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Abstract

Neural networks have revolutionized language
modeling and excelled in various downstream
tasks. However, the extent to which these
models achieve compositional generalization
comparable to human cognitive abilities re-
mains a topic of debate. While existing ap-
proaches in the field have mainly focused
on novel architectures and alternative learn-
ing paradigms, we introduce a pioneering
method harnessing the power of dataset car-
tography (Swayamdipta et al., 2020). By strate-
gically identifying a subset of compositional
generalization data using this approach, we
achieve a remarkable improvement in model
accuracy, yielding enhancements of up to
10% on CFQ and COGS datasets. Notably,
our technique incorporates dataset cartography
as a curriculum learning criterion, eliminat-
ing the need for hyperparameter tuning while
consistently achieving superior performance.
Our findings highlight the untapped potential
of dataset cartography in unleashing the full
capabilities of compositional generalization
within Transformer models. Our code is avail-
able at https://github.com/cyberiada/
cartography-for-compositionality.

1 Introduction

In recent years, deep learning methods and ma-
chine learning infrastructure have made remark-
able progress, enabling models to surpass human-
level performance in numerous tasks. Natural lan-
guage processing (NLP) is at the forefront of this
progress. Models based on Transformers (Vaswani
et al., 2017) such as BERT (Devlin et al., 2019)
and benchmarks like SuperGLUE (Wang et al.,
2019) led to significant advancements in language
modeling and various downstream tasks. However,
there is an ongoing debate on whether these mod-
els exhibit compositional generalization (Fodor and
Pylyshyn, 1988; Smolensky, 1988; Marcus, 2001;
Lake and Baroni, 2017).

Compositional generalization refers to the ability
of a model to combine known parts of a sentence,
such as primitive tokens, to generate novel compo-
sitions of these primitive elements. It is considered
a fundamental aspect of human cognition and lin-
guistics (Fodor and Pylyshyn, 1988). In addition
to its human aspect, compositional generalization
is also crucial for enhancing the robustness and
practical use of deep learning models. Efforts to
understand and improve the compositional gener-
alization abilities of models have gained signifi-
cant attention lately. Researchers have recently ex-
plored techniques such as compositional data aug-
mentation (Andreas, 2020; Qiu et al., 2022), meta-
learning (Lake, 2019), and structural priors (Russin
et al., 2020). Additionally, the importance of ar-
chitectural modifications to capture compositional
structures more effectively, such as attention mech-
anisms (Li et al., 2019) and hierarchical struc-
tures (Weißenhorn et al., 2022) have been investi-
gated recently. In another direction, there is also an
increasing interest in studying the compositional
generalization abilities of Transformers (Ontanon
et al., 2022; Csordás et al., 2021; Dziri et al., 2023).

In this study, we take a distinct approach and
utilize dataset cartography (Swayamdipta et al.,
2020) to explore how training dynamics can im-
prove the compositional generalization abilities of
Transformers. Dataset cartography is a recently
proposed technique that quantifies the variability
and confidence associated with instances during
training, capturing their ambiguity and difficulty,
thereby representing the informational value of
each training sample. Swayamdipta et al. (2020)
demonstrated that it could be used to improve out-
of-distribution (OOD) generalization in models
for classification-based natural language inference
(NLI) tasks. As compositional generalization is
inherently an OOD task, we hypothesize that har-
nessing dataset cartography in compositional gen-
eralization can provide new insights.

https://github.com/cyberiada/cartography-for-compositionality
https://github.com/cyberiada/cartography-for-compositionality


Diverging from the original cartography setup,
we focus on language generation tasks for the sys-
tematic generalization problem and propose an ex-
perimental setting to apply dataset cartography to
a generative task. Initially, we train a sequence-
to-sequence (seq2seq) Transformer model using
the complete training set for only a few epochs.
Throughout the training, the dynamics of each in-
stance are observed and recorded separately. Next,
we utilize these stored training dynamics to build
a curriculum and create a reduced training set by
selecting specific samples to fully train the model.

Our experimental setup has notable challenges
beyond the compositional generalization setting,
distinguishing it from the setup originally used in
Swayamdipta et al. (2020). Instead of relying on
crowdsourced datasets that are prone to errors and
heavily reliant on data quality, we utilize synthet-
ically generated datasets, namely CFQ (Keysers
et al., 2020) and COGS (Kim and Linzen, 2020),
which are free from such limitations. Moreover,
these datasets are relatively smaller in size, mak-
ing it challenging to achieve performances on par
with the 100% train set when using smaller subsets.
Lastly, unlike Swayamdipta et al. (2020), we tackle
the complexity of learning the task directly without
using pre-trained models. This becomes even more
pronounced as the datasets contain non-natural lan-
guage, rendering pre-training less applicable and
learning much harder. Finally, and more impor-
tantly, as we are dealing with language generation
tasks, quantifying how hard a sequence is, is not
straightforward. To address this, we base our eval-
uation by utilizing inverse perplexity (Inv PPL),
CHIA (Bhatnagar et al., 2022), and BLEU (Pap-
ineni et al., 2002) as confidence measures, avoiding
the overly strict exact matching strategy.

In summary, our paper makes the following key
contributions: First, we introduce the novel use
of dataset cartography as both a curriculum learn-
ing criterion and a sample selection strategy for
enhancing compositional generalization. By lever-
aging dataset cartography, we enable models to
deal effectively with the complexities of composi-
tional tasks. Second, we thoroughly investigate the
effectiveness of various confidence measures for
sequences in extracting dataset cartography within
the compositional generalization setting. This anal-
ysis provides insights into quantifying the difficulty
of sequences and leads to the development of ro-
bust training strategies. Third, through extensive

analyses, we demonstrate the significant impact
of leveraging training dynamics through dataset
cartography on the compositional generalization
capabilities of Transformer models. Our approach
yields significant improvements of up to 10% on
challenging CFQ and COGS datasets, highlighting
the effectiveness of our proposed method.

2 Approach

2.1 Dataset Cartography
Swayamdipta et al. (2020) propose a visualization
tool named data maps with two dimensions, con-
fidence and variability, which characterizes the
informativeness of training instances of a dataset
with respect to a model. Confidence is calculated as
the mean probability of the true label across epochs,
whereas variability corresponds to the spread of
confidence across epochs, using the standard devia-
tion. Therefore, confidence (µ̂i) and variability (σ̂i)
is denoted as follows:

µ̂i =
1

E

E∑
e=1

pθ(e)(y
∗
i |xi) (1)

σ̂i =

√∑E
e=1(pθ(e)(y

∗
i |xi)− µ̂i)2

E
(2)

where i denotes the instance, E represents the total
number of epochs, xi is the input sequence, y∗i is
the true label, θ(e) corresponds to the set of model
parameters at epoch e.

