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Figure 1: Our proposal.

Abstract

The training of neural networks is usually monitored with a validation (holdout)1

set to estimate the generalization of the model. This is done instead of measuring2

intrinsic properties of the model to determine whether it is learning appropriately.3

In this work, we suggest studying the training of neural networks with Algebraic4

Topology, specifically Persistent Homology (PH). Using simplicial complex repre-5

sentations of neural networks, we study the PH diagram distance evolution on the6

neural network learning process with different architectures and several datasets.7

Results show that the PH diagram distance between consecutive neural network8

states correlates with the validation accuracy, implying that the generalization error9

of a neural network could be intrinsically estimated without any holdout set.10

1 Introduction11

Generalization is what makes a machine learning model useful; the uncertainty of its behaviour with12

unseen data is what makes it potentially dangerous. Thus, understanding the generalization error of a13

model can be considered one of the holy grails of the entire machine learning field.14

Machine learning practitioners typically monitor some metrics of the model to estimate its generaliza-15

tion error and stop the training even before the numerical convergence to prevent the overfitting of16

the model. Usually, the error measure or the metric relevant to the task is computed for a holdout17

set, the validation set. Since these data have not been directly used for updating the parameters, it18

is assumed that the performance of the model on the validation set can be used as a proxy of the19
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generalization error, provided it is representative of the data that will be used in inference. One20

can, though, potentially overfit to this holdout set if is repeatedly used for guiding a hyperparameter21

search.22

Instead of relying on an external set, though, the question of whether it could be possible to estimate23

the generalization error with some intrinsic property of the model is highly relevant, and it has been24

barely explored in the literature. On the other hand, Algebraic Topology has recently been gaining25

momentum as a mathematical tool for studying graphs, machine learning algorithms, and data.26

In this work, we have the goal of, once having characterized neural networks as weighted, acyclic27

graphs, represented as Algebraic Topology objects (following previous works), computing distances28

between consecutive neural network states. More specifically, we can calculate the Persistent29

Homology (PH) diagram distances between a give state (i.e., when having a specific weights during30

the training process) and the next one (i.e., after having updated the weights in a training step) (see31

Figure 1. We observe that during the training procedure of neural networks we can measure this32

distance in each learning step, and show that there exists a high correlation with the corresponding33

validation accuracy of the model. We do so in a diverse set of deep learning benchmarks and model34

hyperparameters. This shines light on the question of whether the generalization error could be35

estimated from intrinsic properties of the model, and opens the path towards a better theoretical36

understanding of the dynamics of the training of neural networks.37

In summary, our contributions are as follows:38

• Based on principles of Algebraic Topology, we propose measuring the distances (Silhouette39

and Heat) between the PH persistence diagrams obtained from a given state of a neural40

network during the training procedure and the one in the immediately previous weights41

update.42

• We empirically show that the evolution of these measures during training correlate with43

the accuracy in the validation set. We do so in diverse benchmarks (MNIST, CIFAR10,44

CIFAR100, Reuters text classification), and models (MLPs in MNIST and Reuters, MLPs45

and CNNs in CIFAR100 and CIFAR100).46

• We thus provide empirical proof of the fact that valuable information related to the learning47

process of neural networks can be obtained from PH distances between persistence diagrams48

(homological convergence). In particular, we show that homological convergence is related49

to learning process and the generalization properties of neural networks.50

• In practice, we provide a new tool for monitoring the training of neural networks, and open51

the path to estimating their generalization error without a validation set.52

The remainder of this article is as follows. In Section 2 we describe the theoretical background of our53

proposal in terms of Algebraic Topology, while in Section 3 we go through the related work. Then, in54

Section 4 we formalize our method. Finally, in sections 6 and 7 we present and discuss our empirical55

results, respectively.56

2 Background57

In this section we introduce the mathematical foundations of this paper. A detailed mathematical58

description is included in the Supplementary Material.59

A simplicial complex is a set composed of points, line segments, triangles, and their n-dimensional60

counterparts, named simplex (K). In particular, a simplicial complex must comply with two properties:61

