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Abstract

We propose a novel combinatorial stochastic-greedy bandit (SGB) algorithm for
combinatorial multi-armed bandit problems when no extra information other than
the joint reward of the selected set of n arms at each time step t ∈ [T ] is ob-
served. SGB adopts an optimized stochastic-explore-then-commit approach and
is specifically designed for scenarios with a large set of base arms. Unlike ex-
isting methods that explore the entire set of unselected base arms during each
selection step, our SGB algorithm samples only an optimized proportion of un-
selected arms and selects actions from this subset. We prove that our algorithm
achieves a (1− 1/e)-regret bound of O(n 1

3 k
2
3T

2
3 log(T )

2
3 ) for monotone stochas-

tic submodular rewards, which outperforms the state-of-the-art in terms of the
cardinality constraint k. Furthermore, we empirically evaluate the performance of
our algorithm in the context of online constrained social influence maximization.
Our results demonstrate that our proposed approach consistently outperforms the
other algorithms, increasing the performance gap as k grows.

1 Introduction

The stochastic multi-armed bandits (MAB) problem involves selecting an arm in each round t
and observing a reward that follows an unknown distribution. The objective is to maximize the
accumulated reward within a finite time horizon T . Solving the classical MAB problem requires
striking a balance between exploration and exploitation. Should the agent try arms that have been
explored less frequently to gather more information (exploration), or should it stick to arms that have
yielded higher rewards based on previous observations (exploitation)? An extension of the MAB
problem is the combinatorial MAB problem, where, instead of choosing a single arm per round,
the agent selects a set of multiple arms and receives a joint reward for that set. When the agent
only receives information about the reward associated with the selected set of arms, it is known as
full-bandit feedback or simply bandit feedback. On the other hand, if the agent obtains additional
information about the contribution of each arm to the overall reward, it is referred to as semi-bandit
feedback. The full-bandit feedback setting poses a more significant challenge as the decision-maker
has significantly less information than the semi-bandit feedback scenario [Fourati et al., 2023a]. This
paper focuses on the first scenario for combinatorial MAB, i.e., the bandit feedback setting.

In recent years, there has been growing interest in studying combinatorial multi-armed bandit
problems with submodular1 reward functions [Niazadeh et al., 2020, Nie et al., 2022, Fourati et al.,
2023a]. The submodularity assumption finds motivation in various real-world scenarios. For instance,

1A set function f : 2Ω → R defined on a finite set Ω is considered submodular if it exhibits the property of
diminishing returns: for any A ⊆ B ⊂ Ω and x ∈ Ω\B, it holds that f(A ∪ x)− f(A) ≥ f(B ∪ x)− f(B).
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opening additional supermarkets in a specific location would result in diminishing returns due to
market saturation. As a result, submodular functions are commonly used as objective functions
in game theory, economics, and optimization. Submodularity arises in important contexts within
combinatorial optimization, such as graph cuts [Goemans and Williamson, 1995, Iwata et al., 2001],
rank functions of matroids [Edmonds, 2003], and set covering problems [Feige, 1998]. Some key
problems where combinatorial multi-armed bandit problems with submodular reward functions
include proposing items with redundant information [Qin and Zhu, 2013, Takemori et al., 2020],
optimizing client participation in federated learning [Balakrishnan et al., 2022, Fourati et al., 2023b],
and social influence maximization without knowledge of the network or diffusion model [Wen et al.,
2017, Li et al., 2020, Perrault et al., 2020, Agarwal et al., 2022, Nie et al., 2022].

Similar to previous works [Streeter and Golovin, 2008, Golovin et al., 2014, Niazadeh et al., 2021,
Agarwal et al., 2021, 2022, Nie et al., 2022], we assume that the reward function is non-decreasing
(monotone) in expectation. Without further constraints, the optimal set will contain all the arms in
this setup. Thus, we limit the cardinality of the set to k. Recently, [Nie et al., 2022, 2023] studied
this problem and proposed an explore-then-commit greedy (ETCG) algorithm for this problem with
full-bandit feedback and showed a (1− 1/e)-regret bound of Õ(n 1

3 kT
2
3 ), where n is the number of

arms. The algorithm follows a greedy explore-then-commit approach that greedily adds base arms
to a super arm (a subset of base arms) until the cardinality constraint is satisfied. It then exploits
this super arm for the remaining time. To determine which base arm to add to the super arm, the
remaining arms are sampled m times each (where m is a hyper-parameter), and the arm with the
highest average reward is chosen. However, in practical scenarios with many arms, exploring all
remaining arms in each iteration may require a significant time and thus is unsuitable for smaller T .
Therefore, we propose a modified approach where a smaller subset of arms is randomly selected for
exploration in each iterative round, and the arm with the highest reward is chosen.

It is worth noting that a similar random selection-based algorithm has been considered in [Mirza-
soleiman et al., 2015] for the offline setup, providing a (1− 1/e− ϵ)-approximation guarantee, where
ϵ determines the reduction in the number of arms selected in each iteration. However, although bene-
ficial for exploration, this sub-selection of arms in each iteration leads to suboptimal approximation
guarantees. In this paper, we ask the question: “Can exploring a subset of arms in each iteration
achieve a benefit in terms of the (1− 1/e)-regret bound compared to selecting all remaining arms?"