Data maps reveal three distinct regions: am-
biguous instances (high variability), easy-to-learn
instances (high confidence, low variability), and
hard-to-learn instances (low confidence, low vari-
ability). Swayamdipta et al. (2020) experimented
on multiple NLI datasets such as SNLI (Bowman
et al., 2015) with pretrained models and reported
three main findings: (i) Ambiguous regions con-
tribute the most towards OOD generalization, (ii)
Easy-to-learn regions play an important role in
model optimization, (iii) Hard-to-learn regions of-
ten correspond to labeling errors.

2.2 Data Maps for Generative Tasks
The notions of confidence and variability in Eq.
(1) and (2) are defined considering classification-
based tasks, and thus not directly applicable to
seq2seq models. Extending dataset cartography to
machine translation, a generative task, Bhatnagar
et al. (2022) propose the CHIA measure by follow-
ing the intuition that an output sequence consists of
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Figure 1: Data map of CFQ train set for the Transformer model based on BLEU measure (converge epoch 20).
The x-axis shows the variability and the y-axis the confidence. The colors and shapes indicate the correctness.

a series of predictions. Instead of using the exact
match, they take the arithmetic mean of gold token
predictions over the sequence, defined as:

µ̂i =
1

ET

E∑
e=1

T∑
t=1

pθe
(
y∗it | xi

)
(3)

where y∗it corresponds to the i-th token of the
groundtruth output sequence yi of length T .

Here, it is important to note that Bhatnagar et al.
(2022) do not use data maps to select a subset but
instead use N-way translation corpora to choose
instances that are most informative on all ways to
select instances to annotate for low-resource lan-
guages. They showed that choosing instances based
on a single-way translation decreases performance
significantly, suggesting CHIA measure might not
be the best choice for our experimental setting.

Similar to the CHIA score, we also consider in-
verse perplexity for the reason that high perplexity
is an undesirable property. It is defined as the ge-
ometric mean of gold token predictions over the
sequence, as given below:

µ̂i =
1

E

E∑
e=1

T∏
t=1

T

√
pθe (y

∗
it | xi) (4)

The geometric mean is much closer to the low-
est probability in the sequence compared to the
arithmetic mean used in CHIA, making inverse
perplexity a more discriminative measure.

Additionally, we define a third measure based on
BLEU (Papineni et al., 2002). In particular, BLEU
measures the n-gram overlap between generated
output and the ground truth, and we use the arith-
metic mean of the BLEU score across epochs as a
means to measure the confidence as follows:

µ̂i =
1

E

E∑
e=1

BLEU(ŷ
(e)
i ,yi) (5)

where ŷ
(e)
i refers to the predicted sequence gener-

ated by the model parameters at epoch e, and yi

denotes the ground truth sequence, respectively. A
particular shortcoming of using BLEU is its com-
putational and temporal expense due to decoding
(for variability equations, see Appendix A.2).

The main motivation behind utilizing dataset car-
tography lies in selecting a subset of the training
set and training the model on these subsets instead
of the entire dataset. The selection process involves
two key considerations: (1) Choosing the measure
used to rank the examples, and (2) Determining the
aspect of the measure scores for ranking (e.g., am-
biguity). There are more hyperparameters such as
subset ratio and subset combinations, until which
epoch to take training dynamics into account (re-
ferred to as convergence epoch), from starting with
which epoch training dynamics are considered (re-
ferred to as min epoch). Specifically, to identify
the convergence epochs, we qualitatively examine
loss convergence and generated data maps. Unlike



Swayamdipta et al. (2020), where authors utilize
pre-trained models and consider training dynam-
ics from the start of fine-tuning, our experimental
setup involves randomly initialized models. Hence,
considering training dynamics in the initial epochs
while the model is not stable can result in noisy
training dynamics (Swayamdipta et al., 2020), and
can introduce selection biases based on data order-
ing. To simplify the process, we set the minimum
epoch to 3 across all our training setups.

3 Experiments

3.1 Baselines

We benchmark with several baselines to demon-
strate the enhancement in generalization perfor-
mance through the selection of smaller, specifically
chosen subsets. The most rudimentary of these
baselines involves the selection of a random sub-
set identical in size to the specifically chosen sub-
set, along with the utilization of the entire original
dataset for comparison, i.e. 100% of the original
dataset. In the context of curriculum learning set-
tings, we deem it necessary to establish another
benchmark wherein no particular curriculum is em-
ployed. This serves as a baseline, facilitating the
process of benchmarking for comparative purposes.

3.2 Datasets

We conduct our experiments on three compo-
sitional generalization datasets, CFQ (Keysers
et al., 2020), COGS (Kim and Linzen, 2020),
SMCalFlow-CS Simple (Meron, 2022, SMCS)
datasets. CFQ and SMCS dataset has multiple
splits. For CFQ, we utilize the MCD1 split. For
SMCS, we utilize 16 and 32 splits, where the split
numbers refer to the compositional example leak
count into the training set. One challenge com-
monly encountered with compositional generaliza-
tion datasets in the literature is the absence of val-
idation splits. To ensure a fair comparison, we
train all of our models with specified step counts,
following the approach of Csordás et al. (2021).

To provide a better understanding of the datasets,
let us consider specific examples from each. CFQ,
being a synthetic text-to-SQL dataset, involves
input samples such as “Did a male film direc-
tor produce and edit M1?” with the corre-
sponding target query being SELECT count(*)
WHERE {?x0 ns:film.producer.film M1 .
?x0 ns:film.editor.film M1 . ?x0
ns:people.person.gender m_05zppz}. In the

Dataset #train #test Voc. size Train len. Test len.

CFQ 95743 11968 181 29 / 95 30 / 103
COGS 24155 21000 871 22 / 153 61 / 480
SMCS 16 25410 663 10738 107 / 103 30 / 59
SMCS 32 25426 662 10738 107 / 103 30 / 59

Table 1: Dataset statistics showing sample counts, vo-
cabulary size as the combined input and output vocab-
ularies, and train and test length denoting the max. in-
put/output length in the train and test set, respectively.

case of COGS, which is a synthetic semantic
parsing task, an input sample could be “A frog
hopped” and the corresponding target logical form
is frog(x1) AND hop.agent(x2, x1). For the
natural semantic parsing dataset SMCS, an in-
put sample is “iam meet with smith , john and
rodney”, and its output is CreateEvent( AND(
with_attendee( rodney ) , with_attendee(
smith ) , with_attendee( john ) ) ).

