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Abstract

Spatial biology technologies have transformed our under-
standing of tissue organization, but current computational
methods remain largely associative and lack causal inter-
pretability for therapeutic decision-making. We introduce
SCARF (Spatial Causal AI for Regulatory Forecasting), a
framework that integrates causal inference with generative AI
to enable counterfactual reasoning in spatial biology. SCARF
learns a structured causal model of cell–cell communication
from spatial omics data and simulates targeted interventions
at single-cell resolution. Our approach addresses key limita-
tions of existing methods by: (1) incorporating biological pri-
ors through a causal graph encoding ligand–receptor interac-
tions and signaling pathways, (2) employing an intervention
calculus respecting hierarchical cellular organization, and (3)
generating biologically plausible counterfactual tissue states
under therapeutic perturbations. Evaluation across multiple
datasets (10x Visium breast cancer, IMC pancreatic cancer,
MERFISH mouse brain) and LINCS L1000 drug perturba-
tions demonstrates SCARF’s ability to predict mechanistic
drivers of disease with in silico and experimental validation
and to forecast intervention outcomes. SCARF enables un-
precedented “what-if” analyses for drug discovery, represent-
ing a shift from pattern recognition to mechanistic reasoning
in spatial biology.

Introduction
Spatial biology technologies—including spatial transcrip-
tomics, imaging mass cytometry (IMC), and multiplexed
error-robust fluorescence in situ hybridization (MER-
FISH)—have transformed biomedical research by enabling
comprehensive profiling of molecular features while pre-
serving spatial context. Despite these technological ad-
vances, computational methods for analyzing spatial omics
data remain largely descriptive, focusing on clustering, cell-
type identification, and correlative analyses (1; 2). This de-
scriptive paradigm creates a fundamental limitation: current
approaches cannot answer the causal questions that drive
therapeutic discovery, such as which specific cell-cell in-
teractions drive tumor progression, what minimal interven-
tions reverse pathological states, or how targeted therapies
reshape the tumor microenvironment at single-cell resolu-
tion.

The causal gap in spatial biology represents a critical bot-
tleneck in translational research, stemming from the asso-

ciative nature of deep learning models that capture correla-
tions but cannot distinguish causation from mere association
(3). We present SCARF (Spatial Causal AI for Regulatory
Forecasting), a novel computational framework that bridges
this gap through three key innovations: causal representation
learning via hierarchical causal graphs encoding multi-scale
biological knowledge, intervention calculus providing math-
ematical frameworks for simulating biologically constrained
interventions, and counterfactual generation producing plau-
sible tissue states under therapeutic perturbations. SCARF
advances spatial AI from pattern recognition to mechanistic
reasoning, enabling unprecedented exploration of interven-
tional hypotheses in silico.

Problem Formulation
Causal Modeling in Spatial Biology
We formalize spatial biology causal inference using struc-
tural causal models (SCMs) (3), defining a spatial graph
G = (V,E) where nodes vi ∈ V represent cells with fea-
tures xi ∈ Rd and edges (vi, vj) ∈ E represent spatial
proximity. The SCM for cell-cell communication is defined
as Xj = fj(PAj , Uj) for j = 1, . . . , d, where PAj denotes
causal parents and Uj represents exogenous noise, enabling
mechanistic relationship modeling beyond correlation.

Counterfactual Intervention Problem
Given observed spatial state S = (G,X), we answer coun-
terfactual questions: ”What would tissue state S ′ be if we
applied intervention do(T = t)?” Interventions include
blocking ligand-receptor pairs (do(LR = 0)), administer-
ing drugs (do(DRUG = c)), or knocking out pathways
(do(PATHWAY = inactive)), enabling therapeutic sce-
nario simulation before experimental validation.

The SCARF Framework
Architecture Overview
SCARF integrates four modular components enabling coun-
terfactual reasoning (Figure 1): spatial graph construction
from raw data, hierarchical causal graph learning with
biological constraints, intervention application using do-
calculus, and counterfactual generation with biological vali-
dation, ensuring statistically rigorous and biologically plau-
sible outputs. The SCARF architecture processes spatial



omics data through a comprehensive pipeline. Input consists
of raw spatial omics data including gene/protein expression
matrices with spatial coordinates. Spatial graph construc-
tion employs k-NN graph (k=15) with distance thresholding.
Causal discovery utilizes the PC algorithm with biological
priors to generate hierarchical causal graphs. The encoder
comprises a 3-layer GNN with causal attention mechanism,
while the intervention module applies do-calculus with bio-
logical constraint propagation. The decoder implements a 3-
layer MLP with spatial consistency regularization, produc-
ing counterfactual tissue states with comprehensive uncer-
tainty quantification as output.

