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Abstract

Transformer-based large language models have displayed impressive capabilities
in the domain of in-context learning, wherein they use multiple input-output pairs
to make predictions on unlabeled test data. To lay the theoretical groundwork for
in-context learning, we delve into optimization and generalization of a single-head,
one-layer Transformer in the context of multi-task learning for classification. Our
investigation uncovers that lower sample complexity is associated with increased
training-relevant features and reduced noise in prompts, resulting in improved
learning performance. The trained model exhibits the mechanism to first attend
to demonstrations of training-relevant features and then decode the corresponding
label embedding. Furthermore, we delineate the necessary conditions for successful
out-of-domain generalization for in-context learning, specifically regarding the
relationship between training and testing prompts.

1 Introduction
Transformers now serve as the backbone architecture for a wide range of modern, large-scale
foundation models, including prominent language models like GPT-3 [5], PaLM [9], LLaMa [32],
as well as versatile visual and multi-modal models such as CLIP [27], DALL-E [28], and GPT-4
[25]. One intriguing capability exhibited by certain large language models (LLMs) is known as [5]
“in-context learning (ICL).” In other words, these models can accurately predict outcomes for new
tasks without fine-tuning their internal parameters. This is achieved simply by providing a small
number of testing examples and necessary instructions for the testing query as a prompt.

While Transformer-based LLMs have found diverse applications [21, 22, 23, 35, 34], there is relatively
less exploration into the generalization of ICL across multiple tasks using these models. A recent
work [12] proposed a framework for studying ICL on linear regression under a supervised learning
setup, where the inputs consist of queries augmented with input-output pairs as prompts. This
learning process yields a model capable of implementing ICL, serving as a foundation for further
investigation. Several theoretical studies have followed this framework. For instance, [1] and [33]
have demonstrated that Transformers implement gradient descent during the forward pass. [36]
interprets ICL as implicit Bayesian inference and establishes generalization guarantees when the
pre-training distribution follows a mixture of Hidden Markov Models (HMMs). Additionally, [19]
studies the generalization and stability of ICL by treating the Transformer as an algorithm. Notably,
[37] is the only work to simultaneously explore the optimization and generalization of Transformers
in the context of ICL, especially with distribution shifts during inference. However, their Transformer
architecture employs linear self-attention and linear Multilayer Perceptrons (MLPs), omitting the
nonlinear components commonly applied in practical applications.
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To the best of our knowledge, our work represents the first comprehensive theoretical analysis of the
optimization dynamics and generalization aspects of ICL in the context of multi-task classification
using a nonlinear Transformer. Our approach involves training a simplified one-layer Transformer
using data from multiple tasks and subsequently quantifying in- and out-of-domain generalizations on
testing data originating from distinct distributions or tasks. We present several technical contributions:

First, this study introduces a unique analytical framework for ICL using shallow Transformers
within a multi-task classification setup. Unlike prior works such as [14, 16, 20, 31, 30], which
typically focus on single tasks, and ICL research [12, 1, 19, 37] on linear regression, we explore
ICL on classification tasks under the multi-task learning setup. We delve into how the quantity of
training-relevant features impacts sample complexity, prompt length requirements, and the number of
iterations necessary to achieve desired in- and out-of-domain generalization performance.

Second, we conduct an in-depth analysis of how various components of Transformers contribute
to multi-task learning. Our analysis uncovers a two-step mechanism within Transformers: first,
they enhance the salience of training-relevant features through self-attention, and subsequently, they
decode the resulting label embeddings into predictions via the MLP layer. This mechanism extends
existing theoretical insights [16, 20, 31, 30], which demonstrate that trained Transformers on single
tasks attend to key features through self-attention.

Thirdly, we provide a theoretical characterization of the scenarios in which the trained Trans-
former performs well with out-of-domain data from previously unseen tasks. Our analysis
focuses on a generalized inference setting where we evaluate the model on unseen classification tasks
using features that may not have been encountered during the training phase. We outline the sufficient
conditions for achieving a desired generalization based on our data model. Furthermore, we show
that few-shot generalization becomes attainable when the testing prompt is thoughtfully chosen to
encompass a significant portion of the testing-relevant features.

