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Abstract: Despite recent progress on multi-finger dexterous grasping, current methods
focus on single grippers and unseen objects, and even the ones that explore cross-
embodiment, often fail to generalize well to unseen end-effectors. This work addresses
the problem of dexterous grasping generalization to unseen end-effectors via a unified
policy that learns correlation between gripper morphology and object geometry. Robot
morphology contains rich information representing how joints and links connect and
move with respect to each other and thus, we leverage it through attention to learn better
end-effector geometry features. Our experiments show an average of 9.64% increase in
grasp success rate across 3 out-of-domain end-effectors compared to previous methods.
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1 Introduction

As we aspire to solve more dexterous tasks in robotics, multi-finger grasping becomes of increasing
importance. However, the varying degrees of freedom (DoF) of end-effectors and high multimodality of
grasping modes depending on both end-effectors and objects, still pose open challenges. Previous works in
grasping focus on parallel grippers [1, 2, 3], a single multi-finger gripper [4, 5, 6, 7], or a shared policy for
multiple dexterous grippers [8, 9, 10, 11]. However, even methods that explore cross-embodiment mostly
focus on generalization to unseen objects, and still show limited zero-shot generalization to unseen grippers.

In this work, we propose GeoMatch++, a multi-embodiment grasping method which improves
out-of-domain generalization on unseen grippers by leveraging robot morphology. Intuitively, robot
morphology is essential to grasping – various end-effectors may have a different number of fingers, but
fingertips and palm tend to be the most frequent contact regions. Thus, we hypothesize that learning
good morphology embeddings can lead to a transferable grasping policy between different robots. Our
main contribution is learning geometry correlation features between objects and end-effector morphology,
which improve out-of-domain grasp success by 9.64% compared to previous methods, and our method
showcases a minimal decrease in performance compared to in-domain evaluation.

2 Related Work

Dexterous Grasping: Works focused on grasping for multi-finger grippers either train an end-to-end
model to predict gripper pose directly [4, 6, 7] or learn a contact map distribution before computing the
final grasp [8, 9, 10, 11]. Many of these methods are either constrained to one end-effector while others
can generalize to unseen grippers, yet rarely incorporate gripper morphology explicitly, which better
represents how complex multiple DoF grippers move during grasping. TAX-Pose [12] is a recent method
that learns a task-specific pose relationship between target objects to address manipulation tasks that
involve multiple objects. The authors are inspired by Deep Closest Point (DCP) [13], which proposes using
transformers [14] to learn a matching between point clouds, and show that attention is also beneficial to the
grasping problem. Instead of capturing the attention between point clouds, we propose using self-attention
and cross-attention between object point cloud and end-effector morphology to learn a transferable
grasping policy. Our work extends GeoMatch [8], which uses Graph Convolutional Networks (GCN) [15]
to learn object and robot geometries then performs autoregressive matching to predict object-robot contact
points, via incorporating such morphology self and cross-attention.
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Figure 1: Sample morphology graph for Barrett hand with labelled keypoints.

Robot Morphology: Robot morphology has been explored in other robotics control tasks in policy
learning and imitation learning to generalize zero-shot to new tasks and agents [16, 17, 18, 19, 20]. A
notable example is NerveNet [17] which explicitly models the structure of a modular agent as a graph,
and propagates messages between nodes of the agent to train a reinforcement learning (RL) policy. Prior
work has also explored robot structure as an inductive bias for transformers: MetaMorph [16] conditions a
transformer on morphology and learns a universal controller while Body Transformer (BoT) [20] considers
agent sensors and actuators as graph nodes and modifies attention masking to leverage morphology of
the agent’s structure. We show that morphology similarly leads to an improvement in generalization for
cross-embodiment dexterous grasping.