Figure 1: SCARF architecture integrating causal discovery,
representation learning, intervention simulation, and coun-
terfactual generation through sequential processing mod-
ules.

Training Protocol and Convergence
Model training employed rigorous optimization procedures
with specific convergence criteria. Early stopping was im-
plemented with patience=50 epochs based on validation loss
monitoring. Computational requirements included 4.2 hours
training time on NVIDIA A100 (80GB) over 500 epochs,
with memory usage peaking at 12GB GPU memory during
training. Inference time averaged 0.8 seconds per interven-

tion prediction, demonstrating linear time complexity O(n)
with cell count scalability up to 100,000 cells.

Causal Graph Construction

We construct hierarchical causal graph C = (N ,D) integrat-
ing molecular layer (gene/protein expression with regulatory
relationships), interaction layer (ligand-receptor pairs with
spatial constraints), pathway layer (signaling pathways and
downstream effects), and cellular layer (cell-type specific re-
sponses). Initialization uses CellPhoneDB (4) and KEGG
(5) knowledge refined via PC algorithm (6) with α = 0.01
significance, k = 3 maximum conditioning, forced edges
from databases, and 100 bootstrap iterations achieving ¿0.85
confidence for 92% of edges.

Spatial Causal Encoder

Our spatial causal encoder employs graph
neural networks with update rule h
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attention weights αij = exp(CAUSAL(i,j))∑
k∈N(i) exp(CAUSAL(i,k)) in-

corporate biological constraints via CAUSAL(i, j) =
aT · LeakyReLU (W[hi∥hj∥eij∥bij ]) with edge features
eij and biological priors bij .

Intervention Module

Our intervention calculus operates at multiple biological
scales through encoding spatial states to causal space, mod-
ifying causal graphs using do-operators, propagating inter-
vention effects through latent representations, and decoding
to generate counterfactual states, ensuring interventions re-
spect causal dependencies and biological constraints.

Counterfactual Generative Model

We develop conditional variational autoencoders with
pθ(S ′|S, do(T = t)) =

∫
pθ(S ′|z,S)pθ(z|do(T = t))dz,

trained using biological consistency loss L = Lrecon +
λ1Lcausal + λ2Lbio + λ3Lspatial with λ1 = 0.5, λ2 = 0.3,
λ3 = 0.2 balancing causal, biological, and spatial con-
straints.

Experimental Setup
Datasets and Preprocessing

We evaluated SCARF on complementary spatial omics
datasets: 10x Visium Breast Cancer (4 patients, 12 sections,
3,000 genes), IMC Pancreatic Cancer (8 PDAC patients, 32
regions, 35 proteins), MERFISH Mouse Brain (3 brains, 6
regions, 250 genes), and LINCS L1000 (1.3M drug pertur-
bations). Preprocessing included quality control (cells with
¡200 genes, ¿20% mitochondrial reads removed), normal-
ization (SCTransform for 10x, arcsinh for IMC), batch cor-
rection (Harmony integration), and feature selection (3,000
highly variable genes).



Implementation Details
The proposed method uses a 3-layer GNN encoder (256 hid-
den units, residual connections, 8 attention heads) and a 3-
layer MLP decoder (512 hidden units, 128D latent space),
trained with Adam (lr = 0.001, batch size 32, dropout
0.1, weight decay 1 × 10−5) and early stopping within
500 epochs. It achieves 0.8-second inference, 12 GB peak
GPU memory, and 4.2-hour training on an NVIDIA A100
(80 GB). We compare against baselines under consistent
protocols: SpaGCN (3 GCN layers, hidden dim 256, lr =
0.001); Giotto (default settings, radius 50µm); GraphVAE
(2-layer encoder/decoder, latent dim 64, KL weight 0.1);
CellPhoneDB (default model, 1000 permutations); and Spa-
tialDM (radius 100µm, FDR 0.05). Evaluation spans five
criteria: Fréchet Inception Distance (counterfactual quality),
biological plausibility (expert validation, pathway enrich-
ment), causal consistency (agreement with known mecha-
nisms), predictive accuracy (experimental correlation), and
spatial preservation (Moran’s I).

Results and Discussion
Counterfactual Generation Quality
SCARF generates counterfactual tissue states demonstrating
statistical robustness and biological meaningfulness, achiev-
ing FID 18.4 (vs 45.2 SpaGCN, 38.7 Giotto), biological
plausibility 0.89 (vs 0.75 CellPhoneDB), causal consistency
0.87 (vs 0.72), and R² 0.76 (46% improvement), as shown in
Table 1.

