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Abstract

While reinforcement learning (RL) has achieved
great success in acquiring complex skills solely
from environmental interactions, it assumes that
resets to the initial state are readily available
at the end of each episode. Such an assump-
tion hinders the autonomous learning of embod-
ied agents due to the time-consuming and cum-
bersome workarounds for resetting in the physi-
cal world. Hence, there has been a growing in-
terest in autonomous RL (ARL) methods that
are capable of learning from non-episodic in-
teractions. However, existing works on ARL
are limited by their reliance on prior data and
are unable to learn in environments where task-
relevant interactions are sparse. In contrast, we
propose a demonstration-free ARL algorithm via
Implicit and Bi-directional Curriculum (IBC).
With an auxiliary agent that is conditionally acti-
vated upon learning progress and a bidirectional
goal curriculum based on optimal transport, our
method outperforms previous methods, even the
ones that leverage demonstrations.

1. Introduction

Reinforcement learning (RL) has enabled interactive agents
to learn complex skills in various domains with little to no
prior knowledge (Andrychowicz et al., 2020; Baker et al.,
2019; Vinyals et al., 2019; Degrave et al., 2022). How-
ever, existing algorithms assume an episodic setting where
each trial begins from a state sampled from some fixed ini-
tial state distribution, and they are not designed to learn
autonomously in the real world which involves continual,
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uninterrupted interaction. The challenge of applying RL
in the real world often arises in robotics where the prac-
titioner has to bridge the gap between the tools available
(episodic RL) and the non-episodic nature of real-world
learning. In most cases, a multitude of time-consuming and
costly external interventions such as human supervision,
task-specific scripted policies, and custom experimental se-
tups are deployed to reset the environment after each trial
(Kumar et al., 2016; Ha et al., 2020; Nagabandi et al., 2020).
These challenges should be addressed from the algorithmic
level by developing RL agents that can learn autonomously
with minimal interventions.

Previous works on RL agents in the real world primarily
involve a mechanism to handle resets and may leverage
prior data along with additional consideration for reward
assignment. Reset mechanisms that prevent interventions by
requesting a reset when necessary (Eysenbach et al., 2017;
Kim et al., 2022) are only viable if manual resets are readily
available. Under the non-episodic autonomous RL (ARL)
framework (Sharma et al., 2021b), however, manual resets
are not available on-demand and the agent must learn from
continual interactions with no interventions. To overcome
the challenge of the non-episodic setting, many previous
methods rely on some form of prior data with varying de-
grees of privilege, ranging from the expert or sub-optimal
trajectories (Sharma et al., 2022; Chen et al., 2022) to exam-
ples of states of interest (Zhu et al., 2020). However, a truly
autonomous agent should be able to learn from scratch with-
out external interventions and prior data. To that end, we
propose an ARL algorithm that can train a goal-conditioned
RL policy without demonstrations under the non-episodic,
sparse reward setting.

It has been well established that existing RL algorithms
do not perform well in the non-episodic setting (Co-Reyes
et al., 2020) since the agent is unable to repeatedly practice
for the evaluation task. A common framework for extending
conventional RL to the non-episodic setting is to alternate
between multiple objectives within one continual interac-
tion, effectively dividing it into multiple episodes. Typi-
cally, the forward episode attempts the original objective
and the backward episode follows an auxiliary objective
that provides an anchor for the forward episode with a good
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Figure 1. IBC proposes a bidirectional curriculum for both forward
and backward episodes. The auxiliary agent is no longer activated
after the agent of interest becomes capable.

initialization. An obvious choice for the auxiliary objective
is to return to the initial state distribution (Eysenbach et al.,
2017). However, this is not always the optimal choice as it
wastes valuable transitions on returning all the way back to
the initial state. Instead, it can be set to match other distribu-
tions such as the states observed in expert demonstrations,
(Sharma et al., 2022) or maximize the state diversity (Zhu
et al., 2020) for better sample efficiency or robustness.

We consider a conditionally activated auxiliary agent that
returns to the initial state based on our observation that pro-
viding a strong anchor is crucial, especially if the task of
interest involves an interaction that is sparse and unlikely
to occur by chance in the non-episodic setting. Under the
proposed method, the agent of interest is initially dependent
on the auxiliary agent but becomes less reliant on it as train-
ing progresses in an implicit curriculum. When the agent
of interest becomes capable, forward episodes can be rolled
out consecutively without the auxiliary agent intervening
and more transitions are devoted to training the agent of
interest leading to better sample efficiency. While the auxil-
iary agent initially provides a strong foundation, additional
guidance is needed to successfully train the agent of interest.
Since the agent of interest is goal-conditioned and must
learn without prior data, we generate curriculum goals that
do not rely on demonstrations or predetermined curriculum.
Specifically, we propose a bidirectional goal curriculum
scheme to simultaneously select appropriate goals for the
forward (agent of interest) and backward (auxiliary agent)
episodes. To do so, we employ a curriculum based on the
optimal transport between the desired goals and the can-
didate states sampled from past trajectories in the replay
buffer to jointly optimize over the forward and backward

curriculum goals.