3 Method

Our model (Fig. 2) learns a multi-embodiment policy that generates diverse grasps for dexterous grippers
for both unseen objects and end-effectors. Operating under the same problem formulation as [8], we match
N =6 pre-defined keypoints on the end-effector k0,...,kN−1 to predicted contact points on the object
c0,...,cN−1. Our model encodes graph features for the object point cloud GO, gripper point cloud GG,
and the graph representing the morphology of the gripper GM using GCNs. Transformer modules perform
self-attention and cross-attention to capture global correspondence between the object and end-effector.
Finally, the model autoregressively predicts contact points using the latent embeddings.

3.1 Dataset

We use a subset of the MultiDex dataset synthesized by [9] using force closure optimization [21].
The dataset contains 5 high-DoF multi-finger grippers, EZGripper, Barrett, Robotiq-3F, Allegro, and
ShadowHand, and 58 household objects from the ContactDB [22] and YCB [23] datasets. We train on
50,802 grasps, represented by poses consisting of translation, rotation, and joint angles of the gripper.

3.2 Graph Representation

Object and End-effector Point Clouds: Object and end-effector point clouds are represented as graphs
GO=(VO,EO), and GG=(VG,EG). Each point is represented as its 3D coordinates pi=(xi,yi,zi)∈R3.
The graph is constructed by sampling SO=2048 points for the object mesh and SG=1000 points from
the end-effector mesh. Prior to sampling, the end-effector is set to a canonical rest pose that has zero root
translation, zero root rotation, and all joints set to the middle of their joint limits.

End-effector Morphology Representation: The end-effector’s kinematic chain, which contains informa-
tion about link-joint connections and parameters, is obtained from the Universal Robot Description Format
(URDF) and constructed as a graph GM =(VM ,EM). In our setup, nodes VM are links and edges EM are
joints (Fig. 1). The graph features consist of offset, link centre of mass, and link size. Offset represents the
translation between the coordinate frames of two connected links. Link centre of mass is estimated via com-
puting the least volume rectangular bounding boxes around the link mesh and finding its mean coordinate on
each axis. Finally, link size is the length, width, and height of the bounding box. The coordinate frame of the
centres of mass and the scale of the link sizes are all geometrically consistent with object and end-effector
point clouds. Only the offset is encoded relative to two connected nodes. Due to varied DoFs of end-
effectors, GM is zero-padded to SM =32 to enable batch processing. More details are given in Appendix C.
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(a) Model architecture

(b) Autoregressive module

Figure 2: Architecture for GeoMatch++. GCNs learn latent features for object and gripper point clouds,
and end-effector morphology. Features are passed into transformer modules to learn the object-gripper
correspondence. Autoregressive matching predicts final contact points using MLP layers.

3.3 Architecture

Graph Feature Encoding: The model uses three separate GCNs to generate latent embeddings of
dimension n=512 for GO, GG, and GM . We use FO, FG, and FM to represent the latent embeddings. We
use pretrained weights from GeoMatch [8] for FO and FG and freeze them during training, as empirically
this shows the best performance. GM is novel to our model and trained from scratch. GM is zero-padded
to account for different DoFs in the end-effectors which does not pose an issue given GCN’s property
of only aggregating features of a node’s direct neighbourhood.

Object-Gripper Correspondence: We use two transformer modules with self-attention and cross-
attention to learn correspondence between the latent embeddings for object features FO and morphology
FM . Following Wang and Solomon [13], we consider the output of the transformer as a residual term
and add it to the GCN encoding:

F̂O=FO+TO(FO,FM) ∈Rn×SO F̂M =FM+TM(FM ,FO) ∈Rn×SM (1)

This operation modifies features FO and FM such that they are aware of the correlation between object
and morphology. Then, linear layers downsample the embeddings for further processing.

Autoregressive Matching: We modify the autoregressive module from [8] to incorporate morphology
encodings. We gather FG and F̂M to obtain only the embedding corresponding to the N keypoints. Each
layer Mi in autoregressive matching is an MLP that predicts contact point ci from the concatenation of
the full object embedding F̂O, gathered embeddings FG,N and F̂M,N repeated SO =2048 times, and
the contact points c0,...,ci−1 from the previous layers. c0 is predicted from the unnormalized likelihood
contact maps, further explained in Section 3.3.1. Although only the i-th feature of F̂M,N is used in layer
Mi, F̂O contains information about the entire end-effector morphology through cross-attention.

