
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AN AGENTIC FRAMEWORK WITH LLMS FOR SOLVING
COMPLEX VEHICLE ROUTING PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Complex vehicle routing problems (VRPs) remain a fundamental challenge, de-
manding substantial expert effort for intent interpretation and algorithm design.
While large language models (LLMs) offer a promising path toward automation,
current approaches still rely on external intervention, which restrict autonomy and
often lead to execution errors and low solution feasibility. To address these chal-
lenges, we propose an Agentic Framework with LLMs (AFL) for solving com-
plex vehicle routing problems, achieving full automation from problem instance
to solution. AFL directly extracts knowledge from raw inputs and enables self-
contained code generation without handcrafted modules or external solvers. To
improve trustworthiness, AFL decomposes the overall pipeline into three man-
ageable subtasks and employs four specialized agents whose coordinated interac-
tions enforce cross-functional consistency and logical soundness. Extensive ex-
periments on 20 complex VRPs, ranging from standard benchmarks to practical
variants, validate the effectiveness and generality of our framework, showing com-
parable performance against meticulously designed algorithms. Notably, it sub-
stantially outperforms existing LLM-based baselines in both code reliability and
solution feasibility, achieving rates close to 100% on the evaluated benchmarks.

1 INTRODUCTION

Vehicle routing problems (VRPs) are fundamental to industrial and commercial applications such as
logistics (Bochtis & Sørensen, 2010; Konstantakopoulos et al., 2022) and transportation (Cattaruzza
et al., 2017; Zhang et al., 2022), yet they remain challenging to solve due to their diverse variants
with intricate real-world constraints. Traditional approaches (Furnon & Perron; Helsgaun, 2017;
Vidal, 2022; Wouda et al., 2024) often require substantial expert effort, either to translate problem
statements into mathematical formulations or to design specialized algorithms. Although recent
neural solvers (Kool et al., 2018; Kwon et al., 2020) alleviate the dependence on domain knowledge,
they still require a certain degree of manual adaptation to address more complex VRPs.

More recently, large language models (LLMs) (Zhao et al., 2023), with their strong natural lan-
guage understanding and code generation capabilities, may offer a promising avenue for automa-
tion, reducing reliance on manual effort and enabling flexible solver development across diverse
VRP variants. Some early attempts (Yang et al., 2024; Liu et al., 2024b) directly prompt LLMs to
generate solutions but fall short in terms of solution optimality and feasibility. Other approaches
(Romera-Paredes et al., 2024) explore the use of LLMs to generate programming code as a proxy
for addressing challenges in VRP optimization, which can be broadly categorized into two direc-
tions. The first direction centers on evolving basic heuristics tailored for conventional VRPs, with
representative examples including EoH (Liu et al., 2024a) and ReEvo (Ye et al., 2024a). In contrast,
the second direction emphasizes developing general frameworks capable of handling diverse VRP
variants, making it more practical and application-oriented.

Early research efforts have started to address this challenging second direction. Their workflow gen-
erally comprises two phases: framework-design, in which the architecture and generation strategy
are specified (see Section 3), and framework-execution, in which the resulting framework is deployed
to solve diverse problem instances. ARS (Li et al., 2025a) constructs constraint-checking functions
by retrieving and adapting templates from a predefined constraint library, while DRoC (Jiang et al.,
2025) employs a retrieval-augmented generation (RAG) strategy to produce code that invokes OR-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparison of representative LLM-based approaches for VRPs.

ARS
(Li et al., 2025a)

DRoC
(Jiang et al., 2025)

SGE
(Iklassov et al., 2024)

AFL
(This Work)

Complex VRPs ✓ ✓ ✗ ✓
Self-Containment§ ✗ ✗ ✓ ✓
Full Automation† ✗ ✗ ✗ ✓
High Trustworthiness∗ ✗ ✗ ✗ ✓
§ LLMs produce complete code without relying on handcrafted modules or external solvers during framework-design.
† The entire workflow proceeds from raw input to final solution without human intervention during framework-execution.
∗ Achieving high code reliability and solution feasibility (e.g., ≥ 95%).

Tools (Furnon & Perron) for problem solving. Although both ARS and DRoC can handle complex
VRPs, these module-level generation methods are not self-contained, depending on handcrafted
code modules or external solvers during framework-design, and not fully automated, as they still
require human involvement to extract instance-specific information during framework-execution.
This dependence may introduce misalignment between LLM-generated code and external systems,
which can result in execution errors and reduced solution feasibility. In contrast, SGE (Iklassov
et al., 2024) achieves self-containment but is limited to relatively simple problems like the Traveling
Salesman Problem (TSP), as it lacks effective mechanisms for handling complex constraints and
fails to provide full automation or reliable code and solution validity. In this paper, as summarized
in Table 1, we address these limitations by proposing a general framework of collaborative LLM-
empowered agents that can tackle complex VRPs with self-containment, full automation, and high
trustworthiness in both code and solutions.

We introduce an Agentic Framework with LLMs (AFL) that solves complex VRPs end-to-end, from
problem instance to solution. Specifically, it derives domain knowledge directly from instance inputs
and leverages this knowledge to guide code generation. To enhance the feasibility and reliability of
the generated code and the resulting VRP solutions under complex constraints, the pipeline is de-
composed into three tractable subtasks: problem description, code generation, and solution deriva-
tion, each handled by multiple LLM agents tailored to its task. In total, we design four specialized
agents, including generation agent, judgment agent, revision agent, and error analysis agent, col-
laborate to ensure cross-functional consistency, logical soundness, and constraint satisfaction. The
overview of AFL is presented in Fig. 1. Our main contributions are summarized as follows.

1) Conceptually, we position LLMs as knowledgeable developers of self-contained frameworks for
solving complex VRPs, achieving full automation from problem instance to solution without
reliance on handcrafted modules or external solvers.

2) Methodologically, we propose AFL, an agentic LLM framework that decomposes the inherently
intractable pipeline into three manageable subtasks and employs four specialized agents to col-
laboratively enhance trustworthiness in both code and solutions.

3) Experimentally, we evaluate AFL on 20 VRPs, comprising 8 representative VRPs from the lit-
erature, 8 complex electric VRPs from practical scenarios, and 4 classical VRPs in broader set-
tings. Extensive results demonstrate the effectiveness and generality of our framework, showing
competitive performance against carefully tailored algorithms while delivering superior code re-
liability and solution feasibility compared to existing LLM-based approaches.

2 PRELIMINARIES

The VRP is a fundamental combinatorial optimization task. It seeks a set of minimum-cost routes
that allow a fleet of vehicles to serve geographically distributed customers while satisfying practi-
cal constraints such as vehicle capacity, route length, or customer time windows. Classic variants
include the Capacitated VRP (CVRP), where each vehicle has a fixed capacity limit; the VRP with
Time Windows (VRPTW), where every customer must be served within a specific time interval; and
the Electric VRP (EVRP), which incorporates battery capacity and recharging requirements. These
formulations capture diverse real-world delivery, ride-sharing, and service-dispatch applications. A
detailed introduction to each variant considered in this paper is provided in Appendix B.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 2: Constraint descriptions and corresponding VRPLib-format fields.

Constraint VRPLib Field Description

Capacity (C)
CAPACITY Each vehicle has a maximum load capacity, and each

customer is associated with a demand that must be
satisfied without exceeding this capacity.

DEMAND SECTION

Duration Limit (L)
DISTANCE LIMIT Each vehicle route is constrained by a maximum

travel distance, and the total distance of any route
must not exceed this limit.

Time Windows (TW)
TIME WINDOW SECTION Each customer must be served within a specified time

interval, and service times must be included in the
schedule to maintain feasibility.

SERVICE TIME SECTION

Open Route (O)
DEPOT SECTION Vehicles may not be required to return to the depot after

serving their assigned customers, relaxing the standard
closed-route assumption.

Electric Vehicle (E)

FUEL CAPACITY Electric vehicles are constrained by limited battery
capacity; they consume energy during travel and
refuel at recharging stations.

FUEL CONSUMPTION RATE
REFUEL RATE
STATION SECTION

To represent benchmark instances in a consistent way, we adopt the VRPLIB format (Uchoa et al.,
2017), a plain-text specification similar to TSPLIB (Reinelt, 1991). A VRPLIB file begins with
general information such as the instance name and an optional comment, followed by key sections
specifying the problem type, edge weight type, dimension, and the coordinates of each location.
Additional sections may describe customer demands and vehicle capacity, distance limits, time win-
dows and service times, or energy-related data for electric vehicles, including fuel capacity, fuel
consumption rate, refueling rate, and charging station locations. The mapping between constraints
and their corresponding VRPLIB fields is summarized in Table 2, with further details on each field
provided in Table 7 in the Appendix. Our AFL directly takes VRPLIB-format instances as input.

3 METHODOLOGY

In this section, we introduce AFL, an agentic LLM framework for solving complex VRPs by struc-
turing the pipeline into three subtasks: problem description, code generation, and solution deriva-
tion. Within these subtasks, specialized agents, including the generation agent (GA), judgment agent
(JA), revision agent (RA), and error analysis agent (EAA), collaborate to fulfill their respective roles,
ultimately enhancing the trustworthiness of both the generated code and the derived solutions under
the constraints of the given problem instance.

The overview of AFL is presented in Fig. 1. Specifically, given a VRP instance G, the system first
generates a problem description D(G) through the collaborative operation of the GA, JA, and RA.
This problem description is then used to query the buffer to check whether relevant code has been
previously stored. If such code exists, the workflow proceeds directly to the solution derivation
stage. Otherwise, the GA progressively generates the required functions one by one, while the JA
and RA iteratively evaluate and refine the code until it meets all requirements and constraints. Once
a complete implementation is produced, it is executed to derive a solution. If execution errors occur,
the EAA diagnoses their causes and provides explanations and suggestions, which the RA and JA
use to revise the code. This iterative process continues until the code passes validation and produces
a feasible solution. Finally, the corresponding problem description and code are stored in the buffer
for future reuse. Examples of the agents’ prompts and outputs for each subtask are provided in
Appendix D. In the following, we present each specialized agent and pipeline stage in detail.

3.1 SPECIALIZED AGENT

Generation Agents (GA) are responsible for producing descriptions and code. In the problem
description subtask, they generate a descriptionD(G) for the input VRPLib-format instance G. In the
code generation subtask, they generate function code C(G,D(G),P(f)) in an end-to-end manner,
guided by the instance, the generated description, and the specific prompts P(f) associated with
function f . The resulting description and code are then forwarded to the JA for evaluation.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Subtask 1: Problem Description

TYPE : CVRP

DIMENSION : 51

CAPACITY : 1

EDGE_WEIGHT_TYPE :

EUC_2D

NODE_COORD_SECTION

1 0.191519 0.622109

2 0.437728 0.785359

3 0.779976 0.272593

……
Generation

Agent

What this

problem is?

Description Generation

Instance

Description Judgement and Revision

Judgement

Agent

Is this

description right?

If no, why?

Revision

Agent

Considering the

description and

judgment, I need

to revise the

description.

Subtask 3: Solution Derivation

Code Execution

CVRP.py

Code

Problem

Description

Python

Subtask 2: Code Generation

Code Existence Check

Judgement

Agent

Is this code right? If

no, I need to explain

why and provide

revision suggestions.Revision

Agent

Base on the problem

description, function

requirement, code and

judgement, I need to

revise the code.

Problem Description Buffer

Description Constrain

Input Output

Objective Code
Generation

Agent

I need to

generate the

initial/destr

oy/insert/…

function

Code Generation

Code Judgement and Revision

Judgement and Suggestion

True

False

Code

CVRP.py

!
ERROR

Error

Error Analysis

Agent

Given the problem

description, code,

and error, why

does this error

occur and how can

it be solved?

Error Analysis

Error Analysis

Code Revision

Judgement

Agent

Revision

Agent

TYPE : CVRP

DIMENSION : 51

CAPACITY : 1

EDGE_WEIGHT_TYPE :

EUC_2D

NODE_COORD_SECTI

ON

1 0.191519 0.622109

2 0.437728 0.785359

3 0.779976 0.272593

……

Instance

Problem Description

and Code

Iterate and Store Final Code

Buffer

Description Constr

ain
Input Output

Objective Code

Figure 1: Overview of an agentic framework with LLMs for solving complex VRPs.

Judgment Agents (JA) evaluate the validity of the generated description and code. In the problem
description subtask, they verify whether D(G) aligns with the instance context. In the code gen-
eration and solution derivation subtasks, they further assess whether the generated or revised code
satisfies the prompt requirements and is free from syntactic and logical errors. If the judgment is
positive, the description or code is accepted and the process advances to the next step. Otherwise,
the JA provides explanations of identified issues along with suggestions for resolution by the RA.

Revision Agents (RA) refine both the description and the code. Description revision is guided by
the JA’s feedback and the instance context, while code revision additionally leverages the previously
generated description. After each revision, the updated description or code is returned to the JA for
re-evaluation, and this process continues until a positive judgment is reached.

Error Analysis Agents (EAA) operate exclusively in the solution derivation subtask, where they
analyze the causes of errors during code execution and provide suggestions for resolving them. The
analysis is then passed to the RA for code revision.

3.2 SUBTASK 1: PROBLEM DESCRIPTION

Description Generation. Given a VRPLib-format instance G, our framework automatically extracts
domain knowledge from the instance context without human intervention, offering a user-friendly
interface for problem setup. The VRPLib format is a widely adopted benchmark specification for
VRPs, defining essential elements such as the problem type, number of nodes, node coordinates,
depot ID, and various constraint-related parameters, as summarized in Table 2. Based on this, the
GA generates the problem description for the given instanceD(G) = {P, S,K,X, Y, Z}. A detailed
example is provided in Appendix D.1. Here, we define the components of D(G) as follows:

1) P specifies the type of problem (e.g., CVRP, VRPTW, ECVRPTW). It is inferred from the prob-
lem type and the constraint-related parameters defined in the instance context, and it determines
the name of the generated code file (e.g., CVRP.py).