The main contribution of our work is in proposing a
demonstration-free ARL algorithm via Implicit and Bi-
directional Curriculum (IBC). Evaluations in established
ARL benchmarks and in RL environments modified for
the ARL setting show that our method outperforms ex-
isting methods. Further analyses and ablation studies re-
veal that the proposed implicit curriculum (auxiliary agent)
and explicit curriculum (bidirectional goal curriculum) are
well-formed and necessary to successfully learn in the
demonstration-free, non-episodic setting. To summarize,
the key takeaways from our work are as follows:

¢ To the best of our knowledge, IBC is the first algorithm
for non-episodic RL that can consistently learn with-
out manual resets and demonstrations by leveraging
curriculum learning.

* We propose a conditionally activated auxiliary agent
and a bidirectional goal curriculum based on optimal
transport to guide the agent of interest.

¢ In various environments, IBC achieves state-of-the-art
performance against previous methods, including even
the ones that leverage prior data.

2. Related Works

Autonomy in RL has gained much interest as RL is in-
creasingly applied to various real-world robotics applica-
tions. Many practical applications adopted task-specific
workarounds to implement resets in the real world with
varying levels of automation — from human supervision and
custom experiment setups (Yahya et al., 2017; Zeng et al.,
2020) to scripted actions and pre-trained networks (Sharma
et al., 2020; Thananjeyan et al., 2021). Since then, several
algorithms for reset-free RL have been proposed, drawing
inspiration from various topics in RL such as multi-task
RL (Gupta et al., 2021; Walke et al., 2021), multi-stage RL
(Smith et al., 2020; Xu et al., 2022), curriculum learning
(Sharma et al., 2021a), and unsupervised skill discovery
(Xu et al., 2020). Recently, the autonomous RL (ARL)
framework formally defined the non-episodic RL setting.
Several works have sought to address some variation of
the ARL problem such as leveraging prior data or human
preference to enable single-life and lifelong learning (Chen
et al., 2022; Lu et al., 2020) or to handle irreversibility in the
environment (Xie et al., 2022). However, we notice a lack
of truly autonomous agents in existing methods and propose
an ARL algorithm for demonstration-free, non-episodic RL
in ergodic environments.

A common framework for replacing manual resets is to al-
ternate between forward and backward episodes (Han et al.,
2015). Not all such methods are capable of non-episodic RL
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as some of them are not entirely reset-free and instead focus
on reducing manual resets through backward episodes (Ey-
senbach et al., 2017; Kim et al., 2022). Reset-free methods
that learn a separate policy to reset to diverse initial states
(Zhu et al., 2020; Xu et al., 2020) are only viable in environ-
ments where task-relevant interactions are likely to occur
by chance and either require prior data such as states of
interest or are geared towards acquiring behavior primitives
for downstream tasks. MEDAL (Sharma et al., 2022) and
VaPRL (Sharma et al., 2021a) are directly comparable to our
method, but MEDAL returns to the state distribution of the
optimal policy instead of the initial state which requires ex-
pert demonstrations. While VaPRL can technically operate
without demonstrations, we have found that removing them
results in significant performance degradation in practice.
This is likely due to the subgoal curricula scheme proposed
in VaPRL which relies on demonstrations both for gathering
good goal candidates and in calculating the cost for the goal
selection process.

Curriculum learning has been deployed in RL to improve
sample efficiency, encourage exploration, and solve complex
multi-stage tasks (Narvekar et al., 2020). Such strengths are
also desirable in the non-episodic setting. Curriculum in
episodic RL often involves distribution matching to some
desired task distribution (Ren et al., 2019; Klink et al., 2022;
Huang et al., 2022; Cho et al., 2023) and task difficulty (Flo-
rensa et al., 2018; Sukhbaatar et al., 2017; Portelas et al.,
2020; Jiang et al., 2021). However, these methods are not
designed for the non-episodic setting. To address this, we
propose an auxiliary agent and bidirectional goal curricu-
lum to incorporate both task difficulty and task distribution
matching. The auxiliary agent gradually fades away in an
implicit curriculum conditioned on the learning progress
(success rate) of the agent of interest. To apply goal cur-
riculum in the non-episodic setting, we generate curriculum
goals not only for the task goal (forward episode) but also
for the initial state (backward episode) based on the Wasser-
stein distance metric.