We answer this question in a positive. By carefully selecting the parameter ϵ, we achieve a (1− 1/e)-
regret bound of Õ(n 1

3 k
2
3T

2
3 ). This improvement in regret bound surpasses that of [Nie et al., 2022,

2023] by orders of magnitude in terms of k. This improvement is particularly significant for larger
values of k. Our proposed approach reduces exploration while enhancing expected cumulative
(1− 1/e)-regret performance.

1.1 Contributions

We present the main contributions of this paper as follows:

•We introduce stochastic-greedy bandit (SGB), a novel technique in the explore-then-commit greedy
strategy with bandit feedback, wherein an optimized proportion of remaining arms are randomly
sampled in each greedy iteration. More precisely, rather than sampling (n− i+ 1) arms in greedy
iteration i, random (n − i + 1)min{1, log(1/ϵ)/k} arms are chosen for an appropriately selected
ϵ = O(n 1

3 k
2
3T− 1

3 log(T )−
1
3 ), which reduces the amount of exploration.

• We provide theoretical guarantees for SGB by proving that it achieves an expected cumulative
(1−1/e)-regret of at most Õ(n 1

3 k
2
3T

2
3 ) for monotone stochastic submodular rewards. This represents

an improvement of k
1
3 compared to the previous state-of-the-art method [Nie et al., 2023].

•We conduct empirical experiments to evaluate the performance of our proposed SGB algorithm
compared to the previous state-of-the-art algorithms specialized in monotone stochastic submodular
rewards [Nie et al., 2022, 2023]. We specifically focus on the online social influence maximization
problem and demonstrate the efficiency of SGB in achieving superior results in terms of cumulative
regret. In particular, the results show that the proposed algorithm outperforms the baselines, with the
performance gap increasing as k increases.
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Objective Analysis

Reference Constrained Stochastic Search α-Regret Bound

Streeter and Golovin [2008] ✓ Õ(n) Õ( n 1
3 k2 T

2
3 )

Golovin et al. [2014] ✓ Õ(n) Õ( n 2
3 k

2
3 T

2
3 )

Niazadeh et al. [2021] ✓ Õ(n) Õ( n 2
3 k T

2
3 )

Nie et al. [2022] ✓ ✓ Õ(n) Õ( n 1
3 k

4
3 T

2
3 )

Fourati et al. [2023a] ✓ Õ(n) Õ( n T
2
3 )

Nie et al. [2023] ✓ ✓ Õ(n) Õ( n 1
3 k T

2
3 )

SGB(ε⋆) (ours) ✓ ✓ Õ(n/k) Õ( n 1
3 k

2
3 T

2
3 )

Table 1: Table of selected related works for submodular maximization under full-bandit feedback, enumerating
their different assumptions, the respective search space of every exploration round, and the respective regret
guarantees. For all the works above, the approximation ratio, α = 1 − 1/e, except for the (non-monotone)
unconstrained work of Fourati et al. [2023a] where α = 1/2. The notation Õ(·) drops the log terms.

1.2 Related Work

This section discusses the works closely related to the problem we are investigating. Multi-armed
bandits have been considered in two different settings: adversarial setting, where an adversary pro-
duce a reward succession that may be affected by the agent’s prior decisions [Auer et al., 2002b], and
a stochastic setting, where the reward of each action is randomly drawn from a specific distribution,
as described in [Auer et al., 2002a]. In this work, we focus on stochastic reward functions. Standard
multi-armed bandits find adversarial settings more challenging, and the outcome can be immediately
used as one workable method for the stochastic scenario [Lattimore and Szepesvári, 2020]. However,
this is different for submodular bandits. While adversarial environment in adversarial bandits selects
a series of submodular functions {f1, · · · , fT } [Streeter and Golovin, 2008, Golovin et al., 2014,
Roughgarden and Wang, 2018, Niazadeh et al., 2020], in the submodular stochastic setting the
realizations of the stochastic function in the problem we define need not be submodular, it only
needs to be submodular in expectation, meaning the stochastic setting is not a particular case of the
adversarial setting.

Submodular maximization has been proven to be NP-hard. Even achieving an approximation ratio of
α ∈ (1− 1/e, 1] under a cardinality constraint with access to a monotone submodular value oracle
is also NP-hard [Nemhauser et al., 1978, Feige, 1998, Feige et al., 2011]. However, [Nemhauser
et al., 1978] proposed a simple greedy (1− 1/e)-approximation algorithm for monotone submodular
maximization under a cardinality constraint. Therefore, the best approximation ratio for monotone
submodular objectives with a polynomial time algorithm is 1− 1/e. Thus, we study (1− 1/e)-regret
combinatorial MAB algorithms in this paper.

