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ABSTRACT

Complex vehicle routing problems (VRPs) remain a fundamental challenge, de-
manding substantial expert effort for intent interpretation and algorithm design.
While large language models (LLMs) offer a promising path toward automation,
current approaches still rely on external intervention, which restrict autonomy and
often lead to execution errors and low solution feasibility. To address these chal-
lenges, we propose an Agentic Framework with LLMs (AFL) for solving com-
plex vehicle routing problems, achieving full automation from problem instance
to solution. AFL directly extracts knowledge from raw inputs and enables self-
contained code generation without handcrafted modules or external solvers. To
improve trustworthiness, AFL decomposes the overall pipeline into three man-
ageable subtasks and employs four specialized agents whose coordinated interac-
tions enforce cross-functional consistency and logical soundness. Extensive ex-
periments on 20 complex VRPs, ranging from standard benchmarks to practical
variants, validate the effectiveness and generality of our framework, showing com-
parable performance against meticulously designed algorithms. Notably, it sub-
stantially outperforms existing LLM-based baselines in both code reliability and
solution feasibility, achieving rates close to 100% on the evaluated benchmarks.

1 INTRODUCTION

Vehicle routing problems (VRPs) are fundamental to industrial and commercial applications such as
logistics (Bochtis & Sørensen, 2010; Konstantakopoulos et al., 2022) and transportation (Cattaruzza
et al., 2017; Zhang et al., 2022), yet they remain challenging to solve due to their diverse variants
with intricate real-world constraints. Traditional approaches (Furnon & Perron; Helsgaun, 2017;
Vidal, 2022; Wouda et al., 2024) often require substantial expert effort, either to translate problem
statements into mathematical formulations or to design specialized algorithms. Although recent
neural solvers (Kool et al., 2018; Kwon et al., 2020) alleviate the dependence on domain knowledge,
they still require a certain degree of manual adaptation to address more complex VRPs.

More recently, large language models (LLMs) (Zhao et al., 2023), with their strong natural lan-
guage understanding and code generation capabilities, may offer a promising avenue for automa-
tion, reducing reliance on manual effort and enabling flexible solver development across diverse
VRP variants. Some early attempts (Yang et al., 2024; Liu et al., 2024b) directly prompt LLMs to
generate solutions but fall short in terms of solution optimality and feasibility. Other approaches
(Romera-Paredes et al., 2024) explore the use of LLMs to generate programming code as a proxy
for addressing challenges in VRP optimization, which can be broadly categorized into two direc-
tions. The first direction centers on evolving basic heuristics tailored for conventional VRPs, with
representative examples including EoH (Liu et al., 2024a) and ReEvo (Ye et al., 2024a). In contrast,
the second direction emphasizes developing general frameworks capable of handling diverse VRP
variants, making it more practical and application-oriented.

Early research efforts have started to address this challenging second direction. Their workflow gen-
erally comprises two phases: framework-design, in which the architecture and generation strategy
are specified (see Section 3), and framework-execution, in which the resulting framework is deployed
to solve diverse problem instances. ARS (Li et al., 2025a) constructs constraint-checking functions
by retrieving and adapting templates from a predefined constraint library, while DRoC (Jiang et al.,
2025) employs a retrieval-augmented generation (RAG) strategy to produce code that invokes OR-
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Table 1: Comparison of representative LLM-based approaches for VRPs.

ARS
(Li et al., 2025a)

DRoC
(Jiang et al., 2025)

SGE
(Iklassov et al., 2024)

AFL
(This Work)

Complex VRPs ✓ ✓ ✗ ✓
Self-Containment§ ✗ ✗ ✓ ✓
Full Automation† ✗ ✗ ✗ ✓
High Trustworthiness∗ ✗ ✗ ✗ ✓
§ LLMs produce complete code without relying on handcrafted modules or external solvers during framework-design.
† The entire workflow proceeds from raw input to final solution without human intervention during framework-execution.
∗ Achieving high code reliability and solution feasibility (e.g., ≥ 95%).

Tools (Furnon & Perron) for problem solving. Although both ARS and DRoC can handle complex
VRPs, these module-level generation methods are not self-contained, depending on handcrafted
code modules or external solvers during framework-design, and not fully automated, as they still
require human involvement to extract instance-specific information during framework-execution.
This dependence may introduce misalignment between LLM-generated code and external systems,
which can result in execution errors and reduced solution feasibility. In contrast, SGE (Iklassov
et al., 2024) achieves self-containment but is limited to relatively simple problems like the Traveling
Salesman Problem (TSP), as it lacks effective mechanisms for handling complex constraints and
fails to provide full automation or reliable code and solution validity. In this paper, as summarized
in Table 1, we address these limitations by proposing a general framework of collaborative LLM-
empowered agents that can tackle complex VRPs with self-containment, full automation, and high
trustworthiness in both code and solutions.

We introduce an Agentic Framework with LLMs (AFL) that solves complex VRPs end-to-end, from
problem instance to solution. Specifically, it derives domain knowledge directly from instance inputs
and leverages this knowledge to guide code generation. To enhance the feasibility and reliability of
the generated code and the resulting VRP solutions under complex constraints, the pipeline is de-
composed into three tractable subtasks: problem description, code generation, and solution deriva-
tion, each handled by multiple LLM agents tailored to its task. In total, we design four specialized
agents, including generation agent, judgment agent, revision agent, and error analysis agent, col-
laborate to ensure cross-functional consistency, logical soundness, and constraint satisfaction. The
overview of AFL is presented in Fig. 1. Our main contributions are summarized as follows.

1) Conceptually, we position LLMs as knowledgeable developers of self-contained frameworks for
solving complex VRPs, achieving full automation from problem instance to solution without
reliance on handcrafted modules or external solvers.

2) Methodologically, we propose AFL, an agentic LLM framework that decomposes the inherently
intractable pipeline into three manageable subtasks and employs four specialized agents to col-
laboratively enhance trustworthiness in both code and solutions.

3) Experimentally, we evaluate AFL on 20 VRPs, comprising 8 representative VRPs from the lit-
erature, 8 complex electric VRPs from practical scenarios, and 4 classical VRPs in broader set-
tings. Extensive results demonstrate the effectiveness and generality of our framework, showing
competitive performance against carefully tailored algorithms while delivering superior code re-
liability and solution feasibility compared to existing LLM-based approaches.

2 PRELIMINARIES

The VRP is a fundamental combinatorial optimization task. It seeks a set of minimum-cost routes
that allow a fleet of vehicles to serve geographically distributed customers while satisfying practi-
cal constraints such as vehicle capacity, route length, or customer time windows. Classic variants
include the Capacitated VRP (CVRP), where each vehicle has a fixed capacity limit; the VRP with
Time Windows (VRPTW), where every customer must be served within a specific time interval; and
the Electric VRP (EVRP), which incorporates battery capacity and recharging requirements. These
formulations capture diverse real-world delivery, ride-sharing, and service-dispatch applications. A
detailed introduction to each variant considered in this paper is provided in Appendix B.
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Table 2: Constraint descriptions and corresponding VRPLib-format fields.

Constraint VRPLib Field Description

Capacity (C)
CAPACITY Each vehicle has a maximum load capacity, and each

customer is associated with a demand that must be
satisfied without exceeding this capacity.

DEMAND SECTION

Duration Limit (L)
DISTANCE LIMIT Each vehicle route is constrained by a maximum

travel distance, and the total distance of any route
must not exceed this limit.

Time Windows (TW)
TIME WINDOW SECTION Each customer must be served within a specified time

interval, and service times must be included in the
schedule to maintain feasibility.

SERVICE TIME SECTION

Open Route (O)
DEPOT SECTION Vehicles may not be required to return to the depot after

serving their assigned customers, relaxing the standard
closed-route assumption.

Electric Vehicle (E)

FUEL CAPACITY Electric vehicles are constrained by limited battery
capacity; they consume energy during travel and
refuel at recharging stations.

FUEL CONSUMPTION RATE
REFUEL RATE
STATION SECTION

To represent benchmark instances in a consistent way, we adopt the VRPLIB format (Uchoa et al.,
2017), a plain-text specification similar to TSPLIB (Reinelt, 1991). A VRPLIB file begins with
general information such as the instance name and an optional comment, followed by key sections
specifying the problem type, edge weight type, dimension, and the coordinates of each location.
Additional sections may describe customer demands and vehicle capacity, distance limits, time win-
dows and service times, or energy-related data for electric vehicles, including fuel capacity, fuel
consumption rate, refueling rate, and charging station locations. The mapping between constraints
and their corresponding VRPLIB fields is summarized in Table 2, with further details on each field
provided in Table 7 in the Appendix. Our AFL directly takes VRPLIB-format instances as input.

3 METHODOLOGY

In this section, we introduce AFL, an agentic LLM framework for solving complex VRPs by struc-
turing the pipeline into three subtasks: problem description, code generation, and solution deriva-
tion. Within these subtasks, specialized agents, including the generation agent (GA), judgment agent
(JA), revision agent (RA), and error analysis agent (EAA), collaborate to fulfill their respective roles,
ultimately enhancing the trustworthiness of both the generated code and the derived solutions under
the constraints of the given problem instance.

The overview of AFL is presented in Fig. 1. Specifically, given a VRP instance G, the system first
generates a problem description D(G) through the collaborative operation of the GA, JA, and RA.
This problem description is then used to query the buffer to check whether relevant code has been
previously stored. If such code exists, the workflow proceeds directly to the solution derivation
stage. Otherwise, the GA progressively generates the required functions one by one, while the JA
and RA iteratively evaluate and refine the code until it meets all requirements and constraints. Once
a complete implementation is produced, it is executed to derive a solution. If execution errors occur,
the EAA diagnoses their causes and provides explanations and suggestions, which the RA and JA
use to revise the code. This iterative process continues until the code passes validation and produces
a feasible solution. Finally, the corresponding problem description and code are stored in the buffer
for future reuse. Examples of the agents’ prompts and outputs for each subtask are provided in
Appendix D. In the following, we present each specialized agent and pipeline stage in detail.

3.1 SPECIALIZED AGENT

Generation Agents (GA) are responsible for producing descriptions and code. In the problem
description subtask, they generate a descriptionD(G) for the input VRPLib-format instance G. In the
code generation subtask, they generate function code C(G,D(G),P(f)) in an end-to-end manner,
guided by the instance, the generated description, and the specific prompts P(f) associated with
function f . The resulting description and code are then forwarded to the JA for evaluation.
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Subtask 1: Problem Description

TYPE : CVRP

DIMENSION : 51

CAPACITY : 1

EDGE_WEIGHT_TYPE : 

EUC_2D

NODE_COORD_SECTION

1 0.191519 0.622109

2 0.437728 0.785359

3 0.779976 0.272593

……
Generation 

Agent

What this 

problem is?

Description Generation

Instance

Description Judgement and Revision

Judgement  

Agent

Is this 

description right? 

If no, why? 

Revision  

Agent

Considering the 

description and 

judgment, I need 

to revise the 

description.

Subtask 3: Solution Derivation

Code Execution

CVRP.py

Code

Problem 

Description

Python 

Subtask 2: Code Generation

Code Existence Check

Judgement  

Agent

Is this code right? If 

no, I need to explain 

why and provide 

revision suggestions.Revision  

Agent

Base on the problem 

description, function 

requirement, code and 

judgement, I need to 

revise the code.

Problem Description Buffer

Description Constrain

Input Output

Objective Code
Generation 

Agent

I need to 

generate the 

initial/destr

oy/insert/…  

function

Code Generation

Code Judgement and Revision

Judgement and Suggestion

True

False

Code

CVRP.py

!
ERROR

Error 

Error Analysis 

Agent

Given the problem 

description, code, 

and error, why 

does this error 

occur and how can 

it be solved?

Error Analysis 

Error Analysis 

Code Revision

Judgement  

Agent

Revision  

Agent

TYPE : CVRP

DIMENSION : 51

CAPACITY : 1

EDGE_WEIGHT_TYPE : 

EUC_2D

NODE_COORD_SECTI

ON

1 0.191519 0.622109

2 0.437728 0.785359

3 0.779976 0.272593

……

Instance

Problem Description

and Code

Iterate and Store Final Code

Buffer

Description Constr

ain
Input Output

Objective Code

Figure 1: Overview of an agentic framework with LLMs for solving complex VRPs.