3. Preliminary
3.1. Autonomous Reinforcement Learning

We assume an ergodic environment for the demonstration-
free, non-episodic setting, similar to many previous works
on autonomous RL (ARL). We consider the Markov de-
cision process (MDP) M = (S,G, A, P,r,v, po), where
S denotes the state space, G the goal space, A the ac-
tion space, P(s|s,a) the transition dynamics, v the dis-
count factor, and pg the initial state distribution of the
evaluation setting. The learning algorithm A is defined
as A : {sj,aj,rj,5j+1}§.:0 — {a¢, m¢(+]s)}, which maps
the collected data until time ¢ to an action a, to be applied
during the non-episodic training and its current best guess

of the optimal evaluation policy 7;(+|s).

Typical implementations of RL algorithms (episodic) in-
volve thousands or millions of sampling sg ~ pg(s), which
require manual resets at the end of every episode. However,
under the ARL framework (non-episodic), the initial state
S0 ~ po(s) is sampled only once at the beginning and the
agent interacts with the environment through the actions a;
determined by the algorithm A until £ — oo.

ARL defines the Deployed Policy Evaluation metric, which
measures how fast the policy m; improves in terms of the
evaluation performance for a given task:

D(4) = Y[ (") = I (m) ()

t=0

where J(7) = E,gxp [D o077 (8t,a:)], and 7* is the
optimal policy. The goal of algorithm A is to minimize
D(A) by learning as fast as possible.

3.2. Surrogate Objective for Curriculum-based RL

We replace the original RL objective with a surrogate ob-
jective to be utilized for curriculum generation in Section 4
and describe it in detail. Let 7 be the joint distribution of
some initial state sy and goal g. Then, the original objective
max, J(m) can be represented as,

max V" (T):= E

=B Vool @

where V7 (s, g) is the goal-conditioned value function.

Our approach relies on the following generalizability con-
dition (Florensa et al., 2018; Luo et al., 2018; Asadi et al.,
2018; Ren et al., 2019) that is characterized by the Lipschitz
continuity-based assumption:

V(T =VI(T) < L-D(T,T") ©)

where L is the Lipschitz constant and D(7,7') =
inf,crer 7 (Epld((s0, 9), (s5,9"))]) is the Wasserstein
distance based on the distance metric d(-,-). T (7, 7") de-
notes the set of all possible transport plans .

Under Eq (3), optimizing Eq (2) can be relaxed into the
following lower-bound maximization,

max V™(T)—L-D(T,T%) “4)

where (s§,9*) ~ T* is the joint distribution of the target
initial state s;; and target goal state g*. Intuitively, it maxi-
mizes the policy performance and closeness to 7 *, which
results in a task curriculum with increasing difficulty.

4. Method

For a truly autonomous RL without external interventions
and human supervision, we introduce 1) a conditionally
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Figure 2. Overview of the proposed method, IBC.

activated auxiliary agent (7,) that aids the forward agent
() and 2) a bidirectional curriculum generation process for
both forward and auxiliary agents that enables non-episodic
RL without demonstrations via calibrated guidance.

4.1. Non-Episodic RL with an Auxiliary Agent

During non-episodic training, we alternate between the two
agents such that the auxiliary agent guides the forward agent
only when necessary. Specifically, we conditionally activate
the auxiliary agent when the forward agent has failed at
the given goal state such that the auxiliary agent gradually
disappears as the forward agent improves which results in
better sample efficiency. Let us consider the hypothetical
setting where the forward agent is fully capable and the
auxiliary agent does not intervene at all. Under this setting,
the forward agent repeatedly attempts its target goal states
Sg+ ~ prar(s) without resets. Thus, the agent is no longer
restricted by po(s) unlike in episodic settings and we can
consider a better initial state distribution by appropriately

designing piqr(8).

Interestingly, a previous work (Kakade & Langford, 2002)
provides theoretical grounds that pg(s) close to p*(s) en-
ables efficient training in RL, where p*(s) denotes the state
marginal distribution of the optimal policy 7*. If we set
Ptar(8) to be a subset of p*(s) from the optimal policy that
achieves the evaluation goal g..,q;, We can approximately
satisfy this ideal initial state distribution. Note that the target
goal s4+ achieved by the forward agent policy 7 from the
previous rollout becomes the initial state for the next rollout.

p{;(s) at convergence
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Figure 3. Visualization of ,o{; (s) at various timesteps. As training
progresses, the initial state distribution of the forward agent p{; (s)
gradually shifts from pg(s) to pear(s).