3.3.1 Losses

We use the same loss functions as Attarian et al. [8], consisting of the Geometric Embedding Loss and Pre-
dicted Contact Loss, with modifications described below. For more details, we refer the reader to the paper.

Geometric Embedding Loss: We calculate the BCE loss between the predicted unnormalized likelihood
contact maps for each pair of object vertex vo and keypoint ki, and the ground truth contact maps
CO(vo,ki). Instead of learning the contact maps using GCN encodings as done in GeoMatch [8], we use
the dot product between the object-gripper correspondence transformer output of the object point cloud
and the GCN embeddings of the gripper point cloud.

Predicted Contact Loss: We use the same predicted contact loss as [8] to train autoregressive matching
contact point predictions.
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Method Success (%) ↑ Diversity (rad) ↑
ezgripper barrett shadowhand Mean ezgripper barrett shadowhand

GeoMatch [8] 55.0 60.0 67.5 60.83 0.185 0.259 0.235
GenDexGrasp [9] 38.59 70.31 77.19 62.03 0.248 0.267 0.207

GeoMatch++ (ours) 67.5 77.5 70.0 71.67 0.208 0.378 0.184

Table 1: Out-of-domain success rate and diversity comparisons with GeoMatch and GenDexGrasp

4 Experiments and Discussion

We use the same evaluation setup as [8, 9] which leverages IsaacGym to measure grasp success rate
and diversity. Grasp success rate is calculated over four grasps per object-gripper pairs, and diversity is
measured as the standard deviation of the joint angles of successful grasps.

4.1 Out-of-domain evaluation

The model is evaluated on out-of-domain grippers by training on 4 out of 5 grippers, and testing using
the unseen gripper with 10 unseen objects. We choose to compare results with two recent methods that
focus on multi-gripper dexterous grasping, GeoMatch [8] and GenDexGrasp [9].

Our model shows significant improvement in out-of-domain generalization, having a mean success
rate of 71.67% and a mean grasp diversity of 0.257. GeoMatch++ outperforms the mean success
rate of GeoMatch [8] by 10.84% and GenDexGrasp [9] by 9.64% (Table 1). Furthermore, our mean
out-of-domain performance is only 3.33% lower than in-domain (75.0%, Appendix A), demonstrating
the method’s strength in generalizing to new grippers. Sample grasps are rendered in Figure 3.

Figure 3: Qualitative grasp results on unseen grippers.

4.2 Ablations

Q1: What is the importance of starting training from good point cloud embeddings? We train
ablations where weights of GO and GG are trained from scratch, pretrained and fintuned, or pretrained
and frozen. Empirically, freezing the pretrained weights achieves the best success rate. In particular, we
note that training from scratch suffers a large drop in success rate (24.97% ↓) (Appendix B.1).

Q2: Does including robot morphology improve out-of-domain generalization? To examine the role
of end-effector morphology in generalization, we remove morphology completely and add transformer
modules between the object and robot point clouds instead. We find that mean success rate of our final
method (including morphology) is 22.51% higher than without morphology (Appendix B.2).

Q3: What is the contribution of different morphology features? The relative importance of features of
the robot morphology graph is examined through using different combinations of morphological features in
GM . We run ablations for joints only features (relative offset, joint axis, joint limits) and links only features
(absolute origin coordinates, centre of mass, size of bounding box). Our final selection of features, with
a combination of relative offset and link coordinate information, achieves the best results (Appendix B.3).

5 Conclusion

In this paper we propose a novel method, GeoMatch++, that leverages robot morphology to improve
out-of-domain generalization to unseen grippers. We demonstrate that learning robot link and joint features
and the object-morphology correlation are important for achieving high grasp success rates out-of-domain,
outperforming baseline by 9.64%. We hope this work is a step forward towards zero-shot generalization
to unseen grippers in real robot settings.
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A In-domain Evaluation

In domain, our model’s mean success rate across the 3 evaluated grippers is 75.0%, outperforming Gen-
DexGrasp by 10.89% and being worse than GeoMatch by 4.19% (Table 2). Despite the minor drop in per-
formance compared to baseline, our model shows significant improvement in out-of-domain performance.