Judgment Agents (JA) evaluate the validity of the generated description and code. In the problem
description subtask, they verify whether D(G) aligns with the instance context. In the code gen-
eration and solution derivation subtasks, they further assess whether the generated or revised code
satisfies the prompt requirements and is free from syntactic and logical errors. If the judgment is
positive, the description or code is accepted and the process advances to the next step. Otherwise,
the JA provides explanations of identified issues along with suggestions for resolution by the RA.

Revision Agents (RA) refine both the description and the code. Description revision is guided by
the JA’s feedback and the instance context, while code revision additionally leverages the previously
generated description. After each revision, the updated description or code is returned to the JA for
re-evaluation, and this process continues until a positive judgment is reached.

Error Analysis Agents (EAA) operate exclusively in the solution derivation subtask, where they
analyze the causes of errors during code execution and provide suggestions for resolving them. The
analysis is then passed to the RA for code revision.

3.2 SUBTASK 1: PROBLEM DESCRIPTION

Description Generation. Given a VRPLib-format instance G, our framework automatically extracts
domain knowledge from the instance context without human intervention, offering a user-friendly
interface for problem setup. The VRPLib format is a widely adopted benchmark specification for
VRPs, defining essential elements such as the problem type, number of nodes, node coordinates,
depot ID, and various constraint-related parameters, as summarized in Table 2. Based on this, the
GA generates the problem description for the given instanceD(G) = {P, S,K,X, Y, Z}. A detailed
example is provided in Appendix D.1. Here, we define the components of D(G) as follows:

1) P specifies the type of problem (e.g., CVRP, VRPTW, ECVRPTW). It is inferred from the prob-
lem type and the constraint-related parameters defined in the instance context, and it determines
the name of the generated code file (e.g., CVRP.py).

2) S denotes the textual description of the instance’s problem type. It is provided to the code
generation subtask to inform the agents about the problem definition.

3) K represents the set of constraints along with their explanations. These are derived from the
constraint-related parameters and problem type specified in the instance context. In addition,
K includes visit and depot constraints, which are supplementary requirements automatically
analyzed and inferred by the GA. Within the code generation subtask, K guides the agents in
embedding these constraints into function design, thereby enhancing the solution feasibility.
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4) X denotes the required input for solving the given instance. In the code generation subtask, it
specifies the information that must be read from the instance and enforces consistency by requir-
ing input variable names to match those in X , thereby reducing potential errors. For example, in
CVRP, X includes node coordinates, depot ID, customer demands, and vehicle capacity.

5) Y refers to the expected output. For instance, in CVRP, the solver should produce a set of vehicle
routes, each starting and ending at the depot, visiting every customer exactly once, ensuring that
no vehicle route exceeds capacity and that all demands are satisfied. Moreover, the returned route
should represent the best feasible solution among the candidates.

6) Z represents the objective function, such as minimizing the total travel distance, which is further
used in constructing the cost function code.

Description Judgment and Revision. After the GA generates the above problem descriptionD(G),
the JA evaluates its correctness. The evaluation checks: (i) whether any component of D(G) con-
flicts with the instance, (ii) whether the components are internally consistent, and (iii) whether the
input definition X is properly specified in the instance context. If a conflict is detected, the instance
context serves as the reference standard. If no issues are found, the output is set to TRUE, the prob-
lem description subtask terminates, and the process advances to the next code generation subtask.
Otherwise, the output is set to FALSE, accompanied by explanations of the negative judgment and
suggestions for the RA to make correction. The RA then revises D(G) based on the JA’s feedback
and the instance context. The revised description is returned to the JA for re-evaluation, and this iter-
ative process continues until the JA confirms thatD(G) is correct. This iterative procedure improves
the accuracy ofD(G), as demonstrated by the ablation study in Section 4.4. The problem description
subtask provides the essential information required for code generation and enforces unified naming
conventions and constraints, which must remain consistent throughout the entire pipeline.

3.3 SUBTASK 2: CODE GENERATION

We adopt a unified destroy-insert heuristic for solving VRPs, as it offers greater flexibility than
others and can handle complex, practical problem variants. The code generation subtask consists
of interdependent functions: read vrp, distance, cost, initial, destroy, insert, validate, and
main, which together form a complete VRP solver. Generating the full solver code, however, is
challenging, as it requires maintaining consistency across multiple functions while satisfying all
requirements. To address this, the GA produces the functions sequentially, with each building upon
the previously generated code to ensure correctness and reduce the burden on the LLM. In addition,
the JA and RA iteratively refine the code by correcting unmet requirements, syntactic errors, and
logical inconsistencies after each function is generated. We describe each step in detail below.

Code Generation. The code structure of the problem-solving workflow is shown in Fig. 2. We
specify the role of each function to provide a structured foundation for guiding the GA in generat-
ing the corresponding code. Note that these functions are executed only in the solution derivation
subtask and are debugged by the EAA if any runtime errors occur.

read_vrp

initial

distance

validate

cost

validate

cost

simulated 

annealing

Initialization Improvement

insert

destroy

Figure 2: Code structure.

First, read vrp parses a VRPLib-format instance file into a
structured dictionary containing all required fields specified
by the input X ∈ D(G), ensuring that each variable in X
is accurately extracted from the instance context G. Next,
distance computes the distance matrix from the node coor-
dinates. initial constructs a solution using a greedy strategy
that respects constraints in K. The feasibility of the solution
is verified by validate. cost evaluates the objective value
of a given solution according to the objective function Z.
To enable iterative improvement, destroy removes a subset
of customers from the current solution, following the strat-
egy described in Appendix C.2 and Algorithm 1. Then, the
insert function reinserts the removed customers into feasible
positions while minimizing the additional cost. If no feasi-
ble insertion exists, a new vehicle is assigned to serve these
customers in compliance with constraints in K. At each im-
provement step, the feasibility of the resulting solution is ver-
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ified by validate to ensure that every constraint in K is satisfied. If any constraint is violated, the
function is required to raise an error, making debugging by the EAA easier. Finally, main orches-
trates the entire workflow, encompassing initialization, iterative improvement, and overall solution
management, as illustrated in Fig. 2. In the initialization phase, an initial feasible solution is gen-
erated, while in the improvement phase (T steps in total), the solution is iteratively refined through
destruction, insertion, validation, and cost evaluation, with new solutions accepted according to the
simulated annealing criterion (see Appendix C.3).

Code Judgment and Revision. For each function generated by the GA, the JA assesses the cor-
rectness of the code produced thus far, checking compliance with the requirements and detecting
any syntactic or logical errors. If issues are identified, the RA revises the code based on the JA’s
feedback and the instance context. The revised code is then returned to the JA for re-evaluation,
and this process is repeated until the JA delivers a positive judgment. By validating and correct-
ing each code segment before generating the next function, this mechanism reduces the burden on
subsequent code generation and revision, improves efficiency, and enhances the reliability of the
final solver implementation. Moreover, constraint considerations are enforced throughout the code
generation process. The generated code is repeatedly checked to ensure that all constraints in K are
properly incorporated. This iterative enforcement helps the final solver produce solutions feasible
with respect to the instance constraints.

3.4 SUBTASK 3: SOLUTION DERIVATION

The functions produced in the code generation subtask is not always executable, as constructing
a full VRP solver is highly complex. Bugs may arise for several reasons: some stem from syn-
tactic errors, others from logical flaws, and still others from unmet requirements, such as failing
to incorporate certain constraints. Although we have designed strategies such as enforcing con-
straint considerations during code generation, guaranteeing the correctness of LLM-generated code
remains non-trivial. To address this challenge and enhance the trustworthiness of the generated VRP
solver, we leverage an EAA to identify the cause of errors and provide explanations along with sug-
gestions for correction. Similar to the code generation subtask, the RA then modifies the code based
on this feedback, after which the JA evaluates the revision. If the code remains unsatisfactory, the
RA further adjusts it according to the JA’s feedback, and this process repeats until the JA delivers
a positive judgment. The revised code is then re-executed to obtain a feasible solution. Eventually,
the model stores the problem description D(G) together with the corresponding generated code in
the buffer. If the same problem is encountered again, the framework can directly reuse the stored
code, thereby improving efficiency and avoiding redundant computation.

4 EXPERIMENT

We first evaluate AFL against traditional and neural approaches on 8 standard benchmarks incorpo-
rating common constraints such as capacity (C), duration limit (L), time window (TW), and open
route (O), which are widely used to assess traditional algorithms. We then extend the evaluation to 8
practical electric (E) VRPs, which remain challenging for traditional solvers. Next, we benchmark
AFL against LLM-based approaches, assessing code reliability, solution feasibility, and overall per-
formance. We also conduct ablation studies to examine the effectiveness of our agentic design.
Finally, we evaluate 4 additional open benchmarks, including TSP, ATSP, ACVRP, and SOP, to
demonstrate the broad applicability of our framework. We run all traditional and LLM-based ap-
proaches on 16 CPU cores, with GPT-4.1 (OpenAI, 2024) as the default LLM used in AFL.

4.1 COMPARISON ON STANDARD BENCHMARK

We compare AFL with the traditional solvers HGS (implemented in PyVRP) (Vidal, 2022; Wouda
et al., 2024) and OR-Tools (Furnon & Perron), as well as the neural solver RF-POMO (Berto et al.,
2025b). The experimental settings and testing data follow Berto et al. (2025b), including 1,000
instances for each problem. Note that our objective is not to surpass SOTA solvers on conventional
VRPs, which reflect decades of expert effort, but to develop a fully automated and self-contained
framework for tackling complex VRPs. Therefore, in the comparison shown in Table 3, we regard
a 3% relative gap with respect to SOTA solvers as an acceptable criterion. We report the results
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Table 3: Comparison results on standard benchmarks.

n=50 n=100 n=50 n=100

Obj. Gap (%) Time (m) Obj. Gap (%) Time (m) Obj. Gap (%) Time (m) Obj. Gap (%) Time (m)

HGS-PyVRP

C
V

R
P

10.37 – 10.40 15.62 – 20.80

C
V

R
PL

10.59 – 10.40 15.77 – 20.80
OR-Tools 10.57 1.91 10.40 16.28 4.18 20.80 10.83 2.34 10.40 16.47 5.30 20.80
RF-POMO 10.51 1.31 0.03 15.91 1.83 0.12 10.75 1.52 0.02 16.11 2.17 0.10
AFL (T=500) 10.89 5.01 0.18 16.66 6.66 0.32 11.35 7.18 0.33 17.36 10.08 1.03
AFL (T=2000) 10.70 3.18 0.46 16.22 3.84 1.02 11.25 6.23 1.13 17.03 7.99 7.35
AFL (T=10000) 10.59 2.12 2.10 15.99 2.38 4.38 11.18 5.57 6.93 16.84 6.79 25.48

HGS-PyVRP

C
V

R
PT

W

16.03 – 10.40 25.42 – 20.80

O
C

V
R

P

6.51 – 10.40 9.73 – 20.80
OR-Tools 16.08 0.35 10.40 25.81 1.51 20.80 6.55 0.69 10.40 10.00 2.73 20.80
RF-POMO 16.37 2.09 0.02 26.34 3.58 0.12 6.70 2.90 0.02 10.18 4.66 0.10
AFL (T=500) 16.49 2.87 0.59 26.60 4.64 2.15 6.79 4.30 0.31 10.37 6.58 0.4
AFL (T=2000) 16.28 1.56 2.26 26.02 2.36 8.92 6.69 2.76 0.66 10.11 3.91 1.16
AFL (T=10000) 16.19 0.99 9.31 25.79 1.46 38.45 6.64 2.00 2.20 9.99 2.67 5.52