2) S denotes the textual description of the instance’s problem type. It is provided to the code
generation subtask to inform the agents about the problem definition.

3) K represents the set of constraints along with their explanations. These are derived from the
constraint-related parameters and problem type specified in the instance context. In addition,
K includes visit and depot constraints, which are supplementary requirements automatically
analyzed and inferred by the GA. Within the code generation subtask, K guides the agents in
embedding these constraints into function design, thereby enhancing the solution feasibility.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4) X denotes the required input for solving the given instance. In the code generation subtask, it
specifies the information that must be read from the instance and enforces consistency by requir-
ing input variable names to match those in X , thereby reducing potential errors. For example, in
CVRP, X includes node coordinates, depot ID, customer demands, and vehicle capacity.

5) Y refers to the expected output. For instance, in CVRP, the solver should produce a set of vehicle
routes, each starting and ending at the depot, visiting every customer exactly once, ensuring that
no vehicle route exceeds capacity and that all demands are satisfied. Moreover, the returned route
should represent the best feasible solution among the candidates.

6) Z represents the objective function, such as minimizing the total travel distance, which is further
used in constructing the cost function code.

Description Judgment and Revision. After the GA generates the above problem descriptionD(G),
the JA evaluates its correctness. The evaluation checks: (i) whether any component of D(G) con-
flicts with the instance, (ii) whether the components are internally consistent, and (iii) whether the
input definition X is properly specified in the instance context. If a conflict is detected, the instance
context serves as the reference standard. If no issues are found, the output is set to TRUE, the prob-
lem description subtask terminates, and the process advances to the next code generation subtask.
Otherwise, the output is set to FALSE, accompanied by explanations of the negative judgment and
suggestions for the RA to make correction. The RA then revises D(G) based on the JA’s feedback
and the instance context. The revised description is returned to the JA for re-evaluation, and this iter-
ative process continues until the JA confirms thatD(G) is correct. This iterative procedure improves
the accuracy ofD(G), as demonstrated by the ablation study in Section 4.4. The problem description
subtask provides the essential information required for code generation and enforces unified naming
conventions and constraints, which must remain consistent throughout the entire pipeline.

3.3 SUBTASK 2: CODE GENERATION

We adopt a unified destroy-insert heuristic for solving VRPs, as it offers greater flexibility than
others and can handle complex, practical problem variants. The code generation subtask consists
of interdependent functions: read vrp, distance, cost, initial, destroy, insert, validate, and
main, which together form a complete VRP solver. Generating the full solver code, however, is
challenging, as it requires maintaining consistency across multiple functions while satisfying all
requirements. To address this, the GA produces the functions sequentially, with each building upon
the previously generated code to ensure correctness and reduce the burden on the LLM. In addition,
the JA and RA iteratively refine the code by correcting unmet requirements, syntactic errors, and
logical inconsistencies after each function is generated. We describe each step in detail below.

Code Generation. The code structure of the problem-solving workflow is shown in Fig. 2. We
specify the role of each function to provide a structured foundation for guiding the GA in generat-
ing the corresponding code. Note that these functions are executed only in the solution derivation
subtask and are debugged by the EAA if any runtime errors occur.

read_vrp

initial

distance

validate

cost

validate

cost

simulated

annealing

Initialization Improvement

insert

destroy

Figure 2: Code structure.

First, read vrp parses a VRPLib-format instance file into a
structured dictionary containing all required fields specified
by the input X ∈ D(G), ensuring that each variable in X
is accurately extracted from the instance context G. Next,
distance computes the distance matrix from the node coor-
dinates. initial constructs a solution using a greedy strategy
that respects constraints in K. The feasibility of the solution
is verified by validate. cost evaluates the objective value
of a given solution according to the objective function Z.
To enable iterative improvement, destroy removes a subset
of customers from the current solution, following the strat-
egy described in Appendix C.2 and Algorithm 1. Then, the
insert function reinserts the removed customers into feasible
positions while minimizing the additional cost. If no feasi-
ble insertion exists, a new vehicle is assigned to serve these
customers in compliance with constraints in K. At each im-
provement step, the feasibility of the resulting solution is ver-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

ified by validate to ensure that every constraint in K is satisfied. If any constraint is violated, the
function is required to raise an error, making debugging by the EAA easier. Finally, main orches-
trates the entire workflow, encompassing initialization, iterative improvement, and overall solution
management, as illustrated in Fig. 2. In the initialization phase, an initial feasible solution is gen-
erated, while in the improvement phase (T steps in total), the solution is iteratively refined through
destruction, insertion, validation, and cost evaluation, with new solutions accepted according to the
simulated annealing criterion (see Appendix C.3).

Code Judgment and Revision. For each function generated by the GA, the JA assesses the cor-
rectness of the code produced thus far, checking compliance with the requirements and detecting
any syntactic or logical errors. If issues are identified, the RA revises the code based on the JA’s
feedback and the instance context. The revised code is then returned to the JA for re-evaluation,
and this process is repeated until the JA delivers a positive judgment. By validating and correct-
ing each code segment before generating the next function, this mechanism reduces the burden on
subsequent code generation and revision, improves efficiency, and enhances the reliability of the
final solver implementation. Moreover, constraint considerations are enforced throughout the code
generation process. The generated code is repeatedly checked to ensure that all constraints in K are
properly incorporated. This iterative enforcement helps the final solver produce solutions feasible
with respect to the instance constraints.

3.4 SUBTASK 3: SOLUTION DERIVATION

The functions produced in the code generation subtask is not always executable, as constructing
a full VRP solver is highly complex. Bugs may arise for several reasons: some stem from syn-
tactic errors, others from logical flaws, and still others from unmet requirements, such as failing
to incorporate certain constraints. Although we have designed strategies such as enforcing con-
straint considerations during code generation, guaranteeing the correctness of LLM-generated code
remains non-trivial. To address this challenge and enhance the trustworthiness of the generated VRP
solver, we leverage an EAA to identify the cause of errors and provide explanations along with sug-
gestions for correction. Similar to the code generation subtask, the RA then modifies the code based
on this feedback, after which the JA evaluates the revision. If the code remains unsatisfactory, the
RA further adjusts it according to the JA’s feedback, and this process repeats until the JA delivers
a positive judgment. The revised code is then re-executed to obtain a feasible solution. Eventually,
the model stores the problem description D(G) together with the corresponding generated code in
the buffer. If the same problem is encountered again, the framework can directly reuse the stored
code, thereby improving efficiency and avoiding redundant computation.

4 EXPERIMENT

We first evaluate AFL against traditional and neural approaches on 8 standard benchmarks incorpo-
rating common constraints such as capacity (C), duration limit (L), time window (TW), and open
route (O), which are widely used to assess traditional algorithms. We then extend the evaluation to 8
practical electric (E) VRPs, which remain challenging for traditional solvers. Next, we benchmark
AFL against LLM-based approaches, assessing code reliability, solution feasibility, and overall per-
formance. We also conduct ablation studies to examine the effectiveness of our agentic design.
Finally, we evaluate 4 additional open benchmarks, including TSP, ATSP, ACVRP, and SOP, to
demonstrate the broad applicability of our framework. We run all traditional and LLM-based ap-
proaches on 16 CPU cores, with GPT-4.1 (OpenAI, 2024) as the default LLM used in AFL.

4.1 COMPARISON ON STANDARD BENCHMARK

We compare AFL with the traditional solvers HGS (implemented in PyVRP) (Vidal, 2022; Wouda
et al., 2024) and OR-Tools (Furnon & Perron), as well as the neural solver RF-POMO (Berto et al.,
2025b). The experimental settings and testing data follow Berto et al. (2025b), including 1,000
instances for each problem. Note that our objective is not to surpass SOTA solvers on conventional
VRPs, which reflect decades of expert effort, but to develop a fully automated and self-contained
framework for tackling complex VRPs. Therefore, in the comparison shown in Table 3, we regard
a 3% relative gap with respect to SOTA solvers as an acceptable criterion. We report the results

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Comparison results on standard benchmarks.

n=50 n=100 n=50 n=100

Obj. Gap (%) Time (m) Obj. Gap (%) Time (m) Obj. Gap (%) Time (m) Obj. Gap (%) Time (m)

HGS-PyVRP

C
V

R
P

10.37 – 10.40 15.62 – 20.80

C
V

R
PL

10.59 – 10.40 15.77 – 20.80
OR-Tools 10.57 1.91 10.40 16.28 4.18 20.80 10.83 2.34 10.40 16.47 5.30 20.80
RF-POMO 10.51 1.31 0.03 15.91 1.83 0.12 10.75 1.52 0.02 16.11 2.17 0.10
AFL (T=500) 10.89 5.01 0.18 16.66 6.66 0.32 11.35 7.18 0.33 17.36 10.08 1.03
AFL (T=2000) 10.70 3.18 0.46 16.22 3.84 1.02 11.25 6.23 1.13 17.03 7.99 7.35
AFL (T=10000) 10.59 2.12 2.10 15.99 2.38 4.38 11.18 5.57 6.93 16.84 6.79 25.48

HGS-PyVRP

C
V

R
PT

W

16.03 – 10.40 25.42 – 20.80

O
C

V
R

P

6.51 – 10.40 9.73 – 20.80
OR-Tools 16.08 0.35 10.40 25.81 1.51 20.80 6.55 0.69 10.40 10.00 2.73 20.80
RF-POMO 16.37 2.09 0.02 26.34 3.58 0.12 6.70 2.90 0.02 10.18 4.66 0.10
AFL (T=500) 16.49 2.87 0.59 26.60 4.64 2.15 6.79 4.30 0.31 10.37 6.58 0.4
AFL (T=2000) 16.28 1.56 2.26 26.02 2.36 8.92 6.69 2.76 0.66 10.11 3.91 1.16
AFL (T=10000) 16.19 0.99 9.31 25.79 1.46 38.45 6.64 2.00 2.20 9.99 2.67 5.52

HGS-PyVRP

C
V

R
PL

T
W

16.36 – 10.40 25.76 – 20.80

O
C

V
R

PL

6.51 – 10.40 9.72 – 20.80
OR-Tools 16.44 0.50 10.40 26.26 1.90 20.80 6.55 0.67 10.40 10.00 2.79 20.80
RF-POMO 16.75 2.38 0.02 26.78 3.95 0.12 6.70 2.95 0.02 10.18 4.66 0.1
AFL (T=500) 17.07 4.34 0.61 27.60 7.14 1.95 6.81 4.61 0.43 10.37 6.68 1.03
AFL (T=2000) 16.78 2.57 1.95 26.96 4.66 7.21 6.71 3.07 1.21 10.15 4.42 3.68
AFL (T=10000) 16.61 1.53 8.90 26.56 3.11 35.33 6.64 1.99 5.65 9.99 2.78 16.27

HGS-PyVRP

O
C

V
R

PT
W

10.51 – 10.40 16.93 – 20.80

O
C

V
R

PL
T

W

10.51 – 10.40 16.93 – 20.80
OR-Tools 10.52 0.08 10.40 17.03 0.58 20.80 10.50 0.11 10.40 17.02 0.73 20.80
RF-POMO 10.66 1.38 0.02 17.39 2.72 0.12 10.66 1.38 0.02 17.39 2.73 0.12
AFL (T=500) 10.64 1.24 0.67 17.36 2.54 0.75 10.74 2.12 1.05 17.61 4.02 3.63
AFL (T=2000) 10.57 0.57 2.86 17.14 1.24 10.63 10.64 1.24 3.76 17.32 2.30 16.75
AFL (T=10000) 10.55 0.38 11.15 17.04 0.65 49.05 10.58 0.67 17.27 17.19 1.54 70.31

Note: The term obj. denotes the objective value, gap represents the relative gap with respect to HGS-PyVRP, and time indicates the total runtime. For all
three metrics, lower values are better. Bold numbers highlight our cases where the gap from the SOTA is within 3%, which is considered acceptable given
that our framework is fully automated and self-contained.

of AFL after 500, 2,000, and 10,000 iterations of solution improvement. The runtime of AFL is
measured as the sum of the problem description and solution derivation phases. The code generation
phase, analogous to the training phase of a neural solver, is excluded, since once the solver code is
produced, it can be reused across instances without incurring repeated generation overhead.

AFL automatically generates a complete VRP solver without any manual intervention. As shown
in Table 3, it achieves a relative gap within 3% of the SOTA HGS on most benchmark prob-
lems, demonstrating competitive performance. It is worth noting that the reported runtimes exhibit
stochastic variation: more complex problems do not necessarily result in longer execution times. For
example, the runtime on OCVRPL is shorter than that on CVRPL. This variability arises from the
LLM-based code generation process, where the model may occasionally produce implementations
(e.g., sorting) with higher algorithmic complexity, leading to longer runtimes.

4.2 COMPARISON ON PRACTICAL BENCHMARK

Traditional solvers like HGS (Vidal, 2022; Wouda et al., 2024) and OR-Tools (Furnon & Perron)
are inherently constrained by their internal implementations and cannot be directly adapted to new
problem settings without substantial modifications to the core codebase, whereas AFL can natu-
rally accommodate practical VRPs. To demonstrate this, we conduct experiments on a widely used
benchmark for ECVRPTW (Schneider et al., 2014), a representative variant of the electric vehicle
routing problem (EVRP). Specifically, the dataset contains 36 small instances with 5, 10, and 15
customers, as well as 56 large instances with 100 customers. To further assess generality, we extend
this benchmark to 7 additional EVRP variants, namely ECVRP, ECVRPL, EOVRPL, EOCVRP,
EOCVRPTW, ECVRPLTW, and EOCVRPLTW, enabling a more comprehensive evaluation across
diverse and challenging problem settings. Given the intrinsic difficulty of these problems and the
lack of directly applicable advanced solvers, we adopt ACO and Greedy as baselines, as both are
widely recognized flexible heuristics for complex VRPs. For ACO, the number of improvement
steps is fixed at 500. The results in Table 4 demonstrate the consistent effectiveness of AFL. Al-
though ACO is executed with 500 improvement steps, our framework attains better objective values
in shorter runtimes. These empirical findings highlight the superiority of AFL on complex and
practical VRPs, where traditional solvers often face limitations.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Comparison results on practical benchmarks.

