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Abstract

Languages around the world employ classifier001
systems as a method of semantic organization002
and categorization. These systems are rife with003
variability, violability, and amiguity, and are004
prone to constant change over time. We explic-005
itly model change in classifier systems as the006
population-level outcome of child language ac-007
quisition over time in order to shed light on the008
factors that drive change to classifier systems.009
Our research consists of two parts: a contrastive010
corpus study of Cantonese and Mandarin child-011
directed speech to determine the role that am-012
biguity and homophony avoidance may play in013
classifier learning and change followed by a se-014
ries of population-level learning simulations of015
an abstract classifier system. We find that acqui-016
sition without reference to ambiguity avoidance017
is sufficient to drive broad trends in classifier018
change and suggest an additional role for adults019
and discourse factors in classifier death.020

1 Introduction021

Classifier and measure word systems are common022

across the world’s languages. While they are the023

most common and most associated with Southeast024

and East Asia, they are also present in some lan-025

guages of South Asia, Australia, the Pacific, and026

the Americas among others (Aikhenvald, 2000).027

While systems vary language-to-language, they028

share some general properties. They divide up the029

space of nouns along some semantic space, often030

encoding encode lexical semantic information in-031

cluding animacy, concretely, and size and shape032

categories. For example, Mandarin has classifiers033

for long objects (e.g., tiáo條), some animals (zhı̄034

隻), and vehicles (liàng 輛). On the other hand,035

some classifiers do not seem to pick out anything036

in particular, like the Mandarin general classifier037

gè個 or instead pick out extremely narrow, almost038

lexicalized classes, like zūn尊 which as a classifier039

applies only to certain colossal metal objects like040

cannons Buddhist statues (Gao and Malt, 2009).041

Figure 1: The Z-model of change extended to a popula-
tion setting

Compared to most inflectional noun class sys- 042

tems, classifiers are more subject to variable dis- 043

course conditions. Several classifiers may be used 044

grammatically with a given noun as conditions al- 045

low. For example, ‘a goat’ may be expressed with 046

the animal classifier zhı̄ or general classifier gè, 047

but also tiáo or tóu頭 used for livestock (Erbaugh, 048

1986). The balance of semantic specificity, arbi- 049

trariness, and variability presents a challenge for 050

native learners. How do individuals acquire both 051

the semantic conditions and arbitrary lexical pat- 052

terns of classifier systems? 053

Parallel to this, classifier systems are subject to 054

constant change, both for language-internal reasons 055

(e.g., grammaticalization of new classifiers, word 056

death of old classifiers) and external ones, partic- 057

ularly contact (Aikhenvald, 2000). In Mandarin 058

Chinese, Erbaugh (1986) illustrates a few cases 059

of changes in classifier usage over the past 3500 060

years. Gè 個, the overwhelming majority catch- 061

all classifier in modern Mandarin only gained this 062

status during the during the Qing Dynasty (CE 063

1644-1912). Since the Tang dynasty a millenium 064

prior, méi枚 was the default, but it has since been 065

relegated to a niche classifier for small needle and 066

badge-like objects alone. Both gè and méi began as 067

niche classifiers in their respective eras before grad- 068
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ually generalizing. In a similar vein, Habibi et al.069