HGS-PyVRP

C
V

R
PL

T
W

16.36 – 10.40 25.76 – 20.80

O
C

V
R

PL

6.51 – 10.40 9.72 – 20.80
OR-Tools 16.44 0.50 10.40 26.26 1.90 20.80 6.55 0.67 10.40 10.00 2.79 20.80
RF-POMO 16.75 2.38 0.02 26.78 3.95 0.12 6.70 2.95 0.02 10.18 4.66 0.1
AFL (T=500) 17.07 4.34 0.61 27.60 7.14 1.95 6.81 4.61 0.43 10.37 6.68 1.03
AFL (T=2000) 16.78 2.57 1.95 26.96 4.66 7.21 6.71 3.07 1.21 10.15 4.42 3.68
AFL (T=10000) 16.61 1.53 8.90 26.56 3.11 35.33 6.64 1.99 5.65 9.99 2.78 16.27

HGS-PyVRP

O
C

V
R

PT
W

10.51 – 10.40 16.93 – 20.80

O
C

V
R

PL
T

W

10.51 – 10.40 16.93 – 20.80
OR-Tools 10.52 0.08 10.40 17.03 0.58 20.80 10.50 0.11 10.40 17.02 0.73 20.80
RF-POMO 10.66 1.38 0.02 17.39 2.72 0.12 10.66 1.38 0.02 17.39 2.73 0.12
AFL (T=500) 10.64 1.24 0.67 17.36 2.54 0.75 10.74 2.12 1.05 17.61 4.02 3.63
AFL (T=2000) 10.57 0.57 2.86 17.14 1.24 10.63 10.64 1.24 3.76 17.32 2.30 16.75
AFL (T=10000) 10.55 0.38 11.15 17.04 0.65 49.05 10.58 0.67 17.27 17.19 1.54 70.31

Note: The term obj. denotes the objective value, gap represents the relative gap with respect to HGS-PyVRP, and time indicates the total runtime. For all
three metrics, lower values are better. Bold numbers highlight our cases where the gap from the SOTA is within 3%, which is considered acceptable given
that our framework is fully automated and self-contained.

of AFL after 500, 2,000, and 10,000 iterations of solution improvement. The runtime of AFL is
measured as the sum of the problem description and solution derivation phases. The code generation
phase, analogous to the training phase of a neural solver, is excluded, since once the solver code is
produced, it can be reused across instances without incurring repeated generation overhead.

AFL automatically generates a complete VRP solver without any manual intervention. As shown
in Table 3, it achieves a relative gap within 3% of the SOTA HGS on most benchmark prob-
lems, demonstrating competitive performance. It is worth noting that the reported runtimes exhibit
stochastic variation: more complex problems do not necessarily result in longer execution times. For
example, the runtime on OCVRPL is shorter than that on CVRPL. This variability arises from the
LLM-based code generation process, where the model may occasionally produce implementations
(e.g., sorting) with higher algorithmic complexity, leading to longer runtimes.

4.2 COMPARISON ON PRACTICAL BENCHMARK

Traditional solvers like HGS (Vidal, 2022; Wouda et al., 2024) and OR-Tools (Furnon & Perron)
are inherently constrained by their internal implementations and cannot be directly adapted to new
problem settings without substantial modifications to the core codebase, whereas AFL can natu-
rally accommodate practical VRPs. To demonstrate this, we conduct experiments on a widely used
benchmark for ECVRPTW (Schneider et al., 2014), a representative variant of the electric vehicle
routing problem (EVRP). Specifically, the dataset contains 36 small instances with 5, 10, and 15
customers, as well as 56 large instances with 100 customers. To further assess generality, we extend
this benchmark to 7 additional EVRP variants, namely ECVRP, ECVRPL, EOVRPL, EOCVRP,
EOCVRPTW, ECVRPLTW, and EOCVRPLTW, enabling a more comprehensive evaluation across
diverse and challenging problem settings. Given the intrinsic difficulty of these problems and the
lack of directly applicable advanced solvers, we adopt ACO and Greedy as baselines, as both are
widely recognized flexible heuristics for complex VRPs. For ACO, the number of improvement
steps is fixed at 500. The results in Table 4 demonstrate the consistent effectiveness of AFL. Al-
though ACO is executed with 500 improvement steps, our framework attains better objective values
in shorter runtimes. These empirical findings highlight the superiority of AFL on complex and
practical VRPs, where traditional solvers often face limitations.
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Table 4: Comparison results on practical benchmarks.

Small Instances Large Instances Small Instances Large Instances

Obj. Gap (%) Time (m) Obj. Gap (%) Time (m) Obj. Gap (%) Time (m) Obj. Gap (%) Time (m)

ACO

E
C

V
R

P

270.68 0.00 0.23 1384.15 0.00 6.89

E
C

V
R

PL

341.74 0.00 0.24 952.07 0.00 7.92
Greedy 309.63 14.39 0.05 1407.97 1.72 0.13 714.34 109.03 0.06 7298.83 666.63 0.20
AFL (T=500) 266.21 -1.65 0.18 1145.51 -17.24 0.26 276.95 -18.96 0.18 885.15 -7.03 0.43
AFL (T=2000) 264.21 -2.39 0.24 1100.11 -20.52 0.54 276.94 -18.96 0.25 866.87 -8.95 1.22
AFL (T=10000) 263.33 -2.72 0.51 1045.74 -24.45 2.19 276.94 -18.96 0.53 861.05 -9.56 4.95

ACO

E
C

V
R

PT
W

323.88 0.00 0.25 1129.67 0.00 7.00

E
O

C
V

R
P

179.30 0.00 0.22 796.97 0.00 6.81
Greedy 379.88 17.29 0.06 1868.64 65.41 0.22 197.03 9.89 0.06 866.02 8.66 0.20
AFL (T=500) 306.50 -5.37 0.18 1101.14 -2.53 0.40 166.76 -6.99 0.19 632.73 -20.61 0.61
AFL (T=2000) 300.95 -7.08 0.23 1071.22 -5.17 1.17 166.02 -7.41 0.40 628.34 -21.16 1.90
AFL (T=10000) 300.23 -7.30 0.51 1044.63 -7.53 4.52 165.41 -7.75 1.20 623.36 -21.78 10.82

ACO

E
C

V
R

PL
T

W

419.85 0.00 0.44 2842.17 0.00 13.88

E
O

C
V

R
PL

204.87 0.00 0.34 759.24 0.00 10.50
Greedy 434.29 3.44 0.09 3039.87 6.96 0.34 221.34 8.04 0.08 896.92 18.13 0.30
AFL (T=500) 388.36 -7.50 0.21 2729.73 -3.96 0.50 173.43 -15.35 0.21 726.34 -4.33 0.54
AFL (T=2000) 386.84 -7.86 0.30 2612.83 -8.07 1.54 172.90 -15.61 0.36 693.71 -8.63 1.50
AFL (T=10000) 381.84 -9.05 0.87 2527.87 -11.06 7.07 172.53 -15.79 1.12 669.43 -11.83 9.29

ACO

E
O

C
V

R
PT

W

223.91 0.00 0.39 1139.12 0.00 11.98

E
O

C
V

R
P

LT
W

205.77 0.00 27.55 1184.48 0.00 14.12
Greedy 241.22 7.73 0.08 1219.73 7.08 0.33 222.89 8.32 0.10 1230.85 3.91 0.37
AFL (T=500) 183.26 -18.15 0.19 856.13 -24.84 0.43 181.74 -11.68 0.20 785.53 -33.68 0.48
AFL (T=2000) 183.11 -18.22 0.24 835.03 -26.70 1.20 181.43 -11.83 0.26 777.02 -34.40 1.26
AFL (T=10000) 182.88 -18.32 0.49 815.64 -28.40 4.75 181.27 -11.91 0.53 775.03 -34.57 5.84

Table 5: RER and SR.

RER ↓ SR ↑

SGE 94.1% 5.9%
DRoC 82.4% 17.6%
AFL 0% 100%

Table 6: Performance comparison on benchmark instances.

TSPLib CVRPLib CVRPL

50–200 200–500 500–1000 100–200 200–500 500–1000 50 100

SGE 109.59% 287.53% 660.36% – – – – –
DRoC 3.02% 3.96% 4.22% 3.93% 8.35% – 6.80% 8.31%
AFL 1.28% 2.68% 2.98% 1.93% 5.20% 6.66% 5.57% 6.79%

4.3 COMPARISON WITH LLM-BASED SOLVER

We compare AFL in trustworthiness and performance with representative LLM-based approaches
for diverse VRPs (above 16 variants plus TSP), namely SGE (Iklassov et al., 2024) and DRoC (Jiang
et al., 2025), while excluding ARS (Li et al., 2025a) due to the unavailability of its source code.

To assess trustworthiness, we report the Runtime Error Rate (RER), which measures the percentage
of generated code that executes with errors, and the Success Rate (SR), which measures the percent-
age of generated code that produces feasible solutions. As summarized in Table 5 and detailed in
Appendix C.4, SGE is limited to solving only TSP, attaining an RER of 94.1% and an SR of 5.9%.
DRoC extends to TSP, CVRP, and VRPL, with an RER of 82.4% and an SR of 17.6%. In contrast,
AFL successfully handles all 17 tested VRP variants, reaching 0% RER and 100% SR, highlighting
its superior code reliability and solution feasibility.

To assess performance, we further evaluate AFL on the problem classes (i.e., TSP, CVRP, and
CVRPL) solvable by SGE and DRoC. Specifically, we conduct experiments on TSPLib (Reinelt,
1991), a real-world TSP benchmark containing 50 instances with sizes ranging from 50 to 1,000
customers, and on CVRPLib (Uchoa et al., 2017), a real-world CVRP benchmark containing 100 in-
stances with sizes ranging from 100 to 1,000 customers. For CVRPL, we adopt the same benchmark
setting as in Section 4.1. The results are shown in Table 6, where gaps for TSPLib and CVRPLib
are reported relative to their best-known solutions, while CVRPL gaps are measured against HGS.
DRoC is able to solve CVRPLib instances only with fewer than 500 customers within the 10-hour
time limit. Across all evaluated benchmarks, AFL consistently outperforms both SGE and DRoC.

4.4 ABLATION STUDY

To study the necessity of the judgement agent (JA) and revision agent (RA), we run ablation ex-
periments by removing them from AFL. The results are shown in Fig. 3. Without JA and RA, the
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Figure 3: Ablation studies on the JA and RA.

framework frequently produces incorrect problem descriptions and invalid code. With RA included,
the framework becomes more robust, yielding more accurate problem descriptions and executable
code. With both JA and RA, the accuracy of problem description reaches almost 100%, and the
framework produces reliable code and feasible solutions. This improvement arises because these
agents ensures that all operator requirements are adequately considered during the code generation.
These results verify our agentic design, showing that JA and RA are crucial for maintaining accurate
problem descriptions and ensuring the trustworthiness of the generated code and derived solutions.

4.5 BROAD APPLICABILITY

We further evaluate AFL on four additional open benchmarks: TSP, ATSP, ACVRP, and SOP. Re-
sults for TSP are presented in Table 6. ATSP and ACVRP capture asymmetric routing, which fre-
quently arises in real-world applications, while SOP introduces precedence-constrained path plan-
ning, another realistic and challenging setting. Specifically, the ATSP benchmark (Johnson & Mc-
Geoch, 1997) contains 18 instances ranging from 17 to 443 nodes. The ACVRP dataset (Helsgaun,
2017) provides 120 capacity-constrained cases with asymmetric distance matrices covering 16 to
200 customers. The SOP benchmark (Renaud et al., 1996) includes 39 precedence-constrained in-
stances with sizes between 9 and 380 nodes. Experimental results for ATSP, ACVRP, and SOP are
presented in Table 9, Table 10, and Table 11 in the Appendix, respectively. By achieving competitive
performance across these diverse datasets, AFL demonstrates broad applicability, indicating that our
framework has the potential to be extended to a wider range of problem variants.

5 CONCLUSION

This paper introduces AFL, an agentic LLM-based framework for solving complex vehicle routing
problems (VRPs). Unlike prior approaches that depend on human intervention or predefined mod-
ules, AFL achieves self-containment and full automation by extracting domain knowledge directly
from raw inputs and generating executable code and feasible solutions end-to-end. By decomposing
the pipeline into three tractable subtasks and coordinating four specialized agents, AFL substan-
tially improves code reliability and solution feasibility. Extensive experiments on 20 standard and
practical VRP variants demonstrate the effectiveness, applicability, and trustworthiness of AFL.