In practice, it suffices for psq(s), which is only used for
bidirectional curriculum and not for RL, to contain a min-
imal number of key points that roughly outline the task to
be adequate for the goal curriculum generation. This is be-
cause the curriculum goals effectively “fill in the blanks” by
proposing past states from the replay buffer that are close
to piar(8). Typically, specifying piq-(s) requires only a
handful of samples (~ 10) from pg(s) and geyq; combined
to approximate p*(s). For some tasks, it suffices to specify
Prar(8) With a single example from pg(s) and geyq; each.
Unlike previous ARL methods, we do not require demon-
strations with thousands of transitions or access to the expert
policy.

Until now, we have considered the setting where 7, has
converged and is fully capable. However, most of the roll-
outs by 7 before convergence will lead the agent to an
arbitrary state rather than s, -, leading to highly-varying
initial states for the next rollout which results in unstable
learning. For this reason, we need an auxiliary agent that
provides an anchor and guides the forward agent. More
precisely, the auxiliary agent tries to bring the forward agent
back to the set of target initial states s§; ~ po tqr(5). Even
though pg 44 ($) can be an arbitrary set of states that are
useful for the repeated practice of the forward agent, we
set po tar () to include the environmental initial state dis-
tribution pg(s). This is because providing a strong anchor
is crucial in practice and the evaluation will be performed
from pg(s).

While the proposed auxiliary agent resembles the standard
backward agent from previous literature, there are two key
differences. First, the auxiliary agent is activated only when
the forward agent fails at the given curriculum goal such
that the initial state for the forward agent ,0(; (s) gradually
evolves from pg(s) to po.tar(s) in an implicit curriculum
as my improves (Figure 3). This is by design such that
the forward agent approximately satisfies the theoretically-
grounded ideal initial state condition at convergence. Sec-
ond, the auxiliary agent does not directly return to pg ¢q,(S)
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which encompasses pg(s), but to the intermediate goal for
s¢, obtained from the bidirectional goal curriculum. Thus,
the goals proposed to the auxiliary agent are more diverse
than the typical backward agent.

Algorithm 1 IBC

1: Input: 7A', 7A'*, By, mr, Q™F, By, ma, Q™
2: s~ po(s) by env.reset(),set O to {f}
O denotes agent selection ({ f }:forward, {a}:auxiliary)
while not done do N
get curriculum goal go ~ T
while until (reach gp or max episode steps) do
a+— mo(-|s, go)
s« P(s|s,a), T < r(s,a,90)
Bo + Bo U (s,90,a,r,s")
update 7o, Q™°
10 s+ ¢
11:  end while
12: for once every N iteration do
13: update 7 according to Eq (4) by solving Eq (6)
14:  end for
15:  if O was {a} thenset O to {f}
16:  elseif 7 succeeded then keep O as { f}
17:  elseset Oto {a}
18: end while

R A A

4.2. Bidirectional Curriculum Generation

While our non-episodic training process involving an aux-
iliary agent, pg i4r(8), and piq,(s) approximately satisfies
the ideal initial state condition, it might not be sufficient
for autonomous training in environments where target states
are difficult to be achieved from scratch. Thus, we need to
find intermediate goals that can guide the learning of the
agent. To find such goals without relying on demonstrations,
the candidates must be obtained from past trajectories with
highly varying initial states due to non-episodic training. We
propose a bidirectional goal curriculum based on the surro-
gate problem (Eq (4)) for both forward and auxiliary agents
without relying on demonstrations in the non-episodic set-
ting.

For autonomous curriculum generation, we sample the can-
didates for 7 from past states in the replay buffer 5. To
prevent a degenerate solution in the curriculum selection
process, a diversity constraint is incorporated such that for
every trajectory 7 = (so, ..., St,,,,,) € B, at most one state
can be chosen for 7. Then, Eq (4) is transformed as follows,

ma (Ve (T) = L D(T, T)]
s.t. Z 1[(s0,¢5(s1)) € T] <1,

S0, St € T,VT € B

&)

where ¢(-) is a mapping function that abstracts the state
space into the goal space. To solve Eq (5), we iteratively
update 7 and policies 7y, 7, until 7y achieves a desirable
evaluation performance. The policy optimization is simply
achieved by applying off-the-shelf RL algorithms such as
SAC (Haarnoja et al., 2018). The optimization of T is
defined by the Wasserstein Barycenter problem augmented
with a value bias term.

Inspired by Ren et al. (2019), we enforce 7 and 7™ to be
a set of K particles (|'T| |T*| = K) where (so, g)' ~ T,
and (s§, p(sg+))" ~ 7*, rather than parameterizing their
distribution. Then, to address the Wasserstein Barycenter
problem (Eq (5)) in _the combinatorial setting, we assign
candidates for 7 to 7* via the following bipartite matching
problem:

. *7 ; i’ 7 6
NS l_w((s0 s0)o7') ©
(s(’j,sg*)

where w(+, ) becomes

w((s5,55)" 1) = e|8ulss™) = dulsh)|

+ min (H¢f(sq* —r(st)ll, — Vﬂf(50a¢f(5t))>
)

when we define the distance metric d((s, g), (s',¢’)) from
Eq (3) as ¢ ||¢a(s) — da(s)|ly + [lg — ¢l (cis a hyperpa-
rameter). With the costs w defined according to Eq (7), we
can construct a bipartite graph G({V,, V}, ) Let V,
be the set of nodes representing candidates for T and V,
be the set of nodes for 7*. The weights of the edges are
defined as E(v,, v5) = —w(vq,vp), where v, € V, and
vp € V.