(2020) explore how linguistic categories change070

through chaining, via the usage of Mandarin Chi-071

nese classifiers in the past half century. The latter072

two studies discuss the development of Mandarin073

classifiers over time. They are based on careful074

research, but they are also limited to a single lan-075

guage and Erbaugh (1986) in particular stops short076

of a quantitative assessment.077

We provide a computational analysis of di-078

achronic trends in classifier systems which com-079

plements prior developmental and historical re-080

search. We approach the problem in two ways.081

First, we provide a quantitative analysis of clas-082

sifiers in Cantonese and Mandarin child-directed083

speech to investigate the possibility of a functional084

role for classifiers as disambiguators which could085

influence the direction of child-driven change. Sec-086

ond, we model a simulated classifier system using087

a population-level transmission model to determine088

how language acquisition may drive trends in clas-089

sifier patterns over time. We find support for input090

sparsity and learning, without reference to specific091

functional concerns, as a primary driver for gradual092

classifier generalization over time.093

1.1 Outline094

The paper is organized as follows. Section 2 sur-095

veys cross-linguistic patterns in classifier acquisi-096

tion and summarizes work connecting language097

acquisition to change. Section 3 is a comparative098

study of adult classifier use in Cantonese and Man-099

darin child-directed speech corpora. This motivates100

our simulation. We show that the historical devel-101

opment of classifiers is unlikely to be driven by102

functional communicative concerns such as ambi-103

guity avoidance on behalf of the learner. Section 4104

describes are simulation, which falls under the um-105

brella of neutral or drift-based models of change.106

We find that classifiers tend to generalize, fail to107

maintain distinct semantic features, and also can-108

not go out of use randomly. Section 5 discusses109

the implications of our simulation in reference to110

Chinese in particular and provides suggestions for111

future extensions to this line of work.112

2 Classifier Learning and Change113

Language acquisition has long been implicated as a114

driver of language change (Paul, 1880; Halle, 1962;115

Andersen, 1973; Baron, 1977; Lightfoot, 1979;116

Niyogi and Berwick, 1997; Yang, 2002; Kroch,117

2005; van Gelderen, 2011; Yang, 2016; Cournane, 118

2017; Kodner, 2020, i.a.), and this is particu- 119

larly been true for morphology, where child over- 120

productivity errors (Marcus et al., 1992; Mayol, 121

2007) quite often mirror the processes of analogical 122

change, which itself closely connected to produc- 123

tivity (Hock, 2003, p.446). 124

Classifier systems are not structurally morpho- 125

logical and do not trigger syntactic agreement like 126

inflectional noun class systems, but they share some 127

key properties, both in their use and acquisition. 128

Both often encode lexical semantic information 129

including animacy, concretely, and size and shape 130

categories. For example, the Bantu language Shona 131

has noun classses for mostly long-skinny things 132

(e.g., class 11 ru-), classes for animals (e.g., class 9 133

(i)-), and miscellaneous classes (e.g., class 7 chi-) 134

which correspond broadly to the Mandarin clas- 135

sifiers described in Section 1. Both noun classes 136

and classifiers may be semantically porous with 137

many lexical exceptions. And while classifiers are 138

generally more variable than inflectional classes, 139

the later may also show variability. In Shona again, 140

people usually take the class 1 mu- prefix (mu-nhu 141

’person’), but if a speaker wishes to highlight that 142

a person is particularly tall and thin, they may em- 143

ploy the long-skinny class 11 prefix (ru-nhu). 144

Learners of classifier languages exhibit gener- 145

ally competent classifier use by age 4 or 5, though 146

they show some command over their syntax much 147

earlier (Chien et al., 2003; Tse et al., 2007; Liu, 148

2008). Children are prone to overusing the gen- 149

eral or default classifier in Japanese (Uchida and 150

Imai, 1999), Mandarin (Liu, 2008), Cantonese (Tse 151

et al., 2007), and Vietnamese (Tran, 2011), similar 152

to the over-extension of default patterns in morphol- 153

ogy (Pinker and Prince, 1994). They take longer 154

to acquire rare classifiers and those with complex 155

semantic restrictions (Yamamoto and Keil, 2000). 156

A division of classifiers into semantically well- 157

defined and arbitrary is well-motivated by a series 158

of experiments carried out by Gao and Malt (2009) 159

on Mandarin. This further clarifies what the learn- 160

ing task entails. Children must work out whether 161

classifiers are lexically defined or generally apply 162

to a given semantic class. This is consistent with 163

observed developmental trajectories: learners pass 164

through an early lexicalized stage in which classi- 165

fiers are defined narrowly by which lexical items 166

they match with rather than their general semantics, 167

followed by a higher than adult-rate use of generic 168
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classifiers, before settling on an adult-like distribu-169

