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Abstract

Prototypical parts networks combine the power of deep learning with the
explainability of case-based reasoning to make accurate, interpretable de-
cisions. They follow the this looks like that reasoning, representing each
prototypical part with patches from training images. However, a single
image patch comprises multiple visual features, such as color, shape, and
texture, making it difficult for users to identify which feature is important
to the model. To reduce this ambiguity, we introduce the Lucid Prototyp-
ical Parts Network (LucidPPN), a novel prototypical parts network that
separates color prototypes from other visual features. Our method em-
ploys two reasoning branches: one for non-color visual features, processing
grayscale images, and another focusing solely on color information. This
separation allows us to clarify whether the model’s decisions are based on
color, shape, or texture. Additionally, LucidPPN identifies prototypical
parts corresponding to semantic parts of classified objects, making compar-
isons between data classes more intuitive, e.g., when two bird species might
differ primarily in belly color. Our experiments demonstrate that the two
branches are complementary and together achieve results comparable to
baseline methods. More importantly, LucidPPN generates less ambiguous
prototypical parts, enhancing user understanding.

1 Introduction

Increased adoption of deep neural networks across critical fields, such as healthcare (Rymar-
czyk et al., 2022b), and autonomous driving (Wu et al., 2017), shows the need to develop
models in which decisions are interpretable, ensuring accountability and transparency in
decision-making processes (Rudin, 2019; Rudin et al., 2022). One promising approach is
based on prototypical parts (Chen et al., 2019; Nauta et al., 2023; Rymarczyk et al., 2021;
2022d), which integrate the power of deep learning with interpretability, particularly in
fine-grained image classification tasks. During training, these models learn visual concepts
characteristic for each class, called Prototypical Parts (PPs). In inference, predictions are
made by identifying the PPs of distinct classes within an image. This way, the user is
provided with explanations in the form of “This looks like that”.
The primary benefit of PPs-based methods over post hoc approaches is their ability to in-
corporate explanations into the prediction process (Chen et al., 2019) directly. Nevertheless,
a significant challenge with these methods lies in the ambiguity of prototypical parts, vi-
sualized using five to ten nearest patches. Each patch encodes a range of visual features,
including color1, shape, texture, and contrast (Nauta et al., 2021a), making it difficult for
users to identify which of them are relevant. This issue is compounded by the fact that neu-
ral networks are generally biased towards texture (Geirhos et al., 2019) and color (Hosseini
et al., 2018), whereas humans are typically biased towards shape (Landau et al., 1988).
Therefore, recent works have attempted to solve this problem using various strategies. Some
works propose to reduce the ambiguity of prototypical parts by visualizing them through

1We follow the color definition from the research of (Berga et al., 2020; Khan et al., 2012)
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Figure 1: Our novel prototypical parts-based model, LucidPPN, enables the disentangling
of color information from the prototypical parts. This capability allows us to examine more
closely the differences between an image patch and patches representing a prototypical part.
As shown in the image, our model can visualize that the head of a bird, compared to the
prototypical part of a bird’s head from different classes, shows a high resemblance in shape
and texture but differs in color. Such detailed analysis was not possible with previous
prototypical parts-based approaches.
a larger number of patches (Ma et al., 2024; Nauta et al., 2023). However, it does not
solve the problem with various visual features encoded in each patch. Other approaches
tend to solve this problem by quantifying the appearance of specific visual features (Nauta
et al., 2021a) or concepts (Wan et al., 2024) on prototypical parts. However, they generate
ambiguous statements such as “color is important”, leading to further questions (e.g. about
which color) that complicate understanding (Ma et al., 2024; Xu-Darme et al., 2023).
Motivated by the challenge of decoding the crucial visual attributes of prototypical parts, we
introduce the Lucid Prototypical Parts Network (LucidPPN). It uniquely divides the model
into two branches: the first focuses on identifying visual features of texture and shape
corresponding to specific object parts (e.g. heads, tails, wings for birds), while the second
is dedicated solely to color. It allows us to disentangle color features from the prototypical
parts and present pairs of a simplified gray prototypical part and corresponding color (see
Figure 1). The second advantage of LucidPPN is that the successive prototypes in each
class correspond to the same object parts (e.g., the first prototypes are heads, the second
prototypes are legs, etc.). Altogether, it enabled us to introduce a novel type of visualization
presented in Figure 2, more intuitive and less ambiguous according to our user studies.
Extensive experiments demonstrate that LucidPPN achieves results competitive with cur-
rent PPs-based models while successfully disentangling and fusing color information. Addi-
tionally, using LucidPPN , we can identify tasks where color information is an unimportant
feature, as demonstrated on the Stanford Cars dataset (Krause et al., 2013). Finally, a
user study showed that participants, guided by LucidPPN explanations, more accurately
identified the ground truth compared to those using PIP-Net.
Our contributions can be summarized as follows:

• We introduce LucidPPN, a novel architecture based on PPs, which disentangles
color features from the PPs in inference. Consequently, thanks to LucidPPN we
know the relevance of the color and shape with texture in the decision process2.

• We propose a mechanism that ensures successive prototypes within each class con-
sistently correspond to the same object parts.

• We introduce a more intuitive type of visualization incorporating the assumption
about the fine-grained classification.

• We conduct a comprehensive examination demonstrating the usability and limita-
tions of LucidPPN. Specifically, we highlight scenarios where color information may
not be pivotal or even confuses the model in fine-grained image classification.

2See the discussion in paragraph Color Impact in Section 5.
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Figure 2: Our novel type of visualization utilizes the fact that the successive prototypes
in each class of LucidPPN correspond to the same object parts. That is why we use a
schematic drawing of a bird to show the location of the specific prototypical parts. Moreover,
LucidPPN disentangles color features from the prototypical parts to present pairs of a
simplified gray prototypical part and a corresponding color. The aggregated resemblance is
obtained by multiplying the resemblance to the prototypical part and the resemblance to
the corresponding color.

2 Related works
Ante-hoc methods for XAI. Self-explainable models (ante-hoc) aim to make the de-
cision process more transparent by providing the explanation together with the prediction,
and they have attracted significant attention (Alvarez Melis & Jaakkola, 2018; Böhle et al.,
2022; Brendel & Bethge, 2019). Much of this attention has focused on enhancing the concept
of prototypical parts introduced in ProtoPNet (Chen et al., 2019) to represent the activa-
tion patterns of networks. Several extensions have been proposed, including TesNet (Wang
et al., 2021) and Deformable ProtoPNet (Donnelly et al., 2022), which exploit orthogonal-
ity in prototype construction. ProtoPShare (Rymarczyk et al., 2021), ProtoTree (Nauta
et al., 2021b), ProtKNN (Ukai et al., 2022), and ProtoPool (Rymarczyk et al., 2022d)
reduce the number of prototypes used in classification. Other methods consider hierarchi-
cal classification with prototypes (Hase et al., 2019), prototypical part transformation (Li
et al., 2018), and knowledge distillation techniques from prototypes (Keswani et al., 2022).
Prototype-based solutions have been widely adopted in various applications such as medical
imaging (Afnan et al., 2021; Barnett et al., 2021; Kim et al., 2021; Rymarczyk et al., 2022b),
time-series analysis (Gee et al., 2019), graph classification (Rymarczyk et al., 2023a; Zhang
et al., 2022), semantic segmentation (Sacha et al., 2023), and class incremental learning (Ry-
marczyk et al., 2023b).
However, prototypical parts still need to be improved, especially regarding the understand-
ability and clarity of the underlying features responsible for the prediction (Kim et al.,
2022). Issues such as spatial misalignment of prototypical parts (Carmichael et al., 2024;
Sacha et al., 2024) and imprecise visualization techniques (Gautam et al., 2023; Xu-Darme
et al., 2023) have been identified. There are also post-hoc explainers analyzing visual fea-
tures such as color, shape, and textures (Nauta et al., 2021a), and approaches using multiple
image patches to visualize the prototypical parts (Ma et al., 2024; Nauta et al., 2023). In
this work, we address the ambiguity of prototypical parts by presenting a dedicated archi-
tecture, LucidPPN, that detects separate sets of prototypes for shapes with textures and
another set for colors. This approach aims to enhance the interpretability and clarity of the
interpretations.