The main limitation lies in performance, which do not yet surpass state-of-the-art solvers specifically
designed for well-studied problems such as CVRP, a trade-off we consider acceptable given AFL’s
automation and generality. As future work, we plan to incorporate strategies such as evolutionary
search to guide code generation and further enhance both code quality and search efficiency. Overall,
our work highlights the potential of agentic LLMs as a general and trustworthy paradigm for solving
complex combinatorial optimization problems with minimal domain knowledge, paving the way for
more autonomous and adaptive optimization frameworks and democratizing access to advanced
optimization techniques for non-expert users.
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A RELATED WORK

A.1 ML FOR VRPS

Existing neural approaches to solving VRPs generally follow two directions: learning to construct
and learning to improve them. In the construction paradigm, a model either directly generates a fea-
sible solution (Vinyals et al., 2015; Bello et al., 2017; Nazari et al., 2018) or produces a probability
heatmap (Joshi et al., 2021; Sun & Yang, 2023; Xia et al., 2024) from which a solution is sampled.
AM (Kool et al., 2018) first introduces attention mechanisms for VRPs, and POMO (Kwon et al.,
2020) subsequently exploits multiple optima to enhance solution quality, inspiring a series of ex-
tensions and refinements (Drakulic et al., 2023; Luo et al., 2023; Berto et al., 2025a). Recently,
increasing attention has been devoted to improving generalization (Joshi et al., 2022; Zhou et al.,
2023; Gao et al., 2024) and scalability (Li et al., 2021; Ye et al., 2024b; Ouyang et al., 2025), ad-
dressing complex constraints (Bi et al., 2024; Li et al., 2025b), and handling multiple VRP variants
within a single framework (Zhou et al., 2024; Berto et al., 2025b; Pan et al., 2025), though these

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

efforts still fall short of practical deployment. In the improvement paradigm, an initial solution is
iteratively refined using learned local-search (Wu et al., 2021; Ma et al., 2023) or destroy–repair
strategies (Hottung & Tierney, 2022) to progressively reduce cost and enhance solution quality.

A.2 LLM FOR VRPS

One line of work uses LLMs to directly generate or improve VRP solutions. For example,
OPRO (Yang et al., 2024) attempts to construct solutions outright with an LLM, while LEMA (Liu
et al., 2024b) leverages the LLM to perform the genetic search itself. However, they fall short in
terms of solution quality and feasibility. Another line of research applies LLMs to generate code for
VRPs, which can be broadly categorized into two directions: evolving basic heuristics for conven-
tional VRPs and developing general frameworks for complex VRPs.

In evolving basic heuristics, LLMs are employed to iteratively evolve a simple or existing heuristic
within fixed templates or established solvers for conventional VRPs. Early work such as EOH (Liu
et al., 2024a) adopts a population-based framework with fixed templates for heuristic evolution.
ReEvo (Ye et al., 2024a) further combines evolutionary search with LLM reflections to provide
verbal feedback and enhance search efficiency. More recently, HSEvo (Dat et al., 2025) and MCTS-
AHD (Zheng et al., 2025) have advanced this line of research. However, these approaches remain
tailored to specific problems, limiting their generality across VRP variants with practical constraints.

In developing general frameworks, LLMs are leveraged as knowledgeable developers to generate
function modules with distinct roles, enabling the framework to address diverse and complex VRPs.
In ARS (Li et al., 2025a) and DRoC (Jiang et al., 2025), LLMs generate specific functions to adapt
frameworks to different variants, typically relying on handcrafted modules or external solvers. How-
ever, aligning LLM-generated code with these components remains challenging. In ARS, the inte-
gration between the LLM and the base algorithm is weak: the handcraft improvement operator and
the constraint validation functions generated by the LLM are decoupled, and feasibility can only
be verified after optimization, often leading to infeasible solutions. In DRoC, the LLM produces
code that invokes OR-Tools without genuine knowledge of its internals, relying instead on exter-
nal retrieval, which may undermine code reliability and reduce solution feasibility. In contrast,
SGE (Iklassov et al., 2024) eliminates the need for predefined modules or solvers by directly gen-
erating code end-to-end. However, due to the inherent complexity of full code generation and the
absence of effective constraint-handling mechanisms, its applicability is restricted to TSP. Moreover,
it still depends on handcrafted extraction of instance information (e.g., inputs and constraints), and
its overall performance remains uncompetitive.

In this paper, we address these limitations by proposing a general framework of collaborative LLM-
empowered agents that can tackle complex VRPs with self-containment, full automation, and high
trustworthiness in both code and solutions.

B PROBLEM STATEMENT

1. CVRP

• Problem Type: CVRP.
• Description: The Capacitated Vehicle Routing Problem (CVRP) involves determining op-

timal routes for a fleet of vehicles to deliver goods to a set of customers while minimizing
total distance traveled and ensuring that vehicle capacity is not exceeded.

• Constraints: Capacity – the total demand on any route cannot exceed vehicle capacity.
Visit – each customer is visited exactly once. Depot – every route starts and ends at the
depot.

• Input: depot, node coordinates, demands, capacity.
• Output: A set of vehicle routes, each beginning and ending at the depot, visiting every

customer exactly once while respecting capacity constraints.
• Objective: Minimize the total travel distance.

2. CVRPL
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• Problem Type: CVRPL.

• Description: The Capacitated Vehicle Routing Problem with a Distance Limit (CVRPL)
involves optimizing routes for a fleet of vehicles with a fixed capacity, ensuring deliveries
are made while adhering to a constraint on the maximum route distance, while all routes
must start and end at a common depot.

• Constraints: Capacity – vehicles have limited capacity for carrying goods. Distance Limit
– the total travel distance of each route must not exceed the specified maximum. Visit –
each customer is visited exactly once. Depot – all routes must start and end at the fixed
depot.

• Input: depot, node coordinates, demands, capacity, distance limit.

• Output: A set of feasible vehicle routes, each beginning and ending at the depot, vis-
iting every customer exactly once while respecting both capacity and maximum-distance
constraints.

• Objective: Minimize the total travel distance.

3. CVRPTW

• Problem Type: CVRPTW.

• Description: The problem is about optimizing delivery routes for a fleet of vehicles to
serve a set of customers, considering time windows and vehicle capacity constraints. Each
customer must be visited within a specific time frame and vehicles have limited capacity
for deliveries.

• Constraints: Capacity – vehicles have limited capacity for deliveries. Time Windows –
customers must be served within specified time intervals. Visit – every customer is visited
exactly once. Depot – every route starts and ends at the depot.

• Input: depot, node coordinates, demands, capacity, service times, time windows.

• Output: A set of vehicle routes, each beginning and ending at the depot, visiting every
customer exactly once while satisfying vehicle capacity and customer time-window con-
straints.

• Objective: Minimize the total travel distance.

4. OCVRP

• Problem Type: OCVRP.

• Description: The Open Capacitated Vehicle Routing Problem (OCVRP) involves deter-
mining the optimal routes for a fleet of vehicles with limited capacity that start at a depot
and must deliver goods to a set of customers without the obligation to return to the depot.

• Constraints: Capacity – vehicles have limited capacity. Open Route – vehicles are not
required to return to the depot after completing service. Visit – each customer may only be
visited once. Depot – every route must start at the depot.

• Input: depot, node coordinates, demands, capacity.

• Output: A set of open vehicle routes, each starting at the depot and ending at a customer
location, visiting every customer exactly once while satisfying the vehicle-capacity con-
straint.

• Objective: Minimize the total travel distance.

5. CVRPLTW

• Problem Type: CVRPLTW.

• Description: The problem is a Capacitated Vehicle Routing Problem with a Distance Limit
and Time Windows (CVRPLTW), where a fleet of vehicles is tasked with delivering goods
to a set of customers, each with specific demand and time windows, while respecting the
vehicles’ capacity and route limitations.
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• Constraints: Capacity – vehicles have limited capacity. Distance Limit – each route has
a maximum distance. Time Windows – customers must be served within specified time
intervals. Visit – every customer is visited exactly once. Depot – every route starts and
ends at the depot.

• Input: depot, node coordinates, demands, capacity, service times, time windows, dis-
tance limit.

• Output: A set of feasible vehicle routes, each beginning and ending at the depot, visiting
every customer exactly once while satisfying capacity, distance-limit, and time-window
constraints.

• Objective: Minimize the total travel distance.

6. OCVRPL

• Problem Type: OCVRPL.

• Description: The problem is a variant of the Open Capacitated Vehicle Routing Problem
with a Distance Limit (OCVRPL), where vehicles must deliver goods to various customers
while adhering to a capacity limitation and a maximum route distance, without the require-
ment to return to a depot.

• Constraints: Capacity – vehicles have limited capacity for the amount of goods they can
transport. Distance Limit – each route has a maximum distance that vehicles must not
exceed. Open Route – vehicles do not return to the depot after their delivery routes. Visit
– each customer is visited only once. Depot – routes must start at the depot, specifically at
the designated location.

• Input: depot, node coordinates, demands, capacity, distance limit.

• Output: A set of open vehicle routes, each starting at the depot and ending at a customer
location, visiting every customer exactly once while satisfying capacity and distance-limit
constraints.

• Objective: Minimize the total travel distance.

7. OCVRPTW

• Problem Type: OCVRPTW.

• Description: The Open Capacitated Vehicle Routing Problem with Time Windows
(OCVRPTW) involves determining optimal routes for a fleet of vehicles with limited ca-
pacity that service a set of customers with specific time windows, without the requirement
for vehicles to return to the depot after completing their deliveries.

• Constraints: Capacity – the total demand on any route cannot exceed vehicle capacity.
Time Windows – customers must be served within specified time intervals. Open Route –
vehicles do not return to the depot. Visit – each customer may only be visited once. Depot
– every route must start at the depot.

• Input: depot, node coordinates, demands, capacity, service times, time windows.

• Output: A set of feasible open vehicle routes, each starting at the depot and ending at a
customer location, visiting every customer exactly once while satisfying capacity, service-
time, and time-window constraints.

• Objective: Minimize the total travel distance.

8. OCVRPLTW

• Problem Type: OCVRPLTW.

• Description: The Open Capacitated Vehicle Routing Problem with Distance Limit and
Time Windows (OCVRPLTW) requires planning optimal routes for a fleet of vehicles with
limited carrying capacity to serve customers within specified time windows, while each
route must also satisfy a maximum travel-distance limit and vehicles are not required to
return to the depot after their final delivery.
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• Constraints: Capacity – the total demand on any route cannot exceed vehicle capacity.
Distance Limit – each route’s total travel distance must not exceed the specified maximum.
Time Windows – customers must be served within their given time intervals. Open Route –
vehicles do not return to the depot after completing service. Visit – each customer is visited
exactly once. Depot – every route must start at the depot.

• Input: depot, node coordinates, demands, capacity, service times, time windows, dis-
tance limit.

• Output: A set of feasible open vehicle routes, each starting at the depot and ending at
a customer location, visiting every customer exactly once while satisfying capacity, time-
window, and distance-limit constraints.

• Objective: Minimize the total travel distance.

9. ECVRP

• Problem Type: ECVRP.
• Description: Electric Capacitated Vehicle Routing Problem (ECVRP) involves determin-

ing optimal routes for a fleet of electric vehicles to serve a set of customer demands, con-
sidering vehicle load capacity and battery (fuel) constraints, where recharging is available
at designated charging stations. Each route starts and ends at the depot and each customer
is to be visited exactly once.

• Constraints: Electricity – Each vehicle has a limited battery, consumes energy propor-
tional to distance, and may recharge only at designated charging stations, with charging
time affecting feasibility. Capacity – Each vehicle has a maximum load capacity. Depot –
Each route must start and end at the depot. Visit - Each customer must be visited exactly
once.

• Input: depot, node coordinates, demands, capacity, fuel capacity, fuel consumption rate,
refuel rate, stations.

• Output: A set of feasible vehicle routes, each starting and ending at the depot, visiting
each customer exactly once, specifying the visiting order and any charging station stops,
such that vehicle capacity and battery constraints are satisfied.