tion (Erbaugh, 1986). This is parallel to the classic170

inflectional learning trajectory, a pre-generalization171

period, followed by over-generalization of defaults,172

followed by settling on an adult-like distribution.173

Erbaugh (1986) explicitly connect classifier ac-174

quisition to change in Chinese and notes several175

parallels between Chinese classifier acquisition and176

change. Most relevant for the present study, classi-177

fiers are narrowly, perhaps lexically, defined when178

they enter the language and then trend towards179

generality, and they apply to concrete objects with180

real-world identifiable semantics before abstract181

concepts, in line with children’s preference for real182

world referents in their dialogues.183

Taken together, classifier systems have enough184

in common with inflectional class systems that their185

acquisition and change can be modeled similarly.186

Linguistic transmission, the passing of a language187

from one generation to the next through native lan-188

guage acquisition (Weinreich et al., 1968), provides189

a fundamental role for acquisition in change. An-190

dersen (1973) formalizes change as the long-term191

consequence of abductive processes in language192

acquisition through his Z-model: Speakers have193

some internal grammar which generates a set of194

linguistic examples which serve as the input to the195

next generation. The next generation acquires a196

grammar based on these finite inputs and produces197

outputs for the next generation. This process pro-198

ceeds indefinitely. Abudction is error-prone, and199

differences between the grammars of the first and200

second generation are tantamount to change.201

But language change is fundamentally a202

population-level process (Weinreich et al., 1968;203

Labov, 2001), so the Z-model must be thought204

of as countless parallel lines of transmission and205

not a single Z-shape. Additionally, transmission206

does not proceed through discrete generations, but207

rather is continuous across age cohorts in the popu-208

lation. Children learn from their parents, but begin209

to orient towards their peers and community as tod-210

dlers (Roberts, 1994), eventually culminating in211

extremely complex social networks in their teen212

years (Eckert, 1989), so the Z-model should be213

staggered both across the population and across214

time. This view, diagrammed in Figure 1, forms215

the conceptual basis of our simulation.216

A population-based transmission model in which217

what is acquired is driven primarily by the input218

and not additional functional factors may be de-219

scribed as neutral. This is often assumed as the 220

baseline in biological evolution (Neutral Theory; 221

Kimura, 1983), and may be for language change as 222

well (Kauhanen, 2017). The following section tests 223

an alternative, that classifiers emerge to decrease 224

homophony, before adopting a neutral approach. 225

3 Classifiers and Homophony 226

This section quantifies classifier use in Mandarin 227

and Cantonese child-directed speech (CDS). Their 228

systems are quite similar, both having descended 229

from Middle Chinese. Since their divergence, the 230

languages have undergone substantial phonological 231

divergence resulting in much less syllable diversity 232

in Mandarin.1 For this reason, Mandarin is ex- 233

pected to show more homophony than Cantonese, 234

though this is offset by an increase in polysyllabic 235

words in Mandarin. 236

Disambiguation of homophones is one possible 237

function of classifiers and a potential functional 238

(i.e., non-neutral) driver of change. More elaborate 239

classifier systems may develop in response to more 240

rampant homophony. We compare Mandarin and 241

Cantonese CDS to determine whether homophony 242

avoidance is plausibly part of the child’s role in the 243

development of the Chinese classifier systems. If 244

true, we would expect Mandarin CDS to show more 245

noun form ambiguity than Cantonese and show 246

more classifier disambiguation of homophonous 247

word types. 248

All POS-tagged Mandarin and Cantonese cor- 249

pora were extracted from the R conversion 250

(Sanchez et al., 2019) of the CHILDES database 251

of child-directed speech corpora (MacWhinney, 252

2000) except for Erbaugh, which could not be re- 253

trieved. The first two data rows of Table 1 sum- 254

marizes the corpora, and (1)-(2) provide example 255

utterances. We extracted classifiers tagged cl from 256

adult speech in the corpora if they preceded a noun, 257

or preceded an adjective or adverb which preceded 258

a noun, along with the noun itself. Sometimes tran- 259

scription lines did not align with the characters, 260

which we attempted to resolve by tracking known 261

classifier characters and examining the neighbour- 262

hood of the incongruency in the sentence. A hand- 263

ful of cases could not be resolved, so they were 264

omitted. We omitted classifier pro-forms since no 265

noun surfaces in the utterance. We define homo- 266

phones as two word forms with different characters 267

1e.g., Mandarin’s 4 (5) tones, and ∼34 syllable rimes com-
pared to Cantonese’s 9 and 60.
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Corpus #Types (%Poly) %Types HP %Disamb #Toks (%Poly) %Toks HP %Disamb #Cl
Cantonese 1182 (55.6) 4.653 20.000 19880 (21.4) 7.706 6.201 76
Mandarin 2151 (71.8) 7.345 22.785 30891 (41.8) 28.558 6.506 149
Mandarintype 1182.2 (63.0) 8.815 20.430 28066 (39.0) 28.264 6.776 140.0
Mandarintok 221.9 (43.0) 4.778 16.981 19880 (31.9) 23.431 3.078 98.5

Table 1: Cantonese, Mandarin, avg. type freq-controlled Mandarintype, and avg. token freq-controlled Mandarintok
corpus size, %nouns polysyllabic, % nouns which are homophonous (HP), the % of homophonous nouns which are
disambiguated by their classifiers, and # classifiers.

but the same transcription.268

(1) Cantonese (HKU-70; Fletcher et al., 1996)269

INV:你得一個啤啤 zaa4 .270

%mor: pro|nei5=you stprt|dak1271

num|jat1=one cl|go3=cl272

n|bi4&DIM=baby sfp|zaa4 .273

(2) Mandarin (Zhou1; Zhou, 2001)274

MOT:画个小圆圈宝贝 .275

%mor: v|hua4=draw276
cl|ge4 adj|xiao3=small277
n|yuan2quan1=circle278
n|bao3bei4=treasure .279

