
Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning

Zhenni Bi † 1 Kai Han † 1 Chuanjian Liu 1 Yehui Tang * 1 Yunhe Wang * 1

Abstract
Large Language Models (LLMs) have demon-
strated remarkable abilities across various lan-
guage tasks, but solving complex reasoning prob-
lems remains a significant challenge. While
existing methods, such as Chain-of-Thought
(CoT) and Tree-of-Thought (ToT), enhance rea-
soning by decomposing problems or structuring
prompts, they typically perform a single pass of
reasoning and may fail to revisit flawed paths,
compromising accuracy. To address this lim-
itation, we propose a novel reasoning frame-
work called Forest-of-Thought (FoT), which in-
tegrates multiple reasoning trees to leverage col-
lective decision-making for solving complex log-
ical problems. FoT employs sparse activation
strategies to select the most relevant reason-
ing paths, improving both efficiency and accu-
racy. Additionally, we introduce a dynamic
self-correction strategy that enables real-time
error correction, along with consensus-guided
decision-making strategies to optimize both cor-
rectness and computational resources. Experimen-
tal results demonstrate that the FoT framework,
combined with these strategies, significantly en-
hances the reasoning capabilities of LLMs, en-
abling them to solve complex tasks with greater
precision and efficiency. Code will be avail-
able at https://github.com/iamhankai/Forest-of-
Thought.

1. Introduction
Large Language Models (LLMs) have revolutionized natural
language processing by demonstrating remarkable capabil-
ities across a wide range of language tasks. By leverag-
ing vast datasets and complex architectures, LLMs such as
ChatGPT (Kojima et al., 2022; Achiam et al., 2023) and

*Equal contribution 1Huawei Noah’s Ark Lab. Correspon-
dence to: Yehui Tang <yehui.tang@huawei.com>, Yunhe Wang
<Yunhe Wang@huawei.com>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

LLaMA (Touvron et al., 2023) can generate coherent essays,
answer complex questions, and engage in multi-turn dia-
logues with human-like fluency. These models excel at tasks
requiring not only linguistic understanding but also basic
reasoning, such as translating text, summarizing lengthy
documents, and generating code from plain language in-
structions. The versatility and adaptability of LLMs have
made them invaluable tools in both industry and research,
opening up new avenues for solving general-purpose prob-
lems.

Enabling LLMs to successfully solve complex reasoning
problems remains a challenge. A series of works have
been proposed to introduce more inference during testing
based on a well-trained LLM (Wei et al., 2022; Yao et al.,
2024; Snell et al., 2024; OpenAI, 2024). Chain-of-Thought
(CoT) (Wei et al., 2022) provides a few chain-of-thought
demonstrations in prompting as exemplars to enhance the
reasoning abilities of LLMs. Tree-of-Thought (ToT) (Yao
et al., 2024) allows language models to explore multiple
reasoning paths and self-evaluate to make more globally
informed decisions. Graph-of-Thought (GoT) (Besta et al.,
2024b) advances LLM prompting by structuring informa-
tion as a graph of interconnected “thoughts”, enabling syn-
ergistic reasoning and feedback loops.

These methods perform reasoning by using richer prompts
or by decomposing a complex problem into several sim-
pler sub-problems. However, they typically perform only
a single, complete reasoning pass on the problem, which
does not guarantee that the problem will be solved correctly.
For example, in a complex mathematical word problem, a
Tree-of-Thought approach might decompose the problem
into smaller steps, such as isolating terms or simplifying
expressions. However, while breaking down the problem,
it may still overlook critical details or make errors in inter-
mediate steps, leading to an incorrect final answer. Once
it completes a single reasoning path, it typically does not
revisit other possible approaches if the initial path is flawed.
This lack of re-evaluation can result in a solution that fails
to address the full complexity of the problem, as alternative
paths are often prematurely abandoned and left unexplored,
thereby compromising accuracy. In contrast, humans tend
to repeatedly reflect and verify from different perspectives
when dealing with complex problems, which allows them
to truly solve the problem and provide answers with higher

1

https://github.com/iamhankai/Forest-of-Thought
https://github.com/iamhankai/Forest-of-Thought


Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning

accuracy.

In this paper, we propose a new reasoning framework called
Forest-of-Thought (FoT) to scale up test-time computation
and enhance the reasoning abilities of LLMs, as shown in
Figure 1. FoT integrates multiple reasoning trees to leverage
the advantages of collective decision-making for handling
complex logical reasoning tasks. By utilizing sparse ac-
tivation strategies, we select the most relevant reasoning
paths for each tree, thereby improving both the efficiency
and accuracy of the model. To further enhance the reason-
ing process, we introduce a dynamic self-correction strat-
egy, which enables the model to automatically identify and
correct errors during reasoning, leveraging both real-time
corrections and historical learning. Additionally, we in-
corporate consensus-guided decision-making strategies to
optimize both correctness and computational resource us-
age, ensuring that the model only continues the reasoning
process when necessary. Our experiments demonstrate that
the proposed FoT framework, combined with these strate-
gies, significantly improves the reasoning performance of
LLMs, enabling them to solve complex tasks with greater
precision and efficiency.

2. Related Works
2.1. XoT reasoning

Starting with Chain-of-Thought (CoT), XoT reasoning tech-
niques (e.g., ToT and GoT) emerged as important methods
for enhancing the reasoning abilities of LLMs, leading to
the development of a series of XoT reasoning algorithms.

Chain-of-Thought (CoT) (Wei et al., 2022) decomposes
a problem into a series of intermediate steps, each providing
a portion of the information necessary for the final answer.
This approach mimics human problem-solving strategies, in-
volving step-by-step reasoning to reach a conclusion. How-
ever, while CoT performs well in many tasks, it has limi-
tations when applied to complex mathematical and logical
problems. These types of problems often require multidi-
mensional, non-linear thinking rather than just sequential
reasoning. Despite numerous subsequent studies aimed
at improving CoT, such as Zero-Shot-CoT (Kojima et al.,
2023), Self-Consistency with CoT (CoT-SC) (Wang et al.,
2023), Auto-CoT (Zhang et al., 2022), VerifyCoT (Zhao
et al., 2023), and CoF-CoT (Nguyen et al., 2023), further
exploration and optimization are still needed to tackle highly
complex tasks.

Least-to-Most Prompting (LtM) (Zhou et al., 2023)
guides the model through a step-by-step process, progres-
sively assisting it in constructing a solution, in contrast to
methods like CoT, which attempt to solve complex problems
directly. This approach effectively mitigates the reasoning
errors that often occur when attempting to solve complex

problems all at once. By decomposing complex problems
into simpler tasks, Program of Thought (PoT) (Chen et al.,
2023), Chain of Code (CoC) (Li et al., 2024), and Buffer
of Thought (BoT) (Yang et al., 2024) transform the process
into a set of programmatic steps, using variable names to
convey semantic information. In contrast, the Algorithm of
Thought (AoT) (Sel et al., 2024) method seeks to integrate
these steps into a single prompt, enabling LLMs to learn
how to break down problems, generate solutions, assess
their feasibility, and determine the next step in the search
process. This approach reduces token consumption and
improves efficiency.