Usage of low-level vision features for image classification. Multiple approaches to
extracting features based on texture (Armi & Fekri-Ershad, 2019; Haralick et al., 1973),
shape (Khan et al., 2012; Mingqiang et al., 2008), and color (Chen et al., 2010; Kobayashi
& Otsu, 2009) have been proposed before the deep learning era, based on the knowledge
about human perception (Fan et al., 2017). Similar features are trained by shallow layers
of deep networks, which can be visualized with methods such as (Zeiler, 2014; Springenberg
et al., 2014). However, while these methods effectively illustrate low-level features, they
struggle with deeper layers, where the visualized concepts entangle multiple visual features
and lead to ambiguous explanations. Similar behavior can be observed in recent eXplainable
AI (XAI) methods (Basaj et al., 2021; Laina et al., 2022; Rymarczyk et al., 2022a; Zieliński
& Górszczak, 2021; Nauta et al., 2021a). By using two branches, one for color and one for
remaining visual features, our method explicitly disentangles these visual features, reducing
ambiguity of explanations based on high-level concepts.

3
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3 Method

3.1 Preliminaries

Problem formulation. Our objective is to train a fine-grained classification model based
on prototypical parts, which accurately predicts one of M subtly differentiating classes.
We use N image-label pairs {(x0, y0), . . . , (xN , yN )} ⊂ I × {1, . . . ,M} as a training set to
obtain the model returning highly accurate predictions and lucid explanations. For this,
we separate color from other visual features at the input and process them through two
network branches with separate sets of PPs.
PDiscoNet. PDiscoNet (van der Klis et al., 2023) generates segmentation masks of object
parts, used in training of LucidPPN to align K successive prototypical parts of each class
with K successive object parts. We decided to use it instead of human annotators because
it is more efficient and cost-effective. However, it can be replaced with any method of object
part segmentation due to the modularity of our approach.
PDiscoNet model fDisco utilizes a convolutional neural network (CNN) to generate a feature
map ZDisco = [zij ]i,j ∈ (RDDisco)HDisco×WDisco from a given image x. Each of HDisco ×
WDisco vectors from such feature map is then compared to trainable vectors qk ∈ RDDisco

representing K object parts and background, using similarity based on Euclidean distance

tkij =
exp(−||zij − qk||2)∑K+1

k′=1 exp(−||zij − qk′ ||2)
, (1)

for i = 1, . . . ,WDisco and j = 1, . . . , HDisco, and k ∈ {1, . . . ,K + 1}. This way, we obtain
an attention map T k = [tkij ]i,j ∈ RHDisco×WDisco for each object part and background. Such
attention maps are multiplied by feature map ZDisco and averaged to obtain one vector per
object part. Those vectors are passed to the classification part of PDiscoNet, which involves
learnable modulation vectors and a linear classifier.
A vital observation is that the maps T k continuously split the image into regions corre-
sponding to discovered object parts thanks to a well-conceived set of loss functions added
to the usual cross-entropy. They assure the distinctiveness, consistency, and presence of the
semantic regions. Yet, the only annotations used in training are the class labels.
In the subsequent sections, we ignore the PDiscoNet predictions PDisco, using only the
attention maps T k, which we will call segmentation masks from now on.

3.2 LucidPPN

3.2.1 Architecture

LucidPPN is a deep architecture, presented in Figure 3, consisting of two branches: one for
revealing information about shape and texture (ShapeTexNet), and the second dedicated to
color (ColorNet). That is why ShapeTexNet operates on grayscaled input, while ColorNet
uses aggregated information about the color.
ShapeTexNet. A grayscaled version of image x is obtained by converting its channels x =
(r, g, b) to xS = (w,w,w), where w = 0.299r + 0.587g + 0.114b. This formula approximates
human perception of brightness (Pratt, 2013) and is a default grayscale method used in
computational libraries, such as PyTorch (Paszke et al., 2019).
Grayscaled image xS is fed to a convolutional neural network backbone fSb

. For this purpose,
we adapt the ConvNeXt-tiny (Liu et al., 2022) without classification head and with increased
stride at the two last convolutional layers to increase the resolution of the feature map, like
in PIP-Net (Nauta et al., 2023). As an output of fSb

, we obtain a matrix of dimension
(D×H ×W ), which is projected to dimension KM ×H ×W using 1× 1 convolution layer
fScl

(where K is the number of object parts and M is the number of classes) so that each
prototype has its channel. Then, it is reshaped to the size of K ×M ×H ×W on which we
apply the sigmoid. As a result, we obtain ShapeTexNet feature map defined as

ZS = [zkmS ]k,m = σ(fScl
(fSb

(xS))) = fS(xS) ∈ (RH×W )K×M (2)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

M
ea

nR

Part 1   TODO: swap

C
la

ss
 1

~

Part 1

C
la

ss
 1

Part 2C
la

ss
 1

~ ~

C
S

A

Class 1 Class 2 Class 3

R
ep

re
se

nt
an

ts

Maps C

Maps S

ŷ
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Figure 3: LucidPPN architecture consists of two branches: ColorNet and ShapeTexNet that
encode color and shape with texture in feature maps ZC and ZS , respectively. Thanks
to a special type of training each channel of a feature map corresponds to similarity to a
specific object part of a given class. In this image, green and orange correspond to two
object parts: head and belly, and red and blue correspond to classes A and B. Therefore,
each feature map consists of four channels for head of A, belly of A, head of B, and belly
of B. Corresponding channels from both branches are multiplied to obtain feature map ZA,
which is then pooled with maximum to obtain the resemblance of prototypical parts fusion
and aggregated through mean to obtain final logits.
Thus, we link each map zkmS to a unique prototypical part of an object part k for class m,
from which we compute ShapeTexNet resemblance RS = [rkmS ]k,m ∈ [0, 1]K×M , where

rkmS = MaxPool2D(zkmS ) (3)
Finally, we obtain ShapeTexNet predictions PS = [pmS ]m ∈ [0, 1]M by taking the mean over
the resemblance of all parts of a specific class

pmS =
1

K

K∑
k=1

rkmS (4)

ColorNet. To obtain aggregated information about color, as an input of ColorNet, image
x is downscaled through bilinear interpolation to H ×W resolution, marked as xC . Then,
xC is passed to convolutional neural network fC , composed of six 1× 1 convolutional layers
with ReLU activations, except the last layer after which we apply sigmoid. This way, we
process each input pixel of xC separately, taking into account only its color. As a result, we
obtain ColorNet feature map