Table 1 enumerates related combinatorial works with monotone submodular reward function under
bandit feedback for both adversarial and stochastic settings. The table summarizes that the proposed
approach achieves the state-of-the-art (1− 1/e)-regret result. Even though we consider stochastic
submodular rewards, full-bandit feedback has been studied for non-submodular rewards, including
linear reward functions [Dani et al., 2008, Rejwan and Mansour, 2020] and Lipschitz reward functions
Agarwal et al. [2021, 2022]. In these works, the optimal action (best set of k arms) is to use the k
individually best arms; that property does not hold for submodular rewards. Further, non-monotone
submodular functions with bandit feedback without cardinality constraint have been studied in
[Fourati et al., 2023a], where 1

2 -regret is derived. However, this algorithm cannot be applied to our
setup since it lacks a cardinality constraint.

Recently, [Nie et al., 2023] provided a framework that adapts offline algorithms for combinatorial
optimization with a robustness guarantee to online algorithms with provable regret guarantees. We
could use this framework for the offline approximation algorithm described in [Mirzasoleiman et al.,
2015] for the problem. At the same time, we note that such an approach will result in (1− 1/e− ε)-
approximation because the offline algorithm has (1− 1/e− ε) guarantee. Thus, exploring only a
subset of arms in each iteration and achieving a (1− 1/e)-regret is non-trivial and requires careful
analysis of the algorithm, which is done in this paper.
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2 Problem Statement

In this section, we present the problem formally. We denote Ω, the ground set of base arms which
includes n base arms. We consider decision-making problems with a fixed time horizon T , where the
agent, at each time step t, chooses an action2 St ⊆ Ω, with maximum cardinality constraint k. Let
S = {S|S ⊆ Ω and |S| ≤ k} represent the set of all permitted subsets at any time step.

After deciding the action St, the agent acquires reward ft(St). We assume the reward ft is
stochastic, bounded in [0, 1], i.i.d. conditioned on a given action, submodular in expectation3,
and monotonically non-decreasing in expectation4. The goal of the agent is to maximize the cu-
mulative reward

∑T
t=1 ft(St). Define the expected reward function as f(S) = E[ft(S)], hence

S⋆ = argmaxS:|S|≤k f(S) denote the optimal solution in expectation. One common metric to
measure the algorithm’s performance is to compare the learner to an agent that has and always
chooses the optimal set in expectation S⋆.

The best approximation ratio for monotone-constrained submodular objectives with a polynomial
time algorithm is 1− 1/e [Nemhauser et al., 1978]. Therefore, we compare the learner’s cumulative
reward to (1− 1/e)Tf(S⋆), and we denote the difference as the (1− 1/e)-regret, which is defined
as follows

R(T ) = (1− 1

e
)Tf(S⋆)−

T∑
t=1

ft(St). (2)

Note that the (1− 1/e)-regretR(T ) is random and depends on the subsets chosen. In this work, we
focus on minimizing the expected cumulative (1− 1/e)-regret

E[R(T )] = (1− 1

e
)Tf(S⋆)− E

[
T∑

t=1

ft(St)

]
, (3)

where the expectation is over both the environment and the sequence of actions.

3 Proposed Algorithm

This section presents our proposed combinatorial stochastic-greedy bandit (SGB) algorithm that
applies our optimized stochastic-explore-then-commit approach. We provide its pseudo-code in
Algorithm 1. The algorithm follows the explore-then-commit structure where base arms are added to
a super arm over time greedily until the cardinality constraint is satisfied and then exploits that super
arm. However, in contrast to previous explore-then-commit approaches in [Nie et al., 2022, 2023],
which at every exploration phase has a search space of O(n), to minimize its expected cumulative
regret, SGB reduces its search space toO(nk min{k, log( 1ϵ )}) arms. The aim of reducing the searched
arms in each iteration is to reduce the time spent in the exploration.

Let S(i) represent the super arm when i < k base arms are selected. Our algorithm starts with the
empty set, S(0) = ∅. To add an arm to the set S(i−1), ETCG explores the full subset Ω \ S(i−1).
Instead, our procedure explores a smaller subset, i.e., a random subset Ai ⊆ Ω \ S(i−1). With
β = log( 1ε )/k, the cardinality of Ai is

|Ai| = si = (n− i+ 1)min{1, β}. (4)

For β < 1, during each exploration phase i, while ETCG explores (n − i + 1) arms, SGB only
explores (n− i+1)β arms. Therefore, SGB requires fewer oracle queries per exploration phase than
ETCG. For β ≥ 1, during each exploration phase i, SGB explores (n − i + 1) arms, leading it to

2We use the super-arm, subset and action terminologies interchangeably throughout the paper.
3A stochastic set function f : 2Ω → R defined on a finite set Ω is considered submodular in expectation if

for all A ⊆ B ⊂ Ω, and x ∈ Ω\B, we have,

E[f (A ∪ {x})]− E[f(A)] ≥ E[f(B ∪ {x})]− E[f(B)]. (1)

4A stochastic set function f : 2Ω → R is called non-decreasing in expectation if for any A ⊆ B ⊆ Ω we
have E[f(A)] ≤ E[f(B)].
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become a deterministic greedy algorithm and recover the same results as ETCG. We note that β < 1
happens when ε > e−k. Therefore, the lower bound on ε exponentially decreases as a function of
k, ensuring this is true for most instances. To minimize the cumulative regret, ε is optimized as a
function of n, k, and T .