3.3 Experimental Setup

In our experiments, we employ the vanilla Trans-
former model (Vaswani et al., 2017). Recent stud-
ies have highlighted that the generalization ca-
pabilities of pre-trained Transformer models can
be overestimated due to uncontrolled lexical ex-
posure (Kim et al., 2022; An et al., 2023). We
adopted the publicly available PyTorch codebase
provided by Csordás et al. (2021) to implement our
model. Each experiment is executed on a single
Tesla T4 GPU. We employ a whitespace tokenizer
for all datasets, considering that the targets in these
datasets are not expressed in natural language. We
also experiment with Bi-LSTM with attention (Bah-
danau et al., 2015) on the COGS dataset.

In a similar way to Swayamdipta et al. (2020),
we show the data maps generated for CFQ based
on BLEU and COGS based on Inv PPL in Figure 1
and Figure 2, respectively. For better visualiza-
tions, we only plot randomly sampled 33% of the
training set. Considering a larger number of train-
ing epochs compared to Swayamdipta et al. (2020),
we divide the correctness scores into 10 bins for
better granularity and informative visualizations.
As we discussed earlier, we use three distinct con-
fidence measures, inverse perplexity (Inv PPL),
CHIA (Bhatnagar et al., 2022), and BLEU (Pa-
pineni et al., 2002). The missing data maps are
given in Appendix A.7.

We explore two different setups to assess the
effectiveness of leveraging data maps in improv-
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Figure 2: Data map of COGS train set for the Transformer model based on Inv PPL measure (converge epoch 10).
The x-axis shows the variability and the y-axis the confidence. The colors and shapes indicate the correctness.

ing compositional generalization. In the first setup,
we utilize subsets comprising 33% of the original
datasets. These subsets are categorized as hard-
to-learn, ambiguous, and easy-to-learn based on
the extracted maps. For the second setup, we train
models using subsets sized at 50% of the original
datasets. Along with the hard-to-learn, ambigu-
ous, and easy-to-learn subsets, we construct com-
bined subsets that are also half the size of the orig-
inal dataset by merging two 33% subsets selected
based on the same confidence measure. Specif-
ically, we select 33% of the examples from the
more informative subset and allocate the remaining
17% from the other subset, following Swayamdipta
et al. (2020). As will be discussed in the next sec-
tion, our findings demonstrate that hard-to-learn
samples have a more pronounced impact on model
performance compared to ambiguous and easy-to-
learn samples, and thus we consider them as more
informative. When combining ambiguous and easy-
to-learn samples, we consider including a greater
number of ambiguous samples than easy-to-learn
samples. If the union of these subsets is smaller
than half of the whole training data, we randomly
add samples to reach the 50% dataset size. Fur-
thermore, we address the out-of-vocabulary (OOV)
problem during subset selection by incorporating
training samples from the entire dataset if they in-
crease the vocabulary size. On the contrary, we
remove the least informative samples that do not
reduce the vocabulary size, ensuring consistent sub-

set sizes throughout the experiments. The statistics
about the subsets obtained from the data maps are
provided in Appendix A.4.

In addition to our subset selection experiments,
we explore the potential of leveraging dataset
cartography as a criterion for curriculum learn-
ing (CL). In particular, we adopt two CL ap-
proaches proposed by Hacohen and Weinshall
(2019) and Zhang et al. (2019). We experiment
with a fixed exponential pacing schedule using de-
fault hyperparameters in the former. We set the
starting percentage to 4% and increase the scale
to 1.9. On the other hand, the second CL method
by Zhang et al. (2019) involves sorting examples
based on a given criterion and dividing them into
10 equal-sized bins, resulting in a 10-stage curricu-
lum. Within each bin, the examples are further
sorted based on their lengths, and then each sorted
bin is divided into non-overlapping batches. We
distribute these batches randomly during training
to avoid potential selection bias. Since we train our
models for a fixed number of steps, after complet-
ing 1/10th of the training, we unlock the second
bin in a similar fashion.

3.4 Impact of Selected Subsets

We conduct a thorough analysis to understand the
effect of subset selection on the training process
and how the selection process impacts the subse-
quent generalization abilities of the models. Our
key findings are summarized in Table 2 for the



CFQ COGS
Inv PPL CHIA BLEU Inv PPL CHIA BLEU

33
%

tr
ai

n easy-to-learn 12.191.20 12.420.59 9.881.83 0.000.00 0.060.11 0.040.07
ambiguous 17.690.47 23.510.86 20.991.91 3.265.61 20.303.58 26.694.17
hard-to-learn 36.550.55 34.980.67 34.711.12 53.506.80 45.4112.5 50.563.07
random 34.021.09 18.666.72

100% training 38.711.01 42.547.62

Table 2: Accuracy results for CFQ and COGS datasets. Models are trained on different 33% subsets of the train data
compared to using the full dataset. The scores are averaged over 3 runs, where std. dev. is shown as a subscript. The
best and second-best performing subsets are highlighted in bold and underlined, respectively. Hard-to-learn subset
consistently performs better than the random subset, even outperforming 100% train set on the COGS dataset.

CFQ COGS
Inv PPL CHIA BLEU Inv PPL CHIA BLEU

50
%

tr
ai

n

easy-to-learn 21.13 20.96 17.04 0.000 0.000 0.695
ambiguous 23.03 28.80 24.31 0.047 36.09 35.14
hard-to-learn 42.45 40.13 37.45 47.48 42.40 45.20
ambiguous + easy-to-learn 18.52 26.18 20.77 0.048 18.33 25.69
hard-to-learn + ambiguous 36.54 36.87 37.13 41.13 35.08 41.16
hard-to-learn + easy-to-learn 35.91 41.29 39.29 40.82 37.94 40.96
random 35.16 30.24

100% training 37.71 36.80

Table 3: Accuracy results for CFQ and COGS datasets. Models are trained on different 50% subsets of the train
data compared to using the full dataset. The best and second-best performing subsets are highlighted in bold and
underlined, respectively. It is worth mentioning that solely training on hard-to-learn samples or combining them
with easy-to-learn samples outperforms using 100% training samples.

subsets comprising 33% of the original datasets.
Our experimental results show that training mod-
els on hard-to-learn samples consistently yields
superior generalization performance compared to
training on ambiguous samples. Notably, the per-
formance of hard-to-learn subsets surpasses that of
random subsets overall, and for the COGS dataset,
it even outperforms training on the entire training
set. Training the models on easy-to-learn samples,
on the other hand, leads to poor generalization per-
formance. We also observe that Inverse Perplexity
is a more effective measure than CHIA or BLEU
for selecting samples based on their difficulty.