ZC = [zkmC ]k,m = fC(xC) ∈ (RH×W )K×M . (5)
Analogously to ShapeTexNet, each dimension in the feature map is related to a unique
prototypical part of an object part k in class m. Hence, as before, we calculate ColorNet
resemblance RC = [rkmC ]k,m ∈ [0, 1]K×M , where

rkmC = MaxPool2D(zkmC ). (6)
Information fusion and prediction. To obtain aggregated feature map ZA =
[zkmA ]k,m ∈ (RH×W )K×M from both branches, we multiply the ShapeTexNet feature map
with ColorNet feature map element-wise

5
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Figure 4: LucidPPN training schema. We use segmentation masks from PDiscoNet to
align the activation of prototypical parts with object parts. Additionally, we enforce the
ShapeTexNet to encode as much predictive information as possible through the usage of LS .
Lastly, we learn how to classify images through LA which is a binary cross-entropy loss.

zkmA = zkmS � zkmC , (7)

and define aggregated resemblance RA = [rkmA ]k,m ∈ [0, 1]K×M as
rkmA = MaxPool2D(zkmA ). (8)

The final predictions ŷ = [ŷm]m ∈ [0, 1]M for all classes are obtained by averaging rkmA over
class-related parts

ŷm =
1

K

K∑
k=1

rkmA . (9)

3.2.2 Training

As a result of LucidPPN training (presented in Figure 4), we aim to achieve three primary
goals: 1) obtaining a high-accuracy model, 2) ensuring the correspondence of prototypical
parts to object parts, 3) and disentangling color information from other visual features. To
accomplish these goals, we design three loss functions: 1) prototypical-object part correspon-
dence loss LD, 2) loss disentangling color from shape with texture LS , 3) and classification
loss LA that contribute to the final loss

L = αDLD + αSLS + αALA, (10)

where αD, αS , αA are weighting factors whose values are found through hyperparameter
search. The definition of each loss component is presented in the following paragraphs.
Please note that we assume that PDiscoNet was already trained, and we denote ȳ ∈ BM as
a one-hot encoding of y.
Correspondence of prototypical parts to object parts. To ensure that each pro-
totypical part assigned to a given class corresponds to distinct object parts, we define
the prototypical-object part correspondence loss LD. This function leverages segmenta-
tion masks T k from PDiscoNet to align the activations of prototypical parts, represented by
the ShapeTexNet feature map ZS with the locations of object parts. Hence, the activations
from the aggregated feature map ZA will be aligned with these object parts. It is defined as

LD =
1

K

K∑
k=1

MBCE
(
Zky
S , T k

)
, (11)

where MBCE(u, v) is defined as the mean binary cross-entropy loss between two maps
u, v ∈ [0, 1]H×W .

MBCE(u, v) = 1

HW

H∑
i=1

W∑
j=1

BCE(uij , vij), (12)

and y is the ground truth class. We align only the maps corresponding to y because the
prototypical parts assigned to other classes should not be highly activated.

6
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Disentangling color from other visual infromation. To maximize the usage of in-
formation about shape and texture during the classification with prototypical parts, we
maximize the accuracy of the ShapeTexNet through the usage of binary cross-entropy as
classification loss function on ShapeTexNet resemblances values

LS =
1

KM

M∑
m=1

K∑
k=1

BCE(rkmS , ȳm). (13)

Classification loss. Lastly, to ensure the high accuracy of the model and to combine
information from ColorNet and ShapeTexNet, we employ binary cross-entropy on aggregated
resemblances as our classification loss

LA =
1

KM

M∑
m=1

K∑
k=1

BCE(rkmA , ȳm). (14)

3.3 Prediction Interpretation

LucidPPN adopts the definition of prototypical parts from PIP-Net (Nauta et al., 2023),
where each prototypical part is represented by ten patches, typically activated by ten colored
images from the training set. However, in LucidPPN , the visualization must demonstrate
how each prototypical part is disentangled into color and shape with texture features. That
is why we propose a method to present the disentangled visual features of a prototypical part
by combining five grayscale patches, a color bar, and five colored patches. The grayscale
and colored patches are selected from the training images with the highest ShapeTexNet
resemblance and aggregated resemblance, respectively. The color bar is created by sampling
RGB color values from the ten colored patches with the highest aggregated resemblance and
projecting them using t-SNE (Van der Maaten & Hinton, 2008). Moreover, in contrast to
PIP-Net, LucidPPN creates prototypical parts corresponding to the same object parts in
all classes. Therefore, we can use the information about the specific object part location to
enrich the explainability.
Local (prediction) interpretation. Figure 2 demonstrates how LucidPPN classifies a
specific sample x into class ŷ by examining the prototypical parts assigned to ŷ that are
disentangled into color and other visual features. The views are enhanced with pointers to
regions of highest aggregated resemblance, clearly associated with the object parts.
Comparison explanation. Users may wish to inspect and compare local explanations
for multiple classes. LucidPPN facilitates this comparison by allowing users to compare
prototypical parts of corresponding object parts, making the process intuitive, as shown in
pplementary Figure 8.
Class (global) characteristic. Disentangled prototypical parts corresponding to object
parts reveal the patterns the model uses to classify a given class. This enables the identi-
fication of texture and shape features, as well as colors (see Sup. Figure 21), that describe
a class without the need to analyze the final-layer connections, unlike other prototypical
part-based approaches (Chen et al., 2019; Donnelly et al., 2022; Ma et al., 2024; Nauta
et al., 2023; Rymarczyk et al., 2021; 2022c).

4 Experimental Setup

Datasets. We train and evaluate our model on four datasets: CUB-200-2011 (CUB) with
200 bird species (Wah et al., 2011), Stanford Cars (CARS) with 196 car models (Krause
et al., 2013), Stanford Dogs (DOGS) with 120 breeds of dogs (Khosla et al., 2011), and
Oxford 102 Flower (FLOWER) with 102 kinds of flowers (Nilsback & Zisserman, 2008).
More details on image preprocessing are in the Supplement.
Implementation details. Trainings are repeated 3 times. We made the code public. The
size of ShapeTexNet feature map is 768 × 28 × 28. The channel number of ColorNet’s con-
volutional layers is 20, 50, 150, 200, 600,K ·M . The values of loss weights are found through
hyperparameter search (αD = 1.4, αS = 1.0, αA = 1.0). Details are in the Supplement.
Metrics During the evaluation, we report the top-1 accuracy classification score. Addi-
tionally, we measure the quality of prototypical parts alignment with object parts by cal-
culating intersection-over-union (IoU). In PDiscoNet, the segmentation map is the size of

7
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Table 1: Comparison of accuracy of PPs-based models on 4 datasets. LucidPPN achieves
competitive results to all methods, and SOTA on 2 datasets. Note that, LucidPPN is
trained with K = 12, and “–“ means that the model did not converge during training when
using the code provided by the authors.