Tree-of-Thought (ToT) (Yao et al., 2024) constructs a tree
structure to explore various possible choices and their out-
comes, where each node represents a decision point, and
the edges represent transitions between states. Typically, a
depth-first search (DFS) approach is used to explore each
branch incrementally. Tree Prompting (Morris et al., 2023)
establishes a decision-tree-based prompting system, chain-
ing multiple language model calls together to collaboratively
complete a specific task. However, for complex problems,
the tree’s depth may become very large, leading to an expo-
nential increase in the search space and a higher computa-
tional burden. Graph-of-Thought (GoT) (Besta et al., 2024b)
extends the ToT framework by introducing an aggregation
process. GoT models the reasoning process of LLMs as a
graph structure, allowing information units to form arbitrary
dependencies, not limited to linear or tree-based arrange-
ments. Through aggregation, GoT consolidates information
from multiple paths, enabling complex dynamic path selec-
tion and backtracking. Skeleton-of-Thought (SoT) (Ning
et al., 2023) reduces generation latency in LLMs by first
generating a skeleton outline of the answer, then complet-
ing the content in parallel, achieving significant speedups
and potential quality improvements across various types of
questions.

2.2. Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) (Chaslot et al., 2008),
a probability-based search algorithm, has made significant
progress across various domains since its introduction in
computer Go in 2006. It evaluates nodes through ran-
domized simulations (rollouts) and incrementally builds
a local game tree to identify optimal or near-optimal so-
lutions within a limited time. To enhance MCTS perfor-
mance, researchers have proposed various improvements.
Browne et al. (2012) surveyed extensions such as sparse
activation, dynamic pruning, parallelization, and distributed
computation, which have broadened MCTS applications.
Srinivas et al. (2012) introduced UCB1-Tuned, an im-
proved exploration-exploitation strategy suited for high-
dimensional spaces. Recently, integrating MCTS with large
language models has advanced its use in complex reasoning

2



Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning

Huawei Proprietary - Restricted Distribution16

Input

Final output

Input

……

Final output

Input

……

……

Final output

Input

Input

Enhancement

Input 1

Final output

……

Solution

Input 2 Input n

Solution

……

……

Solution

…… …… ……

Low-confidence 

self-correction node

High-confidence 

node

Top-ranked node

Figure 1. Schematic illustration of various LLM reasoning approaches including IO prompting, CoT, ToT and the proposed FoT.

tasks. Everything-of-Thought (Ding et al., 2024) employs
a combination of reinforcement learning and MCTS for
reasoning. Methods like MCTSr (Zhang et al., 2024) com-
bine MCTS with LLMs to guide decision-making, blending
probabilistic search with linguistic reasoning. This hybrid
approach enables effective multi-step logic and diverse so-
lution paths.

3. Method
By introducing multiple reasoning trees (e.g., ToT (Yao
et al., 2024) or MCTSr (Zhang et al., 2024)) for independent
decision-making and employing sparse activation strategies
to filter the results from key trees, we can construct a Forest
of Thought to enhance the reasoning capabilities of LLMs,
as shown in Figure 1(d) and Algorithm 1. This strategy
leverages collective intelligence to compensate for individ-
ual shortcomings, thereby improving the model’s ability to
reason from multiple perspectives. Our experimental valida-
tion demonstrates that integrating the results from multiple
reasoning trees through sparse activation strategies indeed
enhances the reasoning capabilities of larger models to a
significant extent. This finding not only deepens our under-
standing of model integration techniques but also provides
new insights for improving the mathematical reasoning abil-
ities of LLMs.

3.1. The FoT Framework

Suppose we have n reasoning trees T1, T2, · · · , Tn, each
of which approaches the input problem from a different

perspective. The root node of each tree represents the initial
state or problem input, and each subsequent node represents
an intermediate result or step in the reasoning process. Let
the input be x. Each reasoning tree will start from the input
and produce a result through different reasoning steps:

si = Ti(ε(x)), i ∈ {1, 2, . . . , n} (1)

where ε(x) is a function that enhances x before it is used
as input (details in the following paragraph) and Ti(·) rep-
resents the reasoning process of the ith tree. FoT considers
the results of these trees in a sparse activation manner and
produces a high-quality response through a decision-making
strategy (Sec. 3.3). Additionally, a dynamic self-correction
strategy is proposed to enhance the accuracy (Sec. 3.2).

Sparse Activation. In the reasoning process of FoT, we
aim to improve both computational efficiency and answer
quality by selectively activating only the most promising
reasoning trees. Instead of exhaustively computing over all
trees, sparse activation ensures that inference resources are
allocated only to paths that demonstrate strong intermediate
reasoning signals.

At a high level, sparse activation works by evaluating the
intermediate outputs of each reasoning tree at every layer
and filtering out trees that are unlikely to contribute mean-
ingful information to the final decision. This is particularly
crucial in multi-step reasoning tasks, where invalid or low-
quality intermediate outputs can lead to cascading errors in
subsequent steps. By terminating these unpromising paths

3



Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning

early, we save computation and reduce noise in final output
aggregation.

For each reasoning tree Ti, at every layer, we evaluate all
generated nodes and select only the top-scoring candidates
(based on a task-specific scoring function, such as model log-
likelihood or heuristic correctness). These selected nodes
are then split into child nodes to form the next layer. If a
tree fails to generate any valid outputs at a given layer—e.g.,
due to invalid syntax, semantic contradictions, or domain-
specific constraints—its expansion is halted prematurely.
The tree is marked as inactive, and it does not participate in
the final answer aggregation.

Formally, the activation indicator φi for tree Ti is defined
as:

φi =

{
1, if ∀l, F (sl) = valid output,
0, otherwise.

(2)

Here, sl is the solution or intermediate output at layer l in
tree Ti, and F (sl) is a validation function that determines
whether the output is logically or semantically valid. The
tree is considered active only if all its intermediate layers
produce valid outputs; otherwise, it is pruned from the final
ensemble.

Sparse activation therefore functions as both a filtering
mechanism and a computational budget control strategy.
It reduces inference latency and improves accuracy by:

• Pruning low-quality or invalid reasoning paths before
they reach full depth.

• Allowing the model to concentrate its computation on
a smaller number of high-confidence paths.

• Enhancing the diversity and quality of the final answer
pool by removing noisy or erroneous candidates.

In practice, we find that sparse activation improves the trade-
off between reasoning depth and breadth, leading to more
robust and interpretable outputs with lower overall cost.

