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Abstract

Causal discovery algorithms typically recover
causal graphs only up to their Markov equivalence
classes unless additional parametric assumptions
are made. The sizes of these equivalence classes
reflect the limits of what can be learned about the
underlying causal graph from purely observational
data. Under the assumptions of acyclicity, causal
sufficiency, and a uniform model prior, Markov
equivalence classes are known to be small on av-
erage. In this paper, we show that this is no longer
the case when any of these assumptions is relaxed.
Specifically, we prove exponentially large lower
bounds for the expected size of Markov equiva-
lence classes in three settings: sparse random di-
rected acyclic graphs, uniformly random acyclic
directed mixed graphs, and uniformly random di-
rected cyclic graphs.

1 INTRODUCTION

One of the most powerful contributions of the theory of
causal graphs [Pearl, 2009, Spirtes et al., 2001] is a complete
characterization of which causal relationships can be learned
from observational data without conducting experiments.
This characterization is given by the concept of Markov
equivalence. Two causal models are Markov-equivalent if
they encode the same conditional independence constraints.
As a result, even a perfect causal discovery algorithm can
only recover the true causal structure up to its Markov equiv-
alence class, unless additional identifiable structure is as-
sumed or happens to be present. Remarkably, Markov equiv-
alence classes for directed acyclic graphs (DAGs) have a
simple graphical characterization, due to Verma and Pearl
[1991]. This is exploited by some of the most widely used
causal discovery algorithms today, all of which return a
Markov equivalence class as their output [Spirtes et al.,

2001, Chickering, 2003, Raskutti and Uhler, 2018]. Con-
sequently, the size of these equivalence classes is a key
measure for how informative the output of such algorithms
is, making the challenge of counting the number of Markov
equivalent graphs a subject of ongoing research [He et al.,
2015, Radhakrishnan et al., 2017, Wienöbst et al., 2023].

The largest Markov equivalence class of DAGs on n vari-
ables has size n!, consisting of all the fully connected DAGs.
However, for small graphs, numerical simulations [Gillispie
and Perlman, 2001, 2002] and recursive enumeration [Stein-
sky, 2003, Gillispie, 2006, Steinsky, 2013] have shown that
the average number of DAGs per Markov equivalence class
is surprisingly small, even less than four. More recently,
Schmid and Sly [2024] proved that for arbitrarily large n,
the expected size of the Markov equivalence class of a uni-
formly random DAG on n variables is bounded by a constant.
These results crucially rely on the uniformity assumption,
effectively placing almost all the weight on dense DAGs.
In practice, however, we expect useful real-world causal
structures to be sparse. Indeed, many causal discovery al-
gorithms work best under a sparsity assumption [Kalisch
and Bühlmann, 2007, Chickering, 2020] and sparse priors
for learning graphical models have been shown to improve
practical performance [Huang et al., 2013, Eggeling et al.,
2019]. Numerous researchers have posed the question of
how large Markov-equivalence classes are for sparse graphs
[Chickering, 2002, Talvitie and Koivisto, 2019, Katz et al.,
2019].

In this paper, we give a first theoretical answer to this ques-
tion. We show that for a wide range of sparse random DAG
distributions, the expected size of the Markov equivalence
classes basically scales exponentially in the inverse edge
density. In particular, when the expected degree of each
vertex is bounded by a constant, the Markov equivalence
classes are exponentially large in the number of vertices of
the DAG in expectation. This result reveals a sharp contrast
to the uniform setting and also has algorithmic implications:
Many greedy search algorithms can be run either in the
space of DAGs or in the space of equivalence classes, but
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with small equivalence class sizes the efficiency gain re-
mained unclear [Chickering, 2002]. Our results suggest that
the efficiency gap becomes larger as the input graphs are
sparser.

Moreover, we extend our analysis of Markov equivalence
classes beyond DAGs. Causal models represented by DAGs
inherently make two assumptions: causal sufficiency, mean-
ing that there are no unobserved common causes, and
acyclicity, implying the absence of causal feedback loops.
Both assumptions may be violated in applications, motivat-
ing the study of more general graphical models: acyclic di-
rected mixed graphs (ADMGs), which allow for unmeasured
confounders, and directed cyclic graphs (DCGs), which per-
mit cyclic causal relationships. Just as for DAGs, Markov
equivalence has been characterized for both models [Spirtes
and Richardson, 1997, Richardson, 1997] and corresponding
causal discovery algorithms that output Markov equivalence
classes have been developed [Spirtes et al., 1999, Richard-
son, 1996b]. The characterization of Markov equivalence
classes is much more complex in both cases, and little is
known about the sizes of these Markov equivalence classes.
Here, we establish super-exponential lower bounds for the
expected size of Markov equivalence classes of uniformly
random ADMGs and DCGs. Our results exploit specific
underdetermined substructures, leaving open the possibility
that more restrictive model classes, such as maximal an-
cestral graphs [Richardson and Spirtes, 2002], may exhibit
smaller Markov equivalence classes by prohibiting such
structures. In general, our results highlight the need to sup-
plement causal discovery with stronger, possibly parametric
assumptions, or to perform interventions if one wants to
reduce the size of the set of plausible graphs, let alone find
a unique causal graph that explains the data.

1.1 OUR RESULTS

In this section, we provide formal statements of our results.
For a parameter p ∈ [0, 1), consider the following natu-
ral sampling process for generating a random DAG on n
vertices:

• Include each possible directed edge independently with
probability p;

• If the graph has any directed cycles, reject and repeat.

We denote the distribution arising from this process by
D(n, p) (see also Definition 4 for an alternative description).
The parameter p directly controls the edge density of the
sampled graph, and one can check that D(n, 1/2) is equal
to the uniform distribution on vertex-labeled DAGs. Hecker-
man et al. [1995] already used this distribution in the context
of Bayesian networks and Eggeling et al. [2019] showed
that it has desirable properties as a prior for Bayesian in-
ference over causal structures. While the sampling process
described above becomes impractical for large n due to a

high rejection probability, a more efficient sampling algo-
rithm for D(n, p) has been given by Talvitie et al. [2020].

We study the sizes of Markov equivalence classes of DAGs
sampled from D(n, p) in the regime 6/n ≤ p ≤ o(1/ log n).
The graphs in this regime have expected vertex degree rang-
ing from constant (whenever p = C/n) up to o(n/ log n).
It turns out that the number of graphs that are Markov-
equivalent to a DAG G sampled from D(n, p) scales at least
almost exponentially in the inverse of p.

Theorem 1. Let 6/n ≤ p ≤ o
(

1
logn

)
and G ∼ D(n, p).

Then, we have with probability 1− o(1):

|MEC(G)| ≥ 2
Ω
(

p−1

log2(p−1)

)
.

In particular, this implies:

E[|MEC(G)|] ≥ 2
Ω
(

p−1

log2(p−1)

)
.

For the more general settings of ADMGs and DCGs, we
show that the expected size of the Markov equivalence class
is super-exponential when the graph is sampled uniformly
at random.

Theorem 2. Let G be a uniformly random ADMG on n ver-
tices, and let H be a uniformly random DCG on n vertices.
Then, we have

(a) E[|MEC(G)|] ≥ 2Ω(n2);

(b) E[|MEC(H)|] ≥ 2Ω(n2).

In fact, our proof for Theorem 2 shows that each graph
(ADMG or DCG) on average already has exponentially
many Markov equivalent graphs that all have different edge
adjacencies. This stands in contrast to the DAG setting
where all Markov equivalent DAGs have the same adja-
cencies [Verma and Pearl, 1991]. It raises the question of
whether the existence of such underdetermined adjacencies
in ADMGs and DCGs is the only reason for the blow-up
of the size of their Markov equivalence classes. For DCGs,
we answer this question negatively, by building on a result
of Richardson [1996a] stating that the direction of cycles
is always underdetermined in a Markov equivalence class.
However, for ADMGs, this argument does not apply and
the question remains open.

Theorem 3. Let MEC∗(H) denote the set of graphs that
are Markov-equivalent to H and have the same adjacencies
as H . Then, for a uniformly random DCG H on n vertices,
we have

E[|MEC∗(H)|] ≥ 2Ω(n).

The rest of this paper is structured as follows: in Section 2,
we provide definitions and notation for graphical models,



and state some useful known results. In section 3 we present
an outline of our approach towards proving Theorem 1 for
DAGs (with full technical proofs in the appendix). The proof
of Theorem 2, part (a) for ADMGs can be found in Section 4
and the proof of Theorem 2, part (b) and Theorem 3 for
DCGs is given in Section 5. We discuss the implication of
our results and further open questions in Section 6.