1. Every face of a simplex is also in the simplicial complex (of lower dimension). 2. The non-empty62

intersection of any two simplices contained on a simplicial complex is a face of both. 0,1,2,3-simplex63

and non simplex examples are shown in Figure 2.64

We can associate to an undirected graph, G = (V,E), a simplicial complex where all the vertices65

of G are the 0-simplex of the simplicial complex and the complete subgraphs with i vertices, in G66

corresponds to a (i−1)-simplex. This type of construction is usually called a complex clique on the67

graph G, and is denoted by Cl(G). Figure 3 shows a graph clique complex Cl(G) example.68
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(a) 0,1,2,3-simplex (b) Non-simplex

Figure 2: Simplex and non-simplex examples.
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Figure 4: Boundary function sample.

Figure 3: Graph clique complex Cl(G) example.

The boundary function is defined as a map, from69

an i-simplex to an (i− 1)-simplex, as the sum70

of its (i− 1)-dimensional faces. A boundary71

function sample is shown in Figure 4.72

In algebraic topology, a k-chain is a combination73

of k-simplices (sometimes symbolized as a lin-74

ear combination of simplices that compose the75

chain). The boundary of a k-chain is a (k−1)-76

chain. It is the linear and signed combination of77

chain element boundary simplices. The space of78

i-chains is denoted by Ci(K).79

There are two special cases of chains that will be useful to define homology:80

• Closed chain or i-cycle: i-chain with empty boundary. An i-chain c is an i-cycle if and only81

if ∂ic = 0, i.e. c ∈ ker(∂i). This subspace of Ci(K) is denoted as Zi(K).82

• Exact chain or i-boundary: An i-chain c is an i-boundary if there exists an (i+ 1)-chain83

d such that c = ∂i+1(d), i.e. c ∈ im(∂ i+1). This subspace of Ci(K), the set of all such84

i-boundaries forms, is denoted by Bi(K).85

Now, if we think in the i-cycles that do not bound an (i+1)-simplicial complex, this is the definition86

i-th homology of the simplicial complex K. The precise definition is the quotient space of Bi(K) a87

subspace of Zi(K) (see Supplementary Material). The number of non equivalent i-cycles (Figure 5)88

is the dimension of the homology group Hi(K), also named Betti numbers.89

Figure 5: The two blue dashed cycles are homo-
logically equivalent, the pink isn’t.

We can create a nested family of simplicial com-90

plexes, Kε , where at each step t, Kεt is embedded91

in the simplicial complex Kεt+1 . We call this set92

a simplicial complex filtration.93

For each filtration simplicial complex, we can94

calculate the homology groups. Then, we can95

look at the birth, that is, when a homology class96

appears, and death, the time when the homology97

class disappears. The PH treats the birth and the98

death of these homological features in Kε for99

different ε values. The lifespan of each homo-100

logical feature can be represented as an interval101

(birth,death), of the homological class. Given102

a filtration, this collection of intervals is named103

a Persistence Diagram (PD) [5].104
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It is possible to compare two PDs using specific distances (Wasserstein and Bottleneck). To efficiently105

perform this operation, due to the size of these diagrams, it is sometimes necessary to simplify them106

by means of a discretization process (such as Weighted Silhouette and Heat vectorizations).107

3 Related Work108

Algebraic Topology and Machine Learning The use of Algebraic Topology in the fields of109

data science and machine learning has been gaining momentum in recent years (see Carlsson [5]).110

Specifically in the case of neural networks, some works have applied topology for improving the111

training procedure of the models [15, 8], or pruning the model afterwards [30]. Other works have112

focused on analyzing the capacity of neural networks [14, 26, 17] or the complexity of input data113

[17]. Furthermore, recent works have provided topological analysis of the decision boundaries of114

classifiers based on PH and Betti numbers [24, 22].115

Graph and topological representations of neural networks Gebhart et al. [12] suggest a method116

for computing the PH over the graphical activation neural networks, while Watanabe and Yamana117