As we increase the subset size to 50% of the orig-
inal dataset, our experimental results demonstrate
significant improvements compared to full dataset
training, as shown in Table 3. In the CFQ dataset,
the accuracy of the hard-to-learn (Inv PPL) subset
exceeds that of the full training by over 4%. When
considering the CHIA measure, both the hard-to-
learn and hard-to-learn+easy-to-learn subsets out-

perform 100% training. However, when using the
BLEU measure, only the hard-to-learn+easy-to-
learn subset surpasses the 100% training perfor-
mance. Although the subset combinations show
promising results with the CHIA and BLEU mea-
sures, they are still outperformed by the hard-to-
learn (Inv PPL) subset. In COGS, we observe even
more substantial improvements in accuracy. Across
all measures, the hard-to-learn subset demonstrates
an accuracy increase of over 5%, with the hard-to-
learn (Inv PPL) subset outperforming the 100%
training by over 10% accuracy. Notably, selecting
50% of the hard-to-learn samples consistently out-
performs the subset combinations for all measures.
While combining subsets does yield performance
improvements in certain measures, it also high-
lights the limited effectiveness of these measures
in effectively separating the different classes of in-
stances. This is evident as the hard-to-learn (Inv
PPL) subset consistently outperforms the subset
combinations in both the CFQ and COGS datasets.
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Figure 3: Accuracy plots on CFQ for the CL strategy by
Hacohen and Weinshall (2019).
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Figure 4: Accuracy plots on CFQ for the CL strategy by
Zhang et al. (2019)

3.5 Impact of Cartography-Based
Curriculum Learning

We use dataset cartography to examine the impact
of training dynamics on curriculum learning. Cur-
riculum learning is a strategy that trains models on
instances from easy to hard, based on the assump-
tion that this order facilitates learning. However,
we also explore the opposite strategy, which trains
models on instances from hard to easy, and com-
pare it with the conventional curriculum learning
approach. This way, we can study how different
training schedules affect the model performance.

Figure 3 depicts accuracy plots showing the per-
formance of various CL strategies based on (Haco-
hen and Weinshall, 2019) on the CFQ dataset. The
figure legends indicate the ranking scheme and the
employed confidence measure. For instance, hard-
to-learn (Inv PPL) refers to the case where Inv PPL
is being used as the confidence measure, and the in-
clusion of the hard-to-learn samples is prioritized
within the curriculum. Our analysis reveals that
no single curriculum consistently outperforms oth-
ers on the CFQ dataset. Exponential pacing leads
to stagnant performance in the final 2/7th of the
training process due to surpassing the training size
percentages of 33% and 50%. Surprisingly, initi-
ating training with hard-to-learn samples yields
superior performance compared to easy-to-learn
samples, contrary to common curriculum learn-
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Figure 5: Accuracy plots on COGS for the CL strategy
by Hacohen and Weinshall (2019).
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Figure 6: Accuracy plots on COGS for the CL strategy
by Zhang et al. (2019).

ing expectations. This aligns with our previous
findings, emphasizing the benefits of starting with
challenging examples for improved adaptation.

Figure 4 examines the impact of leveraging data
maps within the CL strategy proposed by Zhang
et al. (2019) for compositional generalization. The
hard-to-learn (BLEU) configuration outperforms
the no curriculum strategy, albeit with no notable
improvement in convergence speed. This out-
come mirrors our observations using the CL frame-
work developed by Hacohen and Weinshall (2019),
where initiating training with harder samples leads
to better performance. However, the ambiguous
configurations perform similarly to no curriculum,
while the easy-to-learn configurations yield worse
results than the no curriculum approach.

In Figures 5 and 6, we gain deeper insights into
the contributions of dataset cartography. Overall,
hard-to-learn (BLEU) emerges as the most effec-
tive configuration in the plots. Surprisingly, am-
biguous (Inv PPL) performs as the second-best con-
figuration in Figure 6, while hard-to-learn (Inv
PPL) holds this position in Figure 5. The no cur-
riculum approach ranks third and fourth in these
respective plots. Furthermore, the easy-to-learn
configurations demonstrate the poorest final per-
formance across both curriculum learning frame-
works.

Analyzing the accuracy plots of curriculum



learning, we observe that initiating training with
easier examples and gradually progressing to more
challenging instances does not lead to accelerated
convergence or improved final model performance.
On the other hand, the subset experiments pre-
sented in Tables 2 and 3 show that training models
on hard-to-learn examples result in better model
performance. Furthermore, the CL results highlight
that starting the curriculum with hard-to-learn sam-
ples results in enhanced final performance. These
findings, combined with the observation that the
first unlocked examples are encountered more fre-
quently during training, suggest that the superiority
of hard-to-learn curricula over the no curriculum
can be attributed to the increased exposure to chal-
lenging instances throughout the training process.

To sum up, our experimental findings highlight
the effectiveness of utilizing dataset cartography for
training subset selection and curriculum learning
in the context of compositional generalization. Our
results consistently show that leveraging dataset
cartography leads to improved generalization per-
formance. While curriculum learning also con-
tributes to performance enhancement, its impact
appears to be smaller compared to the use of dataset
cartography for subset selection.

4 Related Work

Swayamdipta et al. (2020) use training dynamics
to create data maps that categorize the dataset into
three groups: easy-to-learn, hard-to-learn, and am-
biguous. In a similar vein, Toneva et al. (2019) em-
ploy training dynamics for dataset categorization,
specifically in classification tasks, by identifying
misclassified or forgotten instances. On the con-
trary, the adversarial filtering algorithm proposed
by Bras et al. (2020) ranks instances based on pre-
dictability, suggesting the removal of easy-to-learn
examples. However, our research presents contrast-
ing findings. Our experimental analyses show that
combining the easy-to-learn category with other
categories can improve the generalization perfor-
mance. In another recent study, Wang et al. (2022)
explore the relationship between the generalization
performance and the training dynamics in an active
learning setting. Their approach revolves around
the adaptive selection of samples for labeling to
obtain comparable or better performance with less
training data. Notably, they discovered a robust cor-
relation between the convergence speed of training
and the resulting generalization performance. By

leveraging this connection, they propose a strategy
to enhance overall generalization performance.