2 PRELIMINARIES

2.1 GRAPHICAL MODELS

A directed graph G consists of a vertex set V (G) and a
set of directed edges E(G), which are ordered pairs (v, w)
of vertices v ̸= w ∈ V (G). A directed mixed graph ad-
ditionally has a set of bidirected edges that are unordered
pairs of vertices {v, w} for v ̸= w. We denote directed
edges by v → w and bidirected edges by v ↔ w. For a
subset of vertices W ⊆ V (G), we define the induced graph
G[W ] as the graph whose vertex set is W and whose edges
are the edges of G that lie entirely within W . A (possibly
self-intersecting) path in a directed mixed graph G is an
ordered list of vertices (v1, . . . , vk) with v1 ̸= vk such that
there is a directed edge (in either direction) or bidirected
edge between any two consecutive vertices in the list. A
directed path is an ordered list of vertices (v1, . . . , vk) with
v1 ̸= vk such that there is a directed edge from vi to vi+1

for i = 1, . . . , k−1. A cycle C = (v1, . . . , vk) is a directed
path that additionally has a directed edge from vk to v1 (all
cycles are directed). In the context of a cycle of length k,
we usually consider all indices modulo k, in particular, we
identify vk+1 = v1. The parents of a vertex v are the ver-
tices u that have a directed edge u → v, the children of v
are the vertices w that have a directed edge v → w, and
the descendants of v are the vertices x such that there is a
directed path from v to x. We denote the set of parents of
v by Pa(v). A source of the graph G is a vertex without
parents. A matching of edges is a set of edges that do not
have any vertices in common (i.e. their sets of endpoints
are pairwise disjoint from each other). A directed acyclic
graph (DAG) is a directed graph that contains no cycles
and a directed cyclic graph (DCG) is a directed graph that
may or may not contain cycles (this terminology has been
used in the literature to clearly distinguish from the more
popular DAGs in the context of causal models). An acyclic
directed mixed graph (ADMG) is a directed mixed graph
that contains no (directed) cycles. We study random DAGs
under the following probability distribution:

Definition 4. Fix a positive integer n and a parameter
p ∈ [0, 1). We define the distribution D(n, p) over DAGs on
n vertices as the distribution that assigns each DAG G with

s edges a probability proportional to w(G) =
(

p
1−p

)s
.

Equivalently, D(n, p) is the distribution that arises from

sampling each possible directed edge independently with
probability p (resulting in Pr(G) = ps(1 − p)(

n
2)−s) and

then conditioning on acyclicity. The distribution D(n, 1/2)
is equal to the uniform distribution over DAGs on n vertices.
Note that random DAGs can also be obtained by sampling
edges from an upper triangular matrix and uniformly per-
muting vertex labels. However, this process places a bias
on DAGs with many automorphisms and cannot be seen
as a natural extension of the uniform distribution. For AD-
MGs, a uniformly random ADMG is obtained by sampling
a uniformly random DAG, and then adding a bidirected
edge for each pair of vertices independently with probability
1/2. A uniformly random DCG is obtained by placing each
possible directed edge independently with probability 1/2.

2.2 MARKOV EQUIVALENCE

The following definitions hold for all three model classes
(DAGs, ADMGs, DCGs) alike. Given a path π =
(v1, . . . , vk), the vertex vi is a collider on the path if there
are two incoming arrows from vi−1 and vi+1 to vi, that
is, one of the following holds true: vi−1 → vi ← vi+1,
vi−1 → vi ↔ vi+1, vi−1 ↔ vi ← vi+1, vi−1 ↔ vi ↔
vi+1. Given two vertices v, w ∈ V (G) and a conditioning
set Z ⊆ V (G) \ {v, w}, a path π from v to w is active
given Z if every non-collider vertex on the path is not in Z
and every collider vertex on the path is either in Z or has
a descendant in Z. If there is an active path between v, w
given Z, then v and w are said to be d-connected given Z;
otherwise they are d-separated given Z. Two graphs G1 and
G2 on the same vertex set V are Markov-equivalent if for
all v, w ∈ V and Z ⊆ V \ {v, w}, v, w are d-connected
given Z in G1 if and only if they are d-connected given Z
in G2. The set of all graphs that are Markov-equivalent to a
graph G is called the Markov equivalence class (MEC) of
G. The significance of Markov equivalence in causal infer-
ence stems from the fact that two causal models represented
by Markov-equivalent graphs encode the same conditional
independence structure. The connection between this prop-
erty and the graphical definition of Markov-equivalence
through d-separation has first been formalized for DAGs
by Verma and Pearl [1990], Geiger et al. [1990]. Later, it
has been shown that the same connection holds for AD-
MGs [Spirtes et al., 1998, Koster, 1999] and DCGs [Spirtes,
1995] (at least for linear models). Hence, for these models,
Markov-equivalent graphs cannot be distinguished based on
observing conditional dependence and independence rela-
tions.

For DAGs, we will additionally make use of the following
result: Let us call an edge v → w of a DAG G reversible
if replacing the edge by w → v results in another DAG G′

that is Markov equivalent to G. Then, reversible edges have
a simple characterization:

Lemma 5. [Chickering, 1995] An edge v → w of a DAG
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Figure 1: A DAG on 11 vertices with tower decomposition
(H1, H2, H3, H4).

G is reversible if and only if Pa(v) = Pa(w) \ {v}.

2.3 TOWER DECOMPOSITION OF DAGS

The definitions and notation in this subsection are from
Schmid and Sly [2024]. We define the tower decomposition
of a directed acyclic graph G as follows: Let H1(G) be
the set of sources in G, H2(G) the set of sources in G \
H1(G), H3(G) the set of sources in G\ (H1(G)∪H2(G)),
and so on. This partitions the vertex set V (G) into sets
H1, H2 . . . , Hs(G), where s(G) is the length of the longest
directed path in G (we suppress the dependence on G if it is
clear from the context). See Figure 1 for an example. We call
the sets Hi the layers of G and denote their sizes by hi :=
|Hi| for i = 1, . . . , s. The vector h(G) = (h1, . . . , hs)
is called the tower vector of G. The tower decomposition
(H1, . . . ,Hs) of G is characterized by two properties: first,
edges of G can only go from a layer Hi to a layer Hj

with j > i, in particular, there are no edges within the
layers themselves. Secondly, each vertex in Hi must have at
least one parent in Hi−1 (except the vertices in H1, which
are exactly the vertices in G that have no parents).We use
tower decompositions to obtain a useful description of the
distribution D(n, p):

Lemma 6. Let G ∼ D(n, p), and fix a tower vector h =
(h1, . . . , hs) with entries that sum up to n, and a tower
decomposition H = (H1 . . . , Hs) with |Hi| = hi. Then,
the following holds:

(a) the probability that h is the tower vector of G is pro-
portional to

w(h) =

(
n

h1, . . . , hs

) s∏
k=2

(
1− (1− p)hk−1

)hk

(1− p)hk

∑k−1
i=1 hi

;

(b) conditional on the event that H is the tower decompo-
sition of G, the parent sets Pa(v) are independently
distributed for all v ∈ V (G), and for v ∈ Hj and
S ⊆

⋃j−1
i=1 Hi, we have

Pr (Pa(v) = S) =

C ·
(

p
1−p

)|S|
if S ∩Hj−1 ̸= ∅

0 otherwise,

where C is the normalization constant.

Here,
(

n
h1,...,hs

)
denotes the multinomial coefficient.

Lemma 6 generalizes Lemma 3.1 of Schmid and Sly [2024]
and essentially follows as a special case of Lemma 3 and
equation (2) of Talvitie et al. [2020]. Still, for completeness,
we give a full proof of Lemma 6 in Appendix A. Note that
tower decompositions have also been studied under different
names in the literature, such as root layerings [Talvitie et al.,
2020] and DAG partitions [Kuipers and Moffa, 2015, 2017].

For uniformly random DAGs, we will additionally make use
of some results of Schmid and Sly [2024]. Let σ(G) be the
graph obtained from G by keeping only the edges between
adjacent layers Hi and Hi+1 for all i. We call this graph
the tower of G. Conditioning on the tower of G drastically
simplifies the distribution of a uniformly random DAG:

Lemma 7. [Schmid and Sly, 2024] Let G be a uniformly
random DAG on n vertices and condition on the tower
σ(G) = σ. Then, the edges of G between two non-adjacent
layers occur independently with probability 1/2 each.

The following lemma gives a tail bound on the layer sizes
in a uniformly random DAG G.

Lemma 8. [Schmid and Sly, 2024] Let G be a uniformly
random DAG on n vertices. Let i, ℓ ∈ N, ℓ ≥ 5, and n suffi-
ciently large. Then, we have Pr[hi(G) ≥ ℓ] ≤ 2−ℓ2/4+2.