CUB CARS DOGS FLOWER
ProtoPNet (Chen et al., 2019) 79.2 86.1 77.4±0.2 92.1±0.3

ProtoTree (Nauta et al., 2021b) 82.2± 0.7 86.6± 0.2 – –
ProtoPShare (Rymarczyk et al., 2021) 74.7 86.4 74.1±0.3 90.3±0.2
ProtoPool (Rymarczyk et al., 2022c) 85.5± 0.1 88.9± 0.1 71.7±0.2 92.7±0.1

PIP-Net (Nauta et al., 2023) 84.3± 0.2 88.2± 0.5 80.8± 0.4 91.8± 0.5

LucidPPN 81.5± 0.4 91.6± 0.2 79.4± 0.4 95.0± 0.3

the input image, while our activation map is the size of the latent space. Hence, we are
downsizing the segmentation map to 26 × 26 resolution to match its dimensions with the
activation map before calculating the IoU between the corresponding patches of both maps.
User studies. Using ClickWorker System3, we run two user studies to compare the quality
of patch-based prototypes and the influence of disentangled resemblance scores provided by
LucidPPN. For the first study, we collect the testing examples from CUB which are correctly
classified by PIP-Net, single branch CNN4 and LucidPPN. These are joined with information
about the two most probable classes per model and associated prototypical parts. Ninety
workers (30 per method) answer the survey, which consists of 10 questions. They are asked
to predict the model’s decision based on the evidence for the top two output classes without
the numerical scores. This approach mimics the user study presented in HIVE (Kim et al.,
2022) and is also inspired by the study performed in (Ma et al., 2024). In the second study,
we also collect images from CUB. This time we join them with prototypical parts of the
correctly predicted class and one other class. Each of the forty workers answers 10 questions
in which he/she rates from 1 (least) to 5 (most) to assess the influence of the color features
on the model’s prediction. The users give ratings based on LucidPPN prototypical parts
visualization, with or without included numerical resemblance scores. More details and the
survey templates are in the Supplement.

5 Results
Table 2: Comparison of the accuracy of ShapeTexNet
to LucidPPN. Integrating color with other visual fea-
tures proves advantageous for datasets containing
objects found in nature. However, for the CARS
dataset, adding color information does not enhance
the model’s performance. This is because color is not
a significant feature when classifying vehicles, as the
same car model can appear in various colors.

CUB CARS DOGS FLOWER
ShapeTexNet 80.4 91.7 78.6 93.6
LucidPPN 81.8 91.7 78.9 95.3

In this section, we show the effec-
tiveness of LucidPPN, the influence
of the color disentanglement in the
processing on the model’s perfor-
mance, and the results related to the
interpretability of learned prototyp-
ical parts based on the user study.
Comparison to other PPs-
based models. In Table 1 we
compare the classification quality of LucidPPN and other PPs-based methods. We present
the mean accuracy and standard deviation. We report best performing LucidPPN , which in
the case of all datasets was trained with fixed K = 12. Our LucidPPN achieves the highest
accuracy for CARS and FLOWER datasets, and competitive results on CUB and DOGS.
Color impact. The influence of ColorNet on LucidPPN predictions is shown in Table 2.
We compare the accuracy of ShapeTexNet with the LucidPPN predictions. The information
fusion enhances the results on the CUB, DOGS, and FLOWER. However, it does not affect
performance on the CARS. This can be attributed to the characteristics of the CARS
dataset, where vehicles of the same model can differ in colors, indicating that color is not

3https://www.clickworker.com/
4For ablation analysis we also report results of a single branch CNN which has the same archi-

tecture as ShapeTexNet and receives colored images as input. Its local interpretation is visualized
similarly to LucidPPN, but without the gray patches and color bar as presented in Sup. Figure 13
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critical for this task. This contrasts with the fine-grained classification of natural objects,
such as birds and flowers, where color plays a significant role.
In Table 3 we show the results of experiments aiming to analyze how the model is susceptible
to the change of the color on the image. We report the accuracy of PIP-Net, ShapeTexNet,
and LucidPPN on original and hue-perturbed images from the CUB dataset. One can notice
that PIP-Net is highly dependent on color information and its score drops by over 37%
after perturbation. At the same time ShapeTexNet is immune to this transformation, while
LucidPPN loses approximately 12.5% accuracy because of it. To alter hue we randomly
rotate hue values in the HSV color space. After rotation, we adjust the luminosity of each
pixel by proportionately scaling its RGB channels. This step is key to modifying the hue
without changing the brightness perceived by humans.

Table 3: Robustness of the model to
changes in image color. When the hue
value is perturbed, the accuracy of PIP-
Net drops significantly. In contrast, the ac-
curacy drop for LucidPPN is only half as
much, and for ShapeTexNet none.

Original Hue-perturbed
PIP-Net 83.9 53.0

ShapeTexNet 80.3 80.3
LucidPPN 81.9 71.7

User studies. Statistics from the user study
assessing the lucidity of explanations gener-
ated by LucidPPN, single branch, and PIP-
Net are in Figure 5 and Supplementary Ta-
ble 5. We report the mean user accuracy with
a standard deviation and p-values. Users bas-
ing their responses on LucidPPN explanations
score significantly better than both PIP-Net
and random guess baselines. Additionally, we
conclude that most of the accuracy in this user
study can be attributed to the PDiscoNet part
supervision as single branch scores similarly to
LucidPPN, without a statistically significant difference. While both of our explanation vari-
ants with prototypical parts corresponding to the same object parts prove to be more intu-
itive for users, we also want to highlight the advantage of using full LucidPPN over single
branch. To this end, in Supplementary Figure 7 and Supplementary Table 6 we show the
outcomes of the study evaluating the user’s ability to recognize the importance of color fea-
tures in LucidPPN’s decisions. Users without information about resemblance values struggle
in this task achieving the same performance as if they answered at random. In contrast,
users provided with the resemblances in LucidPPN visualizations score 23% better. Note
that neither single branch nor PIP-Net gives the disentangled resemblance values. In both
studies, we perform a one-sided t-test and one-sample t-test to compare methods against
each other and 50% accuracy, respectively. More details can be found in the Supplement.

6 Ablation and analysis

Random
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* * ** ** p-value < 0.05

Figure 5: User study results show
that users based on LucidPPN ex-
planations outperform those with
explanations from PIP-Net to a sta-
tistically significant degree.

In this section, we examine how LucidPPN’s perfor-
mance is impacted by object part supervision and the
weights of the loss function components.

Influence of part supervision on the perfor-
mance of LucidPPN. One of the features of Lu-
cidPPN is object part supervision based on PDis-
coNet. To check its influence on the PPs-based model
without disentanglement, in Table 4 we compare the
accuracy of a single branch to LucidPPN and PIP-
Net. The single branch scores better than both mod-
els. The disentanglement in LucidPPN causes a small
(<6%) or negligible drop in accuracy while offering
more insights from the model.

Loss weighting. In Figure 6 we investigate the im-
pact of the loss weight αD, which is responsible for prototypical-object parts alignment, on
training outcomes. In this analysis, the weights of the other losses are fixed at αS = αC = 1.
We evaluate the accuracy and intersection-over-union (IoU) between the highest activated
ShapeTexNet feature map and PDiscoNet’s segmentation masks for each object part. The
results show that increasing αD enhances the IoU, but after a certain point, it gradually

9
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reduces accuracy. Notably, omitting the loss αD (part supervision) significantly diminishes
the network’s classification performance and makes the learned prototypical parts collapse
into a single, most descriptive one as presented in Supplementary Figure 10. While other
works address this issue by adding novel regularization losses (Nauta et al., 2023; Wang
et al., 2021), these solutions fail to ensure consistency of the considered parts across differ-
ent classes.
We provide additional results in the Supplementary Materials. They include ablations
on the LucidPPN’s backbone, the size of a ColorNet, type of input color representation,
number of object parts K, and different training schedules for LucidPPN‘s branches. Also,
we show examples of PIPNet failures mitigated by LucidPPN, and we discuss the reasons
for introducing LS .

