dimensional vector. In order to simplify216

the structure as much as possible, we use point-217

wise addition to combine the word set features,218

which can not only simply implement but also effec-219

tively improve computational efficiency compared220

with weight-based methods. As an example shown221

in Figure 2, the character c4 matches three words222

w3,4 (“青海”), w4,5(“海南”), and w3,4,5,6(“青海南223

路”). Therefore, the word sets can be constructed224

by {B, M, E, S} and hence the final fusion embed-225

ding of corresponding character can be computed226

by the following formula::227

vc
4

f ←
1

4
[vs ⊕ vb ⊕ vm ⊕ ve]. (6)228

Here, vb, vm, and ve are vectors obtained by adding229

all word vectors in the corresponding group of the230

Figure 3: CNN Architecture for Glyph Embedding.

BMES set, and vs is the character vector from em- 231

bedding lookup table. vc
4

f is the final fusion em- 232

bedding vector of character c4. 233

3.1.3 Glyph Embedding 234

The previous work (Meng et al., 2019) had shown 235

that directly using deep CNNs in Chinese NER re- 236

sults in inferior performance. Since the Chinese 237

character images are significantly smaller than Im- 238

ageNet images (800×600) and there are only about 239

10,000 distinct Chinese characters, they lack train- 240

ing examples. 241

We design a specific CNN structure to extract 242

glyph features from character images. Moreover, 243

we select four different types of fonts for each char- 244

acter – Song, LiShu, CaoShu and ZhuanShu, whose 245

each image size is 24×24 and pixel value ranges 246

from 0 to 255. Our motivation for choosing fonts is 247

to use as many different writing styles as possible 248

to help to capture more features. As we can see in 249

Figure 3, the input feature map first goes through 250

a convolution layer with kernel size 5×5, and its 251

output has 1024 channels. Next, a max-pooling 252

with kernel size 4×4 is used to reduce the feature 253

map size. Then the feature map goes through an- 254

other pair convolution and max-pooling layer both 255

with kernel sizes 2×2. After that, we convert the 256

2×2×512 output to a 2048 vector. Finally, the flat- 257

tened vector is fed to an FC layer in order to build 258

the glyph embedding. 259

3.1.4 Pinyin Embedding 260

The same Chinese character may have different se- 261

mantic meanings. Therefore, pinyin embedding 262

can avoid this situation. We use open-sourced 263
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Figure 4: The process of pinyin embedding generation.

pypinyin package4 to generate the corresponding264

character’s pinyin sequence. As shown in Figure 4,265

we employ a CNN model with width 2 for each Chi-266

nese character’s pinyin sequence, which is followed267

by average-pooling to obtain the pinyin embedding.268

Especially, we append the tones at the end of the269

character’s pinyin sequence as a unique token. The270

length of the input pinyin sequence is fixed at 8,271

When the actual length of a pinyin sequence does272

not reach 8, the remaining slots are filled with a273

special letter "/".274

3.2 Cross-attention Fusion Layer275

After generating the character, glyph, pinyin and276

lexicon embeddings from the above step, we use277

four cross-attention encoders to fuse them. We first278

get the input Qi, Ki, Vi by linear transformation of279

character, glyph, pinyin and lexicon embeddings:280  Qi

Ki

Vi


⊤

= Ei

 Wi,Q

Ii
Wi,V


⊤

, (7)281

where Ei is the embedding from character, glyph,282

pinyin and lexicon. Wi is the learnable parame-283

ter, and Ii denotes the identity matrix. Then we284

calculate the attention scores as follows:285

Ax,i = (Qx,i + θi)
⊤Ey, (8)286

287
Attx(Ay, Vx) = Softmax(Ay)Vx, (9)288

289
Attc(Ag, Vc) = Softmax(Ag)Vc, (10)290

291
Attg(Ac, Vg) = Softmax(Ac)Vg, (11)292

293
Attl(Ap, Vl) = Softmax(Ap)Vl, (12)294

295
Attp(Al, Vp) = Softmax(Al)Vp, (13)296

where θi is the learnable parameter for attention297

bias, x, y ∈ {C,G,L, P} represent different em-298

beddings, A, Q, E are attention score, query299

vector and embedding in Eq.(8), and Attx is300

4https://pypi.org/project/pypinyin/.