3 SPARSE RANDOM DAGS

Our approach towards bounding the size of the Markov
equivalence class of a sparse random DAG G is through
bounding the number of reversible edges of G. By Lemma 5
an edge v → w is reversible if and only if the parent sets
of v and w align. If we think about G in terms of its tower
decomposition, vertices that lie in higher-order layers have
many more potential parents, so an edge between such ver-
tices should be less likely to be reversible (in fact, Schmid
and Sly [2024] derive upper bounds on the size of MECs in
uniformly random DAGs by making this intuition formal).
However, if we consider an edge v → w where w lies in the
second layer H2(G) (i.e. the set of vertices that are children
of a source vertex), then v is necessarily a source vertex,
so Pa(v) = ∅. But this implies that v → w is reversible
whenever w has no parents except v. Since w lies in the sec-
ond layer of G, it can only have parents in the first layer, so



checking that w has no connection to another source vertex
suffices to establish reversibility of v → w. In the following,
we call an edge v → w with w ∈ H2(G) a layer-2-edge.
For a uniformly random DAG, the first two layers contain
with high probability only a few vertices, however, this is
not the case for a sparse random DAG. In fact, we will show
that the first two layers of a sparse random DAG G are with
high probability quite large, which leads to the existence
of many reversible layer-2-edges. This by itself does not
yet suffice to give a significant lower bound on the size of
the MEC of G. Indeed, two reversible edges need not be
independently reversible, that is, after reversing one edge,
the other one might become irreversible. However, suppose
we have an edge set S ⊆ E(G), which forms a matching of
reversible edges, i.e. a set of reversible edges with disjoint
endpoints. Then, reversing an edge in S only changes the
parent sets of its endpoints and leaves all other parent sets
the same. But this implies that all other edges in S must
remain reversible by Lemma 5. Hence, all possible com-
binations of edge reversals for edges in S lead to another
Markov equivalent DAG. We formulate this as the following
observation:

Observation 9. Let G be a DAG, and let S ⊆ E(G) be
a matching of reversible edges in G. Then, the size of the
Markov equivalence class of G is at least 2|S|.

Now, the key insight of this section is that we can find a
large matching of reversible edges in a sparse random graph
G by only looking at its layer-2-edges.

Proposition 10. Let 6/n ≤ p ≤ o
(

1
logn

)
and G ∼

D(n, p). Then, with probability 1− o(1), G has a matching
of reversible layer-2-edges of size at least p−1

16e5 log2(p−1)
.

See Figure 2 for an example of a matching of reversible
layer-2-edges. To prove Proposition 10, we crucially rely on
the following concentration bounds for the sizes of the first
two layers of a sparse random DAG, which are of indepen-
dent interest:

Lemma 11. Let p = o
(

1
logn

)
and G ∼ D(n, p). Then, the

number of sources in G is less than or equal to 5
p with high

probability.

Lemma 12. Let 6
n ≤ p ≤ o

(
1

logn

)
and G ∼ D(n, p).

Then, with high probability, we have h1(G) ≥ p−1

20 log(p−1)

and h2(G) ≥ p−1

log2(p−1)
.

Lemma 11 follows by showing that a tower vector h with
h1 > 5p−1 has exponentially small weight w(h) compared
to the vector that is obtained from h by splitting h1 into
equal parts of size p−1. Here, w(h) is given by Lemma 6,
part (a). Similarly, Lemma 12 follows from showing that a
vector h with h1 < p−1/(20 log(p−1)) has exponentially
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Figure 2: The bold edges form a (maximal, but not unique)
matching of reversible layer-2-edges.

small weight compared to the vector that is obtained from
h by merging its first layers until their size exceeds p−1/5
(and similarly for h2). We provide the full details of this
calculation in Appendix A. In light of these concentration
bounds, the statement of Proposition 10 becomes more ap-
proachable: Given a DAG G sampled from D(n, p), we
simply need to show that there is at least a small constant
fraction of vertices in H2(G) that have only one parent
in H1(G). As these parents should roughly be scattered
randomly with just a few overlaps, most of these vertices
together with their single parent then form a matching of
reversible edges. But H2(G) contains p−1/ log2(p−1) ver-
tices with high probability, so the matching we found has the
desired size. We give a full proof of Proposition 10 in Ap-
pendix A, which, together with Observation 9, immediately
implies Theorem 1.

4 ACYCLIC DIRECTED MIXED GRAPHS

For DAGs it is known that any two Markov equivalent
graphs must have the same edge adjacencies. This is not
true anymore for ADMGs. Let us call an edge v → w
of an ADMG G underdetermined if deleting it results in
an ADMG that is Markov equivalent to G. Our approach
towards proving Theorem 2, part (a) is to show that a uni-
formly random ADMG G contains many underdetermined
edges that can be deleted or included independently of each
other while preserving Markov equivalence. The following
graph provides an example for an underdetermined edge:

Definition 13. We define the ADMG S on an ordered set of
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Figure 3: The edge from v1 to v3 is underdetermined: it
does not introduce any new d-connections, so S and S are
Markov equivalent.

three vertices (v1, v2, v3) as the graph with edges v1 → v2,
v2 → v3, and v2 ↔ v3. Moreover, we denote the graph
S ∪ {v1 → v3} as S, see Figure 3.

It is easy to check that the edge v1 → v3 is underdetermined
in S. A key observation is that this remains true even when
S is part of a larger graph structure.

Lemma 14. Let G be an ADMG that contains S as a (la-
beled) subgraph on the vertices (v1, v2, v3). Then, the edge
v1 → v3 is underdetermined in G.

Proof. Let G be an ADMG containing S as a labeled sub-
graph on (v1, v2, v3) and let G′ be the graph obtained from
deleting the edge v1 → v3 from G. Since G′ is a subgraph
of G, any two vertices a, b that are d-separated given Z in G
are also d-separated given Z in G′. Now, assume a and b are
d-connected in G given Z. First, note that each vertex has
the same descendants in G and G′, since G′ still contains
a directed path from v1 to v3. Hence, if π is an active path
from a to b given Z in G that does not contain the edge
v1 → v3, then π is also an active path from a to b given Z
in G′. Otherwise, if π is an active path from a to b given Z
in G that contains the edge v1 → v3, then we distinguish
two cases:
First, if v2 /∈ Z, then replacing the edge v1 → v3 in π by
the path v1 → v2 → v3 gives an active path in G′. Secondly,
if v2 ∈ Z, then replacing the edge v1 → v3 in π by the path
v1 → v2 ↔ v3 gives an active path in G′. In all cases, we
get that a and b are also d-connected given Z in G′, so G
and G′ are Markov equivalent. 2

This leads to the following corollary:

Corollary 15. Let G be an ADMG on n vertices and sup-
pose there are m different subsets of vertices V1, . . . , Vm

such that |Vi| = 3 and the induced graph G[Vi] contains a
copy of S or of S for all i. Then, |MEC(G)| ≥ 2m/(3n).

Proof. Given the setup as in the Corollary, note that each
subset Vi only intersects with at most 3(n − 1) other sub-
sets in two vertices. Hence, we can select at least m/(3n)
different subsets Vi that pairwise intersect in at most one
vertex. However, this implies that the copies of S and S on
these vertex sets are all edge-disjoint. In particular, delet-
ing or adding the underdetermined edge in these copies
does not influence the other copies, so we can add or delete
an edge for each of the sub-selected vertex sets indepen-
dently while preserving Markov-equivalence. This implies
|MEC(G)| ≥ 2m/(3n). 2

All that is left to do in order to prove Theorem 2, part (a) is
to show that in a uniformly random ADMG G, a constant
fraction of all possible vertex sets of size 3 is expected to
have a copy of S or S.

Proof of Theorem 2, part (a). Let G be a uniformly random
ADMG on n vertices. Note that the distribution of G can
be described by sampling a uniformly random DAG and
adding a bidirected edge for each pair of vertices indepen-
dently with probability 1/2. We extend the notion of tower
decompositions to ADMGs and denote by σ(G) the tower
of the DAG formed by the directed edges of G. LetA be the
set of towers σ that only have layers of size at most n/48.
For each σ ∈ A, let Vσ be the set of all vertex subsets of size
3 that do not contain two vertices in adjacent layers. We have
|Vσ| ≥ 1

6 · n ·
23
24n ·

11
12n ≥ n3/7. By Lemma 7, after condi-

tioning on σ(G) = σ, the edges induced by each W ∈ Vσ
occur independently with probability 1/2 each, so we get
Pr(W contains a copy of S or S | σ(G) = σ) ≥ 1/8.
Then, if X denotes the number of vertex sets W ∈ Vσ that
contain a copy of S or S, we get E[X | σ(G) = σ] ≥ n3/56.
By Corollary 15 and Jensen’s inequality, we deduce

E [|MEC(G)||σ(G) = σ] ≥ E
[
2X/(3n)

∣∣∣σ(G) = σ
]

≥ 2n
2/168.

After summing over all σ ∈ A, we conclude using
Lemma 8:

E [|MEC(G)|] ≥ Pr (σ(G) ∈ A) · 2n
2/168

= Pr (hi ≤ n/48 for all i) · 2n
2/168

≥ (1− n · 2−n2/9216+2) · 2n
2/168

= 2Ω(n2).

2
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Figure 4: Again, the edge from v1 to v3 is underdetermined.

We remark that it is straightforward to show tight concen-
tration of the random variable X , counting the occurrence
of underdetermined edges in G by Chebychev’s inequality.
This means that in fact almost all ADMGs on n vertices
have at least 2Ω(n2) Markov-equivalent graphs.

5 DIRECTED CYCLIC GRAPHS

5.1 UNDERDETERMINED EDGES

For DCGs, we can apply essentially the same reasoning as
in the previous section. Consider the following DCG:

Definition 16. We define the DCG T on an ordered set of
three vertices (v1, v2, v3) as the graph with edges v1 → v2,
v2 → v3, and v3 → v2. Moreover, we denote the graph
T ∪ {v1 → v3} as T , see Figure 4.