To solve the bipartite matching problem, the Minimum Cost
Maximum Flow algorithm is utilized to find K edges with
the minimum combined cost of connecting V, and V,
(Ahuja et al., 1993). The resulting K forward curriculum
goals will be proposed towards a region of the state space
considered to be close to s4+ ~ piar(s) and within the
capability of the forward agent as indicated by the value
bias term. Similarly, the K auxiliary curriculum goals will
be proposed towards a region considered to be close to

56 ~ pO,taT(5)~

5. Experiment

We include six sparse reward environments to evaluate
our method. Two environments — Tabletop Manipulation,
Sawyer Door — are from established ARL benchmark, EARL
(Sharma et al., 2021b), and the remaining four environments



Demonstration-free Autonomous Reinforcement Learning via Implicit and Bidirectional Curriculum

Table 1. Conceptual comparison between our work and baseline algorithms.

Demo-free Curriculum Agent Configuration Backward Towards
oracle RL X single (SAC) N/A
R3L X forward (VICE, Fu et al. (2018)) & backward (RND, Burda et al. (2018)) maxH (s) for diverse states
VaPRL X backward subgoal only (v) single (SAC) po(s)
MEDAL X X forward (SAC) & backward (VICE with p*(s)) p*(s) from expert demos
IBC(ours) both forward & backward (v') dual (forward & auxiliary) — single as training proceeds (SAC) Prar () (a subset of p*(s))

0.
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m  IBC(ours) VaPRL B VaPRL{w/o demo) ] MEDAL ®m  Oracle RL

Figure 4. Comparison of evaluation success rates of various algorithms. Shading indicates standard deviation across 5 seeds.

— Fetch environments (Plappert et al., 2018), Point-U-Maze
— are modified versions of existing MuJoCo-based OpenAl
Gym environments (Todorov et al., 2012; Brockman et al.,
2016) for the ARL setting. These environments represent
a mixture of robotic manipulation and locomotion tasks.
Detailed descriptions of the environments are provided in
Appendix A.

We compare with other previous methods designed for the
ARL framework, which can be summarized as follows:

MEDAL (Sharma et al., 2022) — a backward agent that min-
imizes the distance between its state marginal distribution
and the expert state distribution.

VaPRL (Sharma et al., 2021a) — value-based subgoal cur-
ricula towards the initial state distribution pg(s) during the
backward episode; amenable to demonstration-free setting,
but reports on the version with demonstration data.

oracle RL - a standard RL baseline such as SAC (Haarnoja

et al., 2018) in an episodic setting with goal relabeling
technique (Andrychowicz et al., 2017) common for sparse
reward environments.

There exist other ARL methods such as R3L (Zhu et al.,
2020) but we did not include them as they are already out-
performed by VaPRL and MEDAL. We summarize the con-
ceptual comparison between our method and previous ARL
baselines in Table 1.

5.1. Results and Analyses

We follow the evaluation setting similar to the EARL bench-
mark (Sharma et al., 2021b). Specifically, the agent inter-
acts with the environment after initially being spawned at
so ~ po(s) and occasionally being reset to sg ~ po(s)
after hundreds of thousands of steps. Since we focus on
minimizing the deployed policy evaluation metric, D(A),
we report on J(m;) in 10k training step intervals by av-
eraging returns from the policy over multiple evaluation
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Figure 5. Visualization of the curriculum goals and their average normalized distance to assigned target goals (Left: Fetch Pick&Place,
Right: Tabletop Manipulation). The red and blue dots indicate the curriculum goals for the forward and auxiliary agents, respectively.
Note that the exact positions of the robots and objects are meaningless; these are just rendered from their default states.

episodes. The code implementation of IBC and the instruc-
tions for reproducing the main result is available at ht tps:
//github.com/snu-larr/ibc_official.

Evaluation results. As shown in Figure 4, the proposed
method achieves state-of-the-art performance against other
baselines, without requiring any demonstration data and
even achieving comparable average return (success rate) to
the oracle RL (episodic RL setting). Although some prior
works such as VaPRL and MEDAL utilize nearly expert-
level demonstration data, they have difficulty in environ-
ments where the task-relevant interactions are very sparse
in the non-episodic setting or the evaluation goals g, are
uniformly spread over some region rather than a few points
such as Fetch environments. Furthermore, these methods
are somewhat sensitive to the composition of the demon-
stration data in practice, which is detailed in Appendix B.
For a fair comparison with our method, we also evaluated
a version of VaPRL without demonstrations; it performed
noticeably worse than the original VaPRL.