• Objective: Minimize the total travel distance.

10. ECVRPL

• Problem Type: ECVRPL.
• Description: Electric Vehicle Capacitated Vehicle Routing Problem with distance limit:

find the set of routes for electric vehicles, starting and ending at the depot, that serve all
customers without exceeding vehicle capacity, electric fuel capacity, and an explicit route
distance limit. Electricity is managed with fuel consumption, battery recharging at stations,
and recharging time affects route scheduling.

• Constraints: Electricity – electric vehicles have limited battery, fuel consumption rate,
designated charging stations, and recharging time which constrain feasible routes. Capacity
– vehicles have a maximum load they can carry at one time. Distance Limit –each route
cannot exceed a maximum distance. Visit – each customer is visited exactly once. Depot –
all routes must start and end at the depot.

• Input: depot, node coordinates, demands, capacity, distance limit, fuel capacity,
fuel consumption rate, refuel rate, stations.

• Output: a set of vehicle routes, each starting and ending at the depot, visiting every cus-
tomer exactly once while satisfying capacity, distance-limit, and electric-vehicle energy
constraints, including recharging stops if required.

• Objective: Minimize the total travel distance.

11. ECVRPTW

• Problem Type: ECVRPTW.
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• Description: the Electric Capacitated Vehicle Routing Problem with Time Windows
(ECVRPTW) constructs least-cost routes for a fleet of electric vehicles, each starting and
ending at the depot, to serve all customers exactly once within specified time windows,
considering both vehicle load capacity and electric battery (fuel) constraints; vehicles may
recharge at designated charging stations, and service at each customer takes a specified
time.

• Constraints: Electricity – Electric vehicles have limited battery capacity, consume energy
proportional to travel distance, may recharge at specified stations, and recharging duration
depends on refuel rate. Time Windows – Customers must be served within predetermined
time intervals. Capacity – Each vehicle has limited load capacity. Visit – Each customer is
visited exactly once. Depot – Every route must start and end at the depot.

• Input: depot, node coordinates, demands, capacity, service times, time windows,
fuel capacity, fuel consumption rate, refuel rate, stations.

• Output: A set of feasible vehicle routes, each starting and ending at the depot, visiting
every customer exactly once while satisfying capacity, time-window, and electric-vehicle
energy constraints, including necessary recharging stops.

• Objective: Minimize the total travel distance.

12. EOCVRP

• Problem Type: EOCVRP.

• Description: the Electric Open Capacitated Vehicle Routing Problem plans routes for a
fleet of electric vehicles, where each vehicle starts at the depot, serves customer demands,
may recharge at designated charging stations, does not need to return to the depot (open
route), and respects vehicle capacity and battery limits. Each customer is visited exactly
once.

• Constraints: Electricity – vehicles have limited battery capacity, consume energy with
travel, and may recharge at stations, considering recharging time. Capacity – vehicle loads
cannot exceed their capacity. Open Route – vehicles are not required to return to the depot.
Distance Limit – each route has a maximum allowed travel distance. Visit – each customer
must be visited exactly once. Depot – each route starts at the depot.

• Input: depot, node coordinates, demands, capacity, distance limit, fuel capacity,
fuel consumption rate, refuel rate, stations.

• Output: a set of feasible open vehicle routes starting at the depot, each serving a subset of
customers exactly once, possibly using charging stations, and ending at any node, such that
all routes meet capacity, battery, and problem constraints

• Objective: Minimize the total travel distance.

13. ECVRPLTW

• Problem Type: ECVRPLTW.

• Description: Electric Capacitated Vehicle Routing Problem with Time Windows
(ECVRPTW) involves designing routes for a fleet of electric vehicles to deliver goods to
customers, respecting vehicle capacity limits, electric battery/range constraints, maximum
route distance, and customer-specific time windows. Each customer must be visited ex-
actly once, and all routes must start and end at the depot. Vehicles may need to recharge at
designated stations as part of their routes.

• Constraints: Electricity – electric vehicles have limited battery (fuel) capacity, must
recharge at stations as needed, and recharging consumes time. Capacity – each vehicle
has a limited payload capacity. Distance Limit – each route has a maximum distance. Time
Windows – customers must be served within given time intervals. Visit – each customer can
be visited only once. Depot – each route must start and end at the depot.

• Input: depot, node coordinates, demands, capacity, service times, time windows, dis-
tance limit, fuel capacity, fuel consumption rate, refuel rate, stations.
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• Output: A set of feasible vehicle routes, each represented as an ordered list of nodes (cus-
tomers, stations, and depot), with associated service start times and charging operations,
where each route starts and ends at the depot, all customers are visited exactly once within
their time windows, and all constraints on capacity, time window, fuel, route length, and
recharging are satisfied.

• Objective: Minimize the total travel distance.

14. EOCVRPL

• Problem Type: EOCVRPL.
• Description: the Electric Vehicle Open Capacitated Vehicle Routing Problem involves

electric vehicles with limited load and battery capacity, serving customers starting from the
depot without needing to return (open route). Vehicles can recharge at charging stations,
and each customer is visited at most once.”,

• Constraints: Electricity – Vehicles have a limited electric battery, consumed proportion-
ally to travel; vehicles may recharge at designated stations. Capacity – Vehicles have a
maximum load they can carry. Open Route – Vehicles do not need to return to the depot
after serving customers. Distance Limit – Each route has a maximum allowable distance.
Visit – Each customer is visited at most once. Depot – Routes start at the depot..

• Input: depot, node coordinates, demands, capacity, distance limit, fuel capacity,
fuel consumption rate, refuel rate, stations.

• Output: A set of feasible open vehicle routes starting from the depot, where each route
serves a subset of customers, may include recharging stops at stations as needed, and sat-
isfies all capacity, distance, fuel, and visit constraints, ensuring each customer is visited at
most once.

• Objective: Minimize the total travel distance.

15. EOCVRPTW

• Problem Type: EOCVRPTW.
• Description: Electric Open Capacitated Vehicle Routing Problem with Time Windows:

The goal is to design minimum-cost routes for a fleet of electric vehicles that start from
a depot, serve each customer exactly once within specified time windows, while observ-
ing vehicle capacity, electric battery limitations (with possible recharging at stations), and
vehicles are not required to return to the depot.

• Constraints: Electricity – Vehicles have limited battery, consume energy with distance,
and may recharge at designated stations. Capacity – Each vehicle has a fixed carrying
capacity. Time Windows – Customers must be serviced within specific time intervals. Open
Route – Vehicles do not return to the depot after serving customers. Visit – Each customer
must be visited exactly once. Depot – Routes start from the depot.

• Input: depot, node coordinates, demands, capacity, service times, time windows,
fuel capacity, fuel consumption rate, refuel rate, stations.

• Output: a set of feasible vehicle routes where each route starts at the depot, visits each cus-
tomer exactly once within their specified time windows and service times, respects vehicle
capacity and battery constraints with possible recharging at stations, and does not return to
the depot.

• Objective: Minimize the total travel distance.

16. EOCVRPLTW

• Problem Type: EOCVRPLTW.
• Description: Electric Open Capacitated Vehicle Routing Problem with Distance Limit and

Time Windows. In this problem, a fleet of electric vehicles with limited cargo and battery
capacity must serve customers, each within specified distance limit and time windows.
Vehicles start at the depot but do not return (open routes), must visit each customer exactly
once, can recharge only at designated charging stations, and each route has a maximum
allowable distance.
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• Constraints: Electricity – Electric vehicles have limited battery (fuel) capacity, fuel con-
sumed proportionally to distance, can recharge at charging stations, and recharging takes
time. Capacity – Vehicles have limited cargo capacity. Distance Limit – Each route has a
maximum allowed distance. Time Windows – Service at each customer must begin within
its given time interval. Open Route – Vehicles do not return to depot after serving cus-
tomers. Visit – Each customer must be visited exactly once. Depot – every route must start
at the depot.

• Input: depot, node coordinates, demands, capacity, service times, time windows, dis-
tance limit, fuel capacity, fuel consumption rate, refuel rate, stations.

• Output: A set of feasible open vehicle routes, each starting at the depot, visiting every
customer exactly once within their specified time windows, not exceeding vehicle cargo
capacity, route distance limits, or battery constraints (with recharging at stations as needed),
and ensuring vehicles do not return to the depot.

• Objective: Minimize the total travel distance.

17. TSP

• Problem Type: TSP.
• Description: The Symmetric Traveling Salesman Problem is to find the shortest possible

route that visits each node (drilling location) exactly once and returns to the starting point,
typically used for optimizing routes such as drilling or circuit board manufacturing.

• Constraints: Visit – each node (location) must be visited exactly once.
• Input: node coordinates.
• Output: A single closed tour that begins and ends at one node and visits every node exactly

once.
• Objective: Minimize the total travel distance.

18. ATSP

• Problem Type: ATSP.
• Description: The Asymmetric Traveling Salesman Problem (ATSP) generalizes the clas-

sical TSP by allowing the travel cost from node i to node j to differ from the cost from j
to i. The goal is to find the shortest Hamiltonian cycle that visits every node exactly once
and returns to the starting node when edge weights are direction-dependent.

• Constraints: Visit – each node must be visited exactly once. Depot – the tour must start and
end at the same node. Asymmetry – travel costs or distances are not necessarily symmetric.

• Input: edge weight matrix.
• Output: A single directed Hamiltonian cycle that begins and ends at one node and visits

every node exactly once while respecting the asymmetric cost structure.
• Objective: Minimize the total travel cost.

19. ACVRP

• Problem Type: ACVRP.
• Description: Asymmetric Capacitated Vehicle Routing Problem (ACVRP): a fleet of ve-

hicles with limited carrying capacity must start and end at a central depot and serve every
customer exactly once, while accounting for direction-dependent travel costs.

• Constraints: Capacity – the total demand on any route cannot exceed the vehicle capacity.
Asymmetry – travel costs between two nodes are not necessarily equal in both directions.
Visit – each customer is visited exactly once. Depot – every route must start and end at the
depot.

• Input: depot, edge weight matrix, demands, capacity.
• Output: A set of vehicle routes, each starting and ending at the depot, visiting every

customer exactly once while satisfying vehicle-capacity constraints and accounting for
direction-dependent travel costs.
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• Objective: Minimize the total travel cost.

20. SOP

• Problem Type: SOP.

• Description: The Sequential Ordering Problem (SOP) is to find a minimum-cost Hamil-
tonian path that visits each node exactly once and respects given precedence constraints
(some nodes must be visited before others), subject to forbidden arcs.

• Constraints: Precedence – Certain nodes must be visited before others, according to the
instance’s precedence relations. Forbidden Arcs – Some node-to-node connections are in-
feasible and cannot be used. Visit – each node is visited exactly once (Hamiltonian path).

• Input: edge weight matrix, precedence constraints, forbidden arcs.

• Output: A minimum-cost Hamiltonian path visiting each node exactly once that satisfies
all precedence constraints and forbidden arc constraints.

• Objective: Minimize the total travel cost of the path.

C SUPPLEMENTARY METHODOLOGY AND EXPERIMENTAL DETAILS

C.1 VRPLIB COMPONENT

Table 7 summarizes the main components of a VRPLIB instance file, presenting each required or
optional field along with its description and an illustrative example. The “VRPLib Field” column
lists the standard sections of a vehicle-routing problem instance (e.g., NAME/COMMENT, TYPE,
DIMENSION). The Description column explains the meaning of each section, while the Example
column provides typical syntax drawn from a sample instance (for example, TYPE : CVRP, CA-
PACITY : 200), showing the exact formatting used in VRPLIB files.

C.2 DESTROY STRATEGY

As the algorithm shown in Algorithm 1, Given a solution S, distance matrix Dis, and ratio ρ, the
algorithm first determines the number of nodes nrm to remove. A random customer c is sampled,
and a candidate list L is formed by sorting all customers by distance to c. Iteratively, a candidate u is
selected, and if its route has not been destroyed, a contiguous subsequence Q including u is randomly
chosen and removed. The subsequence Q is added to the removed set R, and the corresponding
route is updated and marked as destroyed. This process continues until nrm customers are removed,
yielding the residual solution S′ and the removed set R.