Since corpus size could have a substantial ef-280

fect on the ratios reported in the corpora, we opted281

to downsample the Mandarin corpus to match the282

size of Cantonese and compare both the downsam-283

pled and raw Mandarin. We dropped out Man-284

darin tokens selected uniformly at random until285

the the corpus matched the Cantonese corpus in286

type or token count. This was repeated for 100 tri-287

als and averaged. The resulting Mandarintype and288

Mandarintok are the last two rows in Table 1. When289

matched for types, the Mandarin corpus has sub-290

stantially more polysyllabic words than Cantonese,291

and when matched for tokens, it has substantially292

more polysemous tokens. It also has a wider range293

of classifiers and measure words. The increase in294

polysyllabicity in Chinese varieties is traditionally295

taken to be a response to increased homophony due296

to phonemic mergers (Karlgren, 1949).297

The table also shows the rates of homophonous298

word types in the corpora as well as the proportion299

of those which are disambiguated. We defined a300

homophonous word type as disambiguated if every301

homophone is attested with at least one classifier302

not attested with any other homophone, and a dis-303

ambiguated word token as any token which belongs304

to a disambiguated word type. Despite the increase305

in polysyllabicity, Mandarin is still much more am-306

biguous than Cantonese. Nevertheless, its homo-307

phones are not significantly more disambiguated.2308

2One-sided Z-test on Cantonese vs. Mandarintype types

This analysis is consistent with (but does not 309

prove) the idea that polysyllabicity emerged in Chi- 310

nese in a response to ambiguity. In contrast, it does 311

not support a role for homophony avoidance as a 312

motivation for the classifier system. Even though 313

the Mandarin acquisition corpora attest more clas- 314

sifiers and measure words, only about 1/5 of ho- 315

mophonous types and 1/18 of homophonous to- 316

kens are disambiguated by classifiers. The fact 317

that tokens are much less likely than types to be 318

disambiguated, and that the type disambiguation 319

rate declines as the number of types fall in Table 320

1, also indicates the type disambiguation rate is 321

generous and inflated by low frequency and edge 322

cases. Additionally, Mandarin does not exhibit 323

more classifier disambiguation even though it is 324

more homophonous than Cantonese. Given this, 325

we can justify our major modeling assumption, that 326

changes to the classifier system are not primarily 327

driven by communicative concerns. 328

4 A Classifier System in a Population 329

The empirical analysis in the previous section moti- 330

vates a neutral model of change (Kauhanen, 2017) 331

for the Chinese classifier system. In this section, 332

we introduce a population-level model of linguistic 333

transmission to investigate the dynamics of classi- 334

fier systems over time. We describe the details of 335

our simulation, including the algorithm and param- 336

eters, their relevance, and their specific empirical 337

motivations. We then discuss our findings across 338

different parameter settings, and consider their im- 339

plications in the study of classifiers, learning, and 340

language change. 341

4.1 Methodology 342

At a high level, our simulation consists of a popu- 343

lation of entities sorted by age into “children” who 344

are still acquiring a classifier system and “adults” 345

is insignificant: Z = 1.570 at α = 0.05, while test on
Cantonese vs. Mandarintype tokens shows that Cantonese
has significantly fewer disambiguated homophones Z =
−2886.511.
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with productive representations of classifiers. At346

the start of each iteration, the oldest adult “dies,”347

a new child is “born,” and every entity’s age is348

incremented, with the eldest child maturing into349

an adult, as we describe later. During the itera-350

tion, adults interact with a subset of children, and351

children learn from these interactions. Crucially,352

transmission flows from the pool of adults as a353

whole. Ages are continuous, and children can learn354

from the youngest adults as well as the oldest. This355

admits the diffusion of innovations, thus actuat-356

ing the change (Labov et al., 1972) and potentially357

yields significant variable input for the learners.358

Algorithm 1 formalizes the population model.3359

Algorithm 1 Simulation iteration algorithm
1: CH ← List of children of size K
2: AD ← List of adults of size N −K
3: for s := 1...S do
4: Delete AD[−1] as oldest adult "dies"
5: Move CH[−1] to AD[0] as oldest child "matures"

using productivity method PROD
6: A new child is "born" at CH[0]
7: for all adult ∈ AD do
8: mutate_classifier_set(adult, A,D)
9: for i := 1...I do

10: child← random child ∈ CH
11: nouns← J random lexical items
12: interact(adult, child, nouns)
13: end for
14: end for
15: end for

Classifiers in the simulation are represented as360

abstract binary semantic features (abstract, but con-361

ceptually equivalent to ±ANIMATE, ±FLAT, etc.).362

These are encoded as binary vectors of size F . Lex-363

ical items are organized along a Zipfian distribu-364

tion, since it is observed to fit token frequencies365

well across languages (Zipf, 1949; Baayen, 2001;366

Yang, 2013). At initialization, each adult has the367

same set of C classifiers. This set includes at least368

one “most general” classifier, while other classifiers369

are initialized randomly. Children are initialized so370

that at the first iteration it is as if the eldest child has371

gone through K iterations (and therefore rounds of372

interactions) already.373

Most simulations run using a feature hierarchy:374

features are organized hierarchically with one most375

generic parent feature and up to B sub-features376

such that there are F total features. The presence377

of a sub-feature implies the presence of its parent378

features. Depending on the simulation, up to H379

features are assigned in this manner. A flat repre-380

3Parameterized according to Table 2 in the Appendix.