Notation: Let Ar1:r2,c1:c2 be the submatrix of a matrix A from rows r1 to r2 and columns c1 to c2.

2 Problem Formulation

In this work, we study a set of binary classification problems. Consider there are N data samples,
each consisting of l input-label pairs, referred to as demonstrations, and one query. Let x̃n

i , i ∈ [l]
denote the input of the i-th demonstration of the n-th data. x̃n

l+1 denotes the query of the n-th data.
Label yn ∈ {+1,−1} is a scalar for n ∈ [N ] and f (n)(·) : RdX 7→ R represents a task that maps
x̃n
i to {+1,−1}. Here, f (n) can be different tasks for different n ∈ [N ]. Subsequently, a raw train-

ing dataset is {P̃ n, yn}Nn=1 where P̃ n = (x̃n
1 , f

(n)(x̃n
1 ), x̃

n
2 , f

(n)(x̃n
2 ), · · · , x̃n

l , f
(n)(x̃n

l ), x̃
n
l+1).

Following [37, 4], we consider the input P̃ n encoded as

P n =

(
xn
1 xn

2 · · · xn
l xn

l+1
yn
1 yn

2 · · · yn
l 0

)
:= (pn

1 ,p
n
2 , · · · ,pn

l+1) ∈ R(dX+dY)×(l+1) (1)

where xn
i ∈ RdX and yn

i ∈ RdY for n ∈ [N ] and i ∈ [l]. We use a single-head, one-layer Transformer
with a self-attention layer and a two-layer perceptron as the learning network. Mathematically, it can
be written as

F (Ψ;P n) = a⊤Relu(WO · sa(Ψ,pn)), sa(Ψ,pn) =

l∑
i=1

WV p
n
i softmax((WKpn

i )
⊤WQp

n
l+1),

(2)
where Ψ := WQ, WK ∈ Rma×(dX+dY), WV ∈ Rmb×(dX+dY) , WO ∈ Rm×mb , a ∈ Rm denotes
the model parameters of the Transformer. Typically, ma, mb > dX + dY . The training problem
minimizes the empirical risk loss RN (Ψ), which is minΨ RN (Ψ) := 1

N

∑N
n=1 ℓ(Ψ;P n, yn), The

loss function is a Hinge loss, i.e., ℓ(Ψ;P n, yn) = max{0, 1− yn · F (Ψ;P n)}.

Training Algorithm The model is trained on a set T of tasks using mini-batch stochastic gradient
descent with step size η under a supervised learning setup. WQ, WK and WV are initialized as
(non-square) diagonal matrices, where all diagonal entries of W (0)

V , and the first dX entries of W (0)
Q

and W
(0)
K are δ ∈ (0, 0.1). Each entry of WO is generated from N (0, ξ2) and each entry of a is

uniformly sampled from {1/m,−1/m}. Besides, a does not update during training.
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3 Theoretical Results
3.1 Main Theoretical Insights
Before formally presenting the theoretical results, we summarize the main insights as follows.

P1. Sample Complexity for Zero In-Domain Generalization Error. Our findings reveal that, with
a sufficiently large model, the sample complexity required to achieve zero in-domain generalization
error is proportional to the following key factors, including λ−1

∗ (where λ∗ is the minimum fraction
of training-relevant pattern in any training demonstration), (1 − α−1)−1 (where α is the average
fraction of training-relevant patterns in prompts), and (1− τM1)

−1/2 (where τ is the noise level).

P2. Mechanism of Transformers in In-Context Learning. We elucidate the mechanism where
Transformers learn multiple tasks in context. Transformers first promote the magnitude of multiple
training-relevant features through self-attention to select gold demonstrations. Subsequently, they
decode the resulting embeddings using the MLP layer, mainly based on the label part, to make
predictions. Such a mechanism differs from existing works [16, 26, 31] on single tasks.

P3. Out-of-domain generalization. Based on our formulated data model, we show that zero
generalization error can be achieved under some conditions, even if the testing data follows a different
distribution from the training data. We consider any task formed by any two testing-relevant patterns.
When the testing-relevant patterns in testing prompts and queries are positive linear combinations
of training-relevant features, and the label embeddings match those in the training data, our trained
model achieves zero generalization error if the testing prompt is long enough to adequately cover
demonstrations with the same testing-relevant features as the testing query.