[29] propose representing neural networks via simplicial complexes based on Taylor decomposition,118

from which one can compute the PH. Chowdhury et al. [7] show that directed homology can be used119

to represent MLPs. Anonymous [2] concurrently show neural networks, when represented as directed,120

acyclic graphs, can be associated to an Algebraic Topology object. By computing the PH diagram,121

one can effectively characterize neural networks, and even compute distances between two given122

neural networks, which can be used to measure their similarity. This is unlike other works [11, 13]123

approximating neural networks representations with regard to the input space.124

Estimating the generalization and studying the learning process We are, though, specifically125

interested in the use of PH for analyzing the learning process, especially with the goal of estimating126

generalization. In this regard, the literature is perhaps more limited. Jiang et al. [16] work on127

understanding what drives generalization in deep networks from a Bayesian of view. Neyshabur et al.128

[23] study the generalization gap prediction from the training data and network parameters using a129

margin distribution, which are the distances of training points to the decision boundary. In Li et al.130

[21], authors propose an alternative to cross-validation for model selection based on training once on131

the whole train set, without any data split, deriving a validation set with data augmentation.132

Corneanu et al. [10] try to estimate the performance gap between training and testing using PH133

measures. They claim. However, one can observe some caveats. The first one is that their regression134

fitted to predict the test error has a considerably high error, making it not usable in practice. The135

second caveat is that for fitting the regression one needs at least part of the sequestered testing set.136

In this work, motivated by the interest of having a better understanding of whether it would be137

possible to estimate the generalization of neural networks without a holdout set, we suggest using the138

topological characterization and distances concurrently proposed in Anonymous [2] but, crucially,139

measured between consecutive weight updates. We will show that the evolution of this distance140

is similar to the one of the validation accuracy. Unlike Li et al. [21], we do not use any data at141

all. Unlike [10], we do not build a statistical or machine learning model (linear regression) for142

predicting the testing error. Instead, we propose a new measure, and we empirically show that it143

highly correlates with the validation accuracy. Note that in this work we do not work with any input144

data and activations, but with the parameters of the neural network themselves.145

4 Approach146

Representation For representing neural networks as graphs, we follow the approach proposed147

concurrently in Anonymous [2]. We associate to the neural network, at each learning state (defined148

by its weights), a weighted directed graph that is analyzed as an abstract simplicial complex. It is149

important to note that abstract simplicial complex are used in opposition to geometric simplicial150

complex.151

For every training state, neural network connections are considered as directed and weighted edges152

between neurons, represented by graph nodes. Biases are considered as new edges that join to isolate153

vertices. In this representation, activation functions are lost. Bias information could also have been154
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ignored because, as we will see, it is not very informative in terms of homology, but we decided to155

preserve it.156

Negative edge weights are represented with reverse edges with the same weight absolute value. We157

discard the use of weight absolute value as neural networks are not invariant under weight sign158

transformations. This representation is consistent with the fact that every neuron can be replaced by a159

neuron from which two edges with opposite weights emerge and converge again on another neuron160

with opposite weights. From an homological point of view, this would be represented as a closed161

cycle. Weights are normalized following the Equation 1. ζ is an smoothing parameter that we set to162

1e-6. This smoothing parameter is necessary as we want to avoid normalized weights of edges to be163

0 (in our representation 0 implies a lack of connection):164

max(1− |w|
max(|max(W )|, |min(W )|)

,ζ ) (1)

Algebraic Topology object For each weighted directed graph associated with the state of a neural165

network, we link a directed flag complex to it. The topological properties of this directed flag complex166

are studied using homology groups Hn. We calculate the homology groups up to degree 3 (H0-H3).167

For each state, we use a family of simplicial complexes, Kε , for a range of values of ε ∈ R. The168

simplicial complex at step εt is embedded in the complex at εt+1, for εt ≤ εt+1, i.e. Kε ⊆ Kεt+1 . ε169

is used as a filter that establish the minimum weight of the graph representation edges included on170

the simplicial complex. This collection of contained simplicial complex (associated to a directed171

weighted graph), called filtration, Kεmin ⊆ . . .⊆Kεt ⊆Kεt+1 ⊆ . . .⊆Kεmax , where t ∈ [0,1] and εmin = 0,172