sentation would make for ambiguous results since 381

it would be unclear whether more features corre- 382

spond to a more general or more specific classifier. 383

Children learn as follows: In each iteration, chil- 384

dren observe many classifier-noun pairs. They add 385

the features on the noun to a running tally of ob- 386

served features for the classifier, but crucially, they 387

do not yet know which features actually select the 388

classifier, since nouns may contain properties that 389

are just incidental and unrelated to the particular 390

choice of classifier. After some K iterations, a 391

child matures. The child evaluates whether a classi- 392

fier productively expresses a feature by comparing 393

its observations against a threshold for productiv- 394

ity provided by the Tolerance Principle (TP; Yang, 395

2016), a quantitative model of productivity learning 396

which has been successful in accounting for devel- 397

opmental patterns in morphology and elsewhere. 398

For a given feature f observed with a noun 399

paired with the classifier c, if the number of at- 400

tested paired noun types that do not express that 401

feature (the exceptions, ecf ) is less that the tolerance 402

threshold θcf for that classifier, then that feature 403

will be productive on the classifier. The tolerance 404

threshold is calculated as in Eqn. 1. N c is the total 405

number of noun types attested with the classifier.4 406

ecf < θcf ,

where θcf =
N c

lnN c

(1) 407

We provide a role for adults as drivers of change 408

by introducing two additional parameters. An adult 409

may drop a classifier with probability D by set- 410

ting it to be non-productive on all features, and 411

provided there is an opening (ie. some classifier is 412

non-productive on all features) add a new classi- 413

fier with probability A. This is taken to represent 414

choices available adults in response to discourse 415

and sociolinguistic factors. We believe that such 416

factors affecting adults may be responsible for the 417

death of high frequency general classifiers, since 418

no child in a neutral model of change would fail to 419

learn something so well and so diversely attested. 420

There is always a worry that a highly parame- 421

terized simulation will do something akin to over- 422

fitting the pattern the researcher is trying to recre- 423

ate. To guard against this, we test a wide range 424

of parameter settings to confirm that the system’s 425

dynamics are inherent to the model and not driven 426

4See (Yang, 2018) for a summary of the TP’s psychological
motivation and mathematical derivation.
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by a convenient parameterization. To the extent427

possible, default parameters were motivated empir-428

ically (e.g., Zipfian token frequency distribution) or429

according to practical concerns (e.g., if the number430

of classifiers far exceeds the number of semantic431

features C ≫ F , most classifiers will be synony-432

mous and redundant). A full list of parameters433

available to the model are presented in Table 2 in434

the Appendix.435

We ran four sets of simulations testing distinct436

hypotheses. The first set included 58 simulations,437

and did broad sweep of the parameter space, test-438

ing parameter values on either side of their defaults439

as well as different non-numeric parameters. The440

second set included 37 simulations, and varied the441

probability that adults add or drop classifiers, since442

these values are internal to the simulation. The443

third set included 20 simulations, running 4 pa-444

rameter settings in repetition 5 times to weed out445

uniquely random outcomes. Finally, the fourth set446

included 15 simulations, varying a few parameters447

but running and repeating settings for 5,000 itera-448

tions to observe what happens in the very long term.449

In total, we ran and examined 130 simulations.5450

4.2 Results451
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Figure 2: Typical outcome for a simulation run on
default parameters

We found that many parameterizations admit-452

ted complex dynamics, and successive runs with453

the same settings sometimes yielded different out-454

comes. Nevertheless, particular trends emerged.455

We observe three findings repeated across a range456

of settings which we believe characterize neutral457

5All code, including the specifications of our sets of
simulations, is publicly available at url.omitted.for.
review
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Figure 3: Atypical outcome on default parameters:
mean # features trends up
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Figure 4: Simulation run for 5,000 iterations, default
parameters.

transmission of classifiers more broadly. Figures 458

2-8 demonstrate these trends.6 They show how 459

the maximum, minimum, and average number of 460

features, as well as the 25th and 75th percentiles, 461

averaged over the 10 youngest adults, change over 462

time. 463

Figures 2 and 3 show the behavior of the simula- 464

tion with default parameters. parameters described 465

in the appendix. We chose these settings as the sim- 466

plest that still admit interesting dynamics into the 467

system. The average number of features per classi- 468

fier trends downwards but does not do so monoton- 469

ically. This is consistent with the diachronic trend 470

observed by Erbaugh (1986) in which general clas- 471

sifiers emerge from more specific classifiers over 472

time. This does not, however, predict that classi- 473

fier systems should devolve completely, either in 474

6Parameterizations specified in Table 4 in the Appendix.
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Figure 5: A simulation variable branching feature hier-
archies
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Figure 6: A simulation with multiple feature initializa-
tion showing rapid contraction