Algorithm 1 Destroy Strategy
1: Input: solution S (set of routes), distance matrix Dis, ratio ρ
2: Output: removed nodes R, destroyed solution S′

3: R← ∅, S′ ← S, nrm ← ⌊|C| · ρ⌋ ▷ C: set of customers
4: c ∼ Uniform(C) ▷ random sample center
5: L← sort(C,Dis(c, ·)) ▷ sort candidate list by distance to c
6: while |R| < nrm and L ̸= ∅ do
7: u← next(L); r ← route(u, S′)
8: if r already destroyed then
9: continue

10: end if
11: Q← subseq(r, u) ▷ random select contiguous subsequence including u
12: r ← r \Q, R← R ∪Q ▷ update r by excluding Q and extend R with Q
13: end while
14: return (R,S′)
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Table 7: Main sections of a VRPLIB instance file with descriptions and example.

VRPLib Field Description Example

NAME / COMMENT Optional. Includes the instance name and op-
tional comments that can provide additional
context for AFL to understand the related
problem.

NAME : A-n32-k5
COMMENT : 32-node
Capacitated Vehicle
Routing Problem
instance.

TYPE Optional. Specifies the declared problem
type (e.g., CVRP, VRPTW, EVRP), serving
only as a reference for constraint extraction;
the actual problem characteristics must be
determined from the complete instance.

TYPE : CVRP

DIMENSION Required. Total number of nodes including
both customers and depot(s).

DIMENSION : 33

EDGE WEIGHT TYPE Required. Specifies how inter-node distances
are given: a metric (e.g., EUC 2D) or an ex-
plicit matrix.

EDGE WEIGHT TYPE : EUC
2D

NODE COORD SECTION Required. Lists coordinates of each node
(typically planar Euclidean).

NODE COORD SECTION:
1 45 68
2 37 52

DEMAND SECTION Required for instances with a capacity (C)
constraint. Demand for each customer node,
usually in weight or quantity units.

DEMAND SECTION:
1 0
2 15

CAPACITY Required for capacity-constrained (C) prob-
lems. Defines the maximum load (e.g.,
weight or volume) each vehicle can carry.

CAPACITY : 200

DEPOT SECTION Required for instances with depot constraint.
Identifies the depot node(s) where vehicles
start and optionally end their routes.

DEPOT SECTION:
1
-1

DISTANCE LIMIT Required for instances with open route (O)
constraint. Specifies the maximum travel dis-
tance allowed for each route.

DISTANCE LIMIT : 500

TIME WINDOW SECTION Required for instances with time window
(TW) constraint. Provides earliest and latest
allowable arrival times for each customer.

TIME WINDOW SECTION:
1 0 100
2 20 80

SERVICE TIME SECTION Required for instances with time window
(TW) constraint. Service time required at
each customer node; combined with travel
time to satisfy time-window constraints.

SERVICE TIME SECTION:
1 10
2 15

FUEL CAPACITY Required for instances with electric vehicle
(E) constraint. Maximum energy or battery
capacity for each vehicle in electric-vehicle
routing problems.

FUEL CAPACITY : 300

FUEL CONSUMPTION RATE Required for instances with electric vehicle
(E) constraint. Energy consumed per dis-
tance unit.

FUEL CONSUMPTION RATE :
1.0

REFUEL RATE Required for instances with electric vehicle
(E) constraint. Charging or refueling rate per
time unit at stations.

REFUEL RATE : 2.0

STATION SECTION Required for instances with electric vehicle
(E) constraint. Identifies charging or refuel-
ing station nodes where vehicles can refuel.

STATION SECTION:
34
35

C.3 SIMULATED ANNEALING CRITERION

The Simulated Annealing (SA) criterion is a stochastic acceptance rule inspired by the physical
annealing process, where a material is gradually cooled to reach a low–energy crystalline state. In
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VRPs scenarios, it provides a mechanism to escape local minima by occasionally accepting solutions
that are worse than the current one.

Given a current solution with cost Ecurrent and a candidate solution with cost Enew, the move is
accepted if Enew ≤ Ecurrent; otherwise it is accepted with probability

P = exp

(
−Enew − Ecurrent

T

)
,

where T is a temperature parameter that decreases according to a cooling schedule. In our imple-
mentation, T is defined as

T =
iteration− step + 1

10
,

where iteration denotes the total number of iterations and step is the current iteration index.

C.4 DETAILS OF COMPARISON OF CODE RELIABILITY AND SOLUTION FEASIBILITY

Runtime Error Rate (RER). Let Verr be the number of generated programs that terminate with a
runtime failure. The Runtime Error Rate is calculated as

RER =
Verr

V
× 100%,

where V is the total number of generated programs across all VRP variants. A high RER indicates
a large proportion of solutions that fail to execute due to logical flaws, or syntax mistakes.

Success Rate (SR). Denote by Vsucc the number of generated programs that successfully produce
an feasible solution for the target VRP instance. The Success Rate is given by

SR =
Vsucc

V
× 100%.

This metric measures the percentage of generated programs that both execute without errors and
produce a solution feasible with respect to the constraints of the input instance.

Table 8 compares the code reliability and solution feasibility of three solvers, SGE, DRoC, and AFL,
across a broad range of VRP variants. Because SGE and DRoC can generate runtime-error-free code
only for relatively simple problems where the constraints are easy to satisfy, SGE succeeds solely on
TSP, while DRoC performs reliably on TSP, CVRP, and CVRPL, producing code that both compiles
correctly and passes feasibility checks. In contrast, our model AFL consistently produces executable
code and achieves feasibility verification across all listed variants. In this table, a ✓indicates that the
solver achieves both Code Reliability and Solution Feasibility, whereas a × denotes failure to meet
one or both of these criteria.

Table 8: Comparison of Code Reliability and Solution Feasibility.

Solver TSP CVRP VRPL VRPTW OVRP VRPLTW OVRPL OVRPTW OVRPLTW

SGE ✓ × × × × × × × ×
DRoC ✓ ✓ ✓ × × × × × ×
AFL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Solver ECVRP ECVRPL ECVRPTW EOCVRP ECVRPLTW EOCVRPL EOCVRPTW EOCVRPLTW

SGE × × × × × × × ×
DRoC × × × × × × × ×
AFL ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

C.5 COMPARISON ON ATSP BENCKMARK

We evaluate our model on the ATSP benchmark (Johnson & McGeoch, 1997), which contains 18
instances with optimal solutions ranging from 17 to 443 nodes, to assess its applicability. The
Asymmetric Traveling Salesman Problem (ATSP) is a variant of the classical TSP in which the
distance from customer i to customer j may differ from the distance from customer j to customer
i, making the problem more challenging and representative of real-world routing scenarios such as
one-way street networks or asymmetric transportation costs. The results, presented in Table 9, show
that our model achieves consistently favorable performance on this task.
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Table 9: Comparison of AFL and Greedy on ATSP benchmark.

Instance ft53 ft70 ftv33 ftv35 ftv38 ftv44 ftv47 ftv55 ftv64

Best 6905 38673 1286 1473 1530 1613 1776 1608 1839
Greedy Obj. 8816 43524 1637 1817 1765 1898 2353 2163 2262
Greedy Gap (%) 27.68 12.54 27.29 23.35 15.36 17.67 32.49 34.51 23.00
AFL Obj. 7480 39519 1340 1500 1570 1657 1790 1630 1882
AFL Gap (%) 8.33 2.19 4.20 1.83 2.61 2.73 0.79 1.37 2.34

Instance ftv70 ftv170 kro124p p43 rbg323 rbg358 rbg403 rbg443 ry48p

Best 1950 2755 36230 5620 1326 1163 2465 2720 14422
Greedy Obj. 2359 3887 45092 5688 1742 1794 3552 3876 16215
Greedy Gap (%) 20.97 41.09 24.46 1.21 31.37 54.26 44.10 42.50 12.43
AFL Obj. 2031 2964 37987 5620 1358 1172 2510 2780 14958
AFL Gap (%) 4.15 7.59 4.85 0.00 2.41 0.77 1.83 2.21 3.72

C.6 COMPARISON ON ACVRP BENCKMARK

We further evaluate our model on the ACVRP benchmark (Helsgaun, 2017), which provides 120
capacity-constrained instances with asymmetric distance matrices and customer sizes ranging from
16 to 200. The Asymmetric Capacitated Vehicle Routing Problem (ACVRP) extends the classical
VRP by allowing the travel cost from location i to j to differ from that of the reverse direction, while
also imposing vehicle-capacity constraints. This combination of asymmetric travel costs and capac-
ity limits makes ACVRP a challenging and practical testbed, reflecting real distribution networks
where one-way streets or differing traffic conditions create directional cost differences. The results,
summarized in Table 10, demonstrate that our model maintains strong code reliability and solution
feasibility across all ACVRP instances.

Table 10: Comparison of AFL and Greedy on 120 ACVRP instances.
Instance A-G-100-1 A-G-100-2 A-G-100-3 A-G-100-4 A-G-100-5 A-G-100-6 A-G-100-7 A-G-100-8 A-G-100-9 A-G-100-10 A-G-100-11 A-G-100-12
Best Obj. 2139 1722 2550 1273 1878 1540 1493 1467 2232 1631 1992 2057

Greedy Gap (%) 68.68 42.92 57.41 74.47 77.80 46.69 58.07 72.12 55.06 51.07 38.10 28.83
AFL Gap (%) 13.04 7.03 9.41 13.98 31.36 20.78 11.32 11.32 10.35 8.52 13.45 3.94

Instance A-G-100-13 A-G-100-14 A-G-100-15 A-G-100-16 A-G-100-17 A-G-100-18 A-G-100-19 A-G-100-20 A-G-150-1 A-G-150-2 A-G-150-3 A-G-150-4
Best Obj. 2885 2101 1827 1208 928 2427 2055 1929 1308 913 1619 930

Greedy Gap (%) 27.35 61.78 34.87 121.69 127.16 25.18 67.40 30.53 100.15 145.89 41.51 77.42
AFL Gap (%) 3.60 16.56 18.28 26.41 28.99 0.00 9.54 16.69 16.44 19.06 25.63 41.51

Instance A-G-150-5 A-G-150-6 A-G-150-7 A-G-150-8 A-G-150-9 A-G-150-10 A-G-150-11 A-G-150-12 A-G-150-13 A-G-150-14 A-G-150-15 A-G-150-16
Best Obj. 1203 1138 1110 897 1525 892 1132 1187 1619 1490 1095 749

Greedy Gap (%) 79.88 92.71 93.51 130.21 71.28 80.61 100.09 72.03 70.72 49.19 125.11 87.85
AFL Gap (%) 20.20 25.57 13.15 36.23 24.59 15.25 23.85 27.46 14.76 7.85 33.88 36.98

Instance A-G-150-17 A-G-150-18 A-G-150-19 A-G-150-20 A-G-200-1 A-G-200-2 A-G-200-3 A-G-200-4 A-G-200-5 A-G-200-6 A-G-200-7 A-G-200-8
Best Obj. 717 1610 1274 1177 1137 913 1492 819 1048 990 1016 814

Greedy Gap (%) 53.84 53.66 46.00 54.89 48.90 202.74 7.31 63.37 64.22 114.55 92.03 109.95
AFL Gap (%) 0.00 10.19 32.10 5.01 10.99 18.73 15.55 27.59 17.18 17.58 28.94 0.00

Instance A-G-200-9 A-G-200-10 A-G-200-11 A-G-200-12 A-G-200-13 A-G-200-14 A-G-200-15 A-G-200-16 A-G-200-17 A-G-200-18 A-G-200-19 A-G-200-20
Best Obj. 1438 816 1039 1082 1514 1341 949 662 668 1522 1188 1035

Greedy Gap (%) 72.67 189.95 152.26 102.31 58.52 116.93 172.71 167.52 254.04 65.90 99.41 55.46
AFL Gap (%) 12.52 33.95 26.56 13.31 4.89 29.23 4.11 24.62 37.43 0.53 10.35 13.33