Input Data Augmentation. When faced with complex
problems, our cognitive process typically shifts from rapid,
intuitive “fast thinking” to deeper, more systematic “slow
thinking” (Evans, 1984; Kahneman, 2011). This transition
not only helps us address immediate challenges but also
draws on the relevant prior knowledge stored in our brains,
enabling us to analyze and solve problems more compre-
hensively. Slow thinking integrates and evaluates this prior
knowledge, allowing us to view problems from multiple per-
spectives and arrive at more reasonable solutions. Inspired
by prior knowledge, we have collected and constructed a
knowledge base B from publicly available datasets to sup-
port the model’s reasoning process. Additionally, by en-
hancing the diversity of question-answer generation within

each tree to further improve the model’s performance.

imax = argmax
i

(Sim (x,B)) (3)

x = Bimax
⊕ x (4)

where Sim(·) represents retrieving the most relevant ques-
tions from B. ⊕ means the concatenation of two text strings.

The sparse activation strategy improves both efficiency and
accuracy by focusing on the most relevant reasoning paths
and reducing unnecessary computations. To further opti-
mize reasoning, we apply efficient search with early ter-
mination. When a clear target is identified (e.g., Game of
24, Arithmetic Puzzles and Maze Solving), the search halts
immediately upon finding a solution. This avoids redundant
computations: once a branch matches the ground truth (GT),
further exploration of irrelevant paths is stopped, saving
resources and speeding up the process. Early termination
thus enhances overall efficiency by preventing unnecessary
work.

Algorithm 1 Forest of Tree (FoT)
Require: Input x, LLM pθ, n reasoning trees {Ti()}, i =

1, 2, · · · , n;
1: S0 ← {}
2: for i = 1, · · · , n do
3: obtain result of the i-th tree with input enhancement:

si, φi ← Ti(ε(x));
4: dynamic self-correction:

s′i ← self -correct(si, x) (Sec. 3.2);
5: if activator indicator φi == 1 then
6: update result set: Si ← Si−1 ∪ {s′i};
7: else
8: continue;
9: end if

10: end for
Return Decision Making CGED(Sn) (Sec. 3.3).

3.2. Dynamic Self-Correction Strategy

Self-correction is a fundamental cognitive method that hu-
mans use to solve complex problems (Simon, 1991; Flower,
1981; Amabile, 1983). Unlike Self-Refine (Madaan et al.,
2023), which relies on a fixed number of iterations, our
approach dynamically evaluates each reasoning step, specif-
ically by monitoring the predicted logits scores to assess the
quality of the reasoning results. When the model’s score
falls below a predefined threshold, a correction mechanism
is automatically triggered to detect and fix errors in a timely
manner. This approach enhances the flexibility and adapt-
ability of the reasoning process, as it does not rely on preset
iteration counts, but instead adjusts the model’s output based
on real-time feedback.

Additionally, our method incorporates predefined mathe-

4



Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning

matical rules, further improving the accuracy and reliability
of the reasoning process. By embedding these rules into
the reasoning framework, the model can immediately cor-
rect errors upon detection. For example, in Game 24, the
model can verify whether the remaining numbers in the
output are derived from the input numbers, enabling quick
error detection and correction. This immediate correction
mechanism not only improves reasoning quality but also
significantly reduces the risk of error propagation. Over-
all, through dynamic evaluation, real-time feedback, and
rule-driven correction mechanisms, our approach enables
the model to quickly identify and correct errors, ultimately
enhancing its overall performance and robustness.

The process details of the proposed dynamic self-correction
strategy are shown in Algorithm 2.

Algorithm 2 Dynamic Self-Correction Strategy
Require: Input context x, LM pθ, mathematical rule cor-

rection function F , priori knowledge sets B;
1: si ← pθ(si | x);
2: scorei ← pθ(scorei | si, x);
3: if scorei < threshold then
4: if F is not None then
5: s′i ← F (si);
6: else
7: s′i ← pθ(s

′
i | B, si, x);

8: end if
9: update result: si ← s′i;

10: end if

3.3. Decision Making Strategy

To address complex mathematical problems, we designed
the Consensus-Guided Expert Decision (CGED) strategy
to ensure high accuracy and reliability in the final answers
generated by FoT. The CGED approach combines collective
intelligence with expert judgment from LLMs, guiding the
reasoning process from consensus-based decision-making
to expert evaluation.

During the reasoning process of FoT, each activated tree
generates the optimal solution for its reasoning path. These
solutions then undergo majority consensus voting and expert
evaluation to gradually identify the best answer. Specifi-
cally, for complex reasoning tasks, if the majority of trees
produce inconsistent results, an LLM expert will compare
the reasoning processes and outcomes of the different trees,
making a final decision based on their professional knowl-
edge and experience. This approach ensures the accuracy of
the final result, effectively reduces errors and biases in the
reasoning process, and enhances the robustness of the entire
framework.

Table 1. Ablation experiment of FoT with self-correction, input
enhancement, and sparse activation.

Method Self- Input Sparse Acc. [%] LLM
Correction Enhancement Activation invoked

FoT 10.58 32.32
FoT ✓ 60.24 32.32
FoT ✓ ✓ 77.98 32.32
FoT ✓ ✓ ✓ 77.98 26.99

4. Experiments
We evaluate the proposed FoT method on the widely-used
LLM reasoning benchmarks including Game of 24, GSM8K
and MATH.

4.1. Experimental setups

In this experimental section, we explore FoT methods based
on ToT and MCTSr, conducting experiments across multiple
LLMs and datasets. For the Game of 24 (Yao et al., 2024),
our FoT is built using ToT as the reasoning tree. In addition
to the ToT-based FoT, we developed an MCTSr-based FoT
to address mathematical problems, including those from the
GSM8K (Cobbe et al., 2021a) and MATH (Hendrycks et al.,
2021b) benchmarks. Furthermore, we extend our method to
models such as Llama3-8B-Instruct (at Meta, 2024), Mistral-
7B (Jiang et al., 2023), and GLM-4-9B (GLM et al., 2024),
testing it on the GSM8K benchmark to assess its generaliza-
tion.

4.2. Game of 24

The Game of 24, from 4nums.com, involves constructing an
arithmetic expression using each of the four given numbers
exactly once, such that the expression evaluates to 24. We
removed the duplicate and unsolvable problems, leaving
95 problems as the test set. In our experiment, we set the
sampling temperature to 0.95. We also conducted a series
of ablation experiments based on Llama3-8B-Instruct, as
shown in Table 1.