7 Conclusions
Table 4: Accuracy of PIP-Net, LucidPPN, and a
single branch CNN supervised by PDiscoNet.

CUB CARS DOGS FLOWER
PIP-Net 84.3 88.2 80.8 91.8

LucidPPN 81.5 91.6 79.4 95.0
single branch 86.6 91.9 82.7 95.6

In this work, we propose LucidPPN,
an inherently interpretable model that
uses prototypical parts to disentangle
color from other visual features in its
explanations. Our extensive results
demonstrate the effectiveness of our
method, and user studies confirm that
our explanations are less ambiguous than those from PIP-Net. In future research, we aim
to further refine the model architecture to separately process shape and texture features, as
well as analyze different visualization strategies of disentanglement and their recognition by
the users. Additionally, we plan to explore the human perception system in greater depth
to inform the design of the next generation of interpretable neural network architectures.
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Figure 6: Influence of the weight
of prototypical-object part corre-
spondence loss on accuracy and
Intersection-over-Union (IoU). An
increase of αD improves IoU but at
a certain point gradually reduces ac-
curacy.

Limitations. Our work faces a significant con-
straint: while our designed mechanism adeptly disen-
tangles color information from input images, it can-
not currently extract other crucial visual features
such as texture, shape, and contrast. This high-
lights a broader challenge within the field: the ab-
sence of a universal mechanism capable of encom-
passing diverse visual attributes. Furthermore, our
approach inherits limitations from other PPs-based
architectures, including issues such as spatial mis-
alignment (Sacha et al., 2024), the non-obvious in-
terpretation of PPs (Ma et al., 2024) and those of
PIP-Net (Nauta et al., 2023). The latter could be
addressed with textual descriptions of concepts dis-
covered by PPs. Lastly, LucidPPN increases the
transparency of the decision made by the deep neu-
ral networks however it still has a performance gap to
black-box models, or even to those offering some in-
sights into the model reasoning process such as PDis-
coNet (van der Klis et al., 2023). This shall be under further investigation to fill this
performance gap if possible.
Broader Impact. Our work advances the field of interpretability, a crucial component
for trustworthy AI systems, where users have the right to understand the decisions made by
these systems (Kaminski, 2021; Tabassi, 2023). LucidPPN enhances the quality of explana-
tions derived from PPs-based neural networks, which are among the most promising tech-
niques for ante-hoc interpretability methods. Consequently, it can facilitate the derivation
of scientific insights and the creation of better human-AI interfaces for complex, high-stakes
applications.
Additionally, LucidPPN provides visual characteristics for PPs, which are especially ben-
eficial in domains lacking standardized semantic textual descriptions of concepts. This
is particularly useful in fields such as medicine, where it aids in analyzing radiology and
histopathology images.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Reproducibility Statement

We ensured that our experiments are reproducible by thoroughly describing them in Sec-
tion 4 and the Supplement. Additionally, the Supplementary Materials include the code used
to perform the experiments, along with a README.md file providing further instructions.
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Supplement for LucidPPN: Unambiguous Prototypical Parts
Network for User-centric Interpretable Computer Vision

More details on data preprocessing

In training, we apply transformations as follows: Resize(size=224+8), TAWideNoColor(),
RandomHorizontalFlip(), RandomResizedCrop(size=(224, 224), scale=(0.95, 1.),
where TAWideNoColor() is the same variation of TrivialAugment augmentation as
in PIP-Net. Additionally, the image entering the ShapeTexNet is normalized with
Normalize(mean=0.445, std=0.269) after being converted to grayscale. At test time and
when finding the prototypical parts patches, we only apply Resize(size=224) followed by
grayscaling and normalization in case of ShapeTexNet input. The CUB images used for
training and evaluation are first cropped to the bounding boxes similarly to other PP-based
methods.
We do not modify any parameters in PDiscoNet. CUB settings are used for datasets not
trained in the PDiscoNet paper. For efficiency, we generated and saved the segmentation
masks to avoid inferencing PDiscoNet during LucidPPN’ training.

More details on experimental setup

The networks (ShapeTexNet and ColorNet) are optimized together in minibatches of size
64 for 40 epochs using AdamW (Loshchilov & Hutter, 2017) optimizer with beta values of
0.9 and 0.999, epsilon of 10−8, and weight decay of 0. The learning rate of ShapeTexNet
parameters is initialized to 0.002 and lowered to 0.0002 after 15 epochs. The learning rate
of the ColorNet is fixed at 0.002. We freeze the weights of ShapeTexNet backbone for the
first 15 epochs as a warm-up stage similar to other PPs-based approaches (Chen et al., 2019;
Nauta et al., 2023; Rymarczyk et al., 2022c).

More details on computing resources

We ran our experiments on an internal cluster and a local cloud provider, a single GPU, it
was either NVIDIA A100 40GB or NVIDIA H100 80GB. The node we ran the experiments
on has 40GB of RAM and an 8-core CPU. The model on average trains for 3 hours.

More details on user studies with exemplary surveys.

Each worker answering a short 10-question survey was paid 1.50 euros. Questions between
users may differ as they are randomly composed. Participants are gender-balanced and have
ages from 18 to 60.

User study on quality of prototypical parts. For PIP-Net, we randomly select sam-
ples with K ′ = 4, 3, 2, 1 in the proportion of 5 : 3 : 2 : 1 based on the frequency of occurrence
as PIP-Net doesn’t have the same number of prototypical parts assigned to data classes. The
LucidPPN pieces of evidence for classes in the same samples always show four prototypical
parts as we use a model trained with K = 4 here.
Example surveys for LucidPPN, PIP-Net, and single branch are presented in Figures 25 to
37, 38 to 50, and 51 to 63, respectively.

User study on the importance of disentangled visual features. Because we focus
on the influence of the color features, we use visualizations with a random single object
and prototypical part to let the user focus on the influence of the color. When gathering
samples for the survey, we make sure that for nearly half of them color was important for the
correct prediction, and for half of them, it was not. We define that the color was important,
when LucidPPN was correct, but ShapeTexNet was wrong. And, we define that color was
unimportant if both outputs were correct.
Example surveys for LucidPPN with color feature scores and without them are presented
in Figures 64 to 76, and 77 to 89, respectively.
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Detailed results of the user study

In Tables 5 and 6, we present detailed results of the user studies. We also visualize the
results of the user study on the importance of scores in the Figure 7.

Table 5: User study results indicate that users based on LucidPPN explanations outperform
those with explanations from PIP-Net to a statistically significant degree.