To validate whether the intervention of the auxiliary agent
vanishes as training proceeds, we plot the episode ratio of
the auxiliary agent within the latest 1k episodes. As shown
in Figure 6, the auxiliary agent does not intervene when the
forward agent is fully trained.

Bidirectional curriculum. To validate whether the bidi-
rectional curriculum goals are properly interpolated and
eventually converge to the desired target distributions, we
evaluate the progress of the curriculum goals qualitatively
and quantitatively. To do so, we visualize the forward and
auxiliary curriculum goals and plot the corresponding nor-
malized distance averaged over target goals assigned by
bipartite matching (Section 4.2).

The plots in Figure 5 demonstrate that the average distance
to goals consistently decreases as training proceeds, which

rrrrr evaluation success rate -01 —--- evaluation success rate
—— backward episode ratio 2 —— backward episode ratio

250 500 750 1000 1250 1500 1750 2000 O 100 200 300 400
steps (k) steps (k)

(a) Fetch Pick&Place

(b) Tabletop Manipulation

Figure 6. Episode ratio of the auxiliary agent and evaluation suc-
cess rate.

indicates that the curriculum goals for both forward and
auxiliary agents have properly converged to their respective
target states. The visualizations in Figure 5 provide further
validation. Specifically, the forward curriculum goals grad-
ually converge toward the p¢,,-(s), which encompasses a
region in the air and on the table for the Fetch Pick & Place,
and five discrete points for the Tabletop Manipulation, re-
spectively. The auxiliary curriculum goals also converge to
the target goal states pg ;- (s), initially. However, there is a
gradual shift of the auxiliary curriculum goals towards p*(s)
after initial convergence which is reflected in the slight in-
crease in average distance to goals for the backward episode
(po,tar(8)), especially visible in the Fetch Pick & Place en-
vironment. This is because the candidates for the backward
curriculum goals, which eventually become the initial states
for the forward agent, are obtained from both pg ;4-(s) and
Ptar(s) C p*(s) when the forward agent remains at inter-
mediate proficiency (~50%) for prolonged timesteps during
training such as in Fetch Pick & Place, but less so in Table-
top Manipulation.

5.2. Ablation Study

To investigate the role of the goal curriculum, we conduct
an experiment without the proposed bidirectional curricu-
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Figure 7. Ablation study — removing the bidirectional curriculum
and auxiliary agent proposed in this work degrades performance.

lum (IBC w/o Bidirectional). We additionally ablate the
auxiliary agent to validate its effectiveness (IBC w/o Bidi-
rectional & Auxiliary). The latter corresponds to naive RL,
where only a forward agent tries to optimize the task reward
in a reset-free setting, without any backward episodes to
return to some region such as pg(s).

As shown in Figure 7, there is consistent performance degra-
dation in most of the environments for IBC w/o Bidirec-
tional, which demonstrates the importance of gradually
guiding the forward agent from easier initial states and goals
to difficult ones. For IBC w/o Bidirectional & Auxiliary,
there is an additional degradation in most of the environ-
ments, more so in object manipulation environments. The
exact degree of the degradation may vary according to the
given task and the choice of goal space mapping ¢(s). In
the case of Tabletop Manipulation, bidirectional curriculum
generation does not have much effect on performance since
the state space is relatively simple and does not benefit from
intermediate curriculum goals. In the case of Point-U-Maze,
the auxiliary agent is less effective since the initial state is
quite far from the goal states.

5.3. Towards Reward-free Operation

To further enhance the autonomy of our method, we inves-
tigate the viability of the reward-free setting. While the
proposed method operates on sparse rewards under the goal-
conditioned setting which involves minimal human effort
(defining the threshold for success), eliminating the need
for explicit reward specification can be desirable, especially
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Figure 8. Normalized distance to goal and evaluation success rate
for the reward-free variant.

when dealing with high-dimensional inputs such as images.
Prior work based on control as inference framework for fu-
ture event matching (Fu et al., 2018; Eysenbach et al., 2021)
enables reward-free methods that can also be applied to goal-
conditioned RL such as C-learning (Eysenbach et al., 2020).
We evaluate the performance of a variant of our method
that replaces the SAC agent with a C-learning agent. For
the sake of simplicity, we do not implement bidirectional
curriculum goals for this variant but note that it is trivial to
do so.