Contemporary research on compositional gener-
alization focuses on two main aspects: proposing
new datasets to explore model generalization capa-
bilities and introducing novel techniques to address
the compositionality problem.

As one of the early sample datasets, SCAN
(Lake and Baroni, 2017) simulates a navigation
task, and measures generalization to longer splits
or systematic generalization with new verbs in dif-
ferent splits. Keysers et al. (2020) define a math-
ematically rigorous way to create compositional
datasets and create CFQ dataset which is a semantic
parsing task of generating SPARQL queries from
natural language questions. Kim and Linzen (2020)
proposed COGS for semantic parsing, where the
source is an English string, and the target is its
logical form.

In terms of novel techniques, researchers pro-
pose various approaches for compositional gen-
eralization. These include creating novel archi-
tectures to solve compositionality problem (Perez
et al., 2018; Hudson and Manning, 2018), modify-
ing existing architectures for better generalization
(Russin et al., 2020; Akyurek and Andreas, 2021),
utilizing different learning paradigms such as meta-
learning (Lake, 2019) and pre-training (Furrer et al.,
2020), or data augmentation (Andreas, 2020; Qiu
et al., 2022). With the rise of large language mod-
els (LLMs), choosing in-context examples for bet-
ter compositional generalization with LLMs (Levy
et al., 2022; An et al., 2023) is another open re-
search problem. In the compositional generaliza-
tion literature, only a few studies investigated the
impact of training dynamics on generalization per-
formance. For instance, studies by both Liu et al.
(2020) and Chen et al. (2020) propose curriculum
learning schemes to help models learn accurate exe-
cution traces for lengthy training samples. They di-
vide the samples into partitions based on the length
and train the models sequentially, starting with the
shortest examples. In contrast, our work takes a
different approach by utilizing training dynamics
to create data maps and leveraging them for com-
positional generalization. This is achieved either
through subset selection or curriculum criteria.

5 Conclusion

Transformers are great at language modeling and
various downstream tasks, but their ability to



achieve compositional generalization compared to
humans remains debatable. In this study, we ad-
dressed this challenge by demonstrating that select-
ing a subset of the training dataset using dataset
cartography and training models on this subset
can enhance model accuracy by up to 10%. We
showed that our setup can generalize to different
model architectures and natural datasets. Moreover,
we achieved improved performance by employing
a dataset cartography-based curriculum learning
without the need for hyperparameter tuning. Look-
ing ahead, we anticipate that this research direction
promises insights into the necessary syntax, seman-
tics, and structure for informative data instances,
informing the development of novel data augmen-
tation strategies and advancing our understanding
of deep models’ generalization capabilities.

Limitations

Synthetic data. While not a limitation specific
to our approach, many of the datasets used for
compositional generalization, including CFQ (Key-
sers et al., 2020) and COGS (Kim and Linzen,
2020), are synthetically generated. Hence, they
may not cover all the complexities of natural lan-
guages. While we perform initial experiments with
SMCalFlow-CS Simple (Meron, 2022), a natural
compositional generalization dataset, additional ex-
periments are necessary to make conclusive state-
ments.
Other models. In our work, we performed exper-
iments with vanilla Transformers (Vaswani et al.,
2017) and Bi-LSTM with attention (Bahdanau
et al., 2015). While we conduct preliminary ex-
periments on Bi-LSTM with attention and demon-
strate that these results are in line with primary
experiments, more experiments are needed to make
conclusive remarks about other neural models.
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A Supplementary

A.1 Reproducibility
We use the experimental setup created in Csordás
et al. (2021) for vanilla Transformers and modify
it to calculate and store training dynamics, and
implement a curriculum learning framework. After
storing training dynamics such as perplexity, CHIA,
and BLEU, we choose a subset with a criteria. As
we choose random subsets as a baseline, we specify
the seed during this process. For the Bi-LSTM with
attention experiments, we adopt the setup created
in Patel et al. (2022).

As mentioned in the paper, we used models
and hyperparameters from Csordás et al. (2021)
to ease computational constraints and use a ini-
tial strong random baseline (see Table 4). Accu-
racy is calculated on the sequence level, mean-
ing that all tokens in the output sequence should
match all tokens in the gold sequence while pre-
serving the sequence. We use the NLTK BLEU-4
score as the BLEU metric. We specifically use
SmoothingFunction.method4 for smoothing and
auto_reweigh is set to True as some examples
are shorter than 4 words. For the CFQ dataset, we
applied the same preprocessing as in Csordás et al.
(2021), which is used in Keysers et al. (2020) as
well. For COGS, no dataset preprocessing was
used.

A.2 Variability Equations
Equations for variability calculations, when CHIA,
inverse perplexity, or BLEU measures are used, are
shown from equations 6 to 8 respectively.

vi =

√√√√∑E
e=1

(
1
T

∑T
t=1 pθe (y

∗
it | xi)− µ̂i

)2

E
(6)

vi =

√√√√∑E
e=1

(∏T
t=1

T
√

pθe (y
∗
it | xi)− µ̂i

)2

E
(7)

vi =

√√√√∑E
e=1

(
BLEU(ŷ

(e)
i ,yi)− µ̂i

)2

E
(8)

where µ̂i (confidence) values are calculated as
shown in the main paper (see Equations 3–5, re-

spectively). In these equations, i denotes the in-
stance, E represents the total number of epochs, xi

is the input sequence, θ(e) corresponds to the set
of model parameters at epoch e. Additionally, y∗it
corresponds to the i-th token of the ground truth
output sequence yi of length T , ŷ(e)

i refers to the
predicted sequence generated by the model param-
eters at epoch e.

A.3 Additional Experiments

While our primary experiments focus on train-
ing Transformers on the CFQ and COGS datasets,
we conduct supplementary experiments with Bi-
LSTM with attention model on the COGS task and
Transformer model on two SMCS splits. This ap-
proach allows us to examine the transferability of
our results from synthetic datasets and the Trans-
former to other architectures and natural datasets.