Mean Acc. [%] p-value
± Std. random PIP-Net LucidPPN

PIP-Net 60.0± 18.1 0.002 − −
LucidPPN 67.9± 16.9 2.13 · 10−6 0.044 −

single branch 69.9± 12.8 1.11 · 10−9 0.008 0.299

Table 6: Details of the user study about assesing the importance of color.
Mean Acc. [%] p-value

± Std. random without resemblances
without resemblances 49.50± 11.3 0.577 −

with resemblances (LucidPPN) 60.87± 19.9 0.012 0.016

Random

Without

res
em
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**
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Figure 7: User study shows that disentangled resemblance scores enable users to better
understand the relevance of color in model’s decisions.
Comparison explanation example

We show how our model can generate explanations by comparison of two potential classes
in Figure 8.

Color representation

We have performed an ablation study to evaluate how different color representations of the
input xc influence the model’s results. Instead of directly downsizing the RGB image, we
first transformed it into HSV space, replaced the S and V values with the Hue value, and
then downsized the image. In other words, the input to the network was an image composed
of the Hue channel repeated three times. The results demonstrate that LucidPPN with this
input still outperforms ShapeTexNet, with performance similar to the basic LucidPPN as
presented in the Table 7.

ColorNet size

Since the architecture of ColorNet may significantly impact LucidPPN’s performance, we
conducted an ablation study on the architecture’s size. Table 8 presents the accuracy com-
parison for CUB. All layers are 1× 1 convolutions followed by ReLU, except the last layer,
which is followed by a sigmoid activation. The results indicate that using at least two layers
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Figure 8: Comparison explanation example. Best viewed in landscape orientation.

to introduce non-linearity is beneficial. Additional layers have a smaller impact but can be
added to ensure sufficient expressiveness of the network.

Qualitative examples of failure cases without disentanglement that are
improved through LucidPPN

The main goal of the disentanglement is not to improve the accuracy but to provide a better
understanding of the model’s reasoning based on color and shape with texture information.
The explanations containing ShapeTexNet, ColorNet, and aggregated resemblances intro-
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Table 7: Accuracy of LucidPPN when ColorNet receives RGB values vs. only hue value.
ShapeTexNet added for comparison.

ColorNet input CUB CARS DOGS FLOWER
ShapeTexNet - 80.1± 0.2 91.7± 0.1 79.0± 0.3 93.6± 0.3

LucidPPN RGB 81.5± 0.4 91.6± 0.2 79.4± 0.4 95.0± 0.3
Only Hue 81.1± 0.4 91.6± 0.2 79.5± 0.2 94.1± 0.5

Table 8: LucidPPN’s accuracy for CUB vs the size of ColorNet.
Number of layers Hidden dimensions Accuracy [%]

1 - 80.3
2 (600) 81.4
4 (50, 200, 600) 81.2
6 (20, 50, 150, 200, 600) 81.5

duced in this work offer this additional information. Such an insight was missing in the
previous prototypical parts models (Chen et al., 2019; Nauta et al., 2023).
Nevertheless, disentanglement can enhance accuracy in scenarios where shape and texture
are the primary decision factors, with color serving to refine decisions that are difficult to
make based on other features alone. Figure 9 illustrates examples from CARS and CUB
where LucidPPN adheres to this principle, whereas the single branch CNN does not. Table
9 shows how often single branch CNN with colored input misclassifies color-altered images
compared to the LucidPPN, and vice versa, for two specific data classes scenarios:

1. For test images of the typically red Lamborghini Aventador, which were converted to
green and yellow via hue rotation, the single branch CNN mistakenly classified these
altered images as either the typically green Lamborghini Gallardo or the usually
yellow Lamborghini Diablo 24 times, despite the noticeable differences in shape (e.g.,
headlights and bumpers). In contrast, LucidPPN correctly classified these altered
images. LucidPPN only made such a mistake 3 times, while the single branch CNN
did not.

2. For test images of the red Cardinal, which were similarly converted to yellow and
indigo, the single branch CNN misclassified the Cardinal as any other bird 34 times.
LucidPPN made this mistake only once, while the single branch CNN was correct
in all other instances.

Table 9: Number of found examples for which LucidPPN and single branch outperformed
each other when asked to predict class in the color altered images.

Lamborghini CardinalAvendator
LucidPPN correct but 24 34single branch wrong
LucidPPN wrong but 3 1single branch correct

Prototypical parts examples trained without part supervision

are presented in Figure 10.
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Figure A1: Examples of images with altered colors that change the prediction of a 
single branch CNN include a Lamborghini Aventador (top) and a Cardinal (bottom). 
Both are incorrectly classified by the single branch CNN, while LucidPPN with color 

disentangling classifies them correctly.

LucidPPN: 
Lamborghini 

Aventador
single branch:
Lamborghini 

Diablo
LucidPPN: 

Lamborghini 
Aventador

single branch: 
Lamborghini 

Gallardo

Correct label: 
Lamborghini 

Aventador

PredictionsAltered imagesOriginal image Wrong class guessed 
by single branch

Correct label:
Cardinal

LucidPPN: 
Cardinal

single branch: 
Indigo 

Bunting
LucidPPN: 
Cardinal

single branch: 
Blue-winged 

Warbler

Figure 9: Examples of images with altered colors that change the prediction of a single
branch CNN include a Lamborghini Aventador (top) and a Cardinal (bottom). Both are
incorrectly classified by the single branch CNN, while LucidPPN with color disentangling
classifies them correctly.

Number of parts

In Figure 11, we show the impact of choosing a different number of parts K. Lu-
cidPPN achives high results for all tested K, however it is noticeable that increasing K
improves classification. Especially on CARS, our method seems to strongly benefit from
choosing K ≥ 4. The reasonably high scores for all K allow for a choice between sparse
explanations and higher accuracy.

Need for LS

Many prototypical-parts-based models, such as ProtoPNet (Chen et al., 2019), Pro-
toPool (Rymarczyk et al., 2022d), and PIP-Net (Nauta et al., 2023), involve complex
training schemes with warm-up and pretraining phases. Initially, we believed that Shape-
TexNet should be pretrained before training ColorNet, given that ShapeTexNet processes
more complex data. However, the ablation study presented in Figure 12 shows that warming
up ShapeTexNet (or delaying the training of ColorNet) is either unnecessary or may even
negatively influence color-based explanations.
During the initial development of LucidPPN, we used LS to guide the learning of Shape-
TexNet during its warm-up phase. Once we observed that ShapeTexNet did not require
a warm-up, we switched to jointly using LS and LA in training. We found that remov-
ing LS negatively impacted LucidPPN’s performance which is presented in Figure 6 in the
manuscript. Consequently, we retained LS , as it provides essential guidance for ShapeTexNet
to effectively extract important features from its more complex input.
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Figure A2: Examples from two classes demonstrate 
that prototypes learned without PDiscoNet 

supervision focus on a single object part, in contrast 
to those more diverse learned by LucidPPN.
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Figure 10: Examples from two classes demonstrate that prototypes learned without PDis-
coNet supervision focus on a single object part, in contrast to those more diverse learned
by LucidPPN.
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Figure 11: Influence of the number of object parts K on LucidPPN accuracy. Increasing
the number of parts improves the accuracy of the model. Note that each dataset is plotted
in a unique color.

This need for stronger guidance aligns with observations in multimodal learning, where
separate learning of different modality branches maximizes the information extracted from
each modality (Wu et al., 2022). Here, we can think of each branch as different modalities.
Alternatively, using a weighted average could yield similar accuracy, but it would complicate
the final prediction. This approach would necessitate analyzing the contribution of each logit
vector separately and understanding their aggregation, with potentially different weights for
each dataset, making the process less transparent for the user.