Again, it is easy to check that the edge v1 → v3 is underde-
termined in T . The following statements hold:

Lemma 17. Let G be a DCG that contains T as a (labeled)
subgraph on the vertices (v1, v2, v3). Then, the edge v1 →
v3 is underdetermined in G.

Corollary 18. Let G be a DCG on n vertices and suppose
there are m different subsets of vertices V1, . . . , Vm such
that |Vi| = 3 and G[Vi] contains a copy of T or of T for
all i. Then, |MEC(G)| ≥ 2m/(3n).

The proofs of Lemma 17 and Corollary 18 are analogous to
the proofs of Lemma 14 and Corollary 15. Now, the proof
of Theorem 2, part (b) is simple:

Proof of Theorem 2, part (b). Let G be a uniformly random
DCG on n vertices. For each subset W of three vertices,

we get Pr(W contains a copy of T or T ) ≥ 1/4, since each
possible directed edge occurs independently with probability
1/2, and there are at least two edge-disjoint ways to embed
T into W . Then, if X denotes the number of vertex sets
W of size 3 that contain a copy of T or T , we get E[X] ≥(
n
3

)
· 14 ≥ n3/25. By Corollary 15 and Jensen’s inequality,

we conclude

E [|MEC(G)|] ≥ E
[
2X/(3n)

]
≥ 2n

2/75.

2

5.2 UNDERDETERMINED CYCLES

The existence of underdetermined edges in DCGs is not
the only issue that leads to exponential-size Markov equiva-
lence classes. Already Richardson [1996a] noticed that the
direction of cycles in a DCG is underdetermined within its
Markov equivalence class. Here, we extend this observation
by giving a formal construction for how to reverse any cycle
in a DCG while preserving Markov equivalence.

Definition 19. Let G be a DCG with a cycle C =
(v1, . . . , vk). We construct the graph H = REVERSE(G,C)
as follows:

• Take a copy of G and reverse the cycle C, i.e. replace
the edge vi → vi+1 by vi ← vi+1 for all i ∈ [k];

• For each vertex vi ∈ C, and each vertex w ∈ Pa(vi) \
{vi−1}, delete the edge w → vi, and replace it by
w → vi−1.

We state the key property of this construction:

Proposition 20. Let G be a directed cyclic graph contain-
ing a cycle C. Then, the graph H = REVERSE(G,C) is
Markov equivalent to G.

This result and the entire REVERSE construction is based on
the following intuition: consider a segment vi−1 → vi →
vi+1 of a cycle C in G together with an incoming edge
w → vi, see Figure 5. If we only reverse the orientation of
C without changing the edge w → vi, then w becomes
d-separated from vi−1 given {vi, vi+1} in the resulting
graph, while it was d-connected to vi−1 given {vi, vi+1}
in G. This motivates connecting w to vi−1 instead of vi in
H = REVERSE(G,C). Crucially, this new edge does not in-
troduce any new d-connections, since w and vi−1 are in fact
d-connected in G given any conditioning set Z: if Z contains
a vertex of C, then w → vi ← vi−1 is an active path, and if
Z and C are disjoint, then w → vi → vi+1 → . . . vi−1 (fol-
lowing the cycle) is an active path. By the same argument,
w and vi are d-connected given any set Z in the new graph
H , so deleting the edge w → vi when going from G to H



vi−1 vi
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w

. . .

Cycle segment of G.

vi−1 vi
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Corresponding segment of the graph H = REVERSE(G,C).

Figure 5: Illustration of the REVERSE construction.

does not introduce any new d-separations. By a careful case
analysis, one can extend this argumentation to a full proof
of Markov equivalence between G and H , see Appendix B.

Now, suppose the DCG G has multiple vertex-disjoint cy-
cles. By construction, the operation REVERSE applied to
any of the cycles, leaves all other cycles the same. Hence,
one can obtain a new Markov-equivalent DCG for each com-
bination of orientations of these cycles. This results in the
following corollary:

Corollary 21. Let G be a directed cyclic graph that con-
tains k vertex-disjoint cycles of length at least 3. Then,
|MEC∗(G)| ≥ 2k.

This is all we need to prove Theorem 3.

Proof of Theorem 3. Let G be a uniformly random DCG
on n vertices. Without loss of generality, we may assume
that n is divisible by 3 and partition the vertex set V of
G into disjoint sets V1, . . . , Vn/3 of size 3 each. Then,
Pr(Vi induces a cycle of length 3) = 1/4. Let X denote
the number of vertex sets Vi that induce a cycle. We have
E[X] = n/12. By Corollary 21 and Jensen’s inequality, we
conclude

E [|MEC∗(G)|] ≥ E
[
2X
]

≥ 2n/12.

2

Again, we remark that it is straightforward to get tight
concentration bounds on the number of underdetermined
edges and vertex-disjoint cycles that we are using to bound
|MEC(G)| and |MEC∗(G)|, using standard tools such as
Chebyshev’s or Chernoff’s inequality. This means that al-
most all DCGs have exponentially large Markov equivalence
classes.

6 DISCUSSION

Our results indicate significant underdetermination of causal
structure from observational data in various settings. Partic-
ularly for DAGs, it might come as a surprise that previously
known results on Markov equivalence classes being small
for dense graphs do not extend to the sparse setting. How-
ever, our results are asymptotic in nature, calling for further
numerical studies on how the expected size of Markov equiv-
alence classes scales for small graphs with different edge
densities. We hope that our theoretical results shed light on
some of the sources of underdetermination in causal graphs:
For DAGs, our proof of Theorem 1 could potentially be
extended to show that edges are less likely to have deter-
mined directions when they appear between earlier layers
of the tower decomposition. For ADMGs, we show that, on
average, underdetermination arises frequently from small
structures that induce underdetermined edges. This issue is
addressed in the model class of maximal ancestral graphs
(MAGs) through the maximality condition [Richardson and
Spirtes, 2002], which forces underdetermined edges to be
included in the graph and therefore makes the set of adja-
cencies unique again within a Markov equivalence class. As
a result, MAGs may exhibit smaller Markov equivalence
classes on average, which would be an interesting subject
of further research (see Wang et al. [2024] for a first ap-
proach). However, the analysis becomes challenging as, to
our knowledge, the enumeration of MAGs is an open prob-
lem. Note that our proof of Theorem 2, part (a) also implies
that under the uniform distribution, there is an expected
super-exponential number of ADMGs corresponding to just
a single MAG. In fact, most edges of a uniformly random
ADMG are underdetermined with high probability, raising
further questions about the informativeness of MAGs in this
setting. For DCGs, addressing underdetermination seems
to not only require a maximality condition but also some
type of condition for directing cycles in light of our proof
of Theorem 3.

Apart from ruling out certain graphs through additional as-
sumptions, interventions also help to further distinguish
between Markov-equivalent graphs. It would be interesting
to explore the expected number of interventions required
to uniquely recover a random causal graph (see Katz et al.
[2019] for a first approach). Based on our results, this ques-
tion becomes more significant for sparse DAGs, but also
for ADMGs and DCGs, where it is not even known how to
place interventions to efficiently split the Markov equiva-
lence class. Finally, in practice, statistical uncertainty often
prevents the identification of a single Markov equivalence
class. Instead, researchers are faced not just with multiple
graphs within one equivalence class, but often with sets of
equivalence classes. An understanding of which equivalence
classes are "close" to each other or how to separate equiva-
lence classes in causal discovery more effectively, would be
enormously useful.



Acknowledgements

This research was supported by NSF grant CCF-2321079.

References

David Maxwell Chickering. A transformational charac-
terization of equivalent bayesian network structures. In
Proceedings of the Eleventh Conference on Uncertainty
in Artificial Intelligence, UAI’95, page 87–98, San Fran-
cisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.
ISBN 1558603859.

David Maxwell Chickering. Learning equivalence classes
of bayesian-network structures. J. Mach. Learn. Res., 2:
445–498, March 2002. ISSN 1532-4435. URL https:
//doi.org/10.1162/153244302760200696.

David Maxwell Chickering. Optimal structure identifica-
tion with greedy search. J. Mach. Learn. Res., 3(null):
507–554, March 2003. ISSN 1532-4435. URL https:
//doi.org/10.1162/153244303321897717.

Max Chickering. Statistically efficient greedy equivalence
search. In Jonas Peters and David Sontag, editors, Pro-
ceedings of the 36th Conference on Uncertainty in Arti-
ficial Intelligence (UAI), volume 124 of Proceedings of
Machine Learning Research, pages 241–249. PMLR, 03–
06 Aug 2020. URL https://proceedings.mlr.
press/v124/chickering20a.html.

Ralf Eggeling, Jussi Viinikka, Aleksis Vuoksenmaa, and
Mikko Koivisto. On structure priors for learning
bayesian networks. In Kamalika Chaudhuri and Masashi
Sugiyama, editors, Proceedings of the Twenty-Second
International Conference on Artificial Intelligence and
Statistics, volume 89 of Proceedings of Machine Learn-
ing Research, pages 1687–1695. PMLR, 16–18 Apr 2019.
URL https://proceedings.mlr.press/v89/
eggeling19a.html.