Small Instances Large Instances Small Instances Large Instances

Obj. Gap (%) Time (m) Obj. Gap (%) Time (m) Obj. Gap (%) Time (m) Obj. Gap (%) Time (m)

ACO

E
C

V
R

P

270.68 0.00 0.23 1384.15 0.00 6.89

E
C

V
R

PL

341.74 0.00 0.24 952.07 0.00 7.92
Greedy 309.63 14.39 0.05 1407.97 1.72 0.13 714.34 109.03 0.06 7298.83 666.63 0.20
AFL (T=500) 266.21 -1.65 0.18 1145.51 -17.24 0.26 276.95 -18.96 0.18 885.15 -7.03 0.43
AFL (T=2000) 264.21 -2.39 0.24 1100.11 -20.52 0.54 276.94 -18.96 0.25 866.87 -8.95 1.22
AFL (T=10000) 263.33 -2.72 0.51 1045.74 -24.45 2.19 276.94 -18.96 0.53 861.05 -9.56 4.95

ACO

E
C

V
R

PT
W

323.88 0.00 0.25 1129.67 0.00 7.00

E
O

C
V

R
P

179.30 0.00 0.22 796.97 0.00 6.81
Greedy 379.88 17.29 0.06 1868.64 65.41 0.22 197.03 9.89 0.06 866.02 8.66 0.20
AFL (T=500) 306.50 -5.37 0.18 1101.14 -2.53 0.40 166.76 -6.99 0.19 632.73 -20.61 0.61
AFL (T=2000) 300.95 -7.08 0.23 1071.22 -5.17 1.17 166.02 -7.41 0.40 628.34 -21.16 1.90
AFL (T=10000) 300.23 -7.30 0.51 1044.63 -7.53 4.52 165.41 -7.75 1.20 623.36 -21.78 10.82

ACO

E
C

V
R

PL
T

W

419.85 0.00 0.44 2842.17 0.00 13.88

E
O

C
V

R
PL

204.87 0.00 0.34 759.24 0.00 10.50
Greedy 434.29 3.44 0.09 3039.87 6.96 0.34 221.34 8.04 0.08 896.92 18.13 0.30
AFL (T=500) 388.36 -7.50 0.21 2729.73 -3.96 0.50 173.43 -15.35 0.21 726.34 -4.33 0.54
AFL (T=2000) 386.84 -7.86 0.30 2612.83 -8.07 1.54 172.90 -15.61 0.36 693.71 -8.63 1.50
AFL (T=10000) 381.84 -9.05 0.87 2527.87 -11.06 7.07 172.53 -15.79 1.12 669.43 -11.83 9.29

ACO

E
O

C
V

R
PT

W

223.91 0.00 0.39 1139.12 0.00 11.98

E
O

C
V

R
P

LT
W

205.77 0.00 27.55 1184.48 0.00 14.12
Greedy 241.22 7.73 0.08 1219.73 7.08 0.33 222.89 8.32 0.10 1230.85 3.91 0.37
AFL (T=500) 183.26 -18.15 0.19 856.13 -24.84 0.43 181.74 -11.68 0.20 785.53 -33.68 0.48
AFL (T=2000) 183.11 -18.22 0.24 835.03 -26.70 1.20 181.43 -11.83 0.26 777.02 -34.40 1.26
AFL (T=10000) 182.88 -18.32 0.49 815.64 -28.40 4.75 181.27 -11.91 0.53 775.03 -34.57 5.84

Table 5: RER and SR.

RER ↓ SR ↑

SGE 94.1% 5.9%
DRoC 82.4% 17.6%
AFL 0% 100%

Table 6: Performance comparison on benchmark instances.

TSPLib CVRPLib CVRPL

50–200 200–500 500–1000 100–200 200–500 500–1000 50 100

SGE 109.59% 287.53% 660.36% – – – – –
DRoC 3.02% 3.96% 4.22% 3.93% 8.35% – 6.80% 8.31%
AFL 1.28% 2.68% 2.98% 1.93% 5.20% 6.66% 5.57% 6.79%

4.3 COMPARISON WITH LLM-BASED SOLVER

We compare AFL in trustworthiness and performance with representative LLM-based approaches
for diverse VRPs (above 16 variants plus TSP), namely SGE (Iklassov et al., 2024) and DRoC (Jiang
et al., 2025), while excluding ARS (Li et al., 2025a) due to the unavailability of its source code.

To assess trustworthiness, we report the Runtime Error Rate (RER), which measures the percentage
of generated code that executes with errors, and the Success Rate (SR), which measures the percent-
age of generated code that produces feasible solutions. As summarized in Table 5 and detailed in
Appendix C.4, SGE is limited to solving only TSP, attaining an RER of 94.1% and an SR of 5.9%.
DRoC extends to TSP, CVRP, and VRPL, with an RER of 82.4% and an SR of 17.6%. In contrast,
AFL successfully handles all 17 tested VRP variants, reaching 0% RER and 100% SR, highlighting
its superior code reliability and solution feasibility.

To assess performance, we further evaluate AFL on the problem classes (i.e., TSP, CVRP, and
CVRPL) solvable by SGE and DRoC. Specifically, we conduct experiments on TSPLib (Reinelt,
1991), a real-world TSP benchmark containing 50 instances with sizes ranging from 50 to 1,000
customers, and on CVRPLib (Uchoa et al., 2017), a real-world CVRP benchmark containing 100 in-
stances with sizes ranging from 100 to 1,000 customers. For CVRPL, we adopt the same benchmark
setting as in Section 4.1. The results are shown in Table 6, where gaps for TSPLib and CVRPLib
are reported relative to their best-known solutions, while CVRPL gaps are measured against HGS.
DRoC is able to solve CVRPLib instances only with fewer than 500 customers within the 10-hour
time limit. Across all evaluated benchmarks, AFL consistently outperforms both SGE and DRoC.

4.4 ABLATION STUDY

To study the necessity of the judgement agent (JA) and revision agent (RA), we run ablation ex-
periments by removing them from AFL. The results are shown in Fig. 3. Without JA and RA, the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

CVRP VRPL VRPTW OVRP VRPLTW OVRPL OVRPTW OVRPLTW
Problem Type

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Accuracy of Problem Descriptions on Standard Benchmark

None
Revision
Judgement+Revision

ECVRP EVRPL EVRPTW EOVRP EVRPLTW EOVRPL EOVRPTW EOVRPLTW
Problem Type

0

20

40

60

80

100

Ac
cu

ra
cy

 (%
)

Accuracy of Problem Descriptions on Practical Benchmark

None
Revision
Judgement+Revision

CVRP VRPL VRPTW OVRP VRPLTW OVRPL OVRPTW OVRPLTW
Problem Type

0
5

10
15
20
25
30
35
40

Ga
p

(%
)

Gap (%) on Standard Benchmark (n=50)
Revision
Judgement+Revision

CVRP VRPL VRPTW OVRP VRPLTW OVRPL OVRPTW OVRPLTW
Problem Type

0
5

10
15
20
25
30
35

Ga
p

(%
)

Gap (%) on Standard Benchmark (n=100)
Revision
Judgement+Revision

Figure 3: Ablation studies on the JA and RA.

framework frequently produces incorrect problem descriptions and invalid code. With RA included,
the framework becomes more robust, yielding more accurate problem descriptions and executable
code. With both JA and RA, the accuracy of problem description reaches almost 100%, and the
framework produces reliable code and feasible solutions. This improvement arises because these
agents ensures that all operator requirements are adequately considered during the code generation.
These results verify our agentic design, showing that JA and RA are crucial for maintaining accurate
problem descriptions and ensuring the trustworthiness of the generated code and derived solutions.

4.5 BROAD APPLICABILITY

We further evaluate AFL on four additional open benchmarks: TSP, ATSP, ACVRP, and SOP. Re-
sults for TSP are presented in Table 6. ATSP and ACVRP capture asymmetric routing, which fre-
quently arises in real-world applications, while SOP introduces precedence-constrained path plan-
ning, another realistic and challenging setting. Specifically, the ATSP benchmark (Johnson & Mc-
Geoch, 1997) contains 18 instances ranging from 17 to 443 nodes. The ACVRP dataset (Helsgaun,
2017) provides 120 capacity-constrained cases with asymmetric distance matrices covering 16 to
200 customers. The SOP benchmark (Renaud et al., 1996) includes 39 precedence-constrained in-
stances with sizes between 9 and 380 nodes. Experimental results for ATSP, ACVRP, and SOP are
presented in Table 9, Table 10, and Table 11 in the Appendix, respectively. By achieving competitive
performance across these diverse datasets, AFL demonstrates broad applicability, indicating that our
framework has the potential to be extended to a wider range of problem variants.

5 CONCLUSION

This paper introduces AFL, an agentic LLM-based framework for solving complex vehicle routing
problems (VRPs). Unlike prior approaches that depend on human intervention or predefined mod-
ules, AFL achieves self-containment and full automation by extracting domain knowledge directly
from raw inputs and generating executable code and feasible solutions end-to-end. By decomposing
the pipeline into three tractable subtasks and coordinating four specialized agents, AFL substan-
tially improves code reliability and solution feasibility. Extensive experiments on 20 standard and
practical VRP variants demonstrate the effectiveness, applicability, and trustworthiness of AFL.

The main limitation lies in performance, which do not yet surpass state-of-the-art solvers specifically
designed for well-studied problems such as CVRP, a trade-off we consider acceptable given AFL’s
automation and generality. As future work, we plan to incorporate strategies such as evolutionary
search to guide code generation and further enhance both code quality and search efficiency. Overall,
our work highlights the potential of agentic LLMs as a general and trustworthy paradigm for solving
complex combinatorial optimization problems with minimal domain knowledge, paving the way for
more autonomous and adaptive optimization frameworks and democratizing access to advanced
optimization techniques for non-expert users.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. In ICLR Workshop Track, 2017.

Federico Berto, Chuanbo Hua, Junyoung Park, Laurin Luttmann, Yining Ma, Fanchen Bu, Jiarui
Wang, Haoran Ye, Minsu Kim, Sanghyeok Choi, Nayeli Gast Zepeda, André Hottung, Jianan
Zhou, Jieyi Bi, Yu Hu, Fei Liu, Hyeonah Kim, Jiwoo Son, Haeyeon Kim, Davide Angioni, Wouter
Kool, Zhiguang Cao, Jie Zhang, Kijung Shin, Cathy Wu, Sungsoo Ahn, Guojie Song, Changhyun
Kwon, Lin Xie, and Jinkyoo Park. RL4CO: an Extensive Reinforcement Learning for Com-
binatorial Optimization Benchmark. In Proceedings of the 31st ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2025a.

Federico Berto, Chuanbo Hua, Nayeli Gast Zepeda, André Hottung, Niels Wouda, Leon Lan, Juny-
oung Park, Kevin Tierney, and Jinkyoo Park. RouteFinder: Towards foundation models for vehicle
routing problems. Transactions on Machine Learning Research, 2025b. ISSN 2835-8856.

Jieyi Bi, Yining Ma, Jianan Zhou, Wen Song, Zhiguang Cao, Yaoxin Wu, and Jie Zhang. Learning
to handle complex constraints for vehicle routing problems. In Advances in Neural Information
Processing Systems, 2024.

DD Bochtis and Claus G Sørensen. The vehicle routing problem in field logistics: Part ii. Biosystems
engineering, 105(2):180–188, 2010.

Diego Cattaruzza, Nabil Absi, Dominique Feillet, and Jesús González-Feliu. Vehicle routing prob-
lems for city logistics. EURO Journal on Transportation and Logistics, 6(1):51–79, 2017.

Pham Vu Tuan Dat, Long Doan, and Huynh Thi Thanh Binh. HSEvo: Elevating automatic heuristic
design with diversity-driven harmony search and genetic algorithm using llms. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 39, pp. 26931–26938, 2025.

Darko Drakulic, Sofia Michel, Florian Mai, Arnaud Sors, and Jean-Marc Andreoli. BQ-NCO:
Bisimulation quotienting for efficient neural combinatorial optimization. Advances in Neural
Information Processing Systems, 36:77416–77429, 2023.

Vincent Furnon and Laurent Perron. OR-Tools routing library. URL https://developers.
google.com/optimization/routing/.

Chengrui Gao, Haopu Shang, Ke Xue, Dong Li, and Chao Qian. Towards generalizable neural
solvers for vehicle routing problems via ensemble with transferrable local policy. In Proceedings
of the Thirty-Third International Joint Conference on Artificial Intelligence, pp. 6914–6922, 2024.

Keld Helsgaun. An extension of the lin-kernighan-helsgaun TSP solver for constrained traveling
salesman and vehicle routing problems. Roskilde: Roskilde University, pp. 24–50, 2017.

André Hottung and Kevin Tierney. Neural large neighborhood search for routing problems. Artificial
Intelligence, 313:103786, 2022.

Zangir Iklassov, Yali Du, Farkhad Akimov, and Martin Takac. Self-guiding exploration for com-
binatorial problems. Advances in Neural Information Processing Systems, 37:130569–130601,
2024.