Start of color network training

It is natural to ask whether delaying the start of ColorNet optimization could improve
LucidPPN. In Figure 12, we report the accuracy and color sparsity after delaying the training
of ColorNet. The change in classification quality is negligible. However, we observe a drop
in color sparsity, indicating that ColorNet is less focused on relevant colors. It is important
to note that despite the delay, the number of training epochs for ColorNet remains constant
for comparability.
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Figure 12: Influence of a delay when ColorNet starts to train on LucidPPN ’s accuracy and
color sparsity. While this delay does not negatively affect accuracy, it results in lower color
sparsity. This means that the network is not concentrating on a single color when processing
the PP.

LucidPPN with different backbones

We evaluate LucidPPN on an additional ResNet50 backbone and compare the results to
other models and backbones in Table 10. LucidPPN with ResNet50 backbone performs
worse than the one with ConvNeXt-tiny, which is similar to PIP-Net. When comparing
the results, note that iNaturalist-pretrained backbones have an advantage over ImageNet
resulting in a few points higher accuracy.

Table 10: Accuracy for different PP-based methods and backbones. The asterisk means
that the used backbone was pretrained on the iNaturalist dataset instead of ImageNet.

CUB CARS DOGS FLOWER
ProtoPNet ResNet34 79.2 86.1 - -

ProtoPShare ResNet34 74.7 86.4 - -
ProtoTree ResNet50 82.2± 0.7∗ 86.6± 0.2 - -
ProtoPool ResNet50 85.5± 0.1∗ 88.9± 0.1 - -
PIP-Net ResNet50 82.0± 0.3∗ 86.5± 0.3 - -

ConvNeXt-tiny 84.3± 0.2 88.2± 0.5 80.8± 0.4 91.8± 0.5

LucidPPN ResNet50 75.5± 1.1 89.0± 0.3 70.8± 0.2 89.5± 0.4
ConvNeXt-tiny 81.5± 0.4 91.6± 0.2 79.4± 0.4 95.0± 0.3

Discussion on patches of the color info and the patch of gray-scaled input
aligned in the latent space

Using a convolutional backbone, we assume a spatial correspondence between the latent
map from ShapeTexNet and the input, similar to the approach in ProtoPNet (Chen et al.,
2019). As we downsize the colorful image to match the height and width of the activation
map, the input dimensions for ColorNet are maintained consistently. ColorNet employs 1×1
convolutions to encode color information, ensuring the latent map has the same dimensions
as both the downsized input and the ShapeTexNet activation map.
Given the use of 1× 1 convolutions on the downsized image and a convolutional backbone
for the full-resolution image, we can assume that the (i, j) position on one map corresponds
to the (i, j) position on the other. Finally, we extract color information from the latent
representation at the same location where the prototypical part is most active, ensuring
alignment between the color and shape features.

Local interpretation of single branch

An example of prediction interpretation of single branch is presented in Figure 13.
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Figure 13: An example local interpretation of single branch for Lazuli Bunting.
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Figure 14: The image illustrates the object-part correspondence loss, which is applied solely
to the outputs of ShapeTexNet and PDiscoNet. First, we identify object parts through
PDiscoNet (e.g., first on the head, second on the wing). Next, we align the corresponding
prototypical parts with the object parts identified by the segmentation results through LD

loss.

Object-part correspondence

On Figure 14 we present how object-part correspondence LD loss works.

Consistency and stability of prototypical parts

One way to evaluate the quality of prototypical parts is to measure their consistency and
stability Huang et al. (2023). In Table 11. we present the results of those metrics. The
results show that LucidPPN achieves state-of-the-art results on stability without any ad-
ditional loss components, and is comparable to other metrics when it comes to stability.
This improvement is likely due to the enhanced object-part correspondence enabled by its
prototypical parts.

Computational costs

In Table 12, we provide computational costs of training LucidPPN when compared to other
prototypical-parts-based architectures.

Generalization to not fine-grained dataset

To assess whether LucidPPN generalizes to broader classification tasks (beyond fine-grained
datasets), we present results on PartImageNet He et al. (2022). On this dataset, LucidPPN
achieves an accuracy of 84.1%, outperforming PIPNet, which achieves 82.8%.

Comparison of explanation visualizations

In Figures 15, 16, 17, 18, and 19 we compare the decision explanations generated by
different methods.
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Table 11: Results of LucidPPN on consistency and stability metrics from the work of Huang
et al. (2023). The results indicate that LucidPPN is more robust than other prototypical-
parts-based approaches and achieves state-of-the-art results for Consistency while still re-
maining competitive in Stability.

Method Consistency Stability
ProtoPNet 28.3 56.7
ProtoTree 16.4 23.2
ProtoPool 35.7 58.4
TesNet 48.6 60.0
Deformable ProtoPNet 44.2 53.5
Huang et al. (2023) 70.6 72.1
LucidPPN (our) 71.2 66.3

Table 12: Computational costs of prototypical-parts-based methods. One can observe that
training of LucidPPN requires fewer hours and less RAM memory than PIP-Net, but more
GFLOPs. Generally, LucidPPN and PIPNet require more RAM memory than ProtoPNet
and ProtoPool, however they converge faster.
Method Training time GFLOPs for 1 batch of data Avg. Training Memory Usage
ProtoPNet 3h 586 4.9GB
ProtoPool 18h 658 14.4GB
PIP-Net 3h 354 41.5GB
LucidPPN (our) 2h 475 22.9GB

Faithfullness of patch visualizations

LucidPPN introduces a key difference in the definition of prototypical parts compared to
PIPNet. While PIPNet employs Softmax across channels in the latent feature map, Lu-
cidPPN uses the sigmoid activation function. The sigmoid function allows each channel’s
activation to be learned independently, not influenced by the relative activations of other
channels. At the same time, Softmax normalization can distort activations by emphasizing
values that are only relatively high compared to others, even if they are low in absolute
terms. Therefore, using the sigmoid function instead of Softmax, one can easily verify if
the image patches selected for visualization are faithful because such patches should have a
resemblance score close to 1. In Figure 20, we provide a distribution of the sigmoid function
values obtained for patches used in prototype visualization. For LucidPPN trained on the
CUB dataset (blue curve), 61.04% of those patches have values above 0.9, which indicates
that prototype visualizations are relatively faithful. Moreover, higher faithfulness can be
obtained when training with an additional loss component LC that punishes the model if
the sigmoid function value for a given prototype is smaller than 1 for all samples in the
batch:

LC =
1

KM

K∑
k=1

M∑
m=1

max
b∈B

(1− rkmA,b),

where B is the number of samples in a batch and rkmA,b is the value of rkmA for sample b in the
batch. As we observe in Figure 20 (green and yellow curves), the distribution of sigmoid
function values moves right with increasing weight αC of LC . However, it also comes with
a small decrease in accuracy.