Algorithm 1 SGB

Require: ground set Ω, horizon T , cardinality k
S(0) ← ∅, n← |Ω|

m←

⌈(
kT

2n
√

log(T )

) 2
3

⌉
, ε←

(
nk2

4T log(T )

) 1
3

β ← log( 1
ε )

k , s1 ← nmin {1, β}
for phase i ∈ {1, . . . , k} do
Ai ← si elements sampled from Ω\S(i−1)

for arm a ∈ Ai do
Play S(i−1) ∪ {a}m times
Calculate the mean f̄

(
S(i−1) ∪ {a}

)
end for
ai ← argmaxa∈Ai f̄

(
S(i−1) ∪ {a}

)
S(i) ← S(i−1) ∪ {ai}
si+1 ← (n− i+ 1)min{1, β}

end for
for remaining time do

Play S(k)

end for

Let Ti denote the time step when phase i fin-
ishes, for i ∈ {1, · · · , k}. We also denote
T0 = 0 and Tk+1 = T for notational consis-
tency. Let f̄t(S) denote the empirical mean re-
ward of set S up to and including time t. Let

Si = { S(i−1)∪{a} : a ∈ Ai,Ai ⊆ Ω\S(i−1) }
denote the set of actions considered during phase
i. Each action comprises the super arm S(i−1)

decided during the last phase and an additional
base arm. Each action S ∈ Si is played the same
number of times; let m denote that number. The
choice of m will be optimized later to minimize
regret. At the end of phase i ∈ {1, . . . , k}, SGB
selects the action that has the largest empirical
mean,

ai = argmax
a∈Ai

f̄Ti(S
(i−1) ∪ {a}), (5)

and include it in the super arm S(i) = S(i−1) ∪
{ai}. During the final phase, the algorithm ex-
ploits S(k); it plays the same action St = S(k)

for t ∈ {Tk + 1, · · · , T}.
Similar to previous state-of-the-art approaches, SGB has low storage complexity. During exploitation,
for t ∈ {Tk + 1, · · · , Tk+1}, only the indices of the k base arms are stored, and no additional
computation is required. During exploration, for t ∈ {1, · · · , Tk}, for every phase i, SGB needs
to store the highest empirical mean and its associated base arm a ∈ Ai. Therefore, SGB has O(k)
storage complexity. In comparison, the algorithm suggested by Streeter and Golovin [2008] for the
full-bandit adversarial environment has a storage complexity of O(nk).
We note that the reduction of exploration time through random subset sampling from the remain-
ing arms comes at the expense of reduced offline approximation guarantee to (1 − 1/e − ε) in
[Mirzasoleiman et al., 2015]. Thus, it is apriori unclear if such an approach can maintain the online
(1− 1/e)-regret guarantees with the reduced exploration, which is studied in the next section.

4 Regret Analysis

This section analyses the regret for Algorithm 1. We begin by stating the main theorem, which bounds
the expected cumulative (1− 1/e)-regret of SGB.

Theorem 1. For the decision-making problem defined in Section 2 with T ≥ nk
√
log(T )/2, the

expected cumulative (1− 1/e)-regret of SGB is at most O(n 1
3 k

2
3T

2
3 log(T )

2
3 ).

The rest of the section provides the proof of this result.

Since for each phase i, we select each action S(i−1) ∪ {a} ∈ Si exactly m times, we consider the
equal-sized confidence radii rad =

√
2 log(T )/m for all the actions S(i−1) ∪ {a} ∈ Si at the end

of phase i. Denote the event that the empirical means of actions played in phase i are concentrated
around their statistical means as

Ei =
⋂

S∪{a}∈Si

{|f̄(S ∪ {a})− f(S ∪ {a})| < rad}. (6)

Then we define the clean event E to be the event that the empirical means of all actions selected up to
and including phase k is within rad of their corresponding statistical means:

E = E1 ∩ · · · ∩ Ek.
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Although the Ei ’s are not independent, by conditioning on the sequence of played subsets{
S(0), S(1), . . . , S(k)

}
and using the Hoeffding bound [Hoeffding, 1994], we show in the Appendix

that E happens with high probability. We use the concentration of empirical means, Equation (6), and
properties of submodularity to show the following result.

Lemma 1. Under the clean event E , for all i ∈ {1, 2, · · · , k}, for all positive ε,

f(S(i))− f(S(i−1)) ≥ 1− ε

k
(f(S⋆)− f(S(i−1)))− 2 rad .