Xia Jiang, Yaoxin Wu, Chenhao Zhang, and Yingqian Zhang. DRoC: Elevating large language
models for complex vehicle routing via decomposed retrieval of constraints. In 13th international
Conference on Learning Representations, 2025.

David S Johnson and Lyle A McGeoch. The traveling salesman problem: A case study in local
optimization. Local search in combinatorial optimization, 1(1):215–310, 1997.

Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning TSP
requires rethinking generalization. In International Conference on Principles and Practice of
Constraint Programming, 2021.

10

https://developers.google.com/optimization/routing/
https://developers.google.com/optimization/routing/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning
the travelling salesperson problem requires rethinking generalization. Constraints, 27(1):70–98,
2022.

Grigorios D Konstantakopoulos, Sotiris P Gayialis, and Evripidis P Kechagias. Vehicle routing
problem and related algorithms for logistics distribution: A literature review and classification.
Operational research, 22(3):2033–2062, 2022.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2018.

Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min.
POMO: Policy optimization with multiple optima for reinforcement learning. In Advances in
Neural Information Processing Systems, volume 33, pp. 21188–21198, 2020.

Kai Li, Fei Liu, Zhenkun Wang, Xialiang Tong, Xiongwei Han, Mingxuan Yuan, and Qingfu Zhang.
ARS: Automatic routing solver with large language models. arXiv preprint arXiv:2502.15359,
2025a.

Sirui Li, Zhongxia Yan, and Cathy Wu. Learning to delegate for large-scale vehicle routing. In
Advances in Neural Information Processing Systems, volume 34, pp. 26198–26211, 2021.

Tianyou Li, Haijun Zou, Jiayuan Wu, and Zaiwen Wen. Lmask: Learn to solve constrained routing
problems with lazy masking. arXiv preprint arXiv:2505.17938, 2025b.

Fei Liu, Xialiang Tong, Mingxuan Yuan, Xi Lin, Fu Luo, Zhenkun Wang, Zhichao Lu, and Qingfu
Zhang. Evolution of heuristics: Towards efficient automatic algorithm design using large language
model. In 41st International Conference on Machine Learning (ICML 2024), pp. 32201–32223.
ML Research Press, 2024a.

Shengcai Liu, Caishun Chen, Xinghua Qu, Ke Tang, and Yew-Soon Ong. Large language models as
evolutionary optimizers. In 2024 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8.
IEEE, 2024b.

Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization
with heavy decoder: Toward large scale generalization. In NeurIPS, 2023.

Yining Ma, Zhiguang Cao, and Yeow Meng Chee. Learning to search feasible and infeasible re-
gions of routing problems with flexible neural k-opt. Advances in Neural Information Processing
Systems, 36:49555–49578, 2023.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. In NeurIPS, volume 31, 2018.

OpenAI. Gpt-4 technical report. https://arxiv.org/abs/2303.08774, 2024. Accessed:
2025-09-18.

Wenbin Ouyang, Sirui Li, Yining Ma, and Cathy Wu. Learning to segment for capacitated vehicle
routing problems. arXiv preprint arXiv:2507.01037, 2025.

Wenzheng Pan, Hao Xiong, Jiale Ma, Wentao Zhao, Yang Li, and Junchi Yan. UniCO: On uni-
fied combinatorial optimization via problem reduction to matrix-encoded general TSP. In The
Thirteenth International Conference on Learning Representations, 2025.

Gerhard Reinelt. TSPLIB—A traveling salesman problem library. ORSA journal on computing, 3
(4):376–384, 1991.

Jacques Renaud, Fayez F Boctor, and Gilbert Laporte. A fast composite heuristic for the symmetric
traveling salesman problem. INFORMS Journal on computing, 8(2):134–143, 1996.

Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Matej Balog,
M Pawan Kumar, Emilien Dupont, Francisco JR Ruiz, Jordan S Ellenberg, Pengming Wang,
Omar Fawzi, et al. Mathematical discoveries from program search with large language models.
Nature, 625(7995):468–475, 2024.

11

https://arxiv.org/abs/2303.08774

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Michael Schneider, Andreas Stenger, and Dominik Goeke. The electric vehicle-routing problem
with time windows and recharging stations. Transportation science, 48(4):500–520, 2014.

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimiza-
tion. Advances in neural information processing systems, 36:3706–3731, 2023.

Eduardo Uchoa, Diego Pecin, Artur Pessoa, Marcus Poggi, Thibaut Vidal, and Anand Subramanian.
New benchmark instances for the capacitated vehicle routing problem. European Journal of
Operational Research, 257(3):845–858, 2017.

Thibaut Vidal. Hybrid genetic search for the CVRP: Open-source implementation and swap* neigh-
borhood. Computers & Operations Research, 140:105643, 2022.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In NeurIPS, volume 28,
2015.

Niels A Wouda, Leon Lan, and Wouter Kool. PyVRP: A high-performance VRP solver package.
INFORMS Journal on Computing, 36(4):943–955, 2024.

Yaoxin Wu, Wen Song, Zhiguang Cao, Jie Zhang, and Andrew Lim. Learning improvement heuris-
tics for solving routing problems. IEEE transactions on neural networks and learning systems,
33(9):5057–5069, 2021.

Yifan Xia, Xianliang Yang, Zichuan Liu, Zhihao Liu, Lei Song, and Jiang Bian. Position: Rethinking
post-hoc search-based neural approaches for solving large-scale traveling salesman problems. In
International Conference on Machine Learning, 2024.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun Chen.
Large language models as optimizers. In International Conference on Learning Representations,
2024.

Haoran Ye, Jiarui Wang, Zhiguang Cao, Federico Berto, Chuanbo Hua, Haeyeon Kim, Jinkyoo Park,
and Guojie Song. ReEvo: Large language models as hyper-heuristics with reflective evolution.
Advances in neural information processing systems, 37:43571–43608, 2024a.

Haoran Ye, Jiarui Wang, Helan Liang, Zhiguang Cao, Yong Li, and Fanzhang Li. GLOP: Learn-
ing global partition and local construction for solving large-scale routing problems in real-time.
In Proceedings of the AAAI conference on artificial intelligence, volume 38, pp. 20284–20292,
2024b.

Haifei Zhang, Hongwei Ge, Jinlong Yang, and Yubing Tong. Review of vehicle routing problems:
Models, classification and solving algorithms. Archives of Computational Methods in Engineer-
ing, 29(1):195–221, 2022.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Zhi Zheng, Zhuoliang Xie, Zhenkun Wang, and Bryan Hooi. Monte carlo tree search for com-
prehensive exploration in llm-based automatic heuristic design. In Forty-second International
Conference on Machine Learning, 2025.

Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable
neural methods for vehicle routing problems. In International Conference on Machine Learning,
pp. 42769–42789, 2023.

Jianan Zhou, Zhiguang Cao, Yaoxin Wu, Wen Song, Yining Ma, Jie Zhang, and Xu Chi. MV-
MoE: Multi-task vehicle routing solver with mixture-of-experts. In International Conference on
Machine Learning, pp. 61804–61824. PMLR, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A Related Work 13

A.1 ML for VRPs . 13

A.2 LLM for VRPs . 14

B Problem Statement 14

C Supplementary Methodology and Experimental Details 21

C.1 VRPLib Component . 21

C.2 Destroy Strategy . 21

C.3 Simulated Annealing Criterion . 22

C.4 Details of Comparison of Code Reliability and Solution Feasibility 23

C.5 Comparison on ATSP Benckmark . 23

C.6 Comparison on ACVRP Benckmark . 24

C.7 Comparison on SOP Benckmark . 25

D Examples of Prompts and Outputs 25

D.1 Subtask 1: Problem Description . 25

D.1.1 Generation Agent(GA) . 25

D.1.2 Judgment Agent (JA) . 27

D.1.3 Revision Agents (RA) . 28

D.2 Subtask 2: Code Generation . 30

D.2.1 Generation Agent (GA) . 30

D.2.2 Judgment Agent (JA) . 32

D.2.3 Revision Agent (RA) . 33

D.3 Subtask 3: Solution Derivation . 34

D.3.1 Error Analysis Agents (EAA) . 34

E The Use of Large Language Models 35

A RELATED WORK

A.1 ML FOR VRPS

Existing neural approaches to solving VRPs generally follow two directions: learning to construct
and learning to improve them. In the construction paradigm, a model either directly generates a fea-
sible solution (Vinyals et al., 2015; Bello et al., 2017; Nazari et al., 2018) or produces a probability
heatmap (Joshi et al., 2021; Sun & Yang, 2023; Xia et al., 2024) from which a solution is sampled.
AM (Kool et al., 2018) first introduces attention mechanisms for VRPs, and POMO (Kwon et al.,
2020) subsequently exploits multiple optima to enhance solution quality, inspiring a series of ex-
tensions and refinements (Drakulic et al., 2023; Luo et al., 2023; Berto et al., 2025a). Recently,
increasing attention has been devoted to improving generalization (Joshi et al., 2022; Zhou et al.,
2023; Gao et al., 2024) and scalability (Li et al., 2021; Ye et al., 2024b; Ouyang et al., 2025), ad-
dressing complex constraints (Bi et al., 2024; Li et al., 2025b), and handling multiple VRP variants
within a single framework (Zhou et al., 2024; Berto et al., 2025b; Pan et al., 2025), though these

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

efforts still fall short of practical deployment. In the improvement paradigm, an initial solution is
iteratively refined using learned local-search (Wu et al., 2021; Ma et al., 2023) or destroy–repair
strategies (Hottung & Tierney, 2022) to progressively reduce cost and enhance solution quality.

A.2 LLM FOR VRPS

One line of work uses LLMs to directly generate or improve VRP solutions. For example,
OPRO (Yang et al., 2024) attempts to construct solutions outright with an LLM, while LEMA (Liu
et al., 2024b) leverages the LLM to perform the genetic search itself. However, they fall short in
terms of solution quality and feasibility. Another line of research applies LLMs to generate code for
VRPs, which can be broadly categorized into two directions: evolving basic heuristics for conven-
tional VRPs and developing general frameworks for complex VRPs.

In evolving basic heuristics, LLMs are employed to iteratively evolve a simple or existing heuristic
within fixed templates or established solvers for conventional VRPs. Early work such as EOH (Liu
et al., 2024a) adopts a population-based framework with fixed templates for heuristic evolution.
ReEvo (Ye et al., 2024a) further combines evolutionary search with LLM reflections to provide
verbal feedback and enhance search efficiency. More recently, HSEvo (Dat et al., 2025) and MCTS-
AHD (Zheng et al., 2025) have advanced this line of research. However, these approaches remain
tailored to specific problems, limiting their generality across VRP variants with practical constraints.

In developing general frameworks, LLMs are leveraged as knowledgeable developers to generate
function modules with distinct roles, enabling the framework to address diverse and complex VRPs.
In ARS (Li et al., 2025a) and DRoC (Jiang et al., 2025), LLMs generate specific functions to adapt
frameworks to different variants, typically relying on handcrafted modules or external solvers. How-
ever, aligning LLM-generated code with these components remains challenging. In ARS, the inte-
gration between the LLM and the base algorithm is weak: the handcraft improvement operator and
the constraint validation functions generated by the LLM are decoupled, and feasibility can only
be verified after optimization, often leading to infeasible solutions. In DRoC, the LLM produces
code that invokes OR-Tools without genuine knowledge of its internals, relying instead on exter-
nal retrieval, which may undermine code reliability and reduce solution feasibility. In contrast,
SGE (Iklassov et al., 2024) eliminates the need for predefined modules or solvers by directly gen-
erating code end-to-end. However, due to the inherent complexity of full code generation and the
absence of effective constraint-handling mechanisms, its applicability is restricted to TSP. Moreover,
it still depends on handcrafted extraction of instance information (e.g., inputs and constraints), and
its overall performance remains uncompetitive.

In this paper, we address these limitations by proposing a general framework of collaborative LLM-
empowered agents that can tackle complex VRPs with self-containment, full automation, and high
trustworthiness in both code and solutions.

B PROBLEM STATEMENT

1. CVRP

• Problem Type: CVRP.
• Description: The Capacitated Vehicle Routing Problem (CVRP) involves determining op-

timal routes for a fleet of vehicles to deliver goods to a set of customers while minimizing
total distance traveled and ensuring that vehicle capacity is not exceeded.

• Constraints: Capacity – the total demand on any route cannot exceed vehicle capacity.
Visit – each customer is visited exactly once. Depot – every route starts and ends at the
depot.

• Input: depot, node coordinates, demands, capacity.
• Output: A set of vehicle routes, each beginning and ending at the depot, visiting every

customer exactly once while respecting capacity constraints.
• Objective: Minimize the total travel distance.

2. CVRPL

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• Problem Type: CVRPL.

• Description: The Capacitated Vehicle Routing Problem with a Distance Limit (CVRPL)
involves optimizing routes for a fleet of vehicles with a fixed capacity, ensuring deliveries
are made while adhering to a constraint on the maximum route distance, while all routes
must start and end at a common depot.

• Constraints: Capacity – vehicles have limited capacity for carrying goods. Distance Limit
– the total travel distance of each route must not exceed the specified maximum. Visit –
each customer is visited exactly once. Depot – all routes must start and end at the fixed
depot.

• Input: depot, node coordinates, demands, capacity, distance limit.

• Output: A set of feasible vehicle routes, each beginning and ending at the depot, vis-
iting every customer exactly once while respecting both capacity and maximum-distance
constraints.

• Objective: Minimize the total travel distance.

3. CVRPTW

• Problem Type: CVRPTW.

• Description: The problem is about optimizing delivery routes for a fleet of vehicles to
serve a set of customers, considering time windows and vehicle capacity constraints. Each
customer must be visited within a specific time frame and vehicles have limited capacity
for deliveries.