We additionally report the normalized distance to goal met-
ric along with the success rate for this variant as it is based
on future state matching and does not consider the threshold
for success. Full results are available in Appendix B. In
most environments, the C-learning variant achieves high
success rates and even matches the proposed method in
some environments. However, there are environments with
low success rates, albeit with visible improvements in terms
of the normalized distance to goal metric. This is because
C-learning is reward-agnostic and tries to match the entirety
of the desired future state, but some state elements may
be more important than others for success depending on
the task. Instead of matching in the state space, modifying
the reward-free method to operate in a goal space that au-
tonomously evolves towards the state elements that are most
salient for the given task can be a promising approach for
future research.

6. Conclusion

In this work, we considered a non-episodic RL setting where
the agent should learn how to perform the given task au-
tonomously without any external interventions such as man-
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ual resets and prior data. We proposed IBC, a demonstration-
free autonomous learning algorithm based on implicit and
bidirectional curriculum generation. We have shown that our
method outperforms previous methods, both in terms of sam-
ple efficiency and final average success rate. Our method is
limited to reversible environments and still requires mini-
mal human inputs for specifying sparse rewards. We’d like
to build upon our method towards the reward-free setting,
which has shown some promise in our results, by adopting
the contextual MDP framework and devising a task-relevant
goal space curriculum discovery for the reward-free setting.
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A. Experimental Details

A.l.

Environment

Sawyer Door: We use the original EARL benchmark environment (Sharma et al., 2021b). The evaluation goal state
Geval 1s the state where the door is fully closed and the target goal states sy« ~ pyq,-($) during the non-episodic training
are set to the corresponding states for door hinge angles between -60 degrees (open) and 0 degrees (closed).

Tabletop Manipulation: We use the original EARL benchmark environment (Sharma et al., 2021b). The evaluation
goal states consist of 4 discrete points and the target goal states are 5 discrete points (4 discrete evaluation goal points +
1 initial state of the object).

Point-U-Maze: We used the 12 x 12 U-shaped maze environment where the initial position of the agent is [0, 0] and
the evaluation goal position is at the other end of the maze located at [0, 8]. The target goal states are randomly sampled
in the feasible (not interfering with the maze walls, free space) state space.

Fetch Pick&Place, Fetch Push: We modified the original Fetch environments from the gym-robotics package to
convert it to a reversible (ergodic) setting by defining a constraint on the block position. The evaluation goals and target
goal states are identical to the original Fetch Pick&Place, Fetch Push environments.

Fetch Reach: We use the original Fetch environment from the gym-robotics package, where the evaluation goals and
target goal states are obtained from uniformly sampled states in the area encompassing a region in the air and on the
table.

(a) Sawyer Door  (b) Tabletop Manip. (c) Point-U-Maze (d) Fetch Pick&Place  (e) Fetch Push (f) Fetch Reach

A.2.

Figure 9. Environments used in this work.

IBC Implementation

Table 2. Hyperparameters for IBC

critic hidden dimension 512 discount factor ~y 0.99
critic hidden depth 3 curriculum buffer B, capacity (# of trajectories) 1000
critic target 7 0.01 # of curriculum candidates, K (# of trajectories) 50
critic target update frequency 2 curriculum update frequency (once every N episode) 20
actor hidden dimension 512 learning rate le-4
actor hidden depth 3 RL optimizer ADAM
actor update frequency 2 init temperature a;ni; of SAC 0.5
RL batch size 512 replay buffer B capacity (# of transitions) le6
c in curriculum update 3 Lipschitz constant L 5

We use a goal-relabeling technique (Andrychowicz et al., 2017) with SAC for sparse reward, goal-conditioned RL. There
is a separate trajectory-level buffer B, for the bidirectional goal curriculum. The values of various hyperparameters are
detailed in Table 2. We set the goal space transformation of the auxiliary agent ¢, to abstract the proprioceptive states (e.g.
gripper position in manipulation tasks and agent position in navigation or reaching tasks), and the goal space transformation
of the forward agent ¢ to abstract the object-centric states when available (e.g. object position in manipulation tasks and
agent position in navigation or reaching tasks).
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A.3. Baseline Implementations

The baseline algorithms are trained as follows,

* VaPRL (Sharma et al., 2021a): There is no official code implementation, so we implemented it ourselves. We closely
followed the details in the original paper and validated whether we have properly implemented the algorithm by
obtaining statistically similar results when using demonstrations to the ones reported in (Sharma et al., 2021b).

* MEDAL (Sharma et al., 2022): We follow the default setting in the original implementation from https://github.
com/architsharma97/medal.