Results. Table 1 presents an ablation experiment comparing
the performance of FoT and ToT, highlighting the impact
of different components on reasoning accuracy. The ex-
periment starts with the BoN method, which directly uses
the ToT framework without input enhancement, sparse ac-
tivation, or self-correction. Under this configuration, the
accuracy is relatively low, at 10.58%, as the model relies
solely on the base ToT approach, without any optimizations
or adjustments to enhance its reasoning capabilities. In con-
trast, by introducing self-correction, FoT shows a significant
improvement, achieving an accuracy of 60.24%. The self-
correction mechanism plays a pivotal role in enhancing the
reasoning process. It allows real-time adjustments to the cur-
rent reasoning path, ensuring errors are corrected promptly

5

https://www.4nums.com/game/difficulties/


Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning

as they are detected. This reduces the accumulation of er-
rors that can otherwise arise when later reasoning paths
depend on potentially flawed earlier steps. Consequently,
FoT with self-correction delivers more accurate and reliable
reasoning, especially in complex problem-solving scenarios.
Further improvements are observed when input enhance-
ment is introduced alongside self-correction, resulting in the
FoT with both features. This configuration boosts the accu-
racy to 77.98%, highlighting the importance of enriching
the model’s inputs to provide broader perspectives, which in
turn supports more robust reasoning. Finally, when sparse
activation is incorporated into the configuration, there is
a significant reduction in the number of LLM invocations,
from 32.32 to 26.99. This not only improves computational
efficiency but also ensures that the model maintains its high-
est accuracy yet, demonstrating the power of combining
self-correction, input enhancement, and sparse activation.

In Figure 5, we compare the computational cost and per-
formance of the extended ToT and FoT methods. In the
experiment, we progressively increase the number of se-
lectable leaf nodes in ToT (b = 2, 4, 8, 16, 32) to allow
for greater diversity in potential reasoning outcomes. The
experimental results show that simply increasing the num-
ber of leaf nodes in ToT leads to a gradual improvement
in accuracy, though the gains become more modest as the
number of nodes increases. However, when the number of
leaf nodes per layer was increased to 32, the results showed
no significant improvement. This suggests that the system
reached a reasoning bottleneck, where further expansion
of the leaf nodes did not result in substantial performance
gains. Beyond a certain threshold, increasing the number
of available reasoning paths appears to offer diminishing
returns, likely due to the inefficiencies of excessive node
expansion. In contrast, the FoT method, which incorpo-
rates techniques such as self-correction, input enhancement,
and sparse activation, demonstrates a much more signifi-
cant improvement in accuracy. These findings highlight that
while expanding the structure of ToT provides only limited
performance gains, the integration of additional features
in FoT leads to a more substantial enhancement in model
performance.

4.3. GSM8K Benchmark

In addition to the Game of 24, we evaluated the benefits of
integrating multiple methods into the FoT framework using
the GSM8K (Cobbe et al., 2021b) dataset.

Results. As shown in Figure 2, we constructed forests
using various methods, including Zero-Shot-CoT, MCTSr
with one turn, MCTSr with 4-rollouts, and MCTSr with
8-rollouts. The experimental results demonstrate that as the
number of trees in the forest increases, the advantages of
the multi-method forest approach become more pronounced.

Table 2. Performance Comparison on Game of 24: Our method,
with 8 activated subtrees, achieved the highest average ranking
across different inference frameworks.

Method LLM invoked Success

IO 1.00 10.22%
CoT (Kojima et al., 2023) 1.00 4.38%
CoT-SC (Wang et al., 2023) 10.00 4.38%
GoT (k=1) (Besta et al., 2024a) 7.00 5.26%
ToT (b=5) (Yao et al., 2024) 13.74 74.00%
BoT (Yang et al., 2024) 3.00 82.40%
XoT (w/ 3 r) (Ding et al., 2024) 1.78 85.40%

Ours 25.64 96.84%

Notably, the 4-rollouts MCTSr with 2 trees achieved 3.2
% higher accuracy compared to the 8-rollouts MCTSr. Ad-
ditionally, it outperformed the 8-rollouts MCTSr with 2
trees, highlighting its distinct advantage. These findings
suggest that increasing the diversity of reasoning outcomes
has a more significant impact on performance than simply
extending the depth of individual trees.

Figure 2. Benefit analysis of FoT: the return on wisdom growth.
The x-axis represents the number of subtrees in the forest, while
the y-axis indicates the accuracy on the GSM8K dataset.

Scaling laws in FoT across various base models. In ad-
dition to the previously discussed research, we extended
our exploration to evaluate the performance of different
base models of similar size within the FoT framework.
Specifically, we conducted experiments using three mod-
els: Mistral-7B, Llama3-8B, and GLM-4-9B. As shown in
Figure 3, the results demonstrate a clear scaling law: as the
number of activated subtrees in FoT increases, model ac-
curacy improves significantly. This scaling behavior aligns
with theoretical expectations, which suggest that activat-
ing additional subtrees enhances the diversity of reasoning
paths and enables models to refine their problem-solving
capabilities. Each subtree incrementally contributed to the
overall performance, collectively boosting the framework’s
reasoning capacity.

6



Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning

Huawei Proprietary - Restricted Distribution16 HuHuHuHuawawawawaweieieieieieiei P P P Prororororoprprprprprieieieietatatataryryryryry --- ReReReReReReReReststststririririctctctctedededed D D D Disisisistrtrtrtribibibibibibibibututututioioioionnnnn161616161616

Figure 3. Comparative analysis of FoT gains across Llama, Mistral and GLM models. The x-axis represents the number of activated
subtrees in FoT, while the y-axis indicates the error rate on the GSM8K dataset. The relationship between the number of activated
subtrees in FoT and accuracy has been validated across multiple models, revealing a trend consistent with the scaling test-time comput for
enhancing LLM reasoning.

The observed trend suggests a predictable and positive re-
lationship between the number of activated subtrees and
accuracy, consistent with scaling law principles. This high-
lights that the FoT method effectively utilizes computational
resources to maximize reasoning accuracy. Moreover, as
computational capacity is allocated to activate more sub-
trees, performance gains exhibit a diminishing, yet consis-
tent, trajectory—showcasing the robustness and scalability
of FoT.

4.4. MATH Benchmark

This section presents the results of applying the FoT method
across various complexity levels on the MATH (Hendrycks
et al., 2021a) dataset.

Results. The experimental results are shown in Figure 4,
where the performance of the FoT method is compared to
MCTSr across different difficulty levels in the mathematics
dataset. The results clearly demonstrate that the FoT method
consistently outperforms MCTSr at every level, from Level
1 to Level 4. Specifically, FoT (n=4) exhibits an impressive
and consistent improvement of approximately 10% in per-
formance as the difficulty level increases from Level 1 to
Level 4. This steady improvement highlights the robustness
and versatility of the FoT method, which is able to adapt
effectively to a wide range of problem complexities. At
Level 1, which consists of relatively simple problems, both
methods perform reasonably well. However, as the difficulty
increases, FoT shows a clear advantage, achieving higher
accuracy compared to MCTSr at each subsequent level. By
Level 4, the most challenging problems in the dataset, the
FoT method not only maintains its performance but also
demonstrates a significant enhancement in problem-solving
capabilities. This consistent improvement underscores the
effectiveness of the FoT method in handling problems of
varying complexity.

Figure 4. FoT demonstrates consistent performance across differ-
ent levels of the MATH Dataset.