• Constraints: Capacity – vehicles have limited capacity for deliveries. Time Windows –
customers must be served within specified time intervals. Visit – every customer is visited
exactly once. Depot – every route starts and ends at the depot.

• Input: depot, node coordinates, demands, capacity, service times, time windows.

• Output: A set of vehicle routes, each beginning and ending at the depot, visiting every
customer exactly once while satisfying vehicle capacity and customer time-window con-
straints.

• Objective: Minimize the total travel distance.

4. OCVRP

• Problem Type: OCVRP.

• Description: The Open Capacitated Vehicle Routing Problem (OCVRP) involves deter-
mining the optimal routes for a fleet of vehicles with limited capacity that start at a depot
and must deliver goods to a set of customers without the obligation to return to the depot.

• Constraints: Capacity – vehicles have limited capacity. Open Route – vehicles are not
required to return to the depot after completing service. Visit – each customer may only be
visited once. Depot – every route must start at the depot.

• Input: depot, node coordinates, demands, capacity.

• Output: A set of open vehicle routes, each starting at the depot and ending at a customer
location, visiting every customer exactly once while satisfying the vehicle-capacity con-
straint.

• Objective: Minimize the total travel distance.

5. CVRPLTW

• Problem Type: CVRPLTW.

• Description: The problem is a Capacitated Vehicle Routing Problem with a Distance Limit
and Time Windows (CVRPLTW), where a fleet of vehicles is tasked with delivering goods
to a set of customers, each with specific demand and time windows, while respecting the
vehicles’ capacity and route limitations.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• Constraints: Capacity – vehicles have limited capacity. Distance Limit – each route has
a maximum distance. Time Windows – customers must be served within specified time
intervals. Visit – every customer is visited exactly once. Depot – every route starts and
ends at the depot.

• Input: depot, node coordinates, demands, capacity, service times, time windows, dis-
tance limit.

• Output: A set of feasible vehicle routes, each beginning and ending at the depot, visiting
every customer exactly once while satisfying capacity, distance-limit, and time-window
constraints.

• Objective: Minimize the total travel distance.

6. OCVRPL

• Problem Type: OCVRPL.

• Description: The problem is a variant of the Open Capacitated Vehicle Routing Problem
with a Distance Limit (OCVRPL), where vehicles must deliver goods to various customers
while adhering to a capacity limitation and a maximum route distance, without the require-
ment to return to a depot.

• Constraints: Capacity – vehicles have limited capacity for the amount of goods they can
transport. Distance Limit – each route has a maximum distance that vehicles must not
exceed. Open Route – vehicles do not return to the depot after their delivery routes. Visit
– each customer is visited only once. Depot – routes must start at the depot, specifically at
the designated location.

• Input: depot, node coordinates, demands, capacity, distance limit.

• Output: A set of open vehicle routes, each starting at the depot and ending at a customer
location, visiting every customer exactly once while satisfying capacity and distance-limit
constraints.

• Objective: Minimize the total travel distance.

7. OCVRPTW

• Problem Type: OCVRPTW.

• Description: The Open Capacitated Vehicle Routing Problem with Time Windows
(OCVRPTW) involves determining optimal routes for a fleet of vehicles with limited ca-
pacity that service a set of customers with specific time windows, without the requirement
for vehicles to return to the depot after completing their deliveries.

• Constraints: Capacity – the total demand on any route cannot exceed vehicle capacity.
Time Windows – customers must be served within specified time intervals. Open Route –
vehicles do not return to the depot. Visit – each customer may only be visited once. Depot
– every route must start at the depot.

• Input: depot, node coordinates, demands, capacity, service times, time windows.

• Output: A set of feasible open vehicle routes, each starting at the depot and ending at a
customer location, visiting every customer exactly once while satisfying capacity, service-
time, and time-window constraints.

• Objective: Minimize the total travel distance.

8. OCVRPLTW

• Problem Type: OCVRPLTW.

• Description: The Open Capacitated Vehicle Routing Problem with Distance Limit and
Time Windows (OCVRPLTW) requires planning optimal routes for a fleet of vehicles with
limited carrying capacity to serve customers within specified time windows, while each
route must also satisfy a maximum travel-distance limit and vehicles are not required to
return to the depot after their final delivery.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• Constraints: Capacity – the total demand on any route cannot exceed vehicle capacity.
Distance Limit – each route’s total travel distance must not exceed the specified maximum.
Time Windows – customers must be served within their given time intervals. Open Route –
vehicles do not return to the depot after completing service. Visit – each customer is visited
exactly once. Depot – every route must start at the depot.

• Input: depot, node coordinates, demands, capacity, service times, time windows, dis-
tance limit.

• Output: A set of feasible open vehicle routes, each starting at the depot and ending at
a customer location, visiting every customer exactly once while satisfying capacity, time-
window, and distance-limit constraints.

• Objective: Minimize the total travel distance.

9. ECVRP

• Problem Type: ECVRP.
• Description: Electric Capacitated Vehicle Routing Problem (ECVRP) involves determin-

ing optimal routes for a fleet of electric vehicles to serve a set of customer demands, con-
sidering vehicle load capacity and battery (fuel) constraints, where recharging is available
at designated charging stations. Each route starts and ends at the depot and each customer
is to be visited exactly once.

• Constraints: Electricity – Each vehicle has a limited battery, consumes energy propor-
tional to distance, and may recharge only at designated charging stations, with charging
time affecting feasibility. Capacity – Each vehicle has a maximum load capacity. Depot –
Each route must start and end at the depot. Visit - Each customer must be visited exactly
once.

• Input: depot, node coordinates, demands, capacity, fuel capacity, fuel consumption rate,
refuel rate, stations.

• Output: A set of feasible vehicle routes, each starting and ending at the depot, visiting
each customer exactly once, specifying the visiting order and any charging station stops,
such that vehicle capacity and battery constraints are satisfied.

• Objective: Minimize the total travel distance.

10. ECVRPL

• Problem Type: ECVRPL.
• Description: Electric Vehicle Capacitated Vehicle Routing Problem with distance limit:

find the set of routes for electric vehicles, starting and ending at the depot, that serve all
customers without exceeding vehicle capacity, electric fuel capacity, and an explicit route
distance limit. Electricity is managed with fuel consumption, battery recharging at stations,
and recharging time affects route scheduling.

• Constraints: Electricity – electric vehicles have limited battery, fuel consumption rate,
designated charging stations, and recharging time which constrain feasible routes. Capacity
– vehicles have a maximum load they can carry at one time. Distance Limit –each route
cannot exceed a maximum distance. Visit – each customer is visited exactly once. Depot –
all routes must start and end at the depot.

• Input: depot, node coordinates, demands, capacity, distance limit, fuel capacity,
fuel consumption rate, refuel rate, stations.

• Output: a set of vehicle routes, each starting and ending at the depot, visiting every cus-
tomer exactly once while satisfying capacity, distance-limit, and electric-vehicle energy
constraints, including recharging stops if required.

• Objective: Minimize the total travel distance.

11. ECVRPTW

• Problem Type: ECVRPTW.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

• Description: the Electric Capacitated Vehicle Routing Problem with Time Windows
(ECVRPTW) constructs least-cost routes for a fleet of electric vehicles, each starting and
ending at the depot, to serve all customers exactly once within specified time windows,
considering both vehicle load capacity and electric battery (fuel) constraints; vehicles may
recharge at designated charging stations, and service at each customer takes a specified
time.

• Constraints: Electricity – Electric vehicles have limited battery capacity, consume energy
proportional to travel distance, may recharge at specified stations, and recharging duration
depends on refuel rate. Time Windows – Customers must be served within predetermined
time intervals. Capacity – Each vehicle has limited load capacity. Visit – Each customer is
visited exactly once. Depot – Every route must start and end at the depot.

• Input: depot, node coordinates, demands, capacity, service times, time windows,
fuel capacity, fuel consumption rate, refuel rate, stations.

• Output: A set of feasible vehicle routes, each starting and ending at the depot, visiting
every customer exactly once while satisfying capacity, time-window, and electric-vehicle
energy constraints, including necessary recharging stops.

• Objective: Minimize the total travel distance.

12. EOCVRP

• Problem Type: EOCVRP.

• Description: the Electric Open Capacitated Vehicle Routing Problem plans routes for a
fleet of electric vehicles, where each vehicle starts at the depot, serves customer demands,
may recharge at designated charging stations, does not need to return to the depot (open
route), and respects vehicle capacity and battery limits. Each customer is visited exactly
once.

• Constraints: Electricity – vehicles have limited battery capacity, consume energy with
travel, and may recharge at stations, considering recharging time. Capacity – vehicle loads
cannot exceed their capacity. Open Route – vehicles are not required to return to the depot.
Distance Limit – each route has a maximum allowed travel distance. Visit – each customer
must be visited exactly once. Depot – each route starts at the depot.

• Input: depot, node coordinates, demands, capacity, distance limit, fuel capacity,
fuel consumption rate, refuel rate, stations.

• Output: a set of feasible open vehicle routes starting at the depot, each serving a subset of
customers exactly once, possibly using charging stations, and ending at any node, such that
all routes meet capacity, battery, and problem constraints

• Objective: Minimize the total travel distance.

13. ECVRPLTW

• Problem Type: ECVRPLTW.

• Description: Electric Capacitated Vehicle Routing Problem with Time Windows
(ECVRPTW) involves designing routes for a fleet of electric vehicles to deliver goods to
customers, respecting vehicle capacity limits, electric battery/range constraints, maximum
route distance, and customer-specific time windows. Each customer must be visited ex-
actly once, and all routes must start and end at the depot. Vehicles may need to recharge at
designated stations as part of their routes.

• Constraints: Electricity – electric vehicles have limited battery (fuel) capacity, must
recharge at stations as needed, and recharging consumes time. Capacity – each vehicle
has a limited payload capacity. Distance Limit – each route has a maximum distance. Time
Windows – customers must be served within given time intervals. Visit – each customer can
be visited only once. Depot – each route must start and end at the depot.

• Input: depot, node coordinates, demands, capacity, service times, time windows, dis-
tance limit, fuel capacity, fuel consumption rate, refuel rate, stations.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

• Output: A set of feasible vehicle routes, each represented as an ordered list of nodes (cus-
tomers, stations, and depot), with associated service start times and charging operations,
where each route starts and ends at the depot, all customers are visited exactly once within
their time windows, and all constraints on capacity, time window, fuel, route length, and
recharging are satisfied.

• Objective: Minimize the total travel distance.

14. EOCVRPL

• Problem Type: EOCVRPL.
• Description: the Electric Vehicle Open Capacitated Vehicle Routing Problem involves

electric vehicles with limited load and battery capacity, serving customers starting from the
depot without needing to return (open route). Vehicles can recharge at charging stations,
and each customer is visited at most once.”,

• Constraints: Electricity – Vehicles have a limited electric battery, consumed proportion-
ally to travel; vehicles may recharge at designated stations. Capacity – Vehicles have a
maximum load they can carry. Open Route – Vehicles do not need to return to the depot
after serving customers. Distance Limit – Each route has a maximum allowable distance.
Visit – Each customer is visited at most once. Depot – Routes start at the depot..

• Input: depot, node coordinates, demands, capacity, distance limit, fuel capacity,
fuel consumption rate, refuel rate, stations.

• Output: A set of feasible open vehicle routes starting from the depot, where each route
serves a subset of customers, may include recharging stops at stations as needed, and sat-
isfies all capacity, distance, fuel, and visit constraints, ensuring each customer is visited at
most once.

• Objective: Minimize the total travel distance.

15. EOCVRPTW

• Problem Type: EOCVRPTW.
• Description: Electric Open Capacitated Vehicle Routing Problem with Time Windows:

The goal is to design minimum-cost routes for a fleet of electric vehicles that start from
a depot, serve each customer exactly once within specified time windows, while observ-
ing vehicle capacity, electric battery limitations (with possible recharging at stations), and
vehicles are not required to return to the depot.

• Constraints: Electricity – Vehicles have limited battery, consume energy with distance,
and may recharge at designated stations. Capacity – Each vehicle has a fixed carrying
capacity. Time Windows – Customers must be serviced within specific time intervals. Open
Route – Vehicles do not return to the depot after serving customers. Visit – Each customer
must be visited exactly once. Depot – Routes start from the depot.

• Input: depot, node coordinates, demands, capacity, service times, time windows,
fuel capacity, fuel consumption rate, refuel rate, stations.

• Output: a set of feasible vehicle routes where each route starts at the depot, visits each cus-
tomer exactly once within their specified time windows and service times, respects vehicle
capacity and battery constraints with possible recharging at stations, and does not return to
the depot.

• Objective: Minimize the total travel distance.

16. EOCVRPLTW

• Problem Type: EOCVRPLTW.
• Description: Electric Open Capacitated Vehicle Routing Problem with Distance Limit and

Time Windows. In this problem, a fleet of electric vehicles with limited cargo and battery
capacity must serve customers, each within specified distance limit and time windows.
Vehicles start at the depot but do not return (open routes), must visit each customer exactly
once, can recharge only at designated charging stations, and each route has a maximum
allowable distance.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

• Constraints: Electricity – Electric vehicles have limited battery (fuel) capacity, fuel con-
sumed proportionally to distance, can recharge at charging stations, and recharging takes
time. Capacity – Vehicles have limited cargo capacity. Distance Limit – Each route has a
maximum allowed distance. Time Windows – Service at each customer must begin within
its given time interval. Open Route – Vehicles do not return to depot after serving cus-
tomers. Visit – Each customer must be visited exactly once. Depot – every route must start
at the depot.

• Input: depot, node coordinates, demands, capacity, service times, time windows, dis-
tance limit, fuel capacity, fuel consumption rate, refuel rate, stations.

• Output: A set of feasible open vehicle routes, each starting at the depot, visiting every
customer exactly once within their specified time windows, not exceeding vehicle cargo
capacity, route distance limits, or battery constraints (with recharging at stations as needed),
and ensuring vehicles do not return to the depot.