our simulations or in the diachronic data. Our sim-475

ulations often settle on a steady state after many476

iterations (Fig. 4) and may occasionally reverse477

direction after a period of near-stability (Fig. 3).478

The steady state of the simulations could indicate479

insufficient churn in the set of available classifiers.480

To test this, we increased the rate of adults adding481

classifiers by a factor of 10. This did not have a482

significant effect on the average (Fig. 8), and failed483

to consistently stave off the slow gradual general-484

ization seen in earlier simulations. Robustness to485

this parameter choice further confirms that learn-486

ing, and not adult innovation, to combat ambiguity,487

for example, is driving the trends observed here.488

Finally, if new classifiers were initialized with489

a random, potentially large, number of features490

(Fig. 6), or if adults drop random classifiers in-491

stead of the most general ones (Fig. 7), the system492
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Figure 7: A simulation with random classifier dropping
showing rapid contraction
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Figure 8: Simulation with variable feature initialization
and 10x new classifier adding

rapidly and consistently reduces to one with a few 493

more general classifiers. This makes sense, since a 494

new classifier that is very semantically restricted is 495

unlikely to be sufficiently attested for children to 496

learn all of its features. Similarly, if classifiers are 497

dropped randomly, highly specific classifiers will 498

be dropped with some probability. Children will 499

have less evidence to learn them, and they will not 500

be acquired in their full specificity. 501

5 Discussion and Conclusion 502

In this paper, we advocate a view of language 503

change as a natural outcome of language acqui- 504

sition over time and across a population. This 505

acquisition-driven view of change provides insight 506

into the long-term dynamics of classifier systems 507

through a cross-linguistic corpus study of modern 508

Chinese child-directed speech and a population- 509
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level simulation of classifier change.510