4.5. Ablation Studies of Stopping Strategies

In Table 3, we present a detailed comparison of three for-
est stopping strategies: Majority Vote, Math Expert, and
CGED. The results show the performance of these strategies
across varying numbers of activated subtrees in the FoT
method. When only two subtrees are activated, the accuracy
of the CGED strategy is found to be quite similar to both
the Majority Vote and Math Expert strategies, indicating
that for simpler cases, all three strategies perform compara-
bly. However, as the number of activated subtrees increases,
the differences in performance among these strategies be-
come more noticeable. Specifically, when five subtrees are
activated, the CGED strategy demonstrates a clear improve-
ment in accuracy, surpassing the Majority Vote and Math
Expert strategies by a margin of 2%. This suggests that

7



Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning

the CGED strategy becomes increasingly effective in han-
dling more complex reasoning scenarios, where multiple
reasoning paths are activated simultaneously. These find-
ings underscore the superior adaptability and performance
of the CGED strategy, particularly in tasks involving a larger
number of activated subtrees, where it outperforms the other
two strategies in terms of accuracy and overall efficiency.

Figure 5. On the Game of 24, the performance comparison be-
tween FoT and ToT, under the same computational cost.

Subtrees Majority Vote Math Expert CGED
n=2 80.36 80.36 80.36
n=3 81.31 81.88 84.31
n=4 84.31 82.46 84.46
n=5 83.44 83.70 85.44

Table 3. Performance comparison based on the number of trees
with three different stopping strategies.

4.6. Main Results

As shown in Table 2, the performance comparison on the
Game of 24 validates the effectiveness of the FoT in the
mathematical and logical reasoning task. The experimen-
tal results indicate that the FoT with 8 activated subtrees
achieved the highest success rate at 96.84%, significantly
outperforming other methods. In contrast, single-step rea-
soning methods like IO (10.22%) and CoT (4.38%) rely
solely on the model’s pre-trained capabilities, showing lim-
ited performance. Multi-step reasoning techniques, such as
ToT (b=5) and BoT, achieved success rates of 74.00% and
82.40%, respectively, demonstrating a notable advantage.
Additionally, XoT, after three deployments, reached a suc-
cess rate of 85.40%. These results clearly indicate that the
FoT method, particularly with a higher number of activated
subtrees, enhances the model’s self-correction capabilities
and significantly improves the performance on the Game of
24 while only modestly increasing the computational cost.

Table 4. The following summarizes the performance of FoT and
other state-of-the-art language models across different levels of
mathematical benchmark tests. GSM-level refers to the GSM8K,
MATH-level to the MATH500, and Olympiad-level to AIME 2024.
Specifically, rStar-Math (Guan et al., 2025) refers to rStar-Math
(7B SLM + 7B PPM), and the latter denotes the Pass@1 accuracy
achieved when sampling 64 trajectories.

Model GSM-level MATH-level Olympiad-level

GPT-4o 92.90 76.60 9.30
rStar-Math 95.00 89.40 46.70
rStar-Math64 95.20 90.00 53.30

Base Model: Qwen2.5-Math-7B-Instruct
Qwen2.5-7B 88.48 82.60 6.00
FoT (n=2) 93.33 83.02 26.67
FoT (n=4) 95.00 85.80 33.33
FoT (n=8) 96.89 86.20 46.67

Base Model: QwQ-32B-preview
QwQ 95.30 90.60 50.00
FoT (n=4) 97.33 91.20 53.33

The results presented in Table 4 highlight the performance of
the FoT method across various datasets, including GSM8K,
MATH-500 (Lightman et al., 2023), and AIME 2024 (AI-
MO, 2024). In the GSM8K dataset, FoT with 4 activated
subtrees (FoT (n=4)) based on QwQ achieved the accu-
racy of 97.33%, outperforming rStar-Math (95.20%) and
GPT-4o (92.90%). FoT (n=4) with QwQ achieved a strong
performance with an accuracy of 91.20%, surpassing rStar-
Math64 (90.00%). On AIME 2024, FoT showed significant
improvements, reaching 53.33%, which is much higher than
rStar-Math at 6.66%. These results underscore the effective-
ness of FoT in enhancing model performance, particularly
as the number of activated subtrees increases, demonstrating
its potential to improve reasoning accuracy across a range
of mathematical problem-solving tasks.

5. Conclusion
This paper introduces Forest of Thought, a novel framework
that significantly enhances the reasoning capabilities of large
language models by combining multi-path exploration and
dynamic path activation. FoT builds upon and unifies con-
cepts from Tree of Thought and Monte Carlo Tree Search,
enabling robust, diverse, and efficient reasoning without
requiring backpropagation or fine-tuning. It selectively acti-
vates the most promising reasoning paths through a sparse
activation mechanism, which improves computational effi-
ciency while maintaining high accuracy. FoT is particularly
effective in solving complex tasks, offering both perfor-
mance and generalization benefits. Additionally, the paper
provides a systematic analysis of the scaling relationship
between reasoning time and accuracy, offering a theoretical
foundation for reasoning optimization in LLMs.

8



Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning

Acknowledgements
We thank the anonymous reviewers for their insightful and
constructive feedback, which greatly helped improve this
work. We also gratefully acknowledge the support provided
by MindSpore, CANN (Compute Architecture for Neural
Networks), and the Ascend AI Processor used in this re-
search.

Impact Statement
The FoT framework introduces a novel and highly effi-
cient approach to improving the reasoning capabilities of
LLMs. By leveraging multiple reasoning trees, dynamic
self-correction strategies, and consensus-based decision-
making, FoT enables LLMs to solve complex problems
with higher precision and reduced computational cost. The
key innovation lies in the adaptive reasoning process that al-
lows the model to explore multiple paths, detect and correct
errors in real-time, and efficiently narrow down the search
space. This approach has significant implications for fields
that require complex decision-making, such as mathemat-
ics, logic, and AI-driven problem solving, leading to more
robust and reliable AI systems.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

AI-MO. Aime 2024. https://huggingface.co/
datasets/AI-MO/aimo-validation-aime,
2024. Accessed: 2025-01-29.

Amabile, T. M. A Theoretical Framework, pp.
65–96. Springer New York, New York, NY,
1983. ISBN 978-1-4612-5533-8. doi: 10.1007/
978-1-4612-5533-8 4. URL https://doi.org/10.
1007/978-1-4612-5533-8_4.

at Meta, A. Introducing meta llama 3: The most capable
openly available llm to date. 2024. URL https://ai.
meta.com/blog/meta-llama-3/.

Besta, M., Blach, N., Kubicek, A., Gerstenberger, R., Pod-
stawski, M., Gianinazzi, L., Gajda, J., Lehmann, T.,
Niewiadomski, H., Nyczyk, P., and Hoefler, T. Graph
of thoughts: Solving elaborate problems with large
language models. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 38(16):17682–17690,
March 2024a. ISSN 2159-5399. doi: 10.1609/
aaai.v38i16.29720. URL http://dx.doi.org/10.
1609/aaai.v38i16.29720.