Dan Geiger, Thomas Verma, and Judea Pearl.
Identifying independence in bayesian net-
works. Networks, 20(5):507–534, 1990. URL
https://onlinelibrary.wiley.com/doi/
abs/10.1002/net.3230200504.

Steven B. Gillispie. Formulas for counting acyclic digraph
markov equivalence classes. Journal of Statistical Plan-
ning and Inference, 136(4):1410–1432, 2006. ISSN 0378-
3758. URL https://www.sciencedirect.com/
science/article/pii/S0378375804003982.

Steven B. Gillispie and Michael D. Perlman. Enumerating
markov equivalence classes of acyclic digraph dels. In
Proceedings of the Seventeenth Conference on Uncer-
tainty in Artificial Intelligence, UAI’01, page 171–177,

San Francisco, CA, USA, 2001. Morgan Kaufmann Pub-
lishers Inc. ISBN 1558608001.

Steven B. Gillispie and Michael D. Perlman. The
size distribution for markov equivalence classes
of acyclic digraph models. Artificial Intelli-
gence, 141(1):137–155, 2002. ISSN 0004-3702.
URL https://www.sciencedirect.com/
science/article/pii/S0004370202002643.

Yangbo He, Jinzhu Jia, and Bin Yu. Counting and ex-
ploring sizes of markov equivalence classes of directed
acyclic graphs. Journal of Machine Learning Research,
16(79):2589–2609, 2015. URL http://jmlr.org/
papers/v16/he15a.html.

David Heckerman, Dan Geiger, and David M. Chickering.
Learning bayesian networks: The combination of knowl-
edge and statistical data. Machine Learning, 20(3):197–
243, 1995. URL https://doi.org/10.1023/A:
1022623210503.

Shuai Huang, Jing Li, Jieping Ye, Adam Fleisher, Kewei
Chen, Teresa Wu, and Eric Reiman. A sparse structure
learning algorithm for gaussian bayesian network iden-
tification from high-dimensional data. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 35
(6):1328–1342, 2013. ISSN 0162-8828. URL https:
//doi.org/10.1109/TPAMI.2012.129.

Markus Kalisch and Peter Bühlmann. Estimating
high-dimensional directed acyclic graphs with the pc-
algorithm. Journal of Machine Learning Research, 8(22):
613–636, 2007. URL http://jmlr.org/papers/
v8/kalisch07a.html.

Dmitriy Katz, Karthikeyan Shanmugam, Chandler Squires,
and Caroline Uhler. Size of interventional markov equiva-
lence classes in random dag models. In Kamalika Chaud-
huri and Masashi Sugiyama, editors, Proceedings of the
Twenty-Second International Conference on Artificial In-
telligence and Statistics, volume 89 of Proceedings of Ma-
chine Learning Research, pages 3234–3243. PMLR, 16–
18 Apr 2019. URL https://proceedings.mlr.
press/v89/katz19a.html.

Jan T. A. Koster. On the validity of the markov in-
terpretation of path diagrams of gaussian structural
equations systems with correlated errors. Scandinavian
Journal of Statistics, 26(3):413–431, 1999. URL
https://onlinelibrary.wiley.com/doi/
abs/10.1111/1467-9469.00157.

Jack Kuipers and Giusi Moffa. Uniform random genera-
tion of large acyclic digraphs. Statistics and Computing,
25(2):227–242, 2015. URL https://doi.org/10.
1007/s11222-013-9428-y.

https://doi.org/10.1162/153244302760200696
https://doi.org/10.1162/153244302760200696
https://doi.org/10.1162/153244303321897717
https://doi.org/10.1162/153244303321897717
https://proceedings.mlr.press/v124/chickering20a.html
https://proceedings.mlr.press/v124/chickering20a.html
https://proceedings.mlr.press/v89/eggeling19a.html
https://proceedings.mlr.press/v89/eggeling19a.html
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230200504
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230200504
https://www.sciencedirect.com/science/article/pii/S0378375804003982
https://www.sciencedirect.com/science/article/pii/S0378375804003982
https://www.sciencedirect.com/science/article/pii/S0004370202002643
https://www.sciencedirect.com/science/article/pii/S0004370202002643
http://jmlr.org/papers/v16/he15a.html
http://jmlr.org/papers/v16/he15a.html
https://doi.org/10.1023/A:1022623210503
https://doi.org/10.1023/A:1022623210503
https://doi.org/10.1109/TPAMI.2012.129
https://doi.org/10.1109/TPAMI.2012.129
http://jmlr.org/papers/v8/kalisch07a.html
http://jmlr.org/papers/v8/kalisch07a.html
https://proceedings.mlr.press/v89/katz19a.html
https://proceedings.mlr.press/v89/katz19a.html
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-9469.00157
https://onlinelibrary.wiley.com/doi/abs/10.1111/1467-9469.00157
https://doi.org/10.1007/s11222-013-9428-y
https://doi.org/10.1007/s11222-013-9428-y


Jack Kuipers and Giusi Moffa. Partition mcmc for inference
on acyclic digraphs. Journal of the American Statistical
Association, 112(517):282–299, 2017. URL https://
doi.org/10.1080/01621459.2015.1133426.

Michael Mitzenmacher and Eli Upfal. Probability and
Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, Cambridge, 2005.
ISBN 978-0-521-83540-4. URL https://doi.org/
10.1017/CBO9780511813603.

J. Pearl. Causality. Cambridge, 2nd edition, 2009.

Adityanarayanan Radhakrishnan, Liam Solus, Caroline Uh-
ler, and Martin J. Wainwright. Counting markov equiva-
lence classes by number of immoralities. In Proceedings
of the 33rd Conference on Uncertainty in Artificial In-
telligence (UAI), Sydney, Australia, August 11–15 2017.
AUAI Press.

Garvesh Raskutti and Caroline Uhler. Learning
directed acyclic graph models based on spars-
est permutations. Stat, 7(1):e183, 2018. URL
https://onlinelibrary.wiley.com/doi/
abs/10.1002/sta4.183.

Thomas Richardson. A polynomial-time algorithm for de-
ciding markov equivalence of directed cyclic graphical
models. In Proceedings of the Twelfth International Con-
ference on Uncertainty in Artificial Intelligence, UAI’96,
page 462–469, San Francisco, CA, USA, 1996a. Morgan
Kaufmann Publishers Inc. ISBN 155860412X.

Thomas Richardson. Discovering cyclic causal structure.
1996b. URL https://doi.org/10.1184/R1/
6491426.v1.

Thomas Richardson. A characterization of markov
equivalence for directed cyclic graphs. In-
ternational Journal of Approximate Reason-
ing, 17(2):107–162, 1997. ISSN 0888-613X.
URL https://www.sciencedirect.com/
science/article/pii/S0888613X97000200.
Uncertainty in AI (UAI’96) Conference.

Thomas Richardson and Peter Spirtes. Ancestral graph
Markov models. The Annals of Statistics, 30(4):962 –
1030, 2002. URL https://doi.org/10.1214/
aos/1031689015.

Dominik Schmid and Allan Sly. On the number and
size of markov equivalence classes of random directed
acyclic graphs, 2024. URL https://arxiv.org/
abs/2209.04395.

Peter Spirtes. Directed cyclic graphical representations of
feedback models. In Proceedings of the Eleventh Con-
ference on Uncertainty in Artificial Intelligence, UAI’95,
page 491–498, San Francisco, CA, USA, 1995. Morgan
Kaufmann Publishers Inc. ISBN 1558603859.

Peter Spirtes and Thomas S. Richardson. A polynomial
time algorithm for determining dag equivalence in the
presence of latent variables and selection bias. In David
Madigan and Padhraic Smyth, editors, Proceedings of the
Sixth International Workshop on Artificial Intelligence
and Statistics, volume R1 of Proceedings of Machine
Learning Research, pages 489–500. PMLR, 04–07 Jan
1997. URL https://proceedings.mlr.press/
r1/spirtes97b.html. Reissued by PMLR on 30
March 2021.

Peter Spirtes, Thomas Richardson, Christopher Meek,
Richard Scheines, and Clark Glymour. Using
path diagrams as a structural equation modeling
tool. Sociological Methods & Research, 27(2):182–
225, 1998. URL https://doi.org/10.1177/
0049124198027002003.

Peter Spirtes, Clark Glymour, and Richard Scheines. Cau-
sation, Prediction, and Search. The MIT Press, 01 2001.
ISBN 9780262284158. URL https://doi.org/10.
7551/mitpress/1754.001.0001.

Peter L. Spirtes, Christopher Meek, and Thomas S. Richard-
son. An algorithm for causal inference in the pres-
ence of latent variables and selection bias. In Compu-
tation, Causation, and Discovery. AAAI Press, 05 1999.
ISBN 9780262315821. URL https://doi.org/10.
7551/mitpress/2006.003.0009.

Bertran Steinsky. Enumeration of labelled chain graphs
and labelled essential directed acyclic graphs. Discrete
Mathematics, 270(1):267–278, 2003. ISSN 0012-365X.
URL https://www.sciencedirect.com/
science/article/pii/S0012365X02008385.