The cross-linguistic study (Section 3) contrasts511

Mandarin and Cantonese, two closely related but512

not mutually intelligible languages with a recent513

common ancestor, to test the hypothesis that clas-514

sifier use is driven by homophony avoidance. We515

found that though Mandarin child-directed speech516

has substantially more homophonous types than517

Cantonese, its classifiers actually disambiguate ho-518

mophones significantly less often. This is con-519

trasted with polysyllabicity in Mandarin, which520

does show a trend consistent with homophony521

avoidance.522

This result motivates a neutral model of classi-523

fier change driven by matters of learning and input524

sparsity not primarily concerned with functional525

pressures. We apply the Tolerance Principle (TP),526

a model of productivity learning, to our population-527

level simulation and observe general trends. The528

TP was chosen because it successfully models U-529

shaped learning trajectories in morphology where530

learners develop through memorization to over-531

generalizing phases. This is similar to the develop-532

mental pattern observed in classifier learning. Chil-533

dren begin by memorizing classifiers and the nouns534

they apply to, then move to over-use of general535

classifiers. A similar trend towards generalization536

is observed empirically in the history of Chinese537

classifiers. New classifiers are specific when they538

are introduced and tend towards generality over539

time. This is not a lockstep relationship along the540

lines of “ontogeny recapitulates phylogeny,” but541

two parallel trends which emerge independently542

from the same learning process. Our population-543

level simulation of TP learners (Section 4) achieves544

this pattern under a wide range of parameter set-545

tings, providing support for the role of learning and546

neutral processes in this change.547

5.1 Future Work548

One question that has yet to be resolved is what549

could have caused the replacement of the Tang-550

Qing general classifier méi with the Qing-modern551

gè. We believe that the solution likely lies in dis-552

course factors. Adults may choose more specific553

classifiers over the most general one in order to554

emphasize qualities of the noun being modified.555

This would explain why méi was not completely556

replaced when it lost its generic status and was in-557

stead reduced to a narrow semantic scope. Change558

here may be modeled as a sociolinguistic variable559

(Labov, 1994). However, such socially conditioned 560

change is lead by young adults rather than young 561

learners. A fully developed mechanism for changes 562

in the classifier system would require modeling 563

both acquisition-driven and sociolinguistic change 564

simultaneously. 565

As an initial test of this hypothesis, we com- 566

pared simulations in which adults drop the most 567

generic classifier with some low probability (repre- 568

senting a sociolinguistic choice to prefer an innova- 569

tive classifier) against simulations in which adults 570

drop classifiers at random. We find that the former 571

allows for the expected slow generalization of clas- 572

sifiers while the latter causes the system to rapidly 573

collapse. We interpret this as supportive of the dis- 574

course driven account, but sophisticated extensions 575

would be needed to demonstrate it. Similarly, the 576

population model could be extended to better cap- 577

ture sociolinguistic network topology (Milroy and 578

Milroy, 1985; Kodner and Cerezo Falco, 2018). 579

Parallel to this, a complete account would incor- 580

porate more concrete semantic representations and 581