• Objective: Minimize the total travel distance.

17. TSP

• Problem Type: TSP.
• Description: The Symmetric Traveling Salesman Problem is to find the shortest possible

route that visits each node (drilling location) exactly once and returns to the starting point,
typically used for optimizing routes such as drilling or circuit board manufacturing.

• Constraints: Visit – each node (location) must be visited exactly once.
• Input: node coordinates.
• Output: A single closed tour that begins and ends at one node and visits every node exactly

once.
• Objective: Minimize the total travel distance.

18. ATSP

• Problem Type: ATSP.
• Description: The Asymmetric Traveling Salesman Problem (ATSP) generalizes the clas-

sical TSP by allowing the travel cost from node i to node j to differ from the cost from j
to i. The goal is to find the shortest Hamiltonian cycle that visits every node exactly once
and returns to the starting node when edge weights are direction-dependent.

• Constraints: Visit – each node must be visited exactly once. Depot – the tour must start and
end at the same node. Asymmetry – travel costs or distances are not necessarily symmetric.

• Input: edge weight matrix.
• Output: A single directed Hamiltonian cycle that begins and ends at one node and visits

every node exactly once while respecting the asymmetric cost structure.
• Objective: Minimize the total travel cost.

19. ACVRP

• Problem Type: ACVRP.
• Description: Asymmetric Capacitated Vehicle Routing Problem (ACVRP): a fleet of ve-

hicles with limited carrying capacity must start and end at a central depot and serve every
customer exactly once, while accounting for direction-dependent travel costs.

• Constraints: Capacity – the total demand on any route cannot exceed the vehicle capacity.
Asymmetry – travel costs between two nodes are not necessarily equal in both directions.
Visit – each customer is visited exactly once. Depot – every route must start and end at the
depot.

• Input: depot, edge weight matrix, demands, capacity.
• Output: A set of vehicle routes, each starting and ending at the depot, visiting every

customer exactly once while satisfying vehicle-capacity constraints and accounting for
direction-dependent travel costs.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

• Objective: Minimize the total travel cost.

20. SOP

• Problem Type: SOP.

• Description: The Sequential Ordering Problem (SOP) is to find a minimum-cost Hamil-
tonian path that visits each node exactly once and respects given precedence constraints
(some nodes must be visited before others), subject to forbidden arcs.

• Constraints: Precedence – Certain nodes must be visited before others, according to the
instance’s precedence relations. Forbidden Arcs – Some node-to-node connections are in-
feasible and cannot be used. Visit – each node is visited exactly once (Hamiltonian path).

• Input: edge weight matrix, precedence constraints, forbidden arcs.

• Output: A minimum-cost Hamiltonian path visiting each node exactly once that satisfies
all precedence constraints and forbidden arc constraints.

• Objective: Minimize the total travel cost of the path.

C SUPPLEMENTARY METHODOLOGY AND EXPERIMENTAL DETAILS

C.1 VRPLIB COMPONENT

Table 7 summarizes the main components of a VRPLIB instance file, presenting each required or
optional field along with its description and an illustrative example. The “VRPLib Field” column
lists the standard sections of a vehicle-routing problem instance (e.g., NAME/COMMENT, TYPE,
DIMENSION). The Description column explains the meaning of each section, while the Example
column provides typical syntax drawn from a sample instance (for example, TYPE : CVRP, CA-
PACITY : 200), showing the exact formatting used in VRPLIB files.

C.2 DESTROY STRATEGY

As the algorithm shown in Algorithm 1, Given a solution S, distance matrix Dis, and ratio ρ, the
algorithm first determines the number of nodes nrm to remove. A random customer c is sampled,
and a candidate list L is formed by sorting all customers by distance to c. Iteratively, a candidate u is
selected, and if its route has not been destroyed, a contiguous subsequence Q including u is randomly
chosen and removed. The subsequence Q is added to the removed set R, and the corresponding
route is updated and marked as destroyed. This process continues until nrm customers are removed,
yielding the residual solution S′ and the removed set R.

Algorithm 1 Destroy Strategy
1: Input: solution S (set of routes), distance matrix Dis, ratio ρ
2: Output: removed nodes R, destroyed solution S′

3: R← ∅, S′ ← S, nrm ← ⌊|C| · ρ⌋ ▷ C: set of customers
4: c ∼ Uniform(C) ▷ random sample center
5: L← sort(C,Dis(c, ·)) ▷ sort candidate list by distance to c
6: while |R| < nrm and L ̸= ∅ do
7: u← next(L); r ← route(u, S′)
8: if r already destroyed then
9: continue

10: end if
11: Q← subseq(r, u) ▷ random select contiguous subsequence including u
12: r ← r \Q, R← R ∪Q ▷ update r by excluding Q and extend R with Q
13: end while
14: return (R,S′)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 7: Main sections of a VRPLIB instance file with descriptions and example.

VRPLib Field Description Example

NAME / COMMENT Optional. Includes the instance name and op-
tional comments that can provide additional
context for AFL to understand the related
problem.

NAME : A-n32-k5
COMMENT : 32-node
Capacitated Vehicle
Routing Problem
instance.

TYPE Optional. Specifies the declared problem
type (e.g., CVRP, VRPTW, EVRP), serving
only as a reference for constraint extraction;
the actual problem characteristics must be
determined from the complete instance.

TYPE : CVRP

DIMENSION Required. Total number of nodes including
both customers and depot(s).

DIMENSION : 33

EDGE WEIGHT TYPE Required. Specifies how inter-node distances
are given: a metric (e.g., EUC 2D) or an ex-
plicit matrix.

EDGE WEIGHT TYPE : EUC
2D

NODE COORD SECTION Required. Lists coordinates of each node
(typically planar Euclidean).

NODE COORD SECTION:
1 45 68
2 37 52

DEMAND SECTION Required for instances with a capacity (C)
constraint. Demand for each customer node,
usually in weight or quantity units.

DEMAND SECTION:
1 0
2 15

CAPACITY Required for capacity-constrained (C) prob-
lems. Defines the maximum load (e.g.,
weight or volume) each vehicle can carry.

CAPACITY : 200

DEPOT SECTION Required for instances with depot constraint.
Identifies the depot node(s) where vehicles
start and optionally end their routes.

DEPOT SECTION:
1
-1

DISTANCE LIMIT Required for instances with open route (O)
constraint. Specifies the maximum travel dis-
tance allowed for each route.

DISTANCE LIMIT : 500

TIME WINDOW SECTION Required for instances with time window
(TW) constraint. Provides earliest and latest
allowable arrival times for each customer.

TIME WINDOW SECTION:
1 0 100
2 20 80

SERVICE TIME SECTION Required for instances with time window
(TW) constraint. Service time required at
each customer node; combined with travel
time to satisfy time-window constraints.

SERVICE TIME SECTION:
1 10
2 15

FUEL CAPACITY Required for instances with electric vehicle
(E) constraint. Maximum energy or battery
capacity for each vehicle in electric-vehicle
routing problems.

FUEL CAPACITY : 300

FUEL CONSUMPTION RATE Required for instances with electric vehicle
(E) constraint. Energy consumed per dis-
tance unit.

FUEL CONSUMPTION RATE :
1.0

REFUEL RATE Required for instances with electric vehicle
(E) constraint. Charging or refueling rate per
time unit at stations.

REFUEL RATE : 2.0

STATION SECTION Required for instances with electric vehicle
(E) constraint. Identifies charging or refuel-
ing station nodes where vehicles can refuel.

STATION SECTION:
34
35

C.3 SIMULATED ANNEALING CRITERION

The Simulated Annealing (SA) criterion is a stochastic acceptance rule inspired by the physical
annealing process, where a material is gradually cooled to reach a low–energy crystalline state. In

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

VRPs scenarios, it provides a mechanism to escape local minima by occasionally accepting solutions
that are worse than the current one.

Given a current solution with cost Ecurrent and a candidate solution with cost Enew, the move is
accepted if Enew ≤ Ecurrent; otherwise it is accepted with probability

P = exp

(
−Enew − Ecurrent

T

)
,

where T is a temperature parameter that decreases according to a cooling schedule. In our imple-
mentation, T is defined as

T =
iteration− step + 1

10
,

where iteration denotes the total number of iterations and step is the current iteration index.

C.4 DETAILS OF COMPARISON OF CODE RELIABILITY AND SOLUTION FEASIBILITY

Runtime Error Rate (RER). Let Verr be the number of generated programs that terminate with a
runtime failure. The Runtime Error Rate is calculated as

RER =
Verr

V
× 100%,

where V is the total number of generated programs across all VRP variants. A high RER indicates
a large proportion of solutions that fail to execute due to logical flaws, or syntax mistakes.

Success Rate (SR). Denote by Vsucc the number of generated programs that successfully produce
an feasible solution for the target VRP instance. The Success Rate is given by

SR =
Vsucc

V
× 100%.

This metric measures the percentage of generated programs that both execute without errors and
produce a solution feasible with respect to the constraints of the input instance.

Table 8 compares the code reliability and solution feasibility of three solvers, SGE, DRoC, and AFL,
across a broad range of VRP variants. Because SGE and DRoC can generate runtime-error-free code
only for relatively simple problems where the constraints are easy to satisfy, SGE succeeds solely on
TSP, while DRoC performs reliably on TSP, CVRP, and CVRPL, producing code that both compiles
correctly and passes feasibility checks. In contrast, our model AFL consistently produces executable
code and achieves feasibility verification across all listed variants. In this table, a ✓indicates that the
solver achieves both Code Reliability and Solution Feasibility, whereas a × denotes failure to meet
one or both of these criteria.

Table 8: Comparison of Code Reliability and Solution Feasibility.

Solver TSP CVRP VRPL VRPTW OVRP VRPLTW OVRPL OVRPTW OVRPLTW

SGE ✓ × × × × × × × ×
DRoC ✓ ✓ ✓ × × × × × ×
AFL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Solver ECVRP ECVRPL ECVRPTW EOCVRP ECVRPLTW EOCVRPL EOCVRPTW EOCVRPLTW

SGE × × × × × × × ×
DRoC × × × × × × × ×
AFL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C.5 COMPARISON ON ATSP BENCKMARK

We evaluate our model on the ATSP benchmark (Johnson & McGeoch, 1997), which contains 18
instances with optimal solutions ranging from 17 to 443 nodes, to assess its applicability. The
Asymmetric Traveling Salesman Problem (ATSP) is a variant of the classical TSP in which the
distance from customer i to customer j may differ from the distance from customer j to customer
i, making the problem more challenging and representative of real-world routing scenarios such as
one-way street networks or asymmetric transportation costs. The results, presented in Table 9, show
that our model achieves consistently favorable performance on this task.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 9: Comparison of AFL and Greedy on ATSP benchmark.

Instance ft53 ft70 ftv33 ftv35 ftv38 ftv44 ftv47 ftv55 ftv64

Best 6905 38673 1286 1473 1530 1613 1776 1608 1839
Greedy Obj. 8816 43524 1637 1817 1765 1898 2353 2163 2262
Greedy Gap (%) 27.68 12.54 27.29 23.35 15.36 17.67 32.49 34.51 23.00
AFL Obj. 7480 39519 1340 1500 1570 1657 1790 1630 1882
AFL Gap (%) 8.33 2.19 4.20 1.83 2.61 2.73 0.79 1.37 2.34

Instance ftv70 ftv170 kro124p p43 rbg323 rbg358 rbg403 rbg443 ry48p

Best 1950 2755 36230 5620 1326 1163 2465 2720 14422
Greedy Obj. 2359 3887 45092 5688 1742 1794 3552 3876 16215
Greedy Gap (%) 20.97 41.09 24.46 1.21 31.37 54.26 44.10 42.50 12.43
AFL Obj. 2031 2964 37987 5620 1358 1172 2510 2780 14958
AFL Gap (%) 4.15 7.59 4.85 0.00 2.41 0.77 1.83 2.21 3.72

C.6 COMPARISON ON ACVRP BENCKMARK

We further evaluate our model on the ACVRP benchmark (Helsgaun, 2017), which provides 120
capacity-constrained instances with asymmetric distance matrices and customer sizes ranging from
16 to 200. The Asymmetric Capacitated Vehicle Routing Problem (ACVRP) extends the classical
VRP by allowing the travel cost from location i to j to differ from that of the reverse direction, while
also imposing vehicle-capacity constraints. This combination of asymmetric travel costs and capac-
ity limits makes ACVRP a challenging and practical testbed, reflecting real distribution networks
where one-way streets or differing traffic conditions create directional cost differences. The results,
summarized in Table 10, demonstrate that our model maintains strong code reliability and solution
feasibility across all ACVRP instances.