Proof. Recall that ai, defined in (5), is the index of the arm that with S(i−1) forms the action with
the highest empirical mean at the end of phase i, and S(i) = S(i−1) ∪ {ai}. Let a∗i denote the index
of the arm that with S(i−1) forms the action with the highest expected value. For each a ∈ Ai, the
event that the empirical mean f̄(S(i−1) ∪ {a}) is concentrated within a radius of size rad around the
expected value. We lower bound the expected reward f(S(i)) for the empirically best action in phase
i, S(i) = {ai} ∪ S(i−1). To do so, we apply (6) to two specific arms, the empirically best ai out of
Ai and the statistically best a⋆i out of Ai.

f(S(i)) = f(S(i−1) ∪ {ai}) (by design)

≥ f̄(S(i−1) ∪ {ai})− rad (using (6))

≥ f̄(S(i−1) ∪ {a⋆i })− rad (ai has the highest empirical mean)

≥ f(S(i−1) ∪ {a⋆i })− 2rad. (using (6))

Furthermore, using Lemma 2 in [Mirzasoleiman et al., 2015], with si = (n− i+ 1)min{1, log( 1
ε )

k },
we have

f(S(i−1) ∪ {a⋆i })− f(S(i−1)) ≥ 1− ε

k
(f(S⋆)− f(S(i−1)) (7)

Combining the above results, we conclude that

f(S(i))− f(S(i−1)) ≥ 1− ε

k
(f(S⋆)− f(S(i−1))− 2rad.

This lemma identifies a lower bound of the expected marginal gain f
(
S(i)

)
− f

(
S(i−1)

)
of the

empirically best action S(i) at the end of phase i. As a corollary of Lemma 1, using properties of
submodular set functions, we can lower bound the expected value of SGB’s chosen set S(k) of size k,
which is used for exploitation;

Corollary 1. Under the clean event E , for all positive ε,

f
(
S(k)

)
≥ (1− 1

e
)f(S⋆)− (ε+ 2krad)

We use the above Corollary 1 to bound the expected cumulative regret of our proposed algorithm. We
split the expected (1− 1/e)-regret (3) conditioned on the clean event E into two parts, one for the
exploration and one for the exploitation,

E[R(T )|E ] =
T∑

t=1

(
(1− 1

e
)f(S⋆)− E[f(St)]

)

=

k∑
i=1

Ti∑
t=Ti−1+1

(
(1− 1

e
)f(S⋆)− E[f(St)]

)
︸ ︷︷ ︸

Exploration

+

T∑
t=Tk+1

(
(1− 1

e
)f(S⋆)− E[f(S(k))]

)
︸ ︷︷ ︸

Exploitation

.

(8)

Note that during phase i, each of the si actions in Si is selected exactly m times, thus Ti−Ti−1 = msi.
For each action St choosed during phase i, that is for t ∈ {Ti−1 + 1, · · · , Ti}, since S(i−1) ⊂ St,

6



by monotonicity of the expected reward function f we have f(S(i−1)) ≤ f(St). Thus we can upper
bound the expected regret E[R(T )|E ] incurred during the first k phases (first term of (8)) as

k∑
i=1

Ti∑
t=Ti−1+1

(
(1− 1

e
)f(S⋆)− E[f(St)]

)
≤

k∑
i=1

msi

(
(1− 1

e
)f(S⋆)− E[f(S(i−1))]

)

≤ ms1

k∑
i=1

(
(1− 1

e
)f(S⋆)− E[f(S(i−1))]

)
≤ ms1k. (9)

The last inequality follows because the rewards are in the interval [0, 1].

We can upper bound the expected regret E[R(T )|E ] incurred during the exploitation phase (phase
k + 1; second term of (8)) by applying Corollary 1 as follows

T∑
t=Tk+1

(
(1− 1

e
)f(S⋆)− E[f(S(k))]

)
≤

T∑
t=Tk+1

(ε+ 2krad)

≤ Tε+ 2kT rad. (10)
Combining the upper bounds (9) and (10), we get

E[R(T )|E ] ≤ ms1k + εT + 2kT rad. (11)

We have s1 = nmin{1, log( 1
ε )

k } and rad =
√

log(T )
m . Therefore, we have

E[R(T )|E ] ≤ mnmin{k, log(1
ε
)}+ εT + 2kT

√
log(T )

m
. (12)

First, trivially min{k, log( 1ε )} ≤ log( 1ε ), thus

E[R(T )|E ] ≤ mn log(
1

ε
) + εT + 2kT

√
log(T )

m
(13)

Setting the derivative (with respect to ε) of the bound to 0,

0 = −mn
1

ε
+ T + 0 ⇒ ε =

mn

T
(14)

The second derivative (with respect to ε), mnε−2, is positive so the stationary point is a minimizer.