3.2 Training Data Modeling
To be more specific, let M1 (2 ≤ M1 ≤ ma,mb) denote the number of training-relevant patterns
represented by {µ1,µ2, · · · ,µM1

} and M2 (2 ≤ M2 ≤ ma,mb) as the number of training-irrelevant
features represented by {ν1,ν2, · · · ,νM2} in RdX . Here, µi ⊥ µj for 1 ≤ i ̸= j ≤ M1, νi ⊥ νj

for 1 ≤ i ̸= j ≤ M2, and µi ⊥ νj for 1 ≤ i ≤ M1 and 1 ≤ j ≤ M2. Also, ∥µi∥ = ∥νj∥ = β =
Θ(log logM1) for i ∈ [M1], j ∈ [M2]. Let M = M1 +M2 ≥ M2

1 . Then, each input embedding
xn
i satisfies that for a certain j ∈ [M1] and k ∈ [M2],

xn
i = λn

i µj + κn
i νk + nn

i (3)

where λn
i > 0 and |κn

i | ≤ 1, i ∈ [l + 1], n ∈ [N ], and nn
i is a bounded noise with ∥nn

i ∥ ≤ τ . Let

λ∗ = min{λn
i , n ∈ [N ], i ∈ [l + 1]} > 0 (4)

We define that yn
i ∈ {q,−q} for i ∈ [l+1] and n ∈ [N ], where q, −q represent the label embeddings

for labels +1 and −1, respectively. ∥q∥ = β.
Each task is a binary classification that decides the label based on two training-relevant patterns
in input embeddings. Specifically, for a certain task that respectively maps inputs with µa and µb,
1 ≤ a ̸= b ≤ M1, to +1 and −1, we have f (n)(x̃n

i ) (including yn) is +1 (or −1) if j = a (or j = b)
in (3). If the training-relevant pattern in xn

i is neither µa nor µb, the label of xn
i is randomly chosen

from {+1,−1} with equal probability.
The demonstrations of the training prompts are randomly selected following a categorical distribution.
For the task dependent on µa and µb introduced above as an example, the demonstration inputs
with µa and µb are selected with probability α/2 where α = Θ(1) ∈ (0, 1), while demonstration
inputs with other µj , j ∈ [M1] are selected with probability (1− α)/(M1 − 2). Denote the set of
demonstrations with the same training-relevant patterns as the query pn

l+1 as Nn
∗ .

3.3 In-Domain Generalization with Sample Complexity Analysis
In-domain generalization means the testing data follows the same distribution as the training data. To
avoid the bias in multi-task learning, we need the training tasks to uniformly cover all training-relevant
patterns for simplicity, i.e., the number of times where every µi represents labels +1 and −1 are
equal and are at least 1 among all tasks. Therefore, we have the following lemma on the required
number of training tasks.

Lemma 1. The number of training tasks |T | ≥ M1.

The following theorem is built on the training and testing on the M1 required training tasks.
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Theorem 1. (In-Domain Generalization) As long as m ≥ ϵ−2
m M2

1 logN for ϵm ∈ (0, 1/2), the
mini-batch B > Ω(M1 logM1), the length of training prompts satisfies

ltr ≥ Ω(2 logM/α), (5)

then after
T = Θ

(√
Mλ−1

∗ η−1(1− ϵm − τM1)
−1/2 · (C − α−1)−1

)
(6)

iterations for some τ ≤ O(1/M1), C > Ω(1) with N = BT samples, with a high probability, the
returned model achieves zero generalization error on all training tasks.

Theorem 1 characterizes the condition on the iterations and sample complexity such that the trained
model achieves zero in-domain generalization error. The next section will investigate the mechanism
of in-context learning by a one-layer Transformer.

3.4 How Does the Trained Transformer Learn in Context?
We summarize Propositions 1 and 2 to illustrate what the trained self-attention layer and the MLP
layer contribute to the prediction.