For the SMCS 16 and 32 splits, we see a simi-
lar trend compared to CFQ and COGS results (see
Table 5 and 3). The performance of hard-to-learn
subsets exceeds the original dataset performance
consistently. Even if hard-to-learn examples con-
sisted of manual annotation errors in Swayamdipta
et al. (2020), training models on hard-to-learn sub-
sets improve performance for the SMCS splits.
However, this finding does not necessarily trans-
late to training models on errors result in better
performance. Rather, the contribution of hard-
to-learn subsets significantly obscures any perfor-
mance degradation that may occur from annotation
errors. Similarly, easy-to-learn subsets perform
the worst among all of the subsets. Although hard-
to-learn subsets perform the best among the other
subsets, the ranking between metrics is more fluid
compared to the CFQ and COGS results. While
hard-to-learn (Inv PPL) outperform other subsets
persistently in the CFQ and COGS results (Table 3),
hard-to-learn (BLEU) and hard-to-learn (CHIA)
are the best performing subsets in SMCS 16 and
32 subsets respectively.

Table 6 shows the Bi-LSTM with attention per-
formance on the COGS dataset. Surprisingly, the
Bi-LSTM performance is much worse than the
Transformer performance. Nonetheless, these re-
sults are consistent with the results in the original
COGS dataset (Kim and Linzen, 2020).

Similar to the SMCS experiments, the Bi-LSTM
experiments support our primary findings. Training
models on hard-to-learn subsets continuously out-
perform training on the full dataset. Compared to



Dataset dmodel dff nhead nlayer batch size learning rate warmup scheduler nparam

CFQ 128 256 16 2 1024 0.9 4000 Noam 685k
COGS 512 512 4 2 128 10−4 - - 9.3M

Table 4: Hyperparameters and number of parameters for each task. Feedforward size is denoted as dff . Only CFQ
batch size is changed from Csordás et al. (2021) (4096→ 1024).

SMCS 16 SMCS 32

Inv PPL CHIA BLEU Inv PPL CHIA BLEU

easy-to-learn 0.0 0.0 0.0 0.1 0.0 1.5
ambiguous 0.0 2.0 2.3 7.0 7.8 11.6
hard-to-learn 4.5 4.5 6.8 16.8 17.5 15.9

random 0.4 0.4 0.4 5.9 5.9 5.9

100% train 4.2 15.6

Table 5: Accuracy results for the SMCS 16 and 32 splits.
Models are trained on different 50% subsets of the train
data instead of the full train set. The best performing
subset is given in bold. Training models only on hard-
to-learn samples outperforms using 100% train data.

Inv PPL CHIA BLEU

easy-to-learn 2.7 8.3 9.9
ambiguous 14.2 2.8 11.9
hard-to-learn 16.6 15.7 20.2

random 9.9

100% train 13.7

Table 6: Accuracy results for the COGS dataset. Models
are trained on different 50% subsets of the train data
instead of the full train set. The best performing subset
is given in bold. Training models solely on hard-to-
learn samples outperforms using 100% train data.

the Transformer performance (Table 3), the maxi-
mum absolute performance increase between hard-
to-learn subsets and full training decreases by 4%.
However, the maximum relative performance in-
crease between hard-to-learn subsets and full train-
ing increases, showing that dataset cartography im-
proves generalization performance in architectures
other than Transformer.

A.4 Subsets Obtained from Data Maps
We examine four key statistics to gain insights
into the nature of the subsets created through data
cartography: (1) input length, (2) output length,
(3) input word rarity, and (4) output word rarity.
Word rarity is calculated as the sum of negative
log word frequencies normalized with sentence
length, as shown in Equation 9. In this equation,
T is the sequence length, y∗it is the tth gold token

Length Word rarity
random 13.56 / 27.78 3.97 / 3.47

In
v

PP
L easy-to-learn 11.86 / 24.55 3.99 / 3.41

ambiguous 11.51 / 23.64 4.06 / 3.51
hard-to-learn 15.82 / 32.13 3.95 / 3.54

C
H

IA

easy-to-learn 10.91 / 22.34 4.02 / 3.43
ambiguous 13.07 / 27.86 3.94 / 3.50
hard-to-learn 16.40 / 33.94 3.93 / 3.53

B
L

E
U easy-to-learn 11.41 / 23.18 4.02 / 3.44

ambiguous 12.78 / 25.11 3.96 / 3.47
hard-to-learn 16.23 / 33.49 3.94 / 3.52

Table 7: Statistics about the subsets of the CFQ dataset
on 33% selected instances based on Inv PPL, CHIA and
BLEU measures. We report average input/output length
and word rarity. Statistics are averaged over 3 runs.

for sequence i, and f(y∗it) denotes frequency of
gold token y∗it. Table 7 presents these statistics for
the CFQ dataset, and reveals interesting patterns.
Among these different subsets, the hard-to-learn
subsets show longer input and output lengths com-
pared to all other splits. Conversely, both ambigu-
ous and easy-to-learn samples tend to be shorter
in length compared to the randomly selected sam-
ples. Analyzing word rarities, we observe that the
hard-to-learn subsets have lower input rarity but
higher output rarity compared to the random subset.
On the other hand, the easy-to-learn and ambigu-
ous samples show higher input rarity than the ran-
dom subset. Notably, the word rarity in ambiguous
samples surpasses even that of the hard-to-learn
samples. These statistics provide valuable insights
into the subsets. However, determining whether
dataset cartography is solely driven by factors such
as length and rarity or represents a more complex
distribution of samples remains a topic for future
investigation.

The statistics of the COGS subsets, as presented
in Table 8, show similar patterns to the CFQ sub-
sets discussed in Table 7. Specifically, we ob-
serve that the hard-to-learn subsets tend to have



Length Word rarity
random 7.47 / 43.52 4.54 / 3.34

In
v

PP
L easy-to-learn 6.59 / 34.22 4.25 / 3.24

ambiguous 7.16 / 42.23 4.82 / 3.41
hard-to-learn 8.83 / 56.62 4.87 / 3.47

C
H

IA

easy-to-learn 6.61 / 33.78 4.24 / 3.23
ambiguous 7.81 / 48.53 4.90 / 3.46
hard-to-learn 8.83 / 56.87 4.87 / 3.48

B
L

E
U easy-to-learn 6.27 / 32.24 4.33 / 3.27

ambiguous 8.67 / 54.92 4.78 / 3.43
hard-to-learn 9.08 / 58.20 4.77 / 3.45

Table 8: Statistics about the subsets of the COGS dataset
on 33% selected instances based on Inv PPL, CHIA, and
BLEU measures. We report average input/output length
and word rarity. Statistics are averaged over 3 runs.

longer samples compared to the ambiguous subsets,
while the ambiguous subsets are longer than the
easy-to-learn subsets. However, unlike the CFQ
subsets, the COGS subsets display an interesting
characteristic: as the subsets become harder, there
is an increase in the presence of rare words both
within and outside the dataset vocabulary. This phe-
nomenon can be attributed to the larger vocabulary
size and smaller dataset size of the COGS dataset,
as outlined in Table 1. Consequently, the variabil-
ity in word usage plays a more prominent role in
determining the hardness of the data instances in
COGS. Therefore, by employing dataset cartog-
raphy, we are able to select subsets that exhibit
different underlying factors, ultimately leading to
dataset-specific improvements in performance.