Plugging ε = mn
T into the regret upper bound,

E[R(T )|E ] ≤ mn log(
T

mn
) +

mn

T
T + 2kT

√
log(T )

m

≤ mn log(T ) +mn+ 2kT

√
log(T )

m

≤ 2mn log(T ) + 2kT

√
log(T )

m
(15)

The above inequality is valid for all m strictly greater than zero. Hence, to find a tighter bound, we
find m⋆ that minimizes the right side. Thus we get

m⋆ =

(
kT
√
log(T )

2n log(T )

) 2
3

=

(
kT

2n
√
log(T )

) 2
3

(16)

For T ≥ nk
√

log(T )/2, we have m⋆ ≥ 1
2 , therefore ⌈m⋆⌉ ≤ 2m⋆. Plugging m = ⌈m⋆⌉ into the

regret bound,

E[R(T )|E ] ≤ ⌈m⋆⌉n log(T ) + 2kT log(T )1/2⌈m⋆⌉−1/2

≤ 2m⋆n log(T ) + 2kT log(T )1/2(m⋆)−1/2

= 2
1
3 k

2
3T 2/3n−2/3 log(T )−1/3n log(T ) + 2

4
3 k

2
3T log(T )1/2T−1/3n1/3 log(T )1/6

= 2
1
3 k

2
3T 2/3n1/3 log(T )2/3 + 2

4
3 k

2
3T 2/3n1/3 log(T )2/3

≤ O(n 1
3 k

2
3T

2
3 log(T )

2
3 ). (17)

7



Based on m⋆, we define the optimal ε⋆ as follows

ε⋆ =
m⋆n

T
= nT−1

(
kT

2n
√

log(T )

)2/3

=

(
nk2

4T log(T )

)1/3

Under the bad event, i.e., the complement Ē of the good event E , given that the rewards are bounded
in [0, 1], it can be easily seen that E[R(T ) | Ē ] ≤ T . Moreover, by using the Hoeffding inequality
[Hoeffding, 1994], for T ≥ nk

√
log(T )/2, we have P(Ē) ≤ 2

T 3 , see Lemma 3 in Appendix A.
Therefore, we obtain E[R(T )] ≤ O(n 1

3 k
2
3T

2
3 log(T )

2
3 ).

Remark 1. The framework of Nie et al. [2023] that adapts offline algorithms for combinatorial
optimization problems with robustness guarantees to online settings via the explore-then-commit
approach can be applied to the offline algorithm in [Mirzasoleiman et al., 2015]. However, as this
offline algorithm has (1− 1/e− ε)-approximation guarantee, such an approach will give a weaker
(1− 1/e− ε)-regret guarantee rather than (1− 1/e)-regret guarantee studied in this paper.
Remark 2. For unknown time horizon T , the geometric doubling trick can extend our result to an
anytime algorithm. To initialize the algorithm, we choose T0 to be large enough, then we choose a
geometric succession Ti = T02

i for i ∈ {1, 2, · · · }, and run our algorithm during the time interval
Ti+1 − Ti with a complete restart. From Theorem 4 in [Besson and Kaufmann, 2018], we can prove
that the regret bound preserves the T 2/3 dependency with changes only in the constant factor.
Remark 3. For the scenario we study in this paper of combinatorial multi-armed bandit with
submodular rewards in expectation and under full-bandit feedback, it is still unknown if Õ(T 1/2)

expected cumulative (1− 1/e)-regret is possible (ignoring n and k dependence), and only Õ(T 2/3)
bounds have been shown in the existing literature; see Table 1.

5 Experiments on Online Social Influence Maximization

5.1 Problem Statement

Social influence maximization is a combinatorial problem, which consists of selecting a subset of
nodes in a graph that can influence the remaining nodes. For instance, when marketing a newly
developed product, one strategy is to identify a group of highly influential individuals and rely on
their recommendations to reach a broader audience. Influence maximization can be formulated as a
monotone submodular maximization problem, where adding more nodes to the selected set yields
diminishing returns without negatively affecting other nodes. Typically, there is a fixed constraint on
the cardinality of the selected set. While some works have addressed influence maximization as a
multi-armed bandit problem with additional feedback [Lei et al., 2015, Wen et al., 2017, Vaswani
et al., 2017, Li et al., 2020, Perrault et al., 2020], this feedback is often unavailable in most social
networks, except for a few public accounts. Recently, Nie et al. [2022] proposed the ETCG algorithm
for influence maximization under full-bandit feedback. Their algorithm demonstrated superior
performance through empirical evaluations compared to other full-bandit algorithms. In this work, we
compare our SGB method, for different ε values, including the optimized value ε⋆ = ( nk2

4T log(T ) )
1
3 ,

with ETCG [Nie et al., 2022, 2023].

5.2 Experiment Details

For the experiments, instead of (1− 1/e) regret in Eq. (2), which requires knowing S⋆, we compare
the cumulative rewards achieved by SGB for different ε, including ε⋆, and ETCG against Tf(Sgrd),
where Sgrd is the solution returned by the offline (1− 1/e)-approximation algorithm suggested by
Nemhauser et al. [1978]. Since f(Sgrd) ≥ (1 − 1/e)f(S⋆), thus Tf(Sgrd) is a more challenging
reference value than (1− 1/e)Tf(S⋆).