Instance A-U-4-1 A-U-4-2 A-U-4-3 A-U-4-4 A-U-4-5 A-U-4-6 A-U-4-7 A-U-4-8 A-U-4-9 A-U-4-10 A-U-4-11 A-U-4-12
Best Obj. 1671 1108 1937 994 1447 1251 1142 1043 1826 1150 1523 1524

Greedy Gap (%) 75.10 42.60 54.93 93.16 74.91 78.02 109.81 90.32 35.32 140.35 42.88 111.15
AFL Gap (%) 20.35 10.74 0.00 5.53 19.42 42.13 23.82 41.61 10.46 27.65 19.63 25.33

Instance A-U-4-13 A-U-4-14 A-U-4-15 A-U-4-16 A-U-4-17 A-U-4-18 A-U-4-19 A-U-4-20 A-U-6-1 A-U-6-2 A-U-6-3 A-U-6-4
Best Obj. 2096 1716 1290 995 825 1986 1622 1453 1205 913 1492 819

Greedy Gap(%) 36.12 82.81 94.57 44.12 87.27 34.44 70.28 53.68 64.23 66.81 57.98 37.73
AFL Gap(%) 13.74 14.34 35.74 9.05 24.97 6.70 8.45 9.02 26.22 12.27 7.71 28.94

Instance A-U-6-5 A-U-6-6 A-U-6-7 A-U-6-8 A-U-6-9 A-U-6-10 A-U-6-11 A-U-6-12 A-U-6-13 A-U-6-14 A-U-6-15 A-U-6-16
Best Obj. 1086 990 1016 814 1438 816 1071 1111 1544 1341 949 662

Greedy Gap (%) 90.98 133.64 92.03 215.11 93.88 262.62 101.87 92.53 64.12 88.22 172.71 283.38
AFL Gap (%) 6.72 19.80 8.17 36.86 13.42 32.11 36.13 29.52 26.04 27.96 12.22 43.35

Instance A-U-6-17 A-U-6-18 A-U-6-19 A-U-6-20 A-U-8-1 A-U-8-2 A-U-8-3 A-U-8-4 A-U-8-5 A-U-8-6 A-U-8-7 A-U-8-8
Best Obj. 668 1563 1193 1069 981 753 1159 737 832 923 871 691

Greedy Gap (%) 98.05 40.24 102.51 47.52 121.10 1771.31 72.04 62.14 116.23 127.63 135.02 147.76
AFL Gap (%) 0.00 1.41 41.16 18.71 36.70 29.22 32.18 31.89 26.20 17.77 52.93 27.93

Instance A-U-8-9 A-U-8-10 A-U-8-11 A-U-8-12 A-U-8-13 A-U-8-14 A-U-8-15 A-U-8-16 A-U-8-17 A-U-8-18 A-U-8-19 A-U-8-20
Best Obj. 1295 716 800 827 1091 1178 682 580 591 1298 1015 854

Greedy Gap (%) 53.51 73.46 116.50 187.30 81.58 125.64 250.59 72.41 184.43 45.61 93.00 133.02
AFL Gap (%) 4.48 35.47 29.50 35.31 26.67 15.20 0.00 15.69 35.03 7.86 14.09 9.84
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Table 11: Comparison of AFL and Greedy on SOP instances.

Instance ESC12 ESC25 ESC47 ESC63 ESC78 br17.10 br17.12 ft53.1 ft53.2 ft53.3
Best Obj. 1675 1681 1288 62 18230 55 55 7531 8062 10262

Greedy Gap (%) 21.43 99.88 198.37 22.58 100.00 43.64 43.64 38.15 56.98 47.41
AFL Gap (%) 3.16 12.14 84.32 0.00 0.00 5.45 5.45 5.11 1.28 12.45

Instance ft53.4 ft70.1 ft70.2 ft70.3 ft70.4 kro124p.1 kro124p.2 kro124p.3 kro124p.4 p43.1
Best Obj. 14425 39313 40419 42535 53530 39420 41336 49499 76103 28140

Greedy Gap (%) 28.59 17.16 19.64 22.41 100.00 33.37 39.64 56.10 29.33 5.29
AFL Gap (%) 0.93 4.16 4.89 7.03 0.88 8.66 10.29 7.28 1.69 0.23

Instance p43.2 p43.3 p43.4 prob42 prob100 rbg048a rbg050c rbg109a rbg150a rbg174a
Best Obj. 28480 28835 83005 243 1163 351 467 1038 1750 2033

Greedy Gap (%) 4.37 8.69 2.70 88.48 184.69 44.16 21.63 39.02 23.89 20.22
AFL Gap (%) 0.02 0.99 0.05 30.45 94.41 6.55 0.64 0.77 0.46 0.00

Instance rbg253a rbg323a rbg341a rbg358a rbg378a ry48p.1 ry48p.2 ry48p.3 ry48p.4
Best Obj. 2950 3140 2568 2545 2816 15805 16074 19490 31446

Greedy Gap (%) 20.61 28.41 47.43 61.49 45.92 42.32 30.09 40.29 30.94
AFL Gap (%) 0.00 1.21 3.08 2.67 2.66 5.90 6.07 12.72 0.73

C.7 COMPARISON ON SOP BENCKMARK

We also evaluate our model on the SOP benchmark (Renaud et al., 1996), which contains 39 in-
stances with optimal solutions and sizes ranging from 9 to 380 nodes. The Sequential Ordering
Problem (SOP) is a generalization of the Traveling Salesman Problem that introduces precedence
constraints, requiring certain nodes to be visited before others. This added ordering requirement
captures practical scenarios such as production sequencing and logistics scheduling, where tasks
must follow a specified order. The results, presented in Table 11, show that our model effectively
handles these precedence constraints while maintaining high solution quality.

D EXAMPLES OF PROMPTS AND OUTPUTS

D.1 SUBTASK 1: PROBLEM DESCRIPTION

In the problem description subtask, we divide the GA’s work into two sequential phases to reduce its
cognitive load and improve overall accuracy. In the first phase, the agent generates the description,
constraints, and the specific problem type. In the second phase, it produces the input specification,
expected output, and the optimization objective. After these two phases are completed, the JA
evaluates the entire draft for consistency and correctness, and the RA subsequently refines each
component as needed.

D.1.1 GENERATION AGENT(GA)

Prompt 1:

We need to solve a VRP instance. I will provide you with the instance. Please analyze it
carefully. First, give a concise description of the problem type in [ ], explaining what the
problem is about.

Second, identify its constraints and list them clearly in numbered format (1), 2), 3), ...) within
[ ]. For each constraint, write both the abbreviation (if any) and a short explanation (e.g.,
’Capacity (C): vehicles have limited capacity.’). Do not include instance-specific details like
the exact number of nodes, vehicles, or capacity values.

When analyzing, be as comprehensive as possible: consider not only the common constraints
but also more general ones, such as whether each customer can be visited multiple times,
whether all routes must start and end at a depot, or other structural constraints that might apply.
You may refer to the following typical constraint categories as guidance, but you are not limited
to them:
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- Electricity (E): electric vehicles are subject to fuel constraints. Each vehicle has a limited fuel
capacity, fuel is consumed proportionally to the distance traveled related to fuel consumption
rate, and vehicles must recharge at designated charging stations when necessary. Recharging
consumes time related to the refuel rate and remaining fuel.

- Capacity (C): vehicles have limited capacity.

- Open Route (O): vehicles do not return to the depot.

- Backhaul (B): vehicles must handle linehaul (deliveries) first, then backhaul (pickups).

- Mixed (M): vehicles may mix deliveries and pickups in the same route.

- Duration Limit (L): each route has a maximum distance or time limit.

- Time Windows (TW): customers must be served within specified time intervals.

- Multi-depot (MD): there are multiple depots.

- Visit constraint (V): each customer may only be visited once.

- Depot constraint (D): routes must start and end at the depot.

Finally, write the standard problem type abbreviation (e.g., TSP, CVRP, CVRPL, VRPTW, PDP,
OVRP, MDVRP, ECVRP) enclosed in ” ”.

Check again whether the constraints fit the specific name; the Visit constraint should be present.

Output exactly three lines in this order:

1) [problem description]

2) [constraints]

3) ”specific name”

Below is the .vrp instance content: <vrp text>

Output 1:

1) [The Capacitated Vehicle Routing Problem (CVRP) involves determining optimal routes for
a fleet of vehicles to deliver goods to a set of customers while minimizing total distance traveled
and ensuring that vehicle capacity is not exceeded.]

2) [1) Capacity (C): the total demand on any route cannot exceed vehicle capacity. 2) Visit (V):
each customer is visited exactly once. 3) Depot (D): every route starts and ends at the depot.]

3) ”CVRP”

Prompt 2:

We need to design an algorithm for the following VRP instance. The details of the instance are:
<Output1>.

Based on this description and the instance contents, please specify:

First, list the essential input elements an algorithm would require from the instance. Element
names must not contain spaces; use underscores _ instead.

Second, describe precisely what the algorithm should output (e.g., a best feasible set of vehicle
routes that satisfy all listed constraints).

Third, describe clearly the optimization objective (e.g., minimize total travel distance, minimize
fleet size, minimize lateness).
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Important: Each of the three answers (input, output, objective) must be enclosed in [ ] as shown.
Do not include instance-specific details like the exact number of nodes, vehicles, or capacity
values. Also verify that every listed input is actually provided by the instance content.

Output exactly three lines in this order:

4) [input]

5) [output]

6) [objective]

Below is the .vrp instance content: <vrp text>

Output 2:

4) [depot, node coordinates, demands, vehicle capacity]

5) [A set of vehicle routes, each beginning and ending at the depot, visiting every customer
exactly once while respecting capacity constraints.]

6) [Minimize the total travel distance.]

D.1.2 JUDGMENT AGENT (JA)

Prompt:

You are a VRP expert. I will give you:
1) The original .vrp file content
2) GPT’s first answer (problem description + constraints + specific name)
3) GPT’s second answer (input, output, objective)

Your task is to judge correctness:

- For the first answer: check whether the problem description, listed constraints, and specific
name are consistent with .vrp file contents. Specifically, check for contradictions in the follow-
ing pairs:

• problem description vs. .vrp file

• constraints vs. .vrp file

• specific name vs. .vrp file

• problem description vs. constraints

• problem description vs. specific name

• constraints vs. specific name

If any contradictions exist, treat the .vrp file as the ground truth and mark it as incorrect. If
everything is consistent, mark it as correct. Check again whether the constraints fit the specific
name and problem description. If correct, return ’True’ with a short explanation. If wrong,
return’False’ with a short explanation.

- For the second answer: check if input, output, and optimization objective are valid and con-
sistent with the VRP instance and the constraints. Input must correspond only to elements
explicitly defined in the instance file. Every input listed must be directly obtainable from the
instance. Input element names must not contain spaces; use underscores . Output must clearly
describe feasible vehicle routes respecting all constraints. The optimization objective must align
with VRP goals.
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If any contradictions exist, treat the .vrp file as the ground truth and mark it as incorrect.If
everything is consistent, mark it as correct.If correct, return ’True’ with a short explanation. If
wrong, return ’False’ with a short explanation.

Output format must be exactly 4 lines:

1) right1: True/False

2) jud1: explanation

3) right2: True/False

4) jud2: explanation

Here is the VRP file: <vrp_text>

Here is GPT’s first answer: <problem_description_1>

Here is GPT’s second answer: <problem_description_2>

Output:

1) right1: True

2) jud1: The first answer accurately reflects the .vrp file, providing a clear problem description
and consistent constraints (Capacity, Visit, Depot) along with the correct specific name, with
no contradictions.

3) right2: False

4) jud2: The second answer includes input or objective elements that are not fully supported by
the CVRP instance—specifically, it omits capacity from the input—so it is not fully consistent
with the file’s available data and constraints.

D.1.3 REVISION AGENTS (RA)

The formats of Output 1 and Output 2 are identical to those in Section D.1.1.

Prompt 1:

We need to solve a VRP instance. I will provide you with the instance. Please analyze it
carefully.

Step 1: Give a concise description of the problem type in [ ], explaining what the problem is
about.