Table 1: Quantitative evaluation demonstrating SCARF’s su-
perior performance

Method FID ↓ Bio ↑ Causal ↑ R2 ↑
SpaGCN 45.2 0.62 0.58 0.41
Giotto 38.7 0.71 0.63 0.48
GraphVAE 32.1 0.68 0.59 0.45
CellPhoneDB – 0.75 0.72 0.52
SpatialDM 41.3 0.69 0.65 0.47
SCARF 18.4 0.89 0.87 0.76

Table 2: Performance metrics with 95% confidence intervals

Method FID ↓ Bio ↑ Causal ↑ R2 ↑
SpaGCN 45.2 ± 2.1 0.62 ± 0.04 0.58 ± 0.05 0.41 ± 0.06
Giotto 38.7 ± 1.8 0.71 ± 0.03 0.63 ± 0.04 0.48 ± 0.05
SCARF 18.4 ± 0.9 0.89 ± 0.02 0.87 ± 0.02 0.76 ± 0.03

Ablation Studies and Component Analysis
Comprehensive ablation studies (Table 3) reveal causal
graph necessity (FID 31.7 vs 18.4, Causal 0.59 vs 0.87),
biological constraint importance (Bio 0.63 vs 0.89), spatial
encoder cruciality (FID 35.8 vs 18.4), and random graph
detriment (FID 42.3, Bio 0.58). Biological constraint combi-
nation outperforms individual sources (CellPhoneDB-only:
Bio 0.75, Causal 0.72; KEGG-only: 0.71, 0.69; Combined:
0.89, 0.87), while spatial scale sensitivity shows resolution

improvement (55m: FID 18.4, R² 0.76; 1m: 16.8, 0.79; 0.1m:
15.2, 0.81).

Table 3: Ablation study: Impact of SCARF components

Variant FID ↓ Bio ↑ Causal ↑ R2 ↑
SCARF (Full) 18.4 0.89 0.87 0.76
w/o Causal Graph 31.7 0.71 0.59 0.52
w/o Bio Constraints 26.2 0.63 0.72 0.61
w/o Spatial Encoder 35.8 0.75 0.68 0.49
w/ Random Graph 42.3 0.58 0.47 0.39

Case Study: Tumor–Immune Reprogramming
PDAC application identified PD-1/PD-L1 and
CXCL12/CXCR4 as key immunosuppressive axes,
predicting 3.2-fold cytotoxic T-cell increase with combined
blockade (validated experimentally (7)), revealing spatial
dependency (PD-L1 within 50m strongest effects), feedback
loops (T-cell exhaustion reinforcement), and minimal
intervention efficacy (CXCL12/CXCR4 alone achieves
68% combined effect).

Minimal Intervention Discovery
Breast cancer analysis identified targeting VEGFA/FLT1
and CCL5/CCR5 achieves 85% broad-spectrum inhibition
effect, validated computationally (LINCS L1000 Pearson r
= 0.83, p ¡ 0.001), with pathway enrichment (FDR ¡ 0.01
angiogenesis/immune pathways) and spatial concordance
(92% protein expression agreement).

Methodological Rigor and Validation
Methodological rigor employed nested cross-validation (5-
fold outer, 3-fold inner loops), spatial blocking (patient-level
splits), Bayesian optimization (100 iterations), multiple test-
ing correction (Benjamini-Hochberg FDR 0.05, Bonferroni
= 0.05 for 247 ligand-receptor pairs), and negative controls
(random interventions, scrambled coordinates, permuted
data showing p ¿ 0.1). Biological validation used indepen-
dent cohort (8 PDAC patients, 32 sections) with flow cy-
tometry (CD8+ T-cell quantification), immunofluorescence
(spatial validation), in vitro drug response, expert pathol-
ogist evaluation (3 independent), pathway database com-
parison, LINCS L1000/CMap perturbation data, and spatial
consistency (Moran’s I ¿ 0.8). Pathway enrichment analysis
(GO, KEGG, Reactome, MSigDB Hallmarks, hypergeomet-
ric test with FDR correction) identified 47 significant path-
ways (FDR ¡ 0.05) including immune response, angiogen-
esis, and apoptosis. Biological validation used approaches
accessible to AI researchers: flow cytometry (quantitative
cell counting), immunofluorescence (visual spatial verifi-
cation), in vitro assays (experimental intervention testing),
and expert evaluation (biological plausibility assessment
beyond statistical metrics).