εmax = 1 (remember that edge weights are normalized).173

The sequence of homology groups is calculated by varying the ε parameter to obtain the persistence174

homology diagram. In our case, persistent homology calculations are performed on Z2. In other175

words, once the corresponding filter has been applied to the weight of the edges, all connected edges176

are considered equally.177

Distances between persistence diagrams of consecutive states In this paper, we are interested in178

comparing PDs between different simplicial complex associated to each training state of the neural179

network. There are two distances traditionally used to compare PDs, Bottleneck distance (the length180

of the longest edge) and Wasserstein distance (using the sum of all edges lengths, instead of the181

maximum). Their stability with respect to perturbations on PDs has been object of different studies182

[6, 9].183

In order to make computations feasible and obviate noisy intervals, we filter the PDs by limiting184

the minimum PD interval size. We do so by setting a minimum threshold η = 0.01. Intervals with185

a lifespan under this value are not considered (spurious homological features). Additionally, for186

computing distances, we need to remove infinity values. As we are only interested in the deaths until187

the maximum weight value, we replace all the infinity values by 1.0.188

In our case, our neural networks have millions of persistence intervals per Persistence Diagram,189

while Wasserstein distance calculations are computationally hard for large PDs. In order to make190

calculations computationally feasible, we will use a vectorized version of PDs, also called PD191

discretization. This vectorized version summaries have been proposed and used on recent literature192

[1, 3, 4, 19, 25]. For persistence diagram distance calculation, we use weighted Silhouette and Heat193

vectorizations, using the Giotto-TDA library [27].194

5 Experiments195

Data We validate our method in several heterogeneous (vision, natural language), well-known196

datasets, namely 1. MNIST [20], 2. CIFAR-10, 3. CIFAR-100 [18], and 4. the Reuters dataset [28]197

(multi-class and multi-label document classification dataset).198

Models We experiment with two neural architectures,1. MLPs and 2. CNNs. In the latter case, we199

use the convolutional layers as a pre-trained model with frozen weights, and we learn an MLP on top200

of it. The reason we do so is that our method is based in a representation that, at least in the basic201

form, does not allow capturing information from convolutional layers. Thus, we need a single (exact202
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same weights) feature extractor, to abstract away distances related to the CNN layers and focus on203

the MLP.204

Conducted experiments We define the base MLP architecture as {Input, Linear(512),205

Dropout(0.2), Linear(512), Dropout(0.2), Output}. In the case of CNNs, the pre-trained206

model is defined as 3 convolutional blocks with kernel size 3 (starting with 32 channels), interleaved207

with max pooling (its linear layers are thrown away after the pre-training). On top of the pre-trained208

CNN, we also define the same base MLP architecture. Then, for each dataset and model (MLP and209

CNN), we experiment with varying (while keeping the rest fixed to the base architecture)210

1. Layer size (number of units per layer): 4, 16, 32, 128, 256.211

2. Number of labels (the other classes are removed): 2, 4, 6, 8, 10.212

3. Learning rate: 1e-e05, 0.0001, 0.001, 0.01, 0.1213

4. Dropout: 0.0, 0.2, 0.4, 0.5, 0.8.214

5. Input order: 5 random input orders. As a control experiment, for each analyzed problem215

we run the same configuration with 5 different input orders. If the measured distances are,216

indeed, related with the learning process of neural networks, these variations should not217

have any noticeable effect.218

We run each configuration 5 times with different random seeds (and, thus, weight initializations1) to219

see if the results are consistent across runs. All models are trained with the RMSProp optimizer with220

a batch size of 256.221

Distances and validation accuracy computation Note that homological distances are obtained at222

the end of each batch, while validation metrics are only computed on each epoch. The methodology223

we follow to analyze the learning process on each different problem can be summarized with the224

following steps:225

1. In each training step (i.e., for each batch) we extract the weights from the MLP current state226

and use them to build an abstract simplicial complex from the associated weighted directed227

graph.228

2. We calculate the homological persistence diagram of the simplicial complex.229

3. We then calculate the distance between consecutive persistence diagrams (we will call this230

sequence homological convergence). We use two different distances, namely, Heat and231

Silhouette.232

4. We compare the homological convergence with the evolution of the validation results on233

neural network learning process.234

Hardware All experiments were executed in a machine with 2 NVIDIA V100 of 32GB, 2 Intel(R)235