Step 2: Identify its constraints and list them clearly in numbered format (1), 2), 3), ...) within [ ].
For each constraint, write both the abbreviation (if any) and a short explanation (e.g., ’Capacity
(C): vehicles have limited capacity.’). Do not include instance-specific details like the exact
number of nodes, vehicles, or capacity values. Consider whether customers may be visited
once or multiple times, and whether all routes must start/end at a depot (unless open routes are
specified).

Reference constraint categories (not exhaustive):

- Electricity (E): electric vehicles are subject to fuel constraints. Each vehicle has a limited fuel
capacity, fuel is consumed proportionally to the distance traveled related to fuel consumption
rate, and vehicles must recharge at designated charging stations when necessary. Recharging
consumes time related to the refuel rate and remaining fuel.

- Capacity (C): vehicles have limited capacity.

- Open Route (O): vehicles do not return to the depot.
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- Backhaul (B): deliveries first, then pickups.

- Mixed (M): deliveries and pickups can be mixed.

- Distance Limit (L): each route has a maximum distance or time limit.

- Time Windows (TW): customers must be served within specific time intervals.

- Multi-depot (MD): multiple depots instead of one.

- Visit constraint (V): whether each customer can be visited only once.

- Depot constraint (D): routes must start and end at the depot.

Step 3: Write the standard problem type abbreviation (e.g., TSP, CVRP, CVRPL) enclosed in ”
”. Ensure the abbreviation is consistent with the constraints.

Check again that the constraints fit the specific name, and include the Visit constraint.

Here is your previous answer: <ans>

However, there were some issues identified: <jud>

Now, please correct your answer strictly according to the rules above.

Output format (exactly three lines):

1) [problem description]

2) [constraints]

3) ”specific name”

Below is the .vrp instance content: <vrp text>

Prompt 2:

We need to design an algorithm for the following VRP instance. The details of the instance are:
<Output 1>.

Based on this description and the instance contents, please provide:

Step 1: List the essential elements an algorithm would require from the instance, and the list
must include depot.

Step 2: Describe precisely what the algorithm should output (e.g., a set of feasible vehicle
routes that satisfy all listed constraints).

Step 3: Describe clearly the optimization objective (e.g., minimize total travel distance, mini-
mize fleet size, minimize lateness).

Important rules:

- Each of the three answers (input, output, objective) must be enclosed in [ ] exactly as shown.

- Do not include instance-specific details like the exact number of nodes, vehicles, or capacity
values.

- Step 1 element names must not contain spaces; use underscores instead.

Here is your previous answer: <ans>

Issues identified in that answer: <jud>

Now, please correct your answer strictly according to the rules above.

Final output format (exactly three lines):

4) [input]
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5) [output]

6) [objective]

Below is the .vrp instance content: <vrp_text>

D.2 SUBTASK 2: CODE GENERATION

D.2.1 GENERATION AGENT (GA)

Prompt (Partly):

Here is the code you generated before (for reference, please improve or extend it if needed):
<code>

We are working on a VRP problem instance:

Problem description: <problem_desc>

Constraints: <constraints>

Specific name: <specific_name>

Input definition: <input_def>

Output definition: <output_def>

Optimization objective: <objective>

Important rules:

- You are given the raw .vrp file content for context.

- Do not hardcode any instance-specific details such as the number of nodes, vehicle count, or
node coordinates.

- Any functions generated must be general-purpose and reusable for any VRP instance.

Task: Generate a Python function named exactly ’read vrp(path: str)’:

- The function must read a .vrp file and parse its content strictly according to the items listed in
the Input definition.

- Every element mentioned in the Input definition must be parsed and included. No additional
fields may be added, and no required fields may be omitted.

- The function must return a dictionary where:

• Keys exactly match the names in the Input definition, using underscores “ ” instead of
spaces.

• Each value is returned as a list, even if it contains only a single element.

• A section may end with “-1”, “EOF”, or the beginning of another section header (lines in all
caps ending with “ SECTION”) and the function must handle all of these cases.

- The implementation must be general-purpose; do not hardcode any instance-specific details.

Output format requirement:

Return only valid Python code inside a single code block marked as ‘‘‘python ... ‘‘‘
with no extra text, explanations, or comments outside the code block.

If previous code is provided, include it (or an improved version) together with the newly gener-
ated function in the final output.
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Ensure that all necessary import statements required for the code to run are included at the top
of the code block.

Output (Partly):

1 import re
2 import math
3 import random
4 import copy
5 import argparse
6 import sys
7 def read_vrp(path: str):
8 with open(path, 'r') as f:
9 lines = f.readlines()

10 node_coord_dict = {}
11 demand_dict = {}
12 depot_ids = []
13 dimension = None
14 capacity = None
15 in_node_coord_section = False
16 in_demand_section = False
17 in_depot_section = False
18 for line in lines:
19 line = line.strip()
20 if not line or line == 'EOF':
21 continue
22 if line.startswith('DIMENSION'):
23 dimension = int(re.search(r':\s*(\d+)', line).group(1))
24 continue
25 if line.startswith('CAPACITY'):
26 capacity = float(re.search(r':\s*([\d.]+)',

line).group(1))↪→
27 continue
28 if line == 'NODE_COORD_SECTION':
29 in_node_coord_section = True
30 in_demand_section = False
31 in_depot_section = False
32 continue
33 if line == 'DEMAND_SECTION':
34 in_node_coord_section = False
35 in_demand_section = True
36 in_depot_section = False
37 continue
38 if line == 'DEPOT_SECTION':
39 in_node_coord_section = False
40 in_demand_section = False
41 in_depot_section = True
42 continue
43 if in_node_coord_section:
44 tokens = line.split()
45 idx = int(tokens[0])
46 x = float(tokens[1])
47 y = float(tokens[2])
48 node_coord_dict[idx] = [x, y]
49 elif in_demand_section:
50 tokens = line.split()
51 idx = int(tokens[0])
52 d = float(tokens[1])
53 demand_dict[idx] = d
54 elif in_depot_section:
55 val = int(line)
56 if val == -1:
57 continue
58 depot_ids.append(val)
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59 if not depot_ids:
60 raise ValueError('Depot information missing in VRP file.')
61 if dimension is None:
62 raise ValueError('DIMENSION missing in VRP file.')
63 if capacity is None:
64 raise ValueError('CAPACITY missing in VRP file.')
65 all_ids = sorted(node_coord_dict.keys())
66 if len(all_ids) != dimension:
67 raise ValueError('Parsed node_coord_dict length does not

match DIMENSION.')↪→
68 if len(demand_dict) != dimension:
69 raise ValueError('Parsed demand_dict length does not match

DIMENSION.')↪→
70 depot_id = depot_ids[0]
71 if depot_id not in all_ids:
72 raise ValueError('Depot id not present in node_coord_dict.')
73 customer_ids = [nid for nid in all_ids if nid != depot_id]
74 node_id_list = [depot_id] + sorted(customer_ids)
75 node_coordinates = [node_coord_dict[nid] for nid in node_id_list]
76 demands = [demand_dict[nid] for nid in node_id_list]
77 return {
78 "depot": [depot_id],
79 "node_coordinates": node_coordinates,
80 "demands": demands,
81 "vehicle_capacity": [capacity]
82 }

D.2.2 JUDGMENT AGENT (JA)

Prompt (Partly):

You are a strict Python code reviewer and VRP expert.

Here is the generated Python code: <code>

We are working on a VRP problem instance:

Problem description: <problem_desc>

Constraints: <constraints>

Specific name: <specific_name>

Input definition: <input_def>

Output definition: <output_def>

Optimization objective: <objective>

Evaluation rules:

Only evaluate the given code snippet. Ignore any other functions or unrelated context.

Check if the code has syntax errors or logical bugs that would prevent execution.

For ’read vrp’:

• Ensure it extracts exactly the elements listed in the Input definition.

• No additional fields may be added, and no required fields may be omitted.

• Verify that each extracted element is explicitly available in the provided .vrp file content.

• Do not assume or fabricate values not present in the file.

• A section may end with -1, EOF, or the beginning of another section header (e.g., lines in all
caps ending with SECTION); it must handle all of these situations.
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• Confirm that the function returns all required fields in a dictionary format, and each value must
be returned as a list (array); keys must match the Input definition exactly, using underscores
instead of spaces.

• The function ’read vrp’ must be contained in the code.

Use the provided .vrp file content as the only ground truth for evaluation. Do not invent or
assume data that is not present in the instance.

Below is the .vrp instance content: <vrp_text>

Assume that the VRP file provides all elements in <input_def>.

Assume that this code is only for <specific_name>, <problem_desc>.

Assume that node IDs preserve the exact order given in the input .vrp file, are unique, and
contain no duplicates.

Your task:

If the code is fully correct (no syntax errors, no logical bugs, all constraints satisfied, and fully
consistent with the VRP rules), return right1: True and provide a brief explanation.

If the code has any issues (syntax bugs, logical errors, constraint violations, inconsistent nam-
ing, wrong input/output handling, or deviations from the specification), return right1: False and
explain why. If wrong, you must also provide clear and concrete suggestions for how to fix or
improve the code.

Important formatting rule: For easier parsing, the explanation or suggestions must be written
in plain text on a single line, without using any line breaks (\n) or additional colons except the
ones required in right: and jud:.

Output format must be exactly 2 lines:

right: True/False

jud: explanation and suggestions

Output:

right: False

jud: The code is invalid because the returned dictionary key ”node coordinate” does not match
the required Input definition key ”node coordinates”; rename the key to ”node coordinates” to
ensure consistency with the specified input definition.

D.2.3 REVISION AGENT (RA)

Prompt:

Here is the code you generated before: <prev_code>

We are working on a VRP problem instance.

Problem description: <problem_desc>

Constraints: <constraints>

Specific name: <specific_name>

Input definition: <input_def>

Output definition: <output_def>
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Optimization objective: <objective>

Important rules:

- You are given the raw .vrp file content below for context.

- Do not hardcode any instance-specific details such as number of nodes, vehicle count, or node
coordinates.

- The functions you generate must be general-purpose and reusable for any VRP instance.

Below is the .vrp instance content (for context only): <vrp_text>

The code you generated previously has the following issues and revised suggestions: <jud>

Please correct the code according to the issues above, without changing the number of functions,
their names, or their signatures.

Output format requirement: Return only valid Python code inside a single code block:
‘‘‘python ... ‘‘‘ with no extra text, explanations, or comments outside the code
block.

The output format is identical to that described in Sec. D.2.1.

D.3 SUBTASK 3: SOLUTION DERIVATION

D.3.1 ERROR ANALYSIS AGENTS (EAA)

Prompt:

You are a strict Python code reviewer and VRP expert.

We are working on a VRP problem instance.

Problem description: <problem_desc>

Constraints: <constraints>

Specific name: <specific_name>

Input definition: <input_def>

Output definition: <output_def>

Optimization objective: <objective>

The code was generated using the following rules: <all rules in generation code>

Use the provided .vrp file content as the only ground truth for analysis. Do not invent or assume
data that is not present in the instance.

Below is the .vrp instance content: <vrp_text>

The code execution failed and produced the following error message: <error_msg>

Your task: Analyse the error message and explain why the error happened. Provide clear and
concrete suggestions for how to fix or improve the code.

Formatting rule: For easier parsing, your explanation and suggestions must be written strictly
in plain text on a single line, without using any line breaks (\n) or additional colons except the
required jud: prefix.

Output format must be exactly 1 line:

1) jud: explanation and suggestions

Output:
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jud: The error occurred because the algorithm timed out while generating routes for the CVRP
instance, indicating that the current implementations of the initial and insert functions have
excessively high computational complexity; to fix this, simplify the construction strategy in
initial by reducing unnecessary nested loops, and in insert replace exhaustive cost evaluations
with a priority queue or incremental cost update to lower overall runtime.

The JA and RA are identical to those described in Section D.2.2 and Section D.2.3.

E THE USE OF LARGE LANGUAGE MODELS

In this study, large language models (LLMs) are not merely tools for polishing text but an integral
component of the proposed framework. They serve as autonomous agents within our framework,
while the core ideas and the manuscript itself were conceived, prepared, and finalized by the authors.
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