We experimented using a portion of the Facebook network [Leskovec and Mcauley, 2012]. We used
the community detection method proposed by [Blondel et al., 2008] to detect a community with 534
nodes and 8158 edges, enabling multiple experiments for various horizons. The diffusion process is
simulated using the independent cascade model [Kempe et al., 2003], wherein in each discrete step,
an active node (that was inactive at the previous time step) independently tries to infect each of its
inactive neighbors. We used 0.1 uniform infection probabilities for each edge. For every time horizon
T ∈ {2× 104, 3× 104, 4× 104, 5× 104}, we tested each method ten times.
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Figure 1: Comparison of SGB, for different ε values, including ε⋆ = ( nk2

4T log(T )
)
1
3 , and ETCG. (a), (b), and

(c) are the cumulative regret results as a function of horizon T . (d), (e), and (f) show the moving average plots
of the immediate rewards as a function of t, with a window size of 100, with T fixed at 5× 104, for which the
respective ε⋆ values are around 0.251, 0.522, and 0.632.

5.3 Experimental Results

Figures (1a), (1b), and (1c) show average cumulative regret curves for SGB with different values of
the parameter ε, including the optimal value ε⋆ = ( nk2

4T log(T ) )
1
3 , for various time horizon values T ,

with a cardinality constraint k set to 8, 24, and 32, respectively. The shaded areas depict the standard
deviation. The figure axes are linearly scaled, so a linear cumulative regret curve corresponds to a
linear Õ(T ) cumulative regret. When k = 8, SGB with ε⋆ demonstrates nearly the lowest average
cumulative regret across different time horizons T . However, with non-optimal values of ε (0.2 and
0.5), the cumulative regret of SGB is higher than that of ETCG. For higher values of k, such as 24
and 32, with ε⋆ as shown in Figures (1b) and (1c), respectively, SGB with all the considered ε values
outperforms ETCG with lower average cumulative regrets. Furthermore, Figures (1d), (1e), and (1f)
illustrate immediate rewards over a horizon T = 5× 104 for cardinality constraints k of 8, 24, and 32,
and ε⋆ values around 0.251, 0.522, and 0.632, respectively. The curves for all methods are smoothed
using a moving average with a window size of 100. For k = 8, although ETCG finds a slightly better
solution, SGB with all ε ends exploration much faster. For k = 24, as shown in Fig. (1e), SGB using
ε⋆ ends exploration much faster than ETCG and achieves a better solution. Using other ε values ends
exploration slightly faster than the optimal value but to a lower solution. Similarly, for k = 32, as
shown in Fig. (1f), SGB with different ε values ends exploration 30 times faster than ETCG to a
solution within a 0.01 neighborhood of 0.37. Furthermore, using ε⋆ yields the best result compared
to other values. Therefore, as predicted by the theory, SGB using ε⋆ has lower expected cumulative
regret than ETCG. Additionally, as observed in the experiments and predicted by the theory, our
method becomes more effective for larger values of k.

6 Conclusion

This paper introduces SGB, a novel technique in the online greedy strategy, which incorporates subset
random sampling from the remaining arms in each greedy iteration. Theoretical analysis establishes
that SGB achieves an expected cumulative (1− 1/e)-regret of at most Õ(n 1

3 k
2
3T

2
3 ) for monotone

stochastic submodular rewards, outperforming the previous state-of-the-art method by a factor of
k1/3 [Nie et al., 2023]. Empirical experiments on online influence maximization demonstrate SGB’s
superior performance, highlighting its effectiveness and potential for real-world applications.
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A Lemmas and Proofs

Proof of Corollary 1.

Proof. Applying Lemma 1 result recursively for i = k, until we get to S(0) = ∅; f(∅) = 0,

f(S(k)) ≥
[
1− ε

k
f(S⋆)− 2rad

] k−1∑
ℓ=0

(1− 1− ε

k
)ℓ. (18)

Simplifying the geometric summation,

k−1∑
ℓ=0

(1− 1

k
)ℓ =

1− (1− 1−ε
k )k

1− (1− 1−ε
k )

= k

(
1−

(
1− 1− ε

k

)k
)
.

Continuing with (18),

f(S(k)) ≥
[
1− ε

k
f(S⋆)− 2rad

]
k

(
1−

(
1− 1− ε

k

)k
)

≥

(
1−

(
1− 1− ε

k

)k
)
f(S⋆)− 2krad. (simplifying with (1− 1

k )
k ≤ 1)

≥
(
1− e−(1−ε)

)
f(S⋆)− 2krad.

Therefore, for 0 ≤ ε ≤ 1, using eε ≤ 1 + eε , we have

f(S(k)) ≥ (1− 1

e
− ε)f(S⋆)− 2krad (19)

= (1− 1

e
)f(S⋆)− εf(S⋆)− 2krad (rearranging)

≥ (1− 1

e
)f(S⋆)− ε− 2krad (f(S⋆) ≤ 1)

= (1− 1

e
)f(S⋆)− (ε+ 2krad)

Lemma 2 (Hoeffding’s inequality). Let X1, · · · , Xn be independent random variables bounded in
the interval [0, 1], and let X̄ denote their empirical mean. Then we have for any γ > 0,

P
(∣∣X̄ − E[X̄]

∣∣ ≥ γ
)
≤ 2exp

(
−2nγ2

)
. (20)

Lemma 3. The probability of the clean event E , for T ≥ kn
√

log(T ), satisfies:

P(E) ≥ 1− 2

T 3
.