Table 10: Comparison of AFL and Greedy on 120 ACVRP instances.
Instance A-G-100-1 A-G-100-2 A-G-100-3 A-G-100-4 A-G-100-5 A-G-100-6 A-G-100-7 A-G-100-8 A-G-100-9 A-G-100-10 A-G-100-11 A-G-100-12
Best Obj. 2139 1722 2550 1273 1878 1540 1493 1467 2232 1631 1992 2057

Greedy Gap (%) 68.68 42.92 57.41 74.47 77.80 46.69 58.07 72.12 55.06 51.07 38.10 28.83
AFL Gap (%) 13.04 7.03 9.41 13.98 31.36 20.78 11.32 11.32 10.35 8.52 13.45 3.94

Instance A-G-100-13 A-G-100-14 A-G-100-15 A-G-100-16 A-G-100-17 A-G-100-18 A-G-100-19 A-G-100-20 A-G-150-1 A-G-150-2 A-G-150-3 A-G-150-4
Best Obj. 2885 2101 1827 1208 928 2427 2055 1929 1308 913 1619 930

Greedy Gap (%) 27.35 61.78 34.87 121.69 127.16 25.18 67.40 30.53 100.15 145.89 41.51 77.42
AFL Gap (%) 3.60 16.56 18.28 26.41 28.99 0.00 9.54 16.69 16.44 19.06 25.63 41.51

Instance A-G-150-5 A-G-150-6 A-G-150-7 A-G-150-8 A-G-150-9 A-G-150-10 A-G-150-11 A-G-150-12 A-G-150-13 A-G-150-14 A-G-150-15 A-G-150-16
Best Obj. 1203 1138 1110 897 1525 892 1132 1187 1619 1490 1095 749

Greedy Gap (%) 79.88 92.71 93.51 130.21 71.28 80.61 100.09 72.03 70.72 49.19 125.11 87.85
AFL Gap (%) 20.20 25.57 13.15 36.23 24.59 15.25 23.85 27.46 14.76 7.85 33.88 36.98

Instance A-G-150-17 A-G-150-18 A-G-150-19 A-G-150-20 A-G-200-1 A-G-200-2 A-G-200-3 A-G-200-4 A-G-200-5 A-G-200-6 A-G-200-7 A-G-200-8
Best Obj. 717 1610 1274 1177 1137 913 1492 819 1048 990 1016 814

Greedy Gap (%) 53.84 53.66 46.00 54.89 48.90 202.74 7.31 63.37 64.22 114.55 92.03 109.95
AFL Gap (%) 0.00 10.19 32.10 5.01 10.99 18.73 15.55 27.59 17.18 17.58 28.94 0.00

Instance A-G-200-9 A-G-200-10 A-G-200-11 A-G-200-12 A-G-200-13 A-G-200-14 A-G-200-15 A-G-200-16 A-G-200-17 A-G-200-18 A-G-200-19 A-G-200-20
Best Obj. 1438 816 1039 1082 1514 1341 949 662 668 1522 1188 1035

Greedy Gap (%) 72.67 189.95 152.26 102.31 58.52 116.93 172.71 167.52 254.04 65.90 99.41 55.46
AFL Gap (%) 12.52 33.95 26.56 13.31 4.89 29.23 4.11 24.62 37.43 0.53 10.35 13.33

Instance A-U-4-1 A-U-4-2 A-U-4-3 A-U-4-4 A-U-4-5 A-U-4-6 A-U-4-7 A-U-4-8 A-U-4-9 A-U-4-10 A-U-4-11 A-U-4-12
Best Obj. 1671 1108 1937 994 1447 1251 1142 1043 1826 1150 1523 1524

Greedy Gap (%) 75.10 42.60 54.93 93.16 74.91 78.02 109.81 90.32 35.32 140.35 42.88 111.15
AFL Gap (%) 20.35 10.74 0.00 5.53 19.42 42.13 23.82 41.61 10.46 27.65 19.63 25.33

Instance A-U-4-13 A-U-4-14 A-U-4-15 A-U-4-16 A-U-4-17 A-U-4-18 A-U-4-19 A-U-4-20 A-U-6-1 A-U-6-2 A-U-6-3 A-U-6-4
Best Obj. 2096 1716 1290 995 825 1986 1622 1453 1205 913 1492 819

Greedy Gap(%) 36.12 82.81 94.57 44.12 87.27 34.44 70.28 53.68 64.23 66.81 57.98 37.73
AFL Gap(%) 13.74 14.34 35.74 9.05 24.97 6.70 8.45 9.02 26.22 12.27 7.71 28.94

Instance A-U-6-5 A-U-6-6 A-U-6-7 A-U-6-8 A-U-6-9 A-U-6-10 A-U-6-11 A-U-6-12 A-U-6-13 A-U-6-14 A-U-6-15 A-U-6-16
Best Obj. 1086 990 1016 814 1438 816 1071 1111 1544 1341 949 662

Greedy Gap (%) 90.98 133.64 92.03 215.11 93.88 262.62 101.87 92.53 64.12 88.22 172.71 283.38
AFL Gap (%) 6.72 19.80 8.17 36.86 13.42 32.11 36.13 29.52 26.04 27.96 12.22 43.35

Instance A-U-6-17 A-U-6-18 A-U-6-19 A-U-6-20 A-U-8-1 A-U-8-2 A-U-8-3 A-U-8-4 A-U-8-5 A-U-8-6 A-U-8-7 A-U-8-8
Best Obj. 668 1563 1193 1069 981 753 1159 737 832 923 871 691

Greedy Gap (%) 98.05 40.24 102.51 47.52 121.10 1771.31 72.04 62.14 116.23 127.63 135.02 147.76
AFL Gap (%) 0.00 1.41 41.16 18.71 36.70 29.22 32.18 31.89 26.20 17.77 52.93 27.93

Instance A-U-8-9 A-U-8-10 A-U-8-11 A-U-8-12 A-U-8-13 A-U-8-14 A-U-8-15 A-U-8-16 A-U-8-17 A-U-8-18 A-U-8-19 A-U-8-20
Best Obj. 1295 716 800 827 1091 1178 682 580 591 1298 1015 854

Greedy Gap (%) 53.51 73.46 116.50 187.30 81.58 125.64 250.59 72.41 184.43 45.61 93.00 133.02
AFL Gap (%) 4.48 35.47 29.50 35.31 26.67 15.20 0.00 15.69 35.03 7.86 14.09 9.84

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 11: Comparison of AFL and Greedy on SOP instances.

Instance ESC12 ESC25 ESC47 ESC63 ESC78 br17.10 br17.12 ft53.1 ft53.2 ft53.3
Best Obj. 1675 1681 1288 62 18230 55 55 7531 8062 10262

Greedy Gap (%) 21.43 99.88 198.37 22.58 100.00 43.64 43.64 38.15 56.98 47.41
AFL Gap (%) 3.16 12.14 84.32 0.00 0.00 5.45 5.45 5.11 1.28 12.45

Instance ft53.4 ft70.1 ft70.2 ft70.3 ft70.4 kro124p.1 kro124p.2 kro124p.3 kro124p.4 p43.1
Best Obj. 14425 39313 40419 42535 53530 39420 41336 49499 76103 28140

Greedy Gap (%) 28.59 17.16 19.64 22.41 100.00 33.37 39.64 56.10 29.33 5.29
AFL Gap (%) 0.93 4.16 4.89 7.03 0.88 8.66 10.29 7.28 1.69 0.23

Instance p43.2 p43.3 p43.4 prob42 prob100 rbg048a rbg050c rbg109a rbg150a rbg174a
Best Obj. 28480 28835 83005 243 1163 351 467 1038 1750 2033

Greedy Gap (%) 4.37 8.69 2.70 88.48 184.69 44.16 21.63 39.02 23.89 20.22
AFL Gap (%) 0.02 0.99 0.05 30.45 94.41 6.55 0.64 0.77 0.46 0.00

Instance rbg253a rbg323a rbg341a rbg358a rbg378a ry48p.1 ry48p.2 ry48p.3 ry48p.4
Best Obj. 2950 3140 2568 2545 2816 15805 16074 19490 31446

Greedy Gap (%) 20.61 28.41 47.43 61.49 45.92 42.32 30.09 40.29 30.94
AFL Gap (%) 0.00 1.21 3.08 2.67 2.66 5.90 6.07 12.72 0.73

C.7 COMPARISON ON SOP BENCKMARK

We also evaluate our model on the SOP benchmark (Renaud et al., 1996), which contains 39 in-
stances with optimal solutions and sizes ranging from 9 to 380 nodes. The Sequential Ordering
Problem (SOP) is a generalization of the Traveling Salesman Problem that introduces precedence
constraints, requiring certain nodes to be visited before others. This added ordering requirement
captures practical scenarios such as production sequencing and logistics scheduling, where tasks
must follow a specified order. The results, presented in Table 11, show that our model effectively
handles these precedence constraints while maintaining high solution quality.

D EXAMPLES OF PROMPTS AND OUTPUTS

D.1 SUBTASK 1: PROBLEM DESCRIPTION

In the problem description subtask, we divide the GA’s work into two sequential phases to reduce its
cognitive load and improve overall accuracy. In the first phase, the agent generates the description,
constraints, and the specific problem type. In the second phase, it produces the input specification,
expected output, and the optimization objective. After these two phases are completed, the JA
evaluates the entire draft for consistency and correctness, and the RA subsequently refines each
component as needed.

D.1.1 GENERATION AGENT(GA)

Prompt 1:

We need to solve a VRP instance. I will provide you with the instance. Please analyze it
carefully. First, give a concise description of the problem type in [], explaining what the
problem is about.

Second, identify its constraints and list them clearly in numbered format (1), 2), 3), ...) within
[]. For each constraint, write both the abbreviation (if any) and a short explanation (e.g.,
’Capacity (C): vehicles have limited capacity.’). Do not include instance-specific details like
the exact number of nodes, vehicles, or capacity values.

When analyzing, be as comprehensive as possible: consider not only the common constraints
but also more general ones, such as whether each customer can be visited multiple times,
whether all routes must start and end at a depot, or other structural constraints that might apply.
You may refer to the following typical constraint categories as guidance, but you are not limited
to them:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

- Electricity (E): electric vehicles are subject to fuel constraints. Each vehicle has a limited fuel
capacity, fuel is consumed proportionally to the distance traveled related to fuel consumption
rate, and vehicles must recharge at designated charging stations when necessary. Recharging
consumes time related to the refuel rate and remaining fuel.

- Capacity (C): vehicles have limited capacity.

- Open Route (O): vehicles do not return to the depot.

- Backhaul (B): vehicles must handle linehaul (deliveries) first, then backhaul (pickups).

- Mixed (M): vehicles may mix deliveries and pickups in the same route.

- Duration Limit (L): each route has a maximum distance or time limit.

- Time Windows (TW): customers must be served within specified time intervals.

- Multi-depot (MD): there are multiple depots.

- Visit constraint (V): each customer may only be visited once.

- Depot constraint (D): routes must start and end at the depot.

Finally, write the standard problem type abbreviation (e.g., TSP, CVRP, CVRPL, VRPTW, PDP,
OVRP, MDVRP, ECVRP) enclosed in ” ”.

Check again whether the constraints fit the specific name; the Visit constraint should be present.

Output exactly three lines in this order:

1) [problem description]

2) [constraints]

3) ”specific name”

Below is the .vrp instance content: <vrp text>

Output 1:

1) [The Capacitated Vehicle Routing Problem (CVRP) involves determining optimal routes for
a fleet of vehicles to deliver goods to a set of customers while minimizing total distance traveled
and ensuring that vehicle capacity is not exceeded.]

2) [1) Capacity (C): the total demand on any route cannot exceed vehicle capacity. 2) Visit (V):
each customer is visited exactly once. 3) Depot (D): every route starts and ends at the depot.]

3) ”CVRP”

Prompt 2:

We need to design an algorithm for the following VRP instance. The details of the instance are:
<Output1>.

Based on this description and the instance contents, please specify:

First, list the essential input elements an algorithm would require from the instance. Element
names must not contain spaces; use underscores _ instead.

Second, describe precisely what the algorithm should output (e.g., a best feasible set of vehicle
routes that satisfy all listed constraints).

Third, describe clearly the optimization objective (e.g., minimize total travel distance, minimize
fleet size, minimize lateness).

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Important: Each of the three answers (input, output, objective) must be enclosed in [] as shown.
Do not include instance-specific details like the exact number of nodes, vehicles, or capacity
values. Also verify that every listed input is actually provided by the instance content.

Output exactly three lines in this order:

4) [input]

5) [output]

6) [objective]

Below is the .vrp instance content: <vrp text>

Output 2:

4) [depot, node coordinates, demands, vehicle capacity]

5) [A set of vehicle routes, each beginning and ending at the depot, visiting every customer
exactly once while respecting capacity constraints.]

6) [Minimize the total travel distance.]

D.1.2 JUDGMENT AGENT (JA)

Prompt:

You are a VRP expert. I will give you:
1) The original .vrp file content
2) GPT’s first answer (problem description + constraints + specific name)
3) GPT’s second answer (input, output, objective)

Your task is to judge correctness:

- For the first answer: check whether the problem description, listed constraints, and specific
name are consistent with .vrp file contents. Specifically, check for contradictions in the follow-
ing pairs:

• problem description vs. .vrp file

• constraints vs. .vrp file

• specific name vs. .vrp file

• problem description vs. constraints

• problem description vs. specific name

• constraints vs. specific name

If any contradictions exist, treat the .vrp file as the ground truth and mark it as incorrect. If
everything is consistent, mark it as correct. Check again whether the constraints fit the specific
name and problem description. If correct, return ’True’ with a short explanation. If wrong,
return’False’ with a short explanation.

- For the second answer: check if input, output, and optimization objective are valid and con-
sistent with the VRP instance and the constraints. Input must correspond only to elements
explicitly defined in the instance file. Every input listed must be directly obtainable from the
instance. Input element names must not contain spaces; use underscores . Output must clearly
describe feasible vehicle routes respecting all constraints. The optimization objective must align
with VRP goals.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

If any contradictions exist, treat the .vrp file as the ground truth and mark it as incorrect.If
everything is consistent, mark it as correct.If correct, return ’True’ with a short explanation. If
wrong, return ’False’ with a short explanation.

Output format must be exactly 4 lines:

1) right1: True/False

2) jud1: explanation

3) right2: True/False

4) jud2: explanation

Here is the VRP file: <vrp_text>

Here is GPT’s first answer: <problem_description_1>

Here is GPT’s second answer: <problem_description_2>

Output:

1) right1: True

2) jud1: The first answer accurately reflects the .vrp file, providing a clear problem description
and consistent constraints (Capacity, Visit, Depot) along with the correct specific name, with
no contradictions.