Proposition 1. The trained model satisfy that, after T iterations,

∥W (T )
Q 1:ma,1:dX

µj∥, ∥W (T )
K 1:ma,1:dX

µj∥ ≥ Θ(
√

logM) for j ∈ [M1]. (7)

∥W (T )
Q 1:ma,1:dX

νl∥, ∥W (T )
K 1:ma,1:dX

νl∥ ≤ Θ(1) for l ∈ [M2]. (8)

For any training data P n and C > 1, at a sublinear rate of O(1/T ),∑
s∈Nn

∗

softmax(pn
s
⊤W

(T )
K

⊤
W

(T )
Q pn

l+1) → 1−Θ(1/MC). (9)

Proposition 2. For a constant fraction of i ∈ [m], we have

W
(T )
O i,dX+1:dX+dY

sa(Ψ(T ),P n)dX+1:dX+dY
> W

(T )
O i,1:dX

sa(Ψ(T ),P n)1:dX
. (10)

For other i, ∥W (T )
O i,1:mb

sa(Ψ(T ),P n)∥ ≤ O(ξ).

Proposition 1 indicates that the returned self-attention layer promotes the magnitude of the training-
relevant patterns from Θ(log logM) to Θ(

√
logM) and maintains the training-irrelevant features

close to the initialization. Proposition 2 states that the MLP layer decodes the obtained feature by the
self-attention layer with a high weight on the embedding of the label part.

Such a mechanism is discovered for multi-task learning with Transformers for the first time. Figure
3.4 verifies these two propositions with a one-layer Transformer defined in (2).

(a) (b)

Figure 1: (a) The average value of ∥W (T )
Q 1:ma,1:dX

µj∥, ∥W (T )
K 1:ma,1:dX

µj∥, ∥W (T )
Q 1:ma,1:dX

νl∥,

∥W (T )
K 1:ma,1:dX

νl∥, for j ∈ [M1] and l ∈ [M2]. (b) The growth of the MLP layer output before
ReLU. The blue curve means the output contribution from the feature embeddings. The orange curve
refers to the output contribution from the label embeddings.
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3.5 Can the Model Generalize to Out-of-Domain Data and Unseen Tasks?
Similar to the data assumptions we make for the training data, we define that
{µ′

1,µ
′
2, · · · ,µ′

M ′
1
,ν′

1,ν
′
2, · · · ,ν′

M2
} form another orthonormal basis, where µ′

j and ν′
j are testing-

relevant and testing-irrelevant patterns, respectively. Each input embedding of the test demonstration
xn
i such that

xn
i = λn

i µ
′
j + κn

i ν
′
k + on

i (11)

where ∥on
i ∥ ≤ τ . All testing tasks are binary classification problems dependent on two certain

testing-relevant patterns. The formulation of a testing prompt mirrors that of a training prompt. In
this setup, the inputs involving testing-relevant patterns produce labels of either +1 or −1 depending
on the particular task. Conversely, the inputs of testing-irrelevant patterns result in labels randomly
selected from {+1,−1} by equal probability. We maintain the label embedding for yn

i as either q or
−q throughout the testing tasks. Each testing data P n = (pn

1 , · · · ,pn
l ,p

n
l+1) is defined as training

data in (1) given testing demonstration and label embeddings described above. The demonstrations
for testing are randomly selected, following a categorical distribution with a parameter α′ on the
inputs of the testing-relevant patterns, where the set of demonstrations with the same testing-relevant
patterns as the query pn

l+1 is Nn
∗ . Then, we have the following result.

Theorem 2. (Out-of-Domain Generalization) As long as any µ′
j ∈ {

∑M1

i=1 kiµi|ki ≥ 0} with M ′
1 ≤

M1, ν′
j ∈ RdX \span{µ1,µ2, · · · ,µM1

}, and the length of the testing prompt satisfies lts ≥ 2/α′,
then with high probability, the model learned with training data achieves zero generalization error.

Corollary 1. For any testing data P n,∑
s∈Nn

∗

softmax(pn
s
⊤W

(T )
K

⊤
W

(T )
Q pn

l+1) ≥ 1−Θ(1/M) (12)

Remark 1. Theorem 2 indicates that a one-layer Transformer can generalize well even in the presence
of distribution shifts between the training and testing data on the unseen binary classification tasks.
The conditions for this favorable generalization encompass the following: (1) the testing-relevant
patterns are linear combinations of training-irrelevant patterns with non-negative coefficients; (2)