Bertran Steinsky. Enumeration of labelled essential graphs.
Ars Combinatoria, 111:485–494, 2013. URL https:
//combinatorialpress.com/article/ars/
Volume%20111/volume-111-paper-40.pdf.

Topi Talvitie and Mikko Koivisto. Counting and sampling
markov equivalent directed acyclic graphs. Proceedings
of the AAAI Conference on Artificial Intelligence, 33(01):
7984–7991, Jul. 2019. URL https://ojs.aaai.
org/index.php/AAAI/article/view/4799.

Topi Talvitie, Aleksis Vuoksenmaa, and Mikko Koivisto.
Exact sampling of directed acyclic graphs from modular
distributions. In Ryan P. Adams and Vibhav Gogate,
editors, Proceedings of The 35th Uncertainty in Artificial
Intelligence Conference, volume 115 of Proceedings of
Machine Learning Research, pages 965–974. PMLR, 22–
25 Jul 2020. URL https://proceedings.mlr.
press/v115/talvitie20a.html.

Thomas Verma and Judea Pearl. Causal networks: Seman-
tics and expressiveness. In Ross D. SHACHTER, Tod S.

https://doi.org/10.1080/01621459.2015.1133426
https://doi.org/10.1080/01621459.2015.1133426
https://doi.org/10.1017/CBO9780511813603
https://doi.org/10.1017/CBO9780511813603
https://onlinelibrary.wiley.com/doi/abs/10.1002/sta4.183
https://onlinelibrary.wiley.com/doi/abs/10.1002/sta4.183
https://doi.org/10.1184/R1/6491426.v1
https://doi.org/10.1184/R1/6491426.v1
https://www.sciencedirect.com/science/article/pii/S0888613X97000200
https://www.sciencedirect.com/science/article/pii/S0888613X97000200
https://doi.org/10.1214/aos/1031689015
https://doi.org/10.1214/aos/1031689015
https://arxiv.org/abs/2209.04395
https://arxiv.org/abs/2209.04395
https://proceedings.mlr.press/r1/spirtes97b.html
https://proceedings.mlr.press/r1/spirtes97b.html
https://doi.org/10.1177/0049124198027002003
https://doi.org/10.1177/0049124198027002003
https://doi.org/10.7551/mitpress/1754.001.0001
https://doi.org/10.7551/mitpress/1754.001.0001
https://doi.org/10.7551/mitpress/2006.003.0009
https://doi.org/10.7551/mitpress/2006.003.0009
https://www.sciencedirect.com/science/article/pii/S0012365X02008385
https://www.sciencedirect.com/science/article/pii/S0012365X02008385
https://combinatorialpress.com/article/ars/Volume%20111/volume-111-paper-40.pdf
https://combinatorialpress.com/article/ars/Volume%20111/volume-111-paper-40.pdf
https://combinatorialpress.com/article/ars/Volume%20111/volume-111-paper-40.pdf
https://ojs.aaai.org/index.php/AAAI/article/view/4799
https://ojs.aaai.org/index.php/AAAI/article/view/4799
https://proceedings.mlr.press/v115/talvitie20a.html
https://proceedings.mlr.press/v115/talvitie20a.html


LEVITT, Laveen N. KANAL, and John F. LEMMER,
editors, Uncertainty in Artificial Intelligence, volume 9
of Machine Intelligence and Pattern Recognition,
pages 69–76. North-Holland, 1990. URL https:
//www.sciencedirect.com/science/
article/pii/B9780444886507500111.

TS Verma and Judea Pearl. Equivalence and synthesis of
causal models. In M. Henrion, R. Shachter, L. Kanal, and
J. Lemmer, editors, Proceedings of the 6th Conference
on Uncertainty in Artificial Intelligence, page 220–227,
1991.

Tian-Zuo Wang, Wen-Bo Du, and Zhi-Hua Zhou. An
efficient maximal ancestral graph listing algorithm.
In Ruslan Salakhutdinov, Zico Kolter, Katherine
Heller, Adrian Weller, Nuria Oliver, Jonathan Scar-
lett, and Felix Berkenkamp, editors, Proceedings of
the 41st International Conference on Machine Learn-
ing, volume 235 of Proceedings of Machine Learn-
ing Research, pages 50353–50378. PMLR, 21–27 Jul
2024. URL https://proceedings.mlr.press/
v235/wang24o.html.

Marcel Wienöbst, Max Bannach, and Maciej Liśkiewicz.
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A PROOFS FOR SPARSE DAGS

Here, we restate and prove our technical results on random DAGs sampled from D(n, p).

Lemma 6. Let G ∼ D(n, p), and fix a tower vector h = (h1, . . . , hs) with entries that sum up to n, and a tower
decomposition H = (H1 . . . , Hs) with |Hi| = hi. Then, the following holds:

(a) the probability that h is the tower vector of G is proportional to

w(h) =

(
n

h1, . . . , hs

) s∏
k=2

(
1− (1− p)hk−1

)hk

(1− p)hk

∑k−1
i=1 hi

;

(b) conditional on the event that H is the tower decomposition of G, the parent sets Pa(v) are independently distributed
for all v ∈ V (G), and for v ∈ Hj and S ⊆

⋃j−1
i=1 Hi, we have

Pr (Pa(v) = S) =

C ·
(

p
1−p

)|S|
if S ∩Hj−1 ̸= ∅

0 otherwise,

where C is the normalization constant.

Proof. Fix a tower vector h = (h1, . . . , hs) with entries that sum up to n and a tower decomposition H = (H1, . . . ,Hs)
with |Hk| = hk. The key observation is that a DAG G has tower decomposition H if and only if for each vertex v ∈ Hk, the
parents of v are a subset of

⋃k−1
i=1 Hi that intersects Hk−1 (Lemma 3 of Talvitie et al. [2020]). We define

Ck = {S ⊆
k−1⋃
i=1

Hi | S ∩Hk−1 ̸= ∅}; Ck,s = {S ∈ Ck | |S| = s},

setting H0 = ∅ to cover the case k = 1. In particular, given that H is the tower decomposition of G, the parent sets of each
vertex in Hk can be chosen independently in Ck, which together with Definition 4 of D(n, p) implies part (b) of the Lemma.

mailto:<ejahn@caltech.edu>?Subject=Your UAI 2025 paper


Moreover, we get that the probability for G ∼ D(n, p) to have tower decomposition H is proportional to

w(H) :=
∑

G:H(G)=H

s∏
k=1

∏
v∈Hk

(
p

1− p

)|Pa(v)|

=

s∏
k=1

∏
v∈Hk

∑
P∈Ck

(
p

1− p

)|P |

=

s∏
k=1

∏
v∈Hk

n∑
s=0

(
p

1− p

)s

· |Ck,s|

=

s∏
k=2

∏
v∈Hk

n∑
s=0

(
p

1− p

)s

·

((∑k−1
i=1 hi

s

)
−
(∑k−2

i=1 hi

s

))

=

s∏
k=2

∏
v∈Hk

((
1 +

p

1− p

)∑k−1
i=1 hi

−
(
1 +

p

1− p

)∑k−2
i=1 hi

)

=

s∏
k=2

(1− p)−hk

∑k−1
i=1 hi ·

(
1− (1− p)hk−1

)hk
.

Now part (a) of Lemma 6 follows from summing over all
(

n
h1,...,hs

)
choices of tower decompositions with layer sizes

h1, . . . , hs. 2

Lemma 11. Let p = o
(

1
logn

)
and G ∼ D(n, p). Then, the number of sources in G is less than or equal to 5

p with high
probability.

Proof. Let p = o
(

1
logn

)
. Without loss of generality, we assume that p−1 is an integer. For each index j, we defineHj to be

the set of tower vectors h = (h1, . . . , hs) with entries that sum up to n and hj ≥ 5p−1 ≥ hj+1. Consider the functions φj

that map h = (h1, . . . , hs) ∈ Hj to the vector φj(h) = (h1, . . . , hj−1, ℓ1, . . . , ℓr, hj+1, . . . , hs), where r is equal to hjp
rounded to the nearest integer, ℓ2 = ℓ3 = · · · = ℓr = p−1 and ℓ1 = hj −

∑r
i=2 ℓi. Note that the entries of φj(h) are still

positive integers that sum up to n, so it is a valid tower vector. Moreover, ℓ1 ∈ [p−1/2, 3p−1/2]. We are now going to bound
the ratio of the weights of h and φj(h). By Lemma 6,

w(h)

w(φj(h))
=

∏r
i=1 ℓi!

hj !
(1− p)

∑
1≤i<k≤r ℓiℓk · (1− (1− p)hj−1)hj−ℓ1∏r

i=2(1− (1− p)ℓi−1)ℓi
·
(
1− (1− p)hj

1− (1− p)ℓr

)hj+1

.

For the edge cases of this formula to be correct, we set h0 =∞ and hs+1 = 0. We bound each term separately: First, since∑r
i=1 ℓi = hj , we have

∏r
i=1 ℓi! ≤ hj !.