Besta, M., Blach, N., Kubicek, A., Gerstenberger, R., Pod-
stawski, M., Gianinazzi, L., Gajda, J., Lehmann, T.,
Niewiadomski, H., Nyczyk, P., et al. Graph of thoughts:
Solving elaborate problems with large language models.
In Proceedings of the AAAI Conference on Artificial In-
telligence, volume 38, pp. 17682–17690, 2024b.

Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M.,
Cowling, P. I., Rohlfshagen, P., Tavener, S., Perez, D.,
Samothrakis, S., and Colton, S. A survey of monte carlo
tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in Games, 4(1):1–43, 2012.
doi: 10.1109/TCIAIG.2012.2186810.

Chaslot, G., Bakkes, S., Szita, I., and Spronck, P. Monte-
carlo tree search: a new framework for game ai. In
Proceedings of the Fourth AAAI Conference on Artifi-
cial Intelligence and Interactive Digital Entertainment,
AIIDE’08, pp. 216–217. AAAI Press, 2008.

Chen, W., Ma, X., Wang, X., and Cohen, W. W. Program
of thoughts prompting: Disentangling computation from
reasoning for numerical reasoning tasks. 2023. URL
https://arxiv.org/abs/2211.12588.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., Hesse, C., and Schulman, J. Training verifiers to solve
math word problems, 2021a. URL https://arxiv.
org/abs/2110.14168.

Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H.,
Kaiser, L., Plappert, M., Tworek, J., Hilton, J., Nakano,
R., et al. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168, 2021b.

Ding, R., Zhang, C., Wang, L., Xu, Y., Ma, M., Zhang,
W., Qin, S., Rajmohan, S., Lin, Q., and Zhang, D.
Everything of thoughts: Defying the law of penrose
triangle for thought generation, 2024. URL https:
//arxiv.org/abs/2311.04254.

Evans, J. S. B. T. Heuristic and analytic processes in reason-
ing. British Journal of Psychology, 75(4):451–468, 1984.
doi: https://doi.org/10.1111/j.2044-8295.1984.tb01915.x.
URL https://bpspsychub.onlinelibrary.
wiley.com/doi/abs/10.1111/j.2044-8295.
1984.tb01915.x.

Flower, L. A cognitive process theory of writing. Composi-
tion and communication, 1981.

GLM, T., :, Zeng, A., Xu, B., Wang, B., Zhang, C., Yin,
D., Zhang, D., Rojas, D., Feng, G., Zhao, H., Lai, H.,
Yu, H., Wang, H., Sun, J., Zhang, J., Cheng, J., Gui,
J., Tang, J., Zhang, J., Sun, J., Li, J., Zhao, L., Wu, L.,
Zhong, L., Liu, M., Huang, M., Zhang, P., Zheng, Q.,

9

https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://doi.org/10.1007/978-1-4612-5533-8_4
https://doi.org/10.1007/978-1-4612-5533-8_4
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
http://dx.doi.org/10.1609/aaai.v38i16.29720
http://dx.doi.org/10.1609/aaai.v38i16.29720
https://arxiv.org/abs/2211.12588
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2311.04254
https://arxiv.org/abs/2311.04254
https://bpspsychub.onlinelibrary.wiley.com/doi/abs/10.1111/j.2044-8295.1984.tb01915.x
https://bpspsychub.onlinelibrary.wiley.com/doi/abs/10.1111/j.2044-8295.1984.tb01915.x
https://bpspsychub.onlinelibrary.wiley.com/doi/abs/10.1111/j.2044-8295.1984.tb01915.x


Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning

Lu, R., Duan, S., Zhang, S., Cao, S., Yang, S., Tam,
W. L., Zhao, W., Liu, X., Xia, X., Zhang, X., Gu, X.,
Lv, X., Liu, X., Liu, X., Yang, X., Song, X., Zhang,
X., An, Y., Xu, Y., Niu, Y., Yang, Y., Li, Y., Bai, Y.,
Dong, Y., Qi, Z., Wang, Z., Yang, Z., Du, Z., Hou, Z.,
and Wang, Z. Chatglm: A family of large language
models from glm-130b to glm-4 all tools. 2024. URL
https://arxiv.org/abs/2406.12793.

Guan, X., Zhang, L. L., Liu, Y., Shang, N., Sun, Y., Zhu, Y.,
Yang, F., and Yang, M. rstar-math: Small llms can master
math reasoning with self-evolved deep thinking, 2025.
URL https://arxiv.org/abs/2501.04519.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset. 2021a.
URL https://arxiv.org/abs/2103.03874.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset, 2021b.
URL https://arxiv.org/abs/2103.03874.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., de las Casas, D., Bressand, F., Lengyel,
G., Lample, G., Saulnier, L., Lavaud, L. R., Lachaux, M.-
A., Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix,
T., and Sayed, W. E. Mistral 7b. 2023. URL https:
//arxiv.org/abs/2310.06825.

Kahneman, D. Thinking, Fast and Slow. Harvard Library e-
reader collection. Farrar, Straus and Giroux, 2011. ISBN
9780141033570. URL https://books.google.
com.hk/books?id=AV9x8XakdV0C.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. Ad-
vances in neural information processing systems, 35:
22199–22213, 2022.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. 2023.
URL https://arxiv.org/abs/2205.11916.

Li, C., Liang, J., Zeng, A., Chen, X., Hausman, K., Sadigh,
D., Levine, S., Fei-Fei, L., Xia, F., and Ichter, B. Chain
of code: Reasoning with a language model-augmented
code emulator. 2024. URL https://arxiv.org/
abs/2312.04474.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step, 2023. URL https:
//arxiv.org/abs/2305.20050.

Madaan, A., Tandon, N., Gupta, P., Hallinan, S., Gao, L.,
Wiegreffe, S., Alon, U., Dziri, N., Prabhumoye, S., Yang,
Y., Gupta, S., Majumder, B. P., Hermann, K., Welleck,
S., Yazdanbakhsh, A., and Clark, P. Self-refine: Iterative
refinement with self-feedback, 2023. URL https://
arxiv.org/abs/2303.17651.

Morris, J. X., Singh, C., Rush, A. M., Gao, J., and Deng,
Y. Tree prompting: Efficient task adaptation without
fine-tuning. 2023. URL https://arxiv.org/abs/
2310.14034.

Nguyen, H. H., Liu, Y., Zhang, C., Zhang, T., and Yu, P. S.
Cof-cot: Enhancing large language models with coarse-
to-fine chain-of-thought prompting for multi-domain
nlu tasks. 2023. URL https://arxiv.org/abs/
2310.14623.

Ning, X., Lin, Z., Zhou, Z., Wang, Z., Yang, H., and Wang,
Y. Skeleton-of-thought: Large language models can do
parallel decoding. Proceedings ENLSP-III, 2023.

OpenAI. Openai o1 system card. 2024. Accessed: 2024-9-
12.

Sel, B., Al-Tawaha, A., Khattar, V., Jia, R., and Jin, M.
Algorithm of thoughts: Enhancing exploration of ideas in
large language models. 2024. URL https://arxiv.
org/abs/2308.10379.