Xeon(R) Platinum 8176 CPU @ 2.10GHz, and of 1.5TB RAM, for a total of around 7 days. We note236

that our method is considerably demanding in terms of both compute and memory.237

The code and outputs are fully available in the Supplementary Material under MIT License.238

6 Results239

In this section, we highlight the main results, omitting the ones with Silhouette (since the obtained240

results were clearer with Heat). See the Supplementary Material for the full results (plots and241

correlations), including the ones with Silhouette distance.242

We study the relation between the evolution of the PH diagram distances with the one of the validation243

score with the cumulative values of the distance between homologous persistence diagrams because244

this value seems much more stable. The information of the distance between the persistence diagrams245

has been normalized to visualize clearly the type of evolution of each curve on the same scale.246

Some of the non-normalized plots can be found in the Supplementary Material. Figure 6 shows the247

cumulative and non-cumulative homology the MNIST experiment with layer size.248

1The pre-trained convolutional weights are always identical, though.

6



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

D
is

ta
nc

e 
di

ffe
re

nc
e 

(l
in

e)

4 16 32 128 256

0.5

0.6

0.7

0.8

0.9

1.0

V
al

id
at

io
n 

sc
or

e 
(d

as
he

d)

(a) Cumulative

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Epochs

0.0

0.2

0.4

0.6

0.8

1.0

D
is

ta
nc

e 
di

ffe
re

nc
e 

(l
in

e)

4 16 32 128 256

0.5

0.6

0.7

0.8

0.9

1.0

V
al

id
at

io
n 

sc
or

e 
(d

as
he

d)

(b) Non-cumulative

Figure 6: Heat distance and validation accuracy curves on the MNIST experiment with layer size.
Normalized.

For each experiment (e.g., layer size in MNIST), we plot both the evolution of the PH diagram249

distance and the validation score (accuracy). The plotted values are the corresponding means of250

the 5 repetitions with different seeds. In addition, we compute the Pearson correlation for these251

values. Plots show on the x-axis each training step (for each batch) of the evolution in the training252

state of the neural network. On the y-axis, two scales are shown that apply to the distance curves253

between accumulated persistence diagrams (solid lines), scale on the right side, and the neural254

network validation (dotted lines), numerical scale on the left side. For each sub-experiment (for255

example, different values of layer size) a different color was used.256

The general result is that the evolution of the homological convergence of the MLPs seems to be257

very similar to the one of the validation score. This is generally consistent across experiments (see258

the Supplementary Material). Table 1 shows the mean (and standard deviations) of the Pearson259

correlations for all datasets. All means are above 0.8, implying that there is strong correlation.260

Intuitively, this is also observed in the plots, although once the distances are normalized it is not as261

clear to visualize. Interestingly, we find that the very few exceptions in which the correlation is low262

corresponds to extreme values (very small number of neurons per layer, very high learning rate, very263

high dropout), in which the neural network doesn’t end up learning properly.264

In the case of CNNs, the correlations are lower (although still almost always above 0.8 in experiments265

such as the one of increasing the number of layers). Recall that in the case of CNN we froze a266

single convolutional feature extractor, since our method only supports MLPs. We believe these lower267

correlations can be explained because an important part of the learning process happened in the268

convolutional layers (in the pre-training), which we do not capture.269

Another finding is that the method obtains consistent results across runs, meaning that it is capturing270

information related to important properties of the networks themselves instead of random artifacts.271

When varying the studied hyperparameters, we observe that the curves for each configuration are272

indeed, different. Remarkably, in the control experiments, this is not the case; results show that the273

homological convergence during the learning of the same problem with the same model but with274

different input order is very similar. The alteration of the order of the input doesn’t have any effect in275

the homological convergence. The results of two of these experiments are shown in Figure 7.276

In addition, we observe that when the neural network learns the given problem, homological conver-277

gence occurs. For example, when the layer size is modified, the capacity of the neural network to278

learn the problem changes (Figure 6). When it can’t learn the problem, because the network does not279

have sufficient capacity (the layer size is too small, 4 units), the homology does not seem to converge.280

Regarding the learning rate, the results are coherent with the intuition that it is a fundamental281

parameter that controls how much to change the model in response to the estimated error during the282

learning process. A too small learning rate may result in a long training process that could be stalled,283

while a too large value may fall in a fast suboptimal solution or an unstable training process. Using284

homological convergence we find similar behaviour, as can be seen in Figure 9.285
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(b) CIFAR-100 CNN

Figure 7: Learning evolution on input order experiments (control experiments). Normalized.