Models P R F1
Yang et al.(2016)ξ 65.59 71.84 68.57

Yang et al.(2016)ξ∗† 72.98 80.15 76.40
Che et al.(2013)ξ∗ 77.71 72.51 72.51

Wang et al.(2013) ξ∗ 76.43 72.32 72.32
Zhang et al.(2018)ξ♠ 78.62 78.62 75.77
Zhang et al.(2018)α♠ 73.36 70.12 71.70

Lattice-LSTM 76.35 71.56 73.88
PLTE 76.78 72.54 76.40

LR-CNN 76.40 72.60 74.45
FLAT - - 76.45
LGN 76.13 73.68 74.89

SoftLexicon 77.28 74.07 75.64
+ bichar 77.13 75.22 76.16
MECT 77.57 76.27 76.92

CLGP+LSTM 78.39 77.63 77.49
BERT-Tagger 76.11 79.96 77.85

Glyce 80.87 80.40 80.62
ChineseBERT 80.77 83.65 82.18
MECT+BERT - - 82.57

CLGP(LSTM)+BERT 82.19 82.35 82.83

Table 3: Results on OntoNotes 4.0 (%), where ‘ξ’ de-
notes gold segmentation and ‘α’ represents the auto
segmentation.

cross-attention under y’s attention score in Eq.(9). 301

Eqs.(9)-(13) are the cross-attentions for the imple- 302

mentation of Figure 1. We can implement other 303

cross-attentions in a similar way from Eq.(9). 304

Finally, we directly concatenate all features and 305

input them into a fully connected layer for informa- 306

tion fusion: 307

Fe = (Attc⊕Attg ⊕Attl⊕Attp)Wo + b, (14) 308

where ⊕ represents the concatenation operation, 309

Wo and b are the learnable parameters. 310

3.3 Sequence Modeling and Decoding Layer 311

For CLGP, the different application scenarios can 312

be modeled with different models of sequence. In 313

this paper, we mainly utilize a Bi-LSTM to im- 314

plement sequence modeling. And a standard CRF 315

(John et al., 2001) layer is utilized to capture the 316

dependencies between successive labels. 317

4 Experiments 318

We carry out extensive experiments to assess the 319

effectiveness of our CLGP. Standard precision 320

(P), recall (R), and F1 scores are used as eval- 321

uation metrics. We evaluate our model on four 322

5
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Models P R F1
Chen et al. (2006) 91.22 81.71 86.20

Zhang et al. (2006)∗ 92.20 90.18 91.18
Zhou et al. (2013) 91.86 88.75 90.28

Lu et al. (2016) - - 87.94
Dong et al. (2016) 91.28 90.62 90.95

Lattice-LSTM 93.57 92.79 93.18
PLTE 94.25 92.30 93.26

LR-CNN 94.50 92.93 93.71
FLAT - - 94.12
LGN 94.19 92.73 93.46

SoftLexicon 94.63 92.70 93.66
+ bichar 94.73 93.40 94.06
MECT 94.55 94.09 94.32

CLGP+LSTM 95.03 94.65 95.17
BERT-Tagger 93.41 94.15 93.62

Glyce 95.57 95.51 95.07
GLYPH - - 95.07

MECT+BERT - - 96.24
CLGP(LSTM)+BERT 96.29 95.84 96.37

Table 4: Results on MSRA (%).

Chinese NER datasets, including Ontonotes 4.0323

(Weischedel et al., 2011) , MSRA (Levow, 2006),324

Weibo NER (Peng and Dredze, 2015; He and Sun,325

2017a), and Resume (Zhang and Yang, 2018).326

4.1 Implementation Details327

In this paper, the most implementation details of328

lexicon embedding follow SoftLexicon (Ma et al.,329

2020), including embedding initialization, charac-330

ter, word embedding sizes, dropout, and the number331

of sequence modeling layers. And we set AdamW332

(Loshchilov and Hutter, 2017) optimizer to 0.05333

for the Weibo dataset and 0.015 for other datasets.334

4.2 Results & Analysis335

Tables 3-65show the experimental results of our336

method. Each table is divided into three blocks.337

The first block reports classical Chinese NER meth-338

ods. The second one shows the SOTA results ob-339

tained by lexicon enhanced approaches recently.340

The last one is the results combining with BERT341

(Devlin et al., 2018). We use BiLSTM for sequence342

modeling and a standard CRF layer to capture the343

dependencies between successive labels.344

OntoNotes. Table 3 shows the results on345

OntoNotes 4.0 dataset, where the ‘ξ’ denotes gold346

5Table 3-6, ∗ indicates the uses of external labeled data. †
denotes the model uses discrete features.