Rarity(i) = − 1

T

T∑
t=1

log f (y∗it) (9)

A.5 Subset Examples

In the following, we randomly sample examples
from 5% hardest-to-learn, most ambiguous, or
easiest-to-learn examples. We show examples
based on BLEU measure for the CFQ dataset (ex-
amples (1), (2), and (3)), and based on Inv PPL
measure for the COGS dataset (examples (4), (5),
and (6)), for brevity. While these examples are too
small for any inference, we see that these examples
reflect subset statistics mentioned in Tables 7 and 8.

CFQ Subset Samples:

(1) An easy-to-learn sample:

What did a child of M0 executive produce,
edit, write, direct, and produce→
SELECT DISTINCT ?x0 WHERE { ?x0
film.film.directed_by ?x1 . ?x0
film.film.edited_by ?x1 . ?x0
film.film.executive_produced_by
?x1 . ?x0 film.film.produced_by|←↩
ns:film.film.production_companies
?x1 . ?x0 film.film.written_by ?x1
. ?x1 people.person.parents|←↩
ns:fictional_universe.←↩
fictional_character.parents|←↩
ns:organization.organization.←↩
parent/ns:organization.←↩
organization_relationship.parent
M0 }

(2) An ambiguous sample:

What did M0 found and M1’s female
founder found→
SELECT DISTINCT ?x0 WHERE { ?x0
organization.organization.founders
?x1 . ?x0
organization.organization.founders
M0 . ?x1 organization.←↩
organization_founder.←↩
organizations_founded M1 . ?x1
people.person.gender m_02zsn }

(3) A hard-to-learn sample:

Was M2 a film producer that employed a
spouse of M1, employed M0’s executive
producer, and employed M4→
SELECT count (*) WHERE { ?x0
film.producer.←↩
films_executive_produced M0 . ?x1
people.person.spouse_s/←↩
ns:people.marriage.spouse|←↩
ns:fictional_universe.←↩
fictional_character.married_to/←↩
ns:fictional_universe.←↩
marriage_of_fictional_←↩
characters.spouses M1 . FILTER (
?x1 != M1 ) . M2 a film.producer .
M2 business.employer.employees/←↩
ns:business.employment_tenure.←↩
person ?x0 . M2
business.employer.employees/←↩
ns:business.employment_tenure.←↩



person ?x1 . M2
business.employer.employees/←↩
ns:business.employment_tenure.←↩
person M4 }

COGS Subset Samples:

(4) An easy-to-learn sample:

A cake was drawn by Emma . →
cake ( x _ 1 ) AND draw . theme (
x _ 3 , x _ 1 ) AND draw . agent (
x _ 3 , Emma )

(5) An ambiguous sample:

The cat wished to sleep . →
* cat ( x _ 1 ) ; wish . agent (
x _ 2 , x _ 1 ) AND wish . xcomp (
x _ 2 , x _ 4 ) AND sleep . agent
( x _ 4 , x _ 1 )

(6) A hard-to-learn sample:

James gave a lion a cake in the fridge . →
* fridge ( x _ 8 ) ; give . agent
( x _ 1 , James ) AND give .
recipient ( x _ 1 , x _ 3 ) AND
give . theme ( x _ 1 , x _ 5 ) AND
lion ( x _ 3 ) AND cake ( x _ 5 )
AND cake . nmod . in ( x _ 5 ,
x _ 8 )

A.6 Detailed Error Analysis

To gain further insights into the performance of our
model, we conduct a comprehensive manual error
analysis on both the CFQ and COGS datasets. Our
objective was to identify the specific test samples
where the model exhibits improved performance af-
ter training with a selected subset, and to determine
the general properties of these samples.
On the CFQ dataset. Our analysis reveals that
the hard-to-learn (Inv PPL) model outperforms the
100% trained model, particularly on sentences that
are shorter than average or of average length. This
observation highlights the effectiveness of dataset
cartography in enhancing compositional generaliza-
tion, without relying on spurious correlations. How-
ever, it is important to note that the hard-to-learn
(Inv PPL) model does not demonstrate the same
level of improvement in generalizing to longer sen-
tences. Figure 7 provides further insights into the
performance of the models. We observe a slight

increase in errors for the shortest samples. This
can be attributed to the fact that the hard-to-learn
(Inv PPL) model generates longer outputs than the
target for a subset of these samples ((7)). This be-
havior can be explained by the length bias present
in the hard-to-learn subsets, as the models tend
to generate longer outputs when encountering in-
stances longer than the average length.

(7) Was a film director M0→
GOLD: SELECT count ( * ) WHERE {
M0 a film.director }

OUT: SELECT count ( * ) WHERE { M0
a film.director . M0
film.director.film M2 }

Errors observed in both models exhibit a systematic
nature. For instance, there are samples where the
models fail to correctly order the triple sequences,
resulting in incorrect output (see Example (8)). An-
other common error type involves swapping the
1st argument in a triple with the 3rd argument ((9),
formatted for spacing). It is worth noting that these
error patterns are not specific to either the hard-to-
learn or the 100% trained models.

(8) Was M0 ’ s prequel a film→
GOLD: SELECT count ( * ) WHERE {
?x0 a film.film . ?x0
film.film.sequel M0 }

OUT: SELECT count ( * ) WHERE {
?x0 film.film.sequel M0 . ?x0 a
film.film }

(9) Was a character M1 ’ s director→
GOLD: SELECT count(*) WHERE { ?x0
a fictional_universe.←↩
fictional_character . ?x0
film.director.film M1 }

OUT: SELECT count(*) WHERE { ?x0 a
fictional_universe.←↩
fictional_character . M1
film.director.film ?x0 }

On the COGS dataset. In the COGS dataset, each
instance belongs to one of the 21 generalization
categories, such as Passive → Active, where the
verb structure is transformed from a passive form
to an active form (e.g. “The book was squeezed”.
→ “The girl squeezed the strawberry.”). This cate-
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Figure 7: Target length histogram for test errors on CFQ.

gorization allows us to explore the changes in accu-
racies across different categories when comparing
models trained on 33% hard-to-learn subsets and
the 100% training dataset (refer to Table 10).