Heat distance Silhouette distance

Dataset Means mean Deviations mean Means mean Deviations mean

MNIST 0.8910 0.0424 0.8910 0.0424
Reuters 0.6220 0.0700 0.6220 0.0700
CIFAR-10 MLP 0.8233 0.0649 0.8233 0.0649
CIFAR-10 CNN 0.4241 0.1915 0.4241 0.1915
CIFAR-100 MLP 0.8420 0.0566 0.8420 0.0566
CIFAR-100 CNN 0.6130 0.0800 0.6130 0.0800

Table 1: Correlation of validation values with topological difference cumulative. Correlation is
computed with 20 points.

Finally, we note that even if the two convergences (validation and homological convergence) are286

correlated, they are not the same process. This is especially visible in the case of the learning rate287

experiments. For instance, in Figure 9, homological convergence is reached before the stabilization of288

the validation accuracy. Presumably, they are not capturing the exact same information; specifically,289

we believe that the difference is due to the fact that the validation accuracy depends on the specifics290

of the data sampled in the validation subset, while the homological convergence is independent of the291

validation data.292

7 Discussion293

We posed the of question whether homological convergence (in terms of distances between PH294

diagrams in consecutive neural network states) is related to the learning process of neural networks.295

We have seen that, indeed, it is the case, with strong empirical results backing our claim.296

This finding has a remarkable implication. If the homological convergence evolution mirrors the297

validation accuracy curve, one could ignore the validation set to monitor the training. This opens the298

path towards estimating the generalization of neural networks without the need of any holdout set.299

Researchers have wondered for a long time whether generalization could be predicted from intrinsic300

properties of the model or training data alone (i.e., without a holdout set), and in fact other works301

have claimed to do so. Although we do not provide any predictive model, we show that our proposed302

measures strongly correlate with the validation accuracy. In addition, we do so by not using any data303

at all; we just look at the neural network itself.304

Our contribution aims pushing towards having a better understanding of the learning process of neural305

networks, not targeting any specific direct application. However, we note that it can be effectively306

used for monitoring the training of neural networks in terms of convergence expected generalization,307

as we have extensively shown in the experiments. Apart from the cases without access to a validation308
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(b) CIFAR-10 MLP

Figure 8: Learning evolution when dropout parameter is changed. Normalized.
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Figure 9: Learning evolution when modifying the learning rate parameter. Not normalized.

set, this is relevant because depending on a validation set has the risk of overfitting to it. Having an309

intrinsic, well-principled measure should be more robust to random noise in a specific data sample.310

The main limitation of our method is its computational scalability. As we said in Section 5, our311

method took more than 7 days of compute in a HPC machine, even if we restricted the experiments312

to small datasets and parameter count. However, we note that our approach computes the exact313

persistence diagram distances, that is, we do not simplify the graph representation of the neural314

networks (we keep every single neuron and connections) and we do not approximate any computation.315

This leaves room for finding efficient approximations, opening a new research line. In addition, this316

lack of scalability has prevented us from validating our method on bigger models and datasets.317

Finally, we note that instead of computing correlations, serving as a basic quantitative study, it would318

be interesting to perform a time-series analysis to gain more insights on how the two curves vary319

together. Moreover, it would have been interesting to investigate how to build a predictive model of320

the validation accuracy from the PH distances, but it is was of the scope of this work.321

8 Conclusions & Future Work322

In this work, we have provided an empirical proof of the fact that homological convergence is related323

to the learning process and generalization properties of neural networks. Furthermore, we have324

shown that it can be used to monitor the training of a neural network (and potentially estimating its325

generalization) without a validation set. As future work, we suggest generalizing our representation326

to other neural architectures and scaling up the experiments to larger models and datasets, for which327

finding efficient approximations of our method will be crucial.328
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