Simon, H. A. The Architecture of Complexity, pp. 457–476.
Springer US, Boston, MA, 1991. ISBN 978-1-4899-0718-
9. doi: 10.1007/978-1-4899-0718-9 31. URL https:
//doi.org/10.1007/978-1-4899-0718-9_
31.

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling llm test-
time compute optimally can be more effective than scal-
ing model parameters. arXiv preprint arXiv:2408.03314,
2024.

Srinivas, N., Krause, A., Kakade, S. M., and Seeger, M. W.
Information-theoretic regret bounds for gaussian process
optimization in the bandit setting. IEEE Transactions on
Information Theory, 58(5):3250–3265, May 2012. ISSN
1557-9654. doi: 10.1109/tit.2011.2182033. URL http:
//dx.doi.org/10.1109/TIT.2011.2182033.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

Wang, X., Wei, J., Schuurmans, D., Le, Q., Chi, E., Narang,
S., Chowdhery, A., and Zhou, D. Self-consistency im-
proves chain of thought reasoning in language mod-
els. 2023. URL https://arxiv.org/abs/2203.
11171.

10

https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2501.04519
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://books.google.com.hk/books?id=AV9x8XakdV0C
https://books.google.com.hk/books?id=AV9x8XakdV0C
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2312.04474
https://arxiv.org/abs/2312.04474
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2303.17651
https://arxiv.org/abs/2310.14034
https://arxiv.org/abs/2310.14034
https://arxiv.org/abs/2310.14623
https://arxiv.org/abs/2310.14623
https://arxiv.org/abs/2308.10379
https://arxiv.org/abs/2308.10379
https://doi.org/10.1007/978-1-4899-0718-9_31
https://doi.org/10.1007/978-1-4899-0718-9_31
https://doi.org/10.1007/978-1-4899-0718-9_31
http://dx.doi.org/10.1109/TIT.2011.2182033
http://dx.doi.org/10.1109/TIT.2011.2182033
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171


Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi,
E., Le, Q. V., Zhou, D., et al. Chain-of-thought prompting
elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837,
2022.

Yang, L., Yu, Z., Zhang, T., Cao, S., Xu, M., Zhang, W.,
Gonzalez, J. E., and Cui, B. Buffer of thoughts: Thought-
augmented reasoning with large language models. 2024.
URL https://arxiv.org/abs/2406.04271.

Yao, S., Yu, D., Zhao, J., Shafran, I., Griffiths, T., Cao, Y.,
and Narasimhan, K. Tree of thoughts: Deliberate problem
solving with large language models. Advances in Neural
Information Processing Systems, 36, 2024.

Zhang, D., Huang, X., Zhou, D., Li, Y., and Ouyang, W.
Accessing gpt-4 level mathematical olympiad solutions
via monte carlo tree self-refine with llama-3 8b. 2024.
URL https://arxiv.org/abs/2406.07394.

Zhang, Z., Zhang, A., Li, M., and Smola, A. Auto-
matic chain of thought prompting in large language mod-
els. 2022. URL https://arxiv.org/abs/2210.
03493.

Zhao, R., Li, X., Joty, S., Qin, C., and Bing, L. Verify-
and-edit: A knowledge-enhanced chain-of-thought frame-
work. 2023. URL https://arxiv.org/abs/
2305.03268.

Zhou, D., Schärli, N., Hou, L., Wei, J., Scales, N., Wang, X.,
Schuurmans, D., Cui, C., Bousquet, O., Le, Q., and Chi,
E. Least-to-most prompting enables complex reasoning in
large language models. 2023. URL https://arxiv.
org/abs/2205.10625.

11

https://arxiv.org/abs/2406.04271
https://arxiv.org/abs/2406.07394
https://arxiv.org/abs/2210.03493
https://arxiv.org/abs/2210.03493
https://arxiv.org/abs/2305.03268
https://arxiv.org/abs/2305.03268
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625


Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning

A. Example Prompts - Game of 24
In the 24-point game, we have designed three types of
prompts to guide the problem-solving process:

1. Propose Prompt: This prompt is intended to assist
players in breaking down the original problem in the
first step. It guides players to select two numbers from
the given four for calculation, thereby simplifying the
problem to the remaining two unused numbers.

2. Step-2 Prompt: Based on the result of the first step,
this prompt further guides players to choose two num-
bers from the remaining three for calculation, ulti-
mately simplifying the problem to just one number
left.

3. Value Prompt: This prompt is used to score each
step’s response, ensuring that each solution is both
reasonable and efficient.

Table 5. Game of 24 Propose Prompt
Propose Prompt:
Let’s play a game called 24. You’ll be given four integers,
and your objective is to use each number only once, com-
bined with any of the four arithmetic operations (addition,
subtraction, multiplication, and division) and parentheses,
to achieve a total of 24.
Provide four integers as input. Randomly pick 2 full
permutations of the 4 input numbers, perform all four basic
arithmetic operations (addition, subtraction, multiplication
and division), and list the results and remaining integers
after each operation.
See <Examples> See Table 8 (Propose Prompt) </Exam-
ples>
Input: ’4 5 6 10’
Possible next steps:
Response:
4 + 5 = 9 (left: 6 10 9),
10 - 4 = 6 (left: 6 5 6),
5 - 6 = -1 (left: -1 4 10),
4 * 6 = 24 (left: 24 5 10),
10 / 5 = 2 (left: 2 4 6),
4 - 10 = -6 (left: -6 5 6),
5 - 4 = 1 (left: 1 6 10),
10 - 5 = 5 (left: 5 4 6)

B. Example Prompts - GSM8K and MATH
We present the prompts utilized for the GSM8K task, since
the prompts for the MATH task are essentially the same,
with only minor variations in how answers are extracted.
In Table 10, we present the results of incorporating a self-
correction prompt mechanism into the reasoning process.

Table 6. Game of 24 Value Prompt
Value Prompt:
Evaluate if given numbers can reach 24
(sure/likely/impossible).
See <Examples> See Table 8 </Examples>
Input: ’4 + 5 = 9 (left: 6 10 9)’
Response:
impossible
Value Prompt:
Evaluate if given numbers can reach 24
(sure/likely/impossible).
See <Examples> See Table 8 </Examples>
Input: ’4 - 10 = -6 (left: -6 5 6)’
Response:
sure

Table 7. Game of 24 Step-2 Prompt
Step-2 Prompt:
Provide three integers as input. Randomly pick 2 full
permutations of the 3 input numbers, perform all four basic
arithmetic operations (addition, subtraction, multiplication
and division), and list the results and remaining integers
after each operation.
See <Examples> See Table 8 (Step-2 Prompt) </Exam-
ples>
Input: -6 5 6
Possible next steps:
Response:
-6 + 5 = -1 (left: 5 -1)
5 * 6 = 30 (left: 6 30)
-6 / 5 = -1.2 (left: 5 -1.2)
6 - 5 = 1 (left: 1 5)
5 - 6 = -1 (left: -1 5)

This mechanism is designed to enhance the quality of the
answers generated by the model. The self-correction prompt
operates in two stages: first, it assigns a score to the gener-
ated answer based on predefined evaluation criteria, such
as logical consistency, accuracy, and relevance. Then, de-
pending on the score, the model is prompted to revise or
correct its answer if the evaluation indicates potential flaws
or suboptimal reasoning.