Proof. We begin by breaking up the probability of the clean event E into conditional probabilities for
the events {Ei}ki=1 for each phase,

P(E) = P(E1 ∩ · · · ∩ Ek)

=

k∏
i=1

P(Ei|E1, . . . , Ei−1). (21)

Recall that Ei is the event where the empirical means of all actions played in phase i were
concentrated around their statistical means. Which actions are available in phase i, namely
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{S(i−1) ∪ {a}}a∈R\S(i−1) , depends on the action S(i−1) from the previous phase that had the
highest empirical mean, which in turn is related to Ei−1. Although we cannot directly evaluate (21),
by conditioning on S(i−1) we will be able to obtain a bound on (21).

P(Ei|E1, . . . , Ei−1) =
∑

S∈
{
S′
∣∣ S′⊆Ω, |S′|=i−1

}P(S(i−1) = S, Ei|E1, . . . , Ei−1)

(law of total probability)

=
∑

S∈
{
S′
∣∣ S′⊆Ω, |S′|=i−1

}P(S(i−1) = S|E1, . . . , Ei−1)× P(Ei|S(i−1) = S, E1, . . . , Ei−1)

=
∑

S∈
{
S′
∣∣ S′⊆Ω, |S′|=i−1

}P(S(i−1) = S|E1, . . . , Ei−1)× P(Ei|S(i−1) = S),

(22)

where (22) follows from rewards in phase i being conditionally independent of rewards from other
phases, given the corresponding actions played during phase i.

We now focus on bounding P(Ei|S(i−1) = S). By conditioning on the set chosen in the previous
phase, S(i−1) = S, we know all the actions that will be played in the current phase i, {S(i−1) ∪
{a}}a∈R\S(i−1) . The rewards of all the actions are bounded in [0, 1] and are conditionally independent
(given the corresponding action).

Apply Lemma 2 to the empirical mean f̄(S(i−1) ∪ {a}) of m rewards for action S(i−1) ∪ {a} and
choosing ϵ = rad =

√
2 log(T )/m gives

P
[∣∣f̄(S(i−1) ∪ {a})− f(S(i−1) ∪ {a})

∣∣ ≥ rad
]
≤ 2exp

(
−2mrad2

)
= 2exp (−2m(2 log(T )/m))

= 2exp (−4 log(T ))

=
2

T 4
.

Thus, for any individual action S(i−1) ∪ {a} ∈ Si, we can bound the probability that its sample mean
f̄(S(i−1) ∪ {a}) is within a specified confidence radius (complementary of the event above) as

P
[∣∣∣∣f̄(S(i−1) ∪ {a})− f(S(i−1) ∪ {a})

∣∣∣∣ < rad

]
= 1− P

[∣∣∣∣f̄(S(i−1) ∪ {a})− f(S(i−1) ∪ {a})
∣∣∣∣ ≥ rad

]
≥ 1− 2

T 4
. (23)

We can then use (23) to bound P(Ei|S(i−1) = S) for any set S ⊂ Ω of i− 1 arms.
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P(Ei|S(i−1) = S) = P

 ⋂
a∈R\S(i−1)

{∣∣∣∣f̄(S(i−1) ∪ {a})− f(S(i−1) ∪ {a})
∣∣∣∣ < rad

} ∣∣∣∣S(i−1) = S


(definition of Ei)

=
∏

a∈R\S(i−1)

P
[{∣∣∣∣f̄(S(i−1) ∪ {a})− f(S(i−1) ∪ {a})

∣∣∣∣ < rad

} ∣∣∣∣S(i−1) = S

]
(rewards are independent conditioned on actions)

≥
(
1− 2

T 4

)|R\S(i−1)|

(using (23))

=

(
1− 2

T 4

)nmin{1,
log( 1

ε
)

k }−i+1

≥
(
1− 2

T 4

)n

. (24)

Using (22) and (24), we are now ready to lower bound the probability of a clean event.

P(E) = P(E1 ∩ · · · ∩ Ek)

=

k∏
i=1

P(Ei|E1, . . . , Ei−1)

=

k∏
i=1

∑
S∈

{
S′
∣∣ S′⊆Ω, |S′|=i−1

}P(S(i−1) = S|E1, . . . , Ei−1)× P(Ei|S(i−1) = S)

(using (22))

≥
k∏

i=1

∑
S∈

{
S′
∣∣ S′⊆Ω, |S′|=i−1

}P(S(i−1) = S|E1, . . . , Ei−1)×
(
1− 2

T 4

)n

(using (24))

=

k∏
i=1

(
1− 2

T 4

)n ∑
S∈

{
S′
∣∣ S′⊆Ω, |S′|=i−1

}P(S(i−1) = S|E1, . . . , Ei−1)

=

k∏
i=1

(
1− 2

T 4

)n

=

(
1− 2

T 4

)nk

≥ 1− 2nk

T 4
. (Bernoulli’s inequality)

For T ≥ nk
√
log(T ), we have T ≥ nk, therefore

P(E) ≥ 1− 2

T 3
. (25)

This concludes the proof for Lemma 3.
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