* naive RL: We train a single agent to reach the given goal state until success or pre-determined, environment-specific
maximum episode steps. After that, the target goal is resampled without resetting and the agent repeats the above
process for hundreds of thousands of steps. We use SAC (Haarnoja et al., 2018) with the goal relabeling technique
(Andrychowicz et al., 2017).

 oracle RL: Standard episodic RL is applied. Specifically, we use SAC (Haarnoja et al., 2018) with the goal relabeling
technique (Andrychowicz et al., 2017).

VaPRL and MEDAL require expert or near-expert demonstrations. For Sawyer Door and Tabletop Manipulation environ-
ments, we use the demonstration data (forward & backward episodes) provided by the EARL benchmark (Sharma et al.,
2021b). For other environments, we collected demonstrations of similar quality (expert-level) and quantity (comparable
amount of total timesteps) by rolling out the trained oracle RL policy.

13
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B. Additional Experimental Results
B.1. Sawyer Door with Velocity Inputs

For the Sawyer Door environment in the EARL benchmark (Sharma et al., 2021b), we found instances of the door moving
due to inertia even when the robot arm is not in contact. Without velocity information, this can violate the Markov Decision
Process (MDP) assumption that the transition probability be fully observable. That is, a different next state s’ can be
obtained from the identical current state s and action a.

To alleviate it, we additionally experiment with the velocity-augmented state inputs. We concatenate the translational
velocity of the door handle (3-dimensional) and train the agent with IBC and other baselines. The results in Figure 10
demonstrate that there are slight increases in the final average success rates and training stability with velocity-augmented
states.

0.0
250 500 750 1000 1250 1500 1750 2000 250 500 750 1000 1250 1500 1750 2000

steps (k) steps (k)
(a) Sawyer Door (b) Sawyer Door w Vel
B IBC(ours) VaPRL B VaPRL(w/o demo) ] MEDAL B Oracle RL

Figure 10. Experimental results for variants of Sawyer Door environments.

B.2. Sensitivity of Baseline Algorithms to the Demonstration Data

Although prior works (VaPRL, MEDAL) have shown some progress in developing a better ARL algorithm, these have some
restrictions due to requiring demonstration data for selecting the curriculum subgoals or for computing the reward for the
backward policy. Furthermore, we found that these baselines are somewhat sensitive to the composition of the demonstration
data.

Specifically, we collected demonstration data for the Sawyer Door environment in two different ways. The first dataset
consists of expert trajectories with fixed goal states (with trajectories of similar lengths), and the second dataset consists of
expert trajectories with diverse goal states (with trajectories of varying lengths). Since we terminate the rollout right after
the agent achieves the goal, trajectories may vary in length.

As shown in Figure 11, both VaPRL and MEDAL are somewhat sensitive to the composition of the data. It may be due to
the subgoal selection strategy in VaPRL that is dependent on the length of the demonstration trajectory, or in the case of
MEDAL, an imbalance in the expert state distribution (for training the backward reward) caused by trajectories of varying
lengths due to the diverse goals.

1.0 1.0

MEDAL diverse goals
—— MEDAL

VaPRL diverse goals

—— VaPRL

0.8 0.8

0.6 0.6
0.4 0.4

0.2 0.2

0.0 0.0

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
steps (k) steps (k)

(a) MEDAL (b) VaPRL

Figure 11. Sensitivity of baselines to the composition of the demonstration data.
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B.3. Episode Ratio of the Auxiliary Agent

We include the full results of the auxiliary agent episode ratio (Figure 12). The overall trend discussed in the main script
also applies to the full result. We additionally report the results of Sawyer Door with velocity inputs as mentioned in B.1,
and we have found that the backward episode ratio decreases when the velocity inputs are augmented.
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Figure 12. Full results of auxiliary agent episode ratio and evaluation success rate.
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B.4. Curriculum Visualization

We report the full results for the curriculum visualization from the main script. As shown in Figure 13, curriculum goals for
both forward and auxiliary agents converge to their respective target state distribution.
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Figure 13. Full results of the curriculum goals visualization and their average normalized distance to assigned target goals. The red and
blue dots indicate the curriculum goals for the forward and auxiliary agents, respectively. Note that the exact positions of the robots and

objects are meaningless; these are just rendered from their default states.
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B.5. Ablation Study

We report the full results of the ablation study from the main script. As shown in Figure 14, success rates generally decrease
as we remove the bidirectional goal curriculum, with further degradation when the auxiliary agent is removed.
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Figure 14. Full results of ablation study — removing the bidirectional curriculum and auxiliary agent proposed in this work degrades
performance.

B.6. Reward-free Variant

We report the full results of the reward-free variant (C-learning variant) from the main script in Figure 15. The overall trend
discussed in the main script also applies to the full result. One thing of note is that the reward-free variant performs better in
the Sawyer Door environment when the door velocity is augmented.
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Figure 15. Full results of the reward-free variant — normalized distance to goal and evaluation success rate.
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