Method Success (%) ↑ Diversity (rad) ↑
ezgripper barrett shadowhand Mean ezgripper barrett shadowhand

GeoMatch [8] 75.0 90.0 72.5 79.17 0.188 0.249 0.205
GenDexGrasp [9] 43.44 71.72 77.03 64.11 0.238 0.248 0.211

GeoMatch++ (ours) 82.5 72.5 70.0 75.0 0.175 0.342 0.206

Table 2: In-domain success rate and diversity comparisons with GeoMatch and GenDexGrasp

B Ablations

We include results from ablation studies used to support the discussion in Section 4.2.

B.1 What is the importance of starting training from good point cloud embeddings?

Method Success (%) ↑ Diversity (rad) ↑
ezgripper barrett shadowhand Mean ezgripper barrett shadowhand

From Scratch 57.5 62.5 20.0 46.7 0.222 0.197 0.116
Pretrained (Finetune) 72.5 77.5 55.0 68.33 0.255 0.318 0.221
Pretrained (Freeze) 67.5 77.5 70.0 71.67 0.208 0.378 0.184

Table 3: Comparison of weights for point cloud GCN embeddings

B.2 Does including robot morphology improve out-of-domain generalization?

Method Success (%) ↑ Diversity (rad) ↑
ezgripper barrett shadowhand Mean ezgripper barrett shadowhand

Point Cloud Only 27.5 70.0 50.0 49.16 0.270 0.429 0.141
PC and Morphology 67.5 77.5 70.0 71.67 0.208 0.378 0.184

Table 4: Comparison of using only point clouds vs. using point clouds and morphology

B.3 What is the contribution of different morphology features?

Method Success (%) ↑ Diversity (rad) ↑
ezgripper barrett shadowhand Mean ezgripper barrett shadowhand

Joints Only 62.5 72.5 62.5 65.83 0.209 0.390 0.199
Links Only 57.5 67.5 57.5 60.83 0.244 0.271 0.215

Final 67.5 77.5 70.0 71.67 0.208 0.378 0.184

Table 5: Comparison of different morphology features

C Morphology Graph Representation

We formulate the morphology graph from the URDF description of each end-effector. Nodes of the graph
are links and edges are joints. We consider both revolute and fixed joints as edges. Two nodes are connected
if they are respectively the parent and child link of a joint. Self-connections are added in the graph. The
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offset feature is obtained from the < joint >< origin >< xyz > element of a joint. The feature is
attributed to the child link of the joint. End-effectors may have a root link that is connected to a joint
with multiple children links; in this case, the offset feature is attributed to the child link first listed in the
kinematic chain. The least volume rectangular bounding boxes of links are estimated from the link meshes
using the Trimesh library [24]. We determine the morphology features most useful for learning empirically.

D Implementation Details

We use N=6 for the number of keypoint-contact pairs. The keypoints are chosen to lie on different links
to capture diverse morphological information and to be semantically consistent across end-effectors, but
otherwise satisfy no other constraint.

Experiments are conducted on a RTX3090 GPU. The model is trained using Adam with a learning rate
of 0.00005 and betas of (0.9, 0.99), for 150 epochs with batch size 32. The parameters for the GCNs
and autoregressive module are similar to GeoMatch [8]. GCNs have 3 hidden graph convolution layers
of dimension 256, and a final output linear layer of dimension 512. Each autoregressive MLP contains
3 hidden layers of dimension 256 and outputs a contact likelihood map of size 2048. We use the same
parameters for the object-gripper correspondence transformers as the transformer module in DCP [13],
but with input dimensions of object point cloud size SO=2048 and morphology graph size SM =32.

We use the same inverse kinematics optimization and IsaacGym evaluation setup as [8].
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