For Inv PPL, we see performance increase nearly
in all of the categories compared to full training
except 7 categories. In 3 of these categories, all 4
models have 0% accuracy. And from the remain-
ing 4 categories, in only one category the perfor-
mance discrepancy is remarkable (Subject→ Ob-
ject (common noun)). While dataset cartography
significantly contributes towards lexical generaliza-
tion, the contribution towards structural generaliza-
tion remains limited.

Among models trained with subsets, Inv PPL
outperforms CHIA on almost all categories, and
while overall Inv PPL performs better, the rank-
ing between Inv PPL and BLEU is more volatile.
Results in Table 10 indicate that the Inv PPL mea-
sure can distinguish informative examples better
compared to the CHIA measure. Moreover, differ-
ent confidence measures have different character-
istics, therefore they can give more importance to
measure-specific instances.

A.7 Remaining Cartography Plots

We present the remaining cartography plots for the
CFQ and COGS datasets in this section. Same
as previous plots, we only plot randomly sampled
33% of the training set. For the CFQ dataset, these
remaining plots include the Inv PPL plot (Figure
8) and the CHIA plot (Figure 9). Similarly, for the
COGS dataset, the remaining plots consist of the
BLEU plot (Figure 10) and the CHIA plot (Figure
11).

Upon examining these plots, we observe distinct
characteristics among them. The CHIA plots ap-

Motivation
Practical Cognitive Intrinsic Fairness
□ △ ⃝ □ △ ⃝

Generalisation type
Compo-
sitional Structural Cross

Task
Cross

Language
Cross

Domain
Robust-

ness
□ △ ⃝

Shift type
Covariate Label Full Assumed
□ △ ⃝

Shift source
Naturally
occuring

Partitioned
natural

Generated shift Fully
generated

⃝ □ △

Shift locus
Train–test Finetune

train–test
Pretrain–train Pretrain–test

□ △ ⃝

Table 9: GenBench eval card (Hupkes et al., 2022) of
our work

pear denser, with data examples concentrated in
specific regions. In contrast, the BLEU plots ex-
hibit a more widespread distribution, while the Inv
PPL plots demonstrate the highest degree of disper-
sion. These plots offer interesting insights when
comparing the performances of CHIA and Inv PPL
measures. As instances in Inv PPL plots are better
distributed compared to instances in CHIA plots,
categories of examples are more distinguishable,
resulting in CHIA hard-to-learn subsets including
ambiguous or even easy-to-learn instances. De-
spite their similar underlying mathematical intu-
ition, these plots contribute to a better understand-
ing of the observed differences.

A.8 GenBench Eval Card

We provide the GenBench eval card (Table 9) to
help centralize the generalization evaluation in
state-of-the-art language models. We conduct many
experiments in our paper, but we can safely divide
them into 3 main categories by their datasets (CFQ,
COGS, and SMCS).

The motivation beyond our experiments is the
same. We hypothesized that we could improve
the compositional generalization performance of
neural models by harnessing their training dynam-
ics to construct a smaller training set. Therefore,
our motivation is practical as we aim to achieve
better generalization and intrinsic as we examine
and utilize models’ training dynamics at the same
time. All of our datasets are compositional gener-



Category
hard-to-learn (33% train)

100% training
Inv PPLCHIA BLEU

Subject→ Object (common noun) 0.45 0.57 0.85 0.61
Subject→ Object (proper noun) 0.08 0.05 0.16 0.08
Object→ Subject (common noun) 0.95 0.95 0.97 0.90
Object→ Subject (proper noun) 0.54 0.31 0.40 0.41
Primitive noun→ Subject (common noun) 0.93 0.58 0.92 0.63
Primitive noun→ Subject (proper noun) 0.90 0.73 0.81 0.44
Primitive noun→ Object (common noun) 0.47 0.19 0.14 0.15
Primitive noun→ Object (proper noun) 0.19 0.27 0.15 0.14
Primitive verb→ Infinitival argument 0.48 0.37 0.07 0.26
Object-modifying PP→ Subject-modifying PP 0.00 0.00 0.00 0.00
Depth generalization: Sentential complements 0.00 0.00 0.00 0.00
Depth generalization: PP modifiers 0.09 0.07 0.08 0.07
Active→ Passive 0.98 0.94 0.89 0.99
Passive→ Active 0.72 0.57 0.74 0.40
Object-omitted transitive→ Transitive 0.89 0.65 0.81 0.87
Unaccusative→ Transitive 0.46 0.45 0.49 0.41
Double object dative→ PP dative 0.55 0.48 0.71 0.54
PP dative→ Double object dative 0.65 0.42 0.43 0.17
Agent NP→ Unaccusative Subject 0.45 0.48 0.39 0.29
Theme NP→ Object-omitted transitive Subject 0.74 0.74 0.85 0.80
Theme NP→ Unergative subject 0.71 0.71 0.77 0.78

Table 10: COGS accuracy by generalization categories. Subsets have 33% of the original dataset size. Each result is
averaged over 3 runs.

alization datasets and they display covariate shift.
While SMCS is a partitioned neutral dataset, CFQ
and COGS datasets are fully generated. All of our
shift loci are train–test as we train Transformer and
Bi-LSTM models from scratch.
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Figure 8: Data map of CFQ train set for the Transformer model based on Inv PPL measure (converge epoch 20).
The x-axis shows the variability and the y-axis the confidence. The colors and shapes indicate the correctness.
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Figure 9: Data map of CFQ train set for the Transformer model based on CHIA measure (converge epoch 20).
The x-axis shows the variability and the y-axis the confidence. The colors and shapes indicate the correctness.



0.00 0.02 0.04 0.06 0.08 0.10 0.12
Variability - BLEU

0.0

0.2

0.4

0.6

0.8

1.0

C
on

fid
en

ce
 - 

B
LE

U

ambiguous

easy-to-learn

hard-to-learn

BLEU Data Map
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
1.0

0 1
Confidence

0

2000

4000

6000

D
en

si
ty

0.0 0.1
Variability

0

2000

4000

6000

D
en

si
ty

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

1.
0

Correctness

0

1000

2000

3000

D
en

si
ty

Figure 10: Data map of COGS train set for the Transformer model based on BLEU measure (converge epoch 10).
The x-axis shows the variability and the y-axis the confidence. The colors and shapes indicate the correctness.
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Figure 11: Data map of COGS train set for the Transformer model based on CHIA measure (converge epoch 10).
The x-axis shows the variability and the y-axis the confidence. The colors and shapes indicate the correctness.