algorithms to represent word coining into our simu- 582

lations (Habibi et al., 2020; Xu and Xu, 2021). Our 583

simulation does not account for the creation of new 584

classifiers, which tend to emerge through gram- 585

maticalization of nouns (Aikhenvald, 2000), nor 586

does it provide a structured means for representing 587

classifier semantics beyond the abstract hierarchies 588

which we employed. Semantic chaining (Ramiro 589

et al., 2018; Xu and Xu, 2021) is a promising can- 590

didate approach. Our population-level acquisition- 591

driven approach provides a base upon which to 592

develop fully featured diachronic models of classi- 593

fier systems. 594

5.2 Conclusion 595

This paper adopts a view of language change that is 596

primarily driven by children acquiring their native 597

languages with additional changes led by adults. 598

This dual perspective provides a place for both 599

grammar learning and sociolinguistic discourse fac- 600

tors as mechanisms for change. Classifier systems 601

are a natural juncture for these two types of change 602

since they are both deeply embedded in the gram- 603

mar and show heavy optionality, variablity, and 604

discourse sensitivity. We further clarify in our em- 605

pirical study of Cantonese and Mandarin as well as 606

the simulations that child-driven change to classi- 607

fier systems is neutral with respect to function. 608
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Parameter Value Explanation
S 1000 No. simulation iterations
N 200 No. total individuals
K 40 No. children
V 1000 No. nouns in lexicon
C 25 No. classifiers in lexicon
F 50 No. features
G 4 Max no. noun features
H 3 Max no. init classifier features
B 3 Max branching factor within a feature hierarchy
I 5 No. interactions by adults
J 5 No. lexical items per interaction
A 0.01 Prob. add classifier per iteration
D 0.01 Prob. drop classifier per iteration
PROD TP Method for productivity in acquisition
LEX_TYPE Zipf Distribution type of nouns in the lexicon
CLASS_INIT hierarchy, single Method for classifier initialization, including feature hierarchy
FEAT_INIT fixed Method for initializing a feature hierarchy, dependent on B
CLASS_DROP general Target for dropping classifiers

Table 2: A list of simulation parameters, their default values, and what they do. Non-numeric parameters are further
described in Table 3.

Parameter Value Explanation
PROD TP Tolerance Principle (Yang, 2016)

majority Simple majority
LEX_TYPE Zipf Lexical items follow a Zipfian distribution (Zipf, 1949; Lignos and Yang, 2018)

uniform Lexical items follow a uniform distribution
CLASS_INIT identity Classifiers are initialized as though an identity matrix

random Classifiers are initialized randomly with H features
hierarchy, single Classifiers are initialized with 1 feature using a feature hierarchy
hierarchy, multiple Classifiers are initialized with 1 to H features using a feature hierarchy

FEAT_INIT fixed Each feature in the hierarchy has B children
variable Each feature in the hierarchy has 1 to B children

CLASS_DROP general The classifier with the least number of features is dropped
random A random classifier is dropped

Table 3: A list of possible arguments for each of the non-numeric parameters in our simulation. Explanations for
each of parameter’s purpose are found in Table 2 and in Section 4.1.

Figure no. Parameters
2 (used default)
3 (used default)
4 S = 5000
5 FEAT_INIT = variable
6 CLASS_INIT = hierarchy, multiple
7 CLASS_DROP = random
8 A = 0.1, FEAT_INIT = variable

Table 4: The parameters that the simulation presented in each figure ran on, where they differ from the default
arguments listed in Table 2.
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