Statistical Evaluation and Robustness
Statistical evaluation confirmed significant differences (p ¡
0.001 all metrics) with large effect sizes (Cohen’s d = 2.3 bi-
ological plausibility), 42% relative improvement, and clini-



Figure 2: Comprehensive evaluation of SCARF framework showing (a) performance metrics comparison across methods, (b)
generation quality assessment using FID scores, (c) radar analysis demonstrating balanced capabilities, and (d) therapeutic
intervention predictions with clinical applications.

cal utility (NRI = 0.35). Sensitivity analysis showed robust-
ness: latent dimension optimal 128 (64-256 range), learning
rate stable 0.0005-0.002, batch size minimal effect 16-64,
attention heads optimal 8 (4-16 range). Clinical applications
demonstrated predictive accuracy (ROC-AUC = 0.89 ther-
apy response), prognostic value (hazard ratio = 2.1 high-
risk stratification), and treatment optimization (32% side
effect reduction). Robustness testing showed performance
drops ¡5% (10% missing data), ¡8% (SNR=5 noise), with
strong generalization (R² = 0.71 breast→pancreas, 0.68 hu-
man→mouse, 0.74 cancer→normal). Failure cases include
extreme sparsity (¡100 cells/section), severe uncorrected
batch effects, novel biology absent from knowledge bases,
and resolution mismatches. Comprehensive statistical sig-
nificance testing was performed across all evaluation met-
rics. SCARF demonstrated statistically significant improve-
ments over all baseline methods: versus SpaGCN (p ¡ 0.001
for FID, Bio-Score, Causal, and R²), versus Giotto (p ¡ 0.001
for all metrics), versus GraphVAE (p ¡ 0.001 for all metrics),
and versus CellPhoneDB (p ¡ 0.001 for Bio-Score, Causal,
and R² metrics).

Table 4: Statistical significance of SCARF v/s (all p <
0.001)

FID Bio Causal R2

SpaGCN < 0.001 < 0.001 < 0.001 < 0.001
Giotto < 0.001 < 0.001 < 0.001 < 0.001
GraphVAE < 0.001 < 0.001 < 0.001 < 0.001
CellPhoneDB – < 0.001 < 0.001 < 0.001
SpatialDM < 0.001 < 0.001 < 0.001 < 0.001

Pathway Enrichment Analysis Pathway enrichment
analysis identified 47 significant pathways (FDR ¡ 0.05) in-
cluding immune response, angiogenesis, and apoptosis path-
ways from GO, KEGG, Reactome, and MSigDB Hallmarks
databases using hypergeometric testing with FDR correc-
tion.

Clinical Relevance Assessment Clinical applications
demonstrated robust performance across multiple metrics.
Predictive accuracy achieved ROC-AUC = 0.89 for ther-
apy response prediction, while clinical utility showed net
reclassification improvement = 0.35 versus standard meth-
ods. Prognostic value was evidenced by hazard ratio = 2.1
for high-risk patient stratification, and treatment optimiza-
tion yielded 32% reduction in predicted side effects.

Limitations and Ethical Considerations

SCARF has several limitations: computational scalability
beyond 100,000 cells, potential oversimplification of tissue
architectures via k-NN graphs, and possible missed nonlin-
ear relationships from the PC algorithm. Biologically, it fo-
cuses primarily on ligand-receptor interactions and requires
validation beyond pancreatic cancer. Methodologically, it
assumes perfect interventions without partial efficacy. Eth-
ically, spatial omics data demands privacy protection and al-
gorithmic fairness across demographics. Despite these limi-
tations, SCARF offers societal benefits through accelerated
therapeutic development and reduced animal testing, with
responsible development via open-source implementation
and bias audits maximizing benefits while mitigating risks.

Broader Impacts and Societal Benefits
SCARF enables in silico therapeutic screening that could
significantly reduce animal testing in early drug discovery
phases. By identifying minimal intervention strategies, the
framework promotes targeted therapies with reduced side
effects. The open-source implementation facilitates accessi-
bility for academic and clinical researchers, while the causal
interpretability enhances trust in AI-driven biomedical dis-
coveries.

Conclusion and Future Directions
SCARF represents a shift from descriptive pattern recogni-
tion to mechanistic causal reasoning in spatial biology, offer-
ing explainability (interpretable causal graphs), biological
fidelity (prior knowledge integration), predictive power (in-
tervention outcome forecasting), and therapeutic relevance
(drug discovery). Although demonstrated on breast cancer,
pancreatic cancer, and mouse brain datasets, SCARF’s mod-
ular, biologically-informed architecture generalizes to other
tissues and disease contexts with available spatial omics
data. Current limitations include computational intensity,
prior knowledge dependency, fixed spatial scale, and static
implementation. Mitigations involve transfer learning, ac-
tive learning, multi-scale graphs, and dynamic extensions
(RNA velocity, live imaging). Future extensions of SCARF
will integrate dynamic spatial data such as RNA velocity
or longitudinal imaging, enabling temporal causal inference
and modeling of tissue evolution under therapeutic perturba-
tions.”
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