Models NE NM Overall
Peng et al.(2015) 51.96 61.05 56.05
Peng et al.(2016)∗ 55.28 62.97 58.99

He et al.(2016) 50.60 59.32 54.82
He et al.(2017)∗ 54.50 62.17 58.23
Cao et al.(2018) 54.34 57.35 58.70
Lattice-LSTM 53.04 62.25 58.79

PLTE 53.55 64.90 59.76
LR-CNN 57.14 66.67 59.92

FLAT - - 60.32
LGN 55.34 64.98 60.21

SoftLexicon 59.08 62.22 61.42
+bichar 58.12 64.20 59.81
MECT 61.91 62.51 63.30

CLGP+LSTM 61.57 63.37 64.29
BERT-Tagger 65.69 62.21 63.74

Glyce 67.68 67.71 67.70
GLYPH - - 69.20

ChineseBERT 68.75 72.97 70.80
MECT+BERT - - 70.43

CLGP(LSTM)+BERT 71.33 70.59 71.63

Table 5: Results on Weibo (%). NE, NM and Overall
represent F1 scores of named entities, nominal entities,
and both, respectively.

segmentation and the symbol ‘α’ represents auto- 347

mated segmentation.The other methods have no 348

segmentation and apply lexical matching. From 349

the table, we can draw several conclusions. Firstly, 350

when combining BERT method replaces a lexi- 351

con fusion approach, the F1 score increases from 352

77.49% to 82.83%, which shows that combining 353

with BERT can effectively enhance the F1 score 354

on this dataset. Second, we can observe that CLGP 355

achieves a relatively high precision rate, recall rate, 356

and F1 score. Finally, CLGP can obtain the highest 357

F1 value, which outperforms MECT by 0.57%. 358

MSRA. The results obtained on MSRA are 359

shown in Table 4. In this table, the first block 360

results are from (Dong et al., 2016). Compared 361

to other methods, we find that the F1 score of our 362

CLGP is higher than the previous SOTA methods 363

by 0.85% without BERT. Besides, both precision 364

and recall rate also achieve higher performances. 365

Weibo. From the Table 5, our method can 366

achieve SOTA performance in F1 scores Overall. 367

Compared with the ChineseBERT, CLGP+BERT 368

improves 0.83%. And the performance of named 369

entities (NE) also yields the highest F1 score. 370

Resume. The first block results of Table 6 came 371
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Models P R F1
Zhang et al.(2018)♣ 93.72 93.44 93.58
Zhang et al.(2018)♠ 94.07 94.07 94.24
Zhang et al.(2018)3 93.66 93.31 93.48
Zhang et al.(2018)♡ 94.53 94.29 94.41

Lattice-LSTM 94.81 94.11 94.46
PLTE 95.34 95.46 95.40

LR-CNN 95.37 94.84 95.11
FLAT - - 95.45
LGN 95.28 95.46 95.37

SoftLexicon 95.30 95.77 95.53
+bichar 95.71 95.77 95.74
MECT 96.40 95.39 95.89

CLGP+LSTM 96.34 96.69 96.63
BERT-Tagger 94.79 96.53 95.71

Glyce 96.62 96.48 96.54
GLYPH - - 95.61

MECT+BERT - - 95.89
CLGP(LSTM)+BERT 96.57 96.54 96.68

Table 6: Results on Resume (%). To categorize the
Zhang and Yang (2018) different experimental settings,
we use ♣ to represents ‘word-based LSTM’, ♠ to de-
notes ‘word-based+char+bichar LSTM’, 3 to indicates
‘char-based LSTM’, and ♡ to stands for the ‘char-based
+bichar+softword LSTM’ model.

from Zhang and Yang (2018) different implemen-372

tations of character-level and word-level models.373

Different from those methods, our model integrates374

multiple features by cross-attention network to en-375

hance Chinese NER. From the Table 6, the perfor-376

mance of our CLGP is better than other baselines.377

As shown in Figure 5, we also conducted an378

experiment to evaluate the inference speed of sen-379

tences with different lengths. In this experiment,380

we set the batch size of all models to 1. The results381

show that CLGP has a great speedup compared382

with Lattice-LSTM and LR-CNN when the sen-383

tences are short. Compared with MECT model,384

our model needs more embeddings and more com-385

plicated fusion networks. Therefore, MECT has386

advantages in processing short sentences, but there387

is no obvious difference between CLGP with the388

increase of sentence length. In conclusion, CLGP389

has relatively better computational efficiency.390

4.3 Ablation Study391

We conducted two sets of ablation studies to demon-392

strate the effectiveness of our model. One is that dif-393

ferent information fusion methods are introduced.394

The other is that the specific embedding is removed395

Figure 5: The inference speed of LGN is compared with
other baselines under different sentence lengths.