Secondly, since r ≥ 5, we get the estimate∑
1≤i<k≤r

ℓiℓk = ℓr(hj − ℓr) + ℓr−1(hj − ℓr − ℓr−1) +
∑

1≤i<k≤r−2

ℓiℓk

= 2hjp
−1 − 3p−1 +

∑
1≤i<k≤r−2

ℓiℓk ≥ 2hjp
−1.

Thirdly, since ℓi ≥ (2p)−1, we may use

1− (1− p)ℓi ≥ 1− (1− p)1/(2p) ≥ 1− e−1/2 ≥ 7/20,

and

1− (1− p)ℓr = 1− (1− p)1/p ≥ 1− e−1 ≥ 1/2.

Finally, using the condition hj ≥ 5p−1 ≤ hj+1, we obtain

w(h)

w(φj(h))
≤ (1− p)2hjp

−1

· (20/7)
∑r

i=2 ℓi · 2hj+1 ≤ e−2hj+log(20/7)·hj+log(2)·hj ≤ e−hj/4 ≤ e−p−1

.



Now, let G ∼ D(n, p). Note that each function φj maps at most np vectors to the same image (the extreme case is when
φ1(h) = (p−1, . . . , p−1)). We calculate

Pr
(
hj(G) ≥ 5p−1 ≥ hj+1(G)

)
= C ·

∑
h∈Hj

w(h) ≤ C ·
∑
h∈Hj

w(φ(h)) · e−p−1

≤ np · e−p−1

,

where C = (
∑

h w(h))
−1 is the normalization constant. We conclude

Pr
(
h1(G) ≥ 5p−1

)
≤ Pr

(
h1(G) ≥ 5p−1 ≥ h2(G)

)
+ Pr

(
h2(G) ≥ 5p−1

)
≤ . . .

≤
T (G)−1∑

i=1

Pr
(
hj(G) ≥ 5p−1 ≥ hj+1(G)

)
≤ n2p · e−p−1

= o(1).

2

We will need the following bound in the proof of the next Lemma:

Lemma 22. Let h1, . . . , hr be positive integers that sum up to n. Then,(
n

h1, . . . , hr

)
≤ nn

hh1
r ·

∏r
i=2 h

hi
i−1

Proof. The lemma simply follows from:

nn =

(
r∑

i=1

hi

)n

=
∑

j1+···+jr=n

(
n

j1, . . . , jr

)
hj1
1 · . . . · hjr

r ≥
(

n

h2, . . . , hr, h1

)
hh2
1 · . . . · h

hr
r−1 · hh1

r .

2

Lemma 12. Let 6
n ≤ p ≤ o

(
1

logn

)
and G ∼ D(n, p). Then, with high probability, we have h1(G) ≥ p−1

20 log(p−1) and

h2(G) ≥ p−1

log2(p−1)
.

Proof. Let 6/n ≤ p ≤ o
(

1
logn

)
. First, we defineH1 to be the set of tower vectors h = (h1, . . . , hs) with entries that sum

up to n and h1 ≤ p−1/(20 log(p−1)). Consider the function φ1 that maps a tower vector h = (h1, . . . , hs) ∈ H1 to the
vector φ1(h) = (L, hr+1, . . . , hs), where r = min{k :

∑k
i=1 hi > p−1/5} and L =

∑r
i=1 hi. Note that φ1(h) is again a

valid tower vector, and by Lemma 6, we get

w(h)

w(φ1(h))
=

L!∏r
i=1 hi!

(1− p)−
∑

1≤i<k≤r hihk ·
r∏

i=2

(1− (1− p)hi−1)hi ·
(
1− (1− p)hr

1− (1− p)L

)hr+1

≤ L!∏r
i=1 hi!

(1− p)−
∑

1≤i<k≤r hihk ·
r∏

i=2

(1− (1− p)hi−1)hi . (1)

We are interested in further bounding expression (1) under the constraint L =
∑r

i=1 hi. First of all, note that increasing hr

by 1, while leaving h1, . . . , hr−1 the same, changes expression (1) by a factor of

L+ 1

hr + 1
· (1− p)−

∑r−1
i=1 hi · (1− (1− p)hr−1) ≤ L

hr
· (1− p)−p−1/5 · phr−1 ≤

L

hr
· e1/5 · 1

5
.

Here, we used the fact that
∑r−1

i=1 hi ≤ p−1+ε. This factor is strictly less than 1 if, hr > L/4, hence, we may assume
hr ≤ L/4, and therefore L ≤ 4p−1/15. Now, we can bound (1) using Lemma 22:

w(h)

w(φ1(h))
≤ LL

hh1
r ·

∏r
i=2 h

hi
i−1

(1− p)−L2
r∏

i=2

(hi−1p)
hi

≤ LLepL
2

pL−h1 ≤
(

4

15

)L

p−Le4L/15pLpp
−1/(20 log p)

≤ eL(log(4/15)+4/15))+p−1/20 ≤ ep
−1/5·(log(4/15)+4/15+1/4) ≤

(
5

11

)p−1/5

.



Note that for a fixed tower vector of the form φ1(h) = (L, hr+1, . . . , hs), the entries h1, . . . , hr−1 of the preimage must
sum up to a number less than p−1/5, for which there are less than 2p

−1/5 choices. After choosing h1, . . . , hr−1, the entry
hr = L−

∑r−1
i=1 and the rest of the preimage is uniquely defined. Hence, the function φ1 sends at most 2p

−1/5 tower vectors
to the same image. Now, let G ∼ D(n, p) and C = (

∑
h w(h))

−1. We get

Pr

(
h1(G) ≤ p−1

20 log(p−1)

)
= C ·

∑
h∈H1

w(h) ≤ C ·
∑
h∈H1

w(φ1(h)) ·
(

5

11

)p−1/5

≤ 2p
−1/5 ·

(
5

11

)p−1/5

=

(
10

11

)p−1/5

= o(1).

Now, letH2 be the set of tower vectors h = (h1, . . . , hs) with the following properties:

(a) the entries hi sum up to n;

(b) p−1

20 log(p−1) ≤ h1 ≤ 5p−1;

(c) h2 ≤ p−1

log2(p−1)
.

Consider the function φ2 that maps a tower vector h = (h1, . . . , hs) ∈ H2 to the vector φ2(h) = (h1, L, hr+1, . . . , hs),
where r = min{k :

∑k
i=2 hi > p−1/(800 log(p−1))} and L =

∑r
i=2 hi. This is well-defined, as p ≥ 6/n, so

∑s
i=2 hi ≥

n− 5p−1 ≥ n/6 > p−1/(800 log(p−1)). Moreover, φ2(h) is again a valid tower vector, and by Lemma 6, we get

w(h)

w(φ2(h))
≤ L!∏r

i=2 hi!
(1− p)−

∑
2≤i<k≤r hihk ·

∏r
i=2(1− (1− p)hi−1)hi

(1− (1− p)h1)L
.

Here, increasing hr by 1, while leaving h1, . . . , hr−1 the same, changes the expression above by a factor of

L+ 1

hr + 1
· (1− p)−

∑r−1
i=2 hi · 1− (1− p)hr−1

1− (1− p)h1
≤ L

hr
· (1− p)−p−1/800 · 6hr−1

h1
≤ L

hr
· 1
4
.

Here, we used the Bernoulli-type inequalities 1−pm ≤ (1−p)m ≤ 1−pm/(1+pm) together with the fact h1 ≤ 5p−1. The
factor above is strictly less than 1 if, hr > L/4, hence, we may assume hr ≤ L/4, and therefore L ≤ p−1/(600 log(p−1)).
Reusing the bound on (1) from before, we get:

w(h)

w(φ1(h))
≤ LLepL

2

(
6p

h1p

)L−h2

≤ LLeL/600

(
6

30L

)L−h2

≤
(
1

4

)L

· elog(5L)·h2 ≤
(
1

4

)p−1/(800 log(p−1))

elog(5L)·p−1/ log2(p−1) ≤
(
1

3

)p−1/(800 log(p−1))

,

where the last step follows when p is small enough. Now, the function φ2 sends at most 2p
−1/(800 log(p−1)) tower vectors to

the same image. Let G ∼ D(n, p) and C = (
∑

h w(h))
−1. We conclude using Lemma 11 and the result above:

Pr

(
h2(G) ≤ p−1

log2(p−1)

)
≤ Pr

(
h2(G) ≤ p−1

log2(p−1)
∧ p−1

20 log(p−1)
≤ h1 ≤ 5p−1

)
+ Pr

(
h1(G) <

p−1

20 log(p−1)

)
+ Pr

(
h1(G) > 5p−1

)
≤ C ·

∑
h∈H2

w(h) + o(1)

≤ C ·
∑
h∈H2

w(φ2(h)) ·
(
1

3

)p−1/(800 log(p−1))

+ o(1)

≤
(
2

3

)p−1/(800 log(p−1))

+ o(1) = o(1).

2



In the final proof of this section, we will make use of the Chernoff bound:

Lemma 23. (Chernoff bound, see Mitzenmacher and Upfal [2005], Theorem 4.5) Let X1, . . . , Xn be independent random
variables with Pr(Xi = 1) = p and Pr(Xi = 0) = 1− p and define X =

∑n
i=1 Xi. Then, for any δ ∈ (0, 1), we have

Pr (X ≤ (1− δ)np) ≤ e−npδ2/2.