By iteratively refining its output, the model learns to identify
errors and generate more accurate and coherent responses.
This approach not only improves the reliability of the results
but also provides a structured framework for integrating
feedback into the reasoning process. The experiments sum-
marized in Table 10 demonstrate that the self-correction
prompt significantly enhances the model’s performance
across various tasks, reducing error rates and improving
overall answer quality. This highlights the potential of

12



Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning

Table 8. Game of 24 problem decomposition example.
Propose Prompt
<Examples >
Input: 2 8 8 14
Possible next steps:
2 + 8 = 10 (left: 8 10 14)
8 / 2 = 4 (left: 4 8 14)
14 + 2 = 16 (left: 8 8 16)
2 * 8 = 16 (left: 8 14 16)
8 - 2 = 6 (left: 6 8 14)
2 - 8 = -6 (left: -6 8 14)
14 - 8 = 6 (left: 2 6 8)
14 / 2 = 7 (left: 7 8 8)
14 - 2 = 12 (left: 8 8 12)
2 * 14 = 28 (left: 8 8 28)
</Examples>
Step-2 Prompt
<Examples >
Input: 2 8 8
Possible next steps:
2 + 8 = 10 (left: 8 10)
8 / 2 = 4 (left: 4 8)
2 * 8 = 16 (left: 8 16)
8 - 2 = 6 (left: 6 8)
2 - 8 = -6 (left: -6 8)
</Examples>
Algebra Check
Input: 8 10
Output:
8 + 10 = 18
8 - 10 = -2
8 * 10 = 80
8 / 10 = 0.8
impossible

self-correction as a powerful tool for boosting reasoning
robustness in complex scenarios.

In Table 11, we introduce a prompt mechanism designed
for expert selection, aimed at further refining the model’s
outputs in scenarios involving multiple plausible answers.
When multiple answers align with majority consistency,
a mathematics expert evaluates these responses based on
domain-specific knowledge and selects the most appropriate
or optimal answer.

This approach leverages expert judgment to ensure the final
selected answer not only adheres to logical consistency but
also aligns with mathematical rigor and best practices. By
integrating expert selection into the prompt design, we en-
hance the reliability and precision of the model’s reasoning
process.

Table 9. Game of 24 value examples.
Value Prompt
<Examples >
Input: 4 10 30
(30 + 4) - 10 = 24
sure
Input: 4 9 11
9 + 11 + 4 = 20 + 4 = 24
sure
Input: 5 7 8
5 + 7 + 8 = 12 + 8 = 20
(8 - 5) * 7 = 3 * 7 = 21
I cannot obtain 24 now, but numbers are within a reason-
able range
likely
Input: 5 6 6
5 + 6 + 6 = 17
(6 - 5) * 6 = 1 * 6 = 6
I cannot obtain 24 now, but numbers are within a reason-
able range
likely
Input: 10 10 11
10 + 10 + 11 = 31
(11 - 10) * 10 = 10
10 10 10 are all too big
impossible
Input: 1 3 3
1 * 3 * 3 = 9
(1 + 3) * 3 = 12
1 3 3 are all too small
impossible
Input: -1 4 7
(-1 + 7) * 4 = 24
sure
Input: 4 10 30
30 + 4 - 10 = 24
sure
</Examples>

C. Evaluating the Scaling of FoT Compute
Across Different Baseline Methods.

Tabel 6 demonstrate a clear trend: as the number of acti-
vated subtrees grows, the error rate decreases, reflecting the
enhanced reasoning capability and robustness of the FoT
approach. The scaling law comparison across various meth-
ods underscores the efficiency of FoT in utilizing additional
computational resources, particularly when contrasted with
other models that exhibit diminishing returns or slower er-
ror reduction as complexity increases. This suggests that
the FoT framework scales more effectively with increased
subtree activation, making it a powerful tool for addressing
challenging reasoning tasks like those in GSM8K.

13



Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning

Figure 6. The comparison of the scaling laws for FoT across different methods (eg.zero-shot-cot, MCTSr (one-turn-self-refine), 4-rollouts
MCTSr, 8-rollouts MCTSr) is presented, with the x-axis representing the number of activated subtrees within the FoT framework and the
y-axis indicating the error rate on the GSM8K benchmark dataset.

Table 10. Self-Correction Prompt
Value Prompt:
Question: {question}
Answer:{answer}
Analyze this answer Strictly and Critic, point out every
flaw for ervery possible imperfect to minus every possible
score! You need to be very harsh and mean in calculating
grades, and never give full marks to ensure that the marks
are authoritative. Output a score between [0,100], ig. from
0 to 100. Response format:[Analyst]...[Score]...
Self-Correction Prompt:
”Question: {question}
Please refine the your answer according to your Reflec-
tion or Feedback. The response should begin with [rea-
soning process]...[Verification]... and end with end with
<ans format> Let’s think step by step.”

D. Evaluating multiple FoT decision-making
methods.

Figure 12 compares different decision-making strategies
used in FoT when multiple reasoning trees produce con-

Table 11. Math Expert Prompt
Math Expert Prompt: ”You are a highly specialized
mathematics expert, proficient in solving mathematical
problems, and always able to select the most accurate
answer from the given options.
Question: {question}
Answers: {answers list}
Which of the following answers is the most accurate? The
response should begin with <ans format>.”

flicting answers. The ”Random” strategy selects an answer
randomly from all candidates, while the ”Score” strategy
chooses the answer with the highest confidence score. Ex-
perimental results on the GSM8K benchmark show that
FoT’s reflective decision-making achieves higher accuracy
than both baselines, highlighting the effectiveness of lever-
aging internal reflection over simple voting or scoring.

14



Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning

Table 12. FoT decision-making comparison.
Method Accuracy
Random 77.73
Score 77.86
CGED 78.62

E. Evaluating the threshold value in dynamic
self-correction.

In Table 13, we evaluate the impact of the self-correction
mechanism by conducting experiments at different con-
fidence threshold levels. We systematically adjusted the
threshold and observed the model’s performance in terms
of accuracy. Our findings revealed that when the threshold
was set to 0.5, the model achieved significantly better ac-
curacy compared to other threshold values. This suggests
that a threshold of 0.5 strikes an optimal balance, enabling
the model to identify and correct errors without being too
cautious or too lenient in its self-assessment.

Table 13. The accuracy performance of the dynamic self-correction
strategy with different thresholds on the GSM8K dataset.

Threshold Accuracy

0.3 87.34
0.4 88.17
0.5 90.14
0.6 88.02

15