Pruning prototypes with less faithful visualizations

To increase the faithfulness of LucidPPN, we analyze the effects of pruning the prototypes
with less faithful representation (those with resemblance scores < 0.9). As shown in Ta-
ble 13, LucidPPN accuracy after pruning drops only by around 2% (from 81.6% to 79.3%).
However, interestingly, the accuracy stays the same for LC = 0.05. It suggests that combi-
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nation of using loss LC and applying the pruning allows to enforce high resemblance scores
(>0.9) of visualized patches without sacrificing on the accuracy.

Reason behind using the Binary Cross Entropy with Sigmoid instead of the
Cross Entropy with Softmax

The intuition behind Binary Cross Entropy (BCE) usage is rooted from multilabel classifi-
cation. To some degree, ShapeTexNet operates in a multilabel setting from the prototypical
parts perspective, as they may match multiple classes. Hence, to enable multiple classes
having high similarity to the same prototypical parts, we use sigmoid instead of softmax
when computing the feature maps. This necessitates a shift from Cross-Entropy (CE) to
Binary Cross-Entropy (BCE) because CE would then solely maximize the activation of the
correct class while ignoring crucial signals from negative classes. Another reason behind our
choice is to make it easier to verify the faithfulness of visualizations, as the sigmoid function
allows each channel’s activation to be learned independently, not influenced by the relative
activations of other channels. While, Softmax normalization used with CE can distort acti-
vations by emphasizing values that are only relatively high compared to others, even if they
are low in absolute terms.
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Figure 15: Local interpretation visualization in LucidPPN

Figure 16: Local interpretation visualization in PIP-Net

Figure 17: Local interpretation visualization in ProtoTree

Global characteristics examples

We present global characteristics for different datasets in Figures 21, 22, 23, 24, 25.
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Figure 18: Local interpretation visualization in ProtoPool

Figure 19: Local interpretation visualization in ProtoPNet
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Figure 20: Distribution of the aggregated resemblance scores for different weights of cluster
loss LC . For LucidPPN (αC = 0) trained on CUB dataset, 61.04% of patches representing
prototypes have aggregated resemblance score above 0.9, which indicates that prototype
visualizations are relatively faithful. Moreover, when training with additional loss function
LC , we obtain 95.33% patches with values above 0.9, with only a small drop in accuracy.

Table 13: Accuracy before and after pruning the prototypes with less faithful visualizations.
The results show that the combination of training with loss LC and pruning can enforce
faithfullness of visualizations without the loss in performance.

αC Before pruning After pruning
0 81.6 79.3
0.05 81.6 81.6
0.1 79.2 79.2
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Figure 21: An example showcasing global characteristics of four classes in the FLOWER
dataset, using prototypical parts from LucidPPN trained with K = 2. This visualization
demonstrates the ability to detect differences between data classes. For instance, the os-
teospermum and black-eyed susan exhibit more variation in color, while the blackberry lilly
and wild pansay classes differ in texture and shape.
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Figure 22: Selected global characteristics for LucidPPN trained on CUB with K = 4
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Figure 23: Selected global characteristics for LucidPPN trained on CARS with K = 4
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Figure 24: Selected global characteristics for LucidPPN trained on DOGS with K = 4
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Figure 25: Selected global characteristics for LucidPPN trained on FLOWER with K = 2
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Figure 26: Page 1 of survey for LucidPPN
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Figure 27: Page 2 of survey for LucidPPN
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Figure 28: Page 3 of survey for LucidPPN
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Figure 29: Page 4 of survey for LucidPPN
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Figure 30: Page 5 of survey for LucidPPN
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Figure 31: Page 6 of survey for LucidPPN
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Figure 32: Page 7 of survey for LucidPPN
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Figure 33: Page 8 of survey for LucidPPN
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Figure 34: Page 9 of survey for LucidPPN
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Figure 35: Page 10 of survey for LucidPPN
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Figure 36: Page 11 of survey for LucidPPN
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Figure 37: Page 12 of survey for LucidPPN
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Figure 38: Page 13 of survey for LucidPPN
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Figure 39: Page 1 of survey for PIP-Net
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Figure 40: Page 2 of survey for PIP-Net
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Figure 41: Page 3 of survey for PIP-Net
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Figure 42: Page 4 of survey for PIP-Net
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Figure 43: Page 5 of survey for PIP-Net
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Figure 44: Page 6 of survey for PIP-Net
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Figure 45: Page 7 of survey for PIP-Net
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Figure 46: Page 8 of survey for PIP-Net
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Figure 47: Page 9 of survey for PIP-Net
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Figure 48: Page 10 of survey for PIP-Net
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Figure 49: Page 11 of survey for PIP-Net
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Figure 50: Page 12 of survey for PIP-Net
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Figure 51: Page 13 of survey for PIP-Net
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Figure 52: Page 1 of survey for single branch
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Figure 53: Page 2 of survey for single branch
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Figure 54: Page 3 of survey for single branch
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Figure 55: Page 4 of survey for single branch
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Figure 56: Page 5 of survey for single branch
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Figure 57: Page 6 of survey for single branch
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Figure 58: Page 7 of survey for single branch
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Figure 59: Page 8 of survey for single branch
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Figure 60: Page 9 of survey for single branch
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Figure 61: Page 10 of survey for single branch
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Figure 62: Page 11 of survey for single branch

69



3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2025

Figure 63: Page 12 of survey for single branch
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Under review as a conference paper at ICLR 2025

Figure 64: Page 13 of survey for single branch
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Under review as a conference paper at ICLR 2025

Figure 65: Page 1 of survey for full LucidPPN (with scores)
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Figure 66: Page 2 of survey for full LucidPPN (with scores)
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Under review as a conference paper at ICLR 2025

Figure 67: Page 3 of survey for full LucidPPN (with scores)
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Figure 68: Page 4 of survey for full LucidPPN (with scores)
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Under review as a conference paper at ICLR 2025

Figure 69: Page 5 of survey for full LucidPPN (with scores)
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Figure 70: Page 6 of survey for full LucidPPN (with scores)
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Figure 71: Page 7 of survey for full LucidPPN (with scores)
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Under review as a conference paper at ICLR 2025

Figure 72: Page 8 of survey for full LucidPPN (with scores)
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Figure 73: Page 9 of survey for full LucidPPN (with scores)
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Figure 74: Page 10 of survey for full LucidPPN (with scores)
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Figure 75: Page 11 of survey for full LucidPPN (with scores)
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Figure 76: Page 12 of survey for full LucidPPN (with scores)
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Figure 77: Page 13 of survey for full LucidPPN (with scores)
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Figure 78: Page 1 of survey for LucidPPN with no scores
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Figure 79: Page 2 of survey for LucidPPN with no scores

86



4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
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Figure 80: Page 3 of survey for LucidPPN with no scores
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Figure 81: Page 4 of survey for LucidPPN with no scores
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Figure 82: Page 5 of survey for LucidPPN with no scores
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Figure 83: Page 6 of survey for LucidPPN with no scores

90



4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913

Under review as a conference paper at ICLR 2025

Figure 84: Page 7 of survey for LucidPPN with no scores
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Figure 85: Page 8 of survey for LucidPPN with no scores
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Figure 86: Page 9 of survey for LucidPPN with no scores
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Figure 87: Page 10 of survey for LucidPPN with no scores
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Figure 88: Page 11 of survey for LucidPPN with no scores
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Figure 89: Page 12 of survey for LucidPPN with no scores
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Figure 90: Page 13 of survey for LucidPPN with no scores
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