Fusion ontonote msra weibo resum
Concat 76.59 94.52 63.91 95.63
+BERT 81.70 95.13 71.54 96.72
Self-Att 77.32 94.73 62.30 96.21
CG+LP 77.49 95.17 64.29 96.63
CL+GP 77.89 94.72 63.50 95.89
CP+GL 76.28 93.62 63.33 95.65
Average 76.22 94.50 63.71 96.05

Table 7: Ablation studies on different feature fusion
methods, including concat, self-attention, and cross-
attention between different embeddings.

to verify its effectiveness. 396

4.3.1 Effectiveness of Cross-Attention 397

As shown in Figure 6, we validate the effects of 398

cross-attention for CLGP. First, we preform concat 399

directly for all embeddings. Then, we execute the 400

self-attention for each embedding. Finally, We use 401

Eq.(8) and Eq.(9) to calculate the cross attention of 402

all other combinations to verify the effectiveness 403

of its mechanism. 404

(1) Concat Fusion. We first directly concatenate 405

all the features as a baseline. From Table3-7 we ob- 406

serve that compared with SoftLexicon, the F1 scores 407

on the four datasets are higher than SoftLexicon, 408

our method has obvious performance advantages. 409

This reveals that glyph features and pinyin infor- 410

mation can significantly enhance Chinese NER. In 411

addition, we add BERT embedding on the basis of 412

concat, which also has obvious advantages com- 413

pared with GLYPH based on glyph + Bert structure. 414

This further illustrates that incorporating lexicon 415

information is critical for Chinese NER. 416

(2) Self-Attention Fusion. We adapt the fu- 417

sion network into four sets of self-attention without 418
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Figure 6: The ablation study to assess the effectiveness
of cross-attention in our model.

Reduce otnt4.0 msra weibo resum
-Char 77.13 94.85 63.59 95.48

-Lexicon 75.97 93.20 61.80 94.39
-Glyph 76.83 94.83 61.59 95.14
-Pinyin 76.45 94.61 62.47 95.67

-Chars,Lex 73.64 93.91 61.06 94.36
-Chars,Gly 74.56 93.52 61.73 94.53
-Chars,Piy 75.35 94.39 62.46 95.74
-Lex,Piy 74.75 93.73 61.31 94.25
-Gly,Piy 75.29 94.36 62.49 94.39
-Gly,Lex 71.83 93.38 61.04 94.17

Table 8: Ablation studies that remove different embed-
dings to verify their effectiveness.

modifying the query vector. As shown in Table419

7, the F1 scores are higher than the direct concat,420

except for the Weibo dataset. However, the per-421

formance is worse than the best combination in422

cross-attention but better than the average.423

(3) Cross-Attention Fusion. We studied all pos-424

sible embedding combinations in cross-attention.425

From the second block of Table 7, we find that426

the F1 difference between each combination and427

the average is small. But there is still an obvious428

gap between the best combination and the worst429

combination. However, the best-combined perfor-430

mance of cross-attention is obviously better than431

the performances of concat and self-attention.432

4.3.2 Effectiveness of Multi-Feature433

We design a specific architecture to fuse the fea-434

tures, it is necessary to demonstrate the impact of435

different embeddings on our model.436

(1) Remove an Embedding. In the first block of437

models otnt msra weibo resm
LSTM 77.49 95.47 64.29 96.63
CNN 73.72 95.42 62.68 95.34

Transformer 71.81 93.40 60.93 95.13

Table 9: The F1 scores of different sequence mod-
els. Otnt and resm represent ontonotes 4.0 and resume
datasets, respectively.

Table 8, we remove one embedding. Two embed- 438

dings perform cross-attention with the best combi- 439

nation while the last one directly uses self-attention. 440

As can be seen in Table 8, removing the character 441

embedding has the least impact, while removing 442

the lexicon has a great impact on our model. 443

(2) Remove two Embeddings. In the second 444

block of Table 8, two embeddings are removed, and 445

the rest employs cross-attention. The results show 446

that embedding without Pinyin and Characters has 447

the least impact on performance. 448

4.4 Scalability Study 449

Table 9 shows the results obtained with different 450

sequence models in CLGP. As we can see, the 451

model based on LSTM yields the best performance. 452

4.5 Combining BERT 453

The last blocks of Tables 3-6 are the results ob- 454

tained by combining BERT 6. We follow Ma et al. 455

(2020) by using a BERT encoder to obtain the con- 456

textual representations of each sequence and con- 457

catenate them into final embedding. The results 458

show that combining BERT outperform the BERT 459

tagger on all four datasets. Therefore, this result 460

shows that CLGP can be effectively integrated with 461

the pre-trained models, such as BERT. 462

5 Conclusion 463

This paper proposes CLGP, which uses the embed- 464

ding scheme to preserve the lexicon matching, and 465

two specific CNN architectures to extract glyph and 466

pinyin embeddings, then combine the four embed- 467

dings by cross-attention based network to enhance 468

the expressiveness of the Chinese NER task. The 469

experimental results on four Chinese public NER 470

datasets show that CLGP sets state-of-the-art per- 471

formance. We also conducted a series of ablation 472

experiments to demonstrate the effectiveness of our 473

method. 474

6https://github.com/google-research/
bert.
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