Proposition 10. Let 6/n ≤ p ≤ o
(

1
logn

)
and G ∼ D(n, p). Then, with probability 1 − o(1), G has a matching of

reversible layer-2-edges of size at least p−1

16e5 log2(p−1)
.

Proof. Let 6/n ≤ p ≤ o
(

1
logn

)
and G ∼ D(n, p). For technical reasons that will become apparent later, let us define

H̃2(G) to be a subset of H2(G) of at most h1(G)/2 vertices. This subset can be picked by an arbitrary but fixed rule
(for instance, take the h1(G)/2 vertices in H2(G) with the smallest indices, according to some indexing of the vertex set
V (G)), and H̃2(G) = H2(G) in the case h2(G) ≤ h1(G)/2. Now, let S(G) ⊆ H̃2(G) be the set of vertices in H̃2(G)
that have exactly one parent. Furthermore, let X(G) be the set of vertices in S whose parent is different from all the
other parents of vertices in S. By definition, the edges that connect vertices in X(G) to their parents form a matching
of reversible layer-2-edges. Hence, it suffices to bound |X(G)|. First, note that conditional on the tower decomposition
H(G) = H = (H1, . . . ,Hs) and on the event S(G) = S, the parent vertex of each vertex v ∈ S is distributed uniformly
and independently in H1. Uniformity follows from the symmetry of the D(n, p) distribution with respect to permuting
vertices, and independence follows from Lemma 6, part (b). By a union bound, we get for v ∈ S:

Pr (v ∈ X(G) | H(G) = H,S(G) = S)

≥ 1−
∑

w∈S,w ̸=v

Pr (Pa(v) = Pa(w))

= 1− |S|
h1
≥ 1− |H̃2|

h1
≥ 1

2
.

Hence, E[|X(G)| | H(G) = H,S(G) = S] ≥ |S|/2, and by a standard Chernoff concentration bound (see Lemma 23), we
get

Pr (|X(G)| ≤ |S|/4 | H(G) = H,S(G) = S)

≤ e−|S|/16. (2)

Next, we turn our attention to bounding |S(G)|. Conditional on the tower distribution H(G) = H = (H1, . . . ,Hs), we
have for each vertex v ∈ H̃2(G) by Lemma 6, part (b):

Pr (v ∈ S | H(G) = H) = Pr (|Pa(v)| = 1 | H(G) = H)

=
h1 · p(1− p)h1−1∑s

i=1

(
h1

s

)
ps(1− p)h1−s

=
h1 · p(1− p)h1−1

1− (1− p)h1

≥ h1 · p(1− p)h1−1

h1 · p
≥ (1− p)h1 .

Here, we used Bernoulli’s inequality in the third line of the derivation. This implies E[|S(G)| | H(G) = H] ≥ (1−p)h1 ·|H̃2|.
Since the events v ∈ S(G) are again independent for different v ∈ H̃2 conditional on the tower distribution, we get by the
Chernoff bound (Lemma 23):

Pr

(
|S(G)| ≤ (1− p)h1

2
· |H̃2|

∣∣∣∣H(G) = H

)
≤ e−(1−p)h1 |H̃2|/8. (3)

Now, let H be the set of tower decompositions H = (H1, . . . ,Hs) satisfying |H1| ≤ 5p−1 and |H2| ≥ p−1/ log2(p−1).
For H ∈ H, we get

(1− p)h1 · |H̃2| ≥ (1− p)5/p · p−1

log2(p−1)
≥ e−5

2
· p−1

log2(p−1)
,



where the last steps holds when p is small enough. Set α(p) := p−1/(4e5 log2(p−1)). Then, for H ∈ H, equation (3)
implies

Pr (|S(G)| ≤ α(p) | H(G) = H) ≤ e−α(p)/2.

Summing over all H ∈ H gives

Pr (|S(G)| ≤ α(p) ∧H(G) ∈ H) ≤ e−α(p)/2.

And by Lemma 12 and 11, we get

Pr (|S(G)| ≤ α(p)) ≤ e−α(p)/2 + Pr (H(G) /∈ H)
= o(1).

Now, summing equation (2) over all graphs with S(G) ≥ α(p) gives

Pr (|X(G)| ≤ α(p)/4 ∧ S(G) ≥ α(p)) ≤ e−α(p)/16.

So, we finally obtain

Pr (|X(G)| ≤ α(p)/4) ≤ e−α(p)/16 + Pr (S(G) ≤ α(p))

= o(1).

Hence, with high probability, G has a matching of reversible layer-2-edges of size at least α(p)/4. 2

B PROOFS FOR DIRECTED CYCLIC GRAPHS

The following statement is a simple observation of the properties of the construction given in Definition 19.

Lemma 24. Let G be a directed cyclic graph containing a cycle C. Let H = REVERSE(G,C) and let C be the reversed
version of C that occurs in H . We have the following properties:

1. each vertex has the same descendants in G as in H;

2. G = REVERSE(H,C).

Now, we prove the key property of the construction in Definition 19.

Proposition 20. Let G be a directed cyclic graph containing a cycle C. Then, the graph H = REVERSE(G,C) is Markov
equivalent to G.

Proof of Proposition 20. Suppose C = (v1, . . . , vk) in G and H = REVERSE(G,C). Fix an arbitrary conditioning set
Z ⊆ V (G). Let π = (w1, . . . , wt) be a simple active path between w1 and wt given Z in G. The first part of the proof is to
show that there exists an active path from w1 to wt given Z in H .

Case 1: Suppose some vertex of C is in Z, i.e. C ∩ Z ̸= ∅. Consider the path π′ in H obtained as follows:

• whenever w → vi occurs in π for vi ∈ C, replace it with w → vi−1 ← vi (similarly, if vi ← w occurs in π, replace it
with vi → vi−1 ← w).

• make the resulting path simple by deleting any self-loops if they exist.

By definition of H = REVERSE(G,C), π′ is a valid simple path from w1 to wt in H . We show that π′ is also an active path
given Z.

First, consider any segment a − b − c in π′ with b /∈ C. If b is a collider in the segment, i.e., we have a → b ← c, then
a→ b← c must occur in π as well, since incoming edges to b /∈ C are never changed between π and π′. This means b has
a G-descendant in Z, and by part 1 of Lemma 24, b must also have an H-descendant in Z, so a→ b← c is active in π′. If b



is a non-collider in a − b − c, then it must also occur as a non-collider in π (but perhaps in a different segment). This is
because outgoing edges from b in π′ that do not exist in π must have been a replacement for another outgoing edge from b in
π. Since π is active, this means b /∈ Z, and hence the segment a− b− c is active in π′.

Since C contains a vertex of Z, any collider in C is automatically active. To show that the entire path π′ is active, it now
suffices to show that any vertex vi ∈ C that is a non-collider in π′ must have been a non-collider in π as well. Indeed, if vi
is a non-collider in π′ with an outgoing edge vi → w with w ̸= vi−1, then this outgoing edge must exist in π or must be
a replacement for another outgoing edge in π from vi, so vi is also a non-collider in π. If vi is a non-collider in a circle
segment vi+1 → vi → vi−1 in π′, then vi must occur as a non-collider in the segment vi+1 ← vi ← vi−1 in π. Finally, we
could have w → vi → vi−1 in π′ for w ̸= vi+1, but this is only possible if w → vi+1 ← vi ← vi−1 occurred in π. In each
case, vi is also a non-collider in π, which concludes the argument.

Case 2: Suppose none of the vertices in C is part of the conditioning set Z, i.e. C ∩Z = ∅. In this case, we have to construct
the path π′ in H in a different way:

• whenever w → vi occurs in π for vi ∈ C, replace it with w → vi−1 → vi−2 → · · · → vi (similarly, if vi ← w occurs
in π, replace it with vi ← vi+1 ← · · · ← vi−1 ← w).

• make the resulting path simple by deleting any self-loops if they exist.

By definition of H = REVERSE(G,C), π′ is a valid simple path from w1 to wt in H . We show that π′ is also an active path
given Z.

By the same argument as in the first case, any segment a− b− c of π′ with b /∈ C must be active. Since C does not contain
any vertex in Z, any non-collider of π′ in C is active too. Hence, it suffices to show that every collider of π′ in C is active.
If π′ contains a segment w → vi ← u with w, u ̸= vi+1, then π must contain the segment w → vi+1 ← u. Since π is
active, vi+1 must have a G-descendant in Z, and by part 1 of Lemma 24, this is also an H-descendant. Hence, also vi
has an H-descendant in Z, so w → vi ← u is active in π′. Finally, note that π′ cannot contain a segment of the form
w → vi ← vi+1, by construction. This completes the first part of the proof.

We have shown that, whenever a and b are d-separated in H = REVERSE(G,C) given Z, they also must be d-separated in
G given Z. However, since G = REVERSE(H,C) by part 2 of Lemma 24, the converse must also hold. Hence, G and H
are Markov equivalent. 2
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