3) right2: False

4) jud2: The second answer includes input or objective elements that are not fully supported by
the CVRP instance—specifically, it omits capacity from the input—so it is not fully consistent
with the file’s available data and constraints.

D.1.3 REVISION AGENTS (RA)

The formats of Output 1 and Output 2 are identical to those in Section D.1.1.

Prompt 1:

We need to solve a VRP instance. I will provide you with the instance. Please analyze it
carefully.

Step 1: Give a concise description of the problem type in [], explaining what the problem is
about.

Step 2: Identify its constraints and list them clearly in numbered format (1), 2), 3), ...) within [].
For each constraint, write both the abbreviation (if any) and a short explanation (e.g., ’Capacity
(C): vehicles have limited capacity.’). Do not include instance-specific details like the exact
number of nodes, vehicles, or capacity values. Consider whether customers may be visited
once or multiple times, and whether all routes must start/end at a depot (unless open routes are
specified).

Reference constraint categories (not exhaustive):

- Electricity (E): electric vehicles are subject to fuel constraints. Each vehicle has a limited fuel
capacity, fuel is consumed proportionally to the distance traveled related to fuel consumption
rate, and vehicles must recharge at designated charging stations when necessary. Recharging
consumes time related to the refuel rate and remaining fuel.

- Capacity (C): vehicles have limited capacity.

- Open Route (O): vehicles do not return to the depot.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

- Backhaul (B): deliveries first, then pickups.

- Mixed (M): deliveries and pickups can be mixed.

- Distance Limit (L): each route has a maximum distance or time limit.

- Time Windows (TW): customers must be served within specific time intervals.

- Multi-depot (MD): multiple depots instead of one.

- Visit constraint (V): whether each customer can be visited only once.

- Depot constraint (D): routes must start and end at the depot.

Step 3: Write the standard problem type abbreviation (e.g., TSP, CVRP, CVRPL) enclosed in ”
”. Ensure the abbreviation is consistent with the constraints.

Check again that the constraints fit the specific name, and include the Visit constraint.

Here is your previous answer: <ans>

However, there were some issues identified: <jud>

Now, please correct your answer strictly according to the rules above.

Output format (exactly three lines):

1) [problem description]

2) [constraints]

3) ”specific name”

Below is the .vrp instance content: <vrp text>

Prompt 2:

We need to design an algorithm for the following VRP instance. The details of the instance are:
<Output 1>.

Based on this description and the instance contents, please provide:

Step 1: List the essential elements an algorithm would require from the instance, and the list
must include depot.

Step 2: Describe precisely what the algorithm should output (e.g., a set of feasible vehicle
routes that satisfy all listed constraints).

Step 3: Describe clearly the optimization objective (e.g., minimize total travel distance, mini-
mize fleet size, minimize lateness).

Important rules:

- Each of the three answers (input, output, objective) must be enclosed in [] exactly as shown.

- Do not include instance-specific details like the exact number of nodes, vehicles, or capacity
values.

- Step 1 element names must not contain spaces; use underscores instead.

Here is your previous answer: <ans>

Issues identified in that answer: <jud>

Now, please correct your answer strictly according to the rules above.

Final output format (exactly three lines):

4) [input]

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

5) [output]

6) [objective]

Below is the .vrp instance content: <vrp_text>

D.2 SUBTASK 2: CODE GENERATION

D.2.1 GENERATION AGENT (GA)

Prompt (Partly):

Here is the code you generated before (for reference, please improve or extend it if needed):
<code>

We are working on a VRP problem instance:

Problem description: <problem_desc>

Constraints: <constraints>

Specific name: <specific_name>

Input definition: <input_def>

Output definition: <output_def>

Optimization objective: <objective>

Important rules:

- You are given the raw .vrp file content for context.

- Do not hardcode any instance-specific details such as the number of nodes, vehicle count, or
node coordinates.

- Any functions generated must be general-purpose and reusable for any VRP instance.

Task: Generate a Python function named exactly ’read vrp(path: str)’:

- The function must read a .vrp file and parse its content strictly according to the items listed in
the Input definition.

- Every element mentioned in the Input definition must be parsed and included. No additional
fields may be added, and no required fields may be omitted.

- The function must return a dictionary where:

• Keys exactly match the names in the Input definition, using underscores “ ” instead of
spaces.

• Each value is returned as a list, even if it contains only a single element.

• A section may end with “-1”, “EOF”, or the beginning of another section header (lines in all
caps ending with “ SECTION”) and the function must handle all of these cases.

- The implementation must be general-purpose; do not hardcode any instance-specific details.

Output format requirement:

Return only valid Python code inside a single code block marked as ‘‘‘python ... ‘‘‘
with no extra text, explanations, or comments outside the code block.

If previous code is provided, include it (or an improved version) together with the newly gener-
ated function in the final output.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Ensure that all necessary import statements required for the code to run are included at the top
of the code block.

Output (Partly):

1 import re
2 import math
3 import random
4 import copy
5 import argparse
6 import sys
7 def read_vrp(path: str):
8 with open(path, 'r') as f:
9 lines = f.readlines()

10 node_coord_dict = {}
11 demand_dict = {}
12 depot_ids = []
13 dimension = None
14 capacity = None
15 in_node_coord_section = False
16 in_demand_section = False
17 in_depot_section = False
18 for line in lines:
19 line = line.strip()
20 if not line or line == 'EOF':
21 continue
22 if line.startswith('DIMENSION'):
23 dimension = int(re.search(r':\s*(\d+)', line).group(1))
24 continue
25 if line.startswith('CAPACITY'):
26 capacity = float(re.search(r':\s*([\d.]+)',

line).group(1))↪→
27 continue
28 if line == 'NODE_COORD_SECTION':
29 in_node_coord_section = True
30 in_demand_section = False
31 in_depot_section = False
32 continue
33 if line == 'DEMAND_SECTION':
34 in_node_coord_section = False
35 in_demand_section = True
36 in_depot_section = False
37 continue
38 if line == 'DEPOT_SECTION':
39 in_node_coord_section = False
40 in_demand_section = False
41 in_depot_section = True
42 continue
43 if in_node_coord_section:
44 tokens = line.split()
45 idx = int(tokens[0])
46 x = float(tokens[1])
47 y = float(tokens[2])
48 node_coord_dict[idx] = [x, y]
49 elif in_demand_section:
50 tokens = line.split()
51 idx = int(tokens[0])
52 d = float(tokens[1])
53 demand_dict[idx] = d
54 elif in_depot_section:
55 val = int(line)
56 if val == -1:
57 continue
58 depot_ids.append(val)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

59 if not depot_ids:
60 raise ValueError('Depot information missing in VRP file.')
61 if dimension is None:
62 raise ValueError('DIMENSION missing in VRP file.')
63 if capacity is None:
64 raise ValueError('CAPACITY missing in VRP file.')
65 all_ids = sorted(node_coord_dict.keys())
66 if len(all_ids) != dimension:
67 raise ValueError('Parsed node_coord_dict length does not

match DIMENSION.')↪→
68 if len(demand_dict) != dimension:
69 raise ValueError('Parsed demand_dict length does not match

DIMENSION.')↪→
70 depot_id = depot_ids[0]
71 if depot_id not in all_ids:
72 raise ValueError('Depot id not present in node_coord_dict.')
73 customer_ids = [nid for nid in all_ids if nid != depot_id]
74 node_id_list = [depot_id] + sorted(customer_ids)
75 node_coordinates = [node_coord_dict[nid] for nid in node_id_list]
76 demands = [demand_dict[nid] for nid in node_id_list]
77 return {
78 "depot": [depot_id],
79 "node_coordinates": node_coordinates,
80 "demands": demands,
81 "vehicle_capacity": [capacity]
82 }

D.2.2 JUDGMENT AGENT (JA)

Prompt (Partly):

You are a strict Python code reviewer and VRP expert.

Here is the generated Python code: <code>

We are working on a VRP problem instance:

Problem description: <problem_desc>

Constraints: <constraints>

Specific name: <specific_name>

Input definition: <input_def>

Output definition: <output_def>

Optimization objective: <objective>

Evaluation rules:

Only evaluate the given code snippet. Ignore any other functions or unrelated context.

Check if the code has syntax errors or logical bugs that would prevent execution.

For ’read vrp’:

• Ensure it extracts exactly the elements listed in the Input definition.

• No additional fields may be added, and no required fields may be omitted.

• Verify that each extracted element is explicitly available in the provided .vrp file content.

• Do not assume or fabricate values not present in the file.

• A section may end with -1, EOF, or the beginning of another section header (e.g., lines in all
caps ending with SECTION); it must handle all of these situations.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

• Confirm that the function returns all required fields in a dictionary format, and each value must
be returned as a list (array); keys must match the Input definition exactly, using underscores
instead of spaces.

• The function ’read vrp’ must be contained in the code.

Use the provided .vrp file content as the only ground truth for evaluation. Do not invent or
assume data that is not present in the instance.

Below is the .vrp instance content: <vrp_text>

Assume that the VRP file provides all elements in <input_def>.

Assume that this code is only for <specific_name>, <problem_desc>.

Assume that node IDs preserve the exact order given in the input .vrp file, are unique, and
contain no duplicates.

Your task:

If the code is fully correct (no syntax errors, no logical bugs, all constraints satisfied, and fully
consistent with the VRP rules), return right1: True and provide a brief explanation.

If the code has any issues (syntax bugs, logical errors, constraint violations, inconsistent nam-
ing, wrong input/output handling, or deviations from the specification), return right1: False and
explain why. If wrong, you must also provide clear and concrete suggestions for how to fix or
improve the code.

Important formatting rule: For easier parsing, the explanation or suggestions must be written
in plain text on a single line, without using any line breaks (\n) or additional colons except the
ones required in right: and jud:.

Output format must be exactly 2 lines:

right: True/False

jud: explanation and suggestions

Output:

right: False

jud: The code is invalid because the returned dictionary key ”node coordinate” does not match
the required Input definition key ”node coordinates”; rename the key to ”node coordinates” to
ensure consistency with the specified input definition.

D.2.3 REVISION AGENT (RA)

Prompt:

Here is the code you generated before: <prev_code>

We are working on a VRP problem instance.

Problem description: <problem_desc>

Constraints: <constraints>

Specific name: <specific_name>

Input definition: <input_def>

Output definition: <output_def>

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Optimization objective: <objective>

Important rules:

- You are given the raw .vrp file content below for context.

- Do not hardcode any instance-specific details such as number of nodes, vehicle count, or node
coordinates.

- The functions you generate must be general-purpose and reusable for any VRP instance.

Below is the .vrp instance content (for context only): <vrp_text>

The code you generated previously has the following issues and revised suggestions: <jud>

Please correct the code according to the issues above, without changing the number of functions,
their names, or their signatures.

Output format requirement: Return only valid Python code inside a single code block:
‘‘‘python ... ‘‘‘ with no extra text, explanations, or comments outside the code
block.

The output format is identical to that described in Sec. D.2.1.

D.3 SUBTASK 3: SOLUTION DERIVATION

D.3.1 ERROR ANALYSIS AGENTS (EAA)

Prompt:

You are a strict Python code reviewer and VRP expert.

We are working on a VRP problem instance.

Problem description: <problem_desc>

Constraints: <constraints>

Specific name: <specific_name>

Input definition: <input_def>

Output definition: <output_def>

Optimization objective: <objective>

The code was generated using the following rules: <all rules in generation code>

Use the provided .vrp file content as the only ground truth for analysis. Do not invent or assume
data that is not present in the instance.

Below is the .vrp instance content: <vrp_text>

The code execution failed and produced the following error message: <error_msg>

Your task: Analyse the error message and explain why the error happened. Provide clear and
concrete suggestions for how to fix or improve the code.

Formatting rule: For easier parsing, your explanation and suggestions must be written strictly
in plain text on a single line, without using any line breaks (\n) or additional colons except the
required jud: prefix.

Output format must be exactly 1 line:

1) jud: explanation and suggestions

Output:

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

jud: The error occurred because the algorithm timed out while generating routes for the CVRP
instance, indicating that the current implementations of the initial and insert functions have
excessively high computational complexity; to fix this, simplify the construction strategy in
initial by reducing unnecessary nested loops, and in insert replace exhaustive cost evaluations
with a priority queue or incremental cost update to lower overall runtime.

The JA and RA are identical to those described in Section D.2.2 and Section D.2.3.

E THE USE OF LARGE LANGUAGE MODELS

In this study, large language models (LLMs) are not merely tools for polishing text but an integral
component of the proposed framework. They serve as autonomous agents within our framework,
while the core ideas and the manuscript itself were conceived, prepared, and finalized by the authors.

35

	Introduction
	Preliminaries
	Methodology
	Specialized Agent
	Subtask 1: Problem Description
	Subtask 2: Code Generation
	Subtask 3: Solution Derivation

	Experiment
	Comparison on Standard Benchmark
	Comparison on Practical Benchmark
	Comparison with LLM-based Solver
	Ablation Study
	Broad Applicability

	Conclusion
	Appendix
	Related Work
	ML for VRPs
	LLM for VRPs

	Problem Statement
	Supplementary Methodology and Experimental Details
	VRPLib Component
	Destroy Strategy
	Simulated Annealing Criterion
	Details of Comparison of Code Reliability and Solution Feasibility
	Comparison on ATSP Benckmark
	Comparison on ACVRP Benckmark
	Comparison on SOP Benckmark

	Examples of Prompts and Outputs
	Subtask 1: Problem Description
	Generation Agent(GA)
	Judgment Agent (JA)
	Revision Agents (RA)

	Subtask 2: Code Generation
	Generation Agent (GA)
	Judgment Agent (JA)
	Revision Agent (RA)

	Subtask 3: Solution Derivation
	Error Analysis Agents (EAA)

	The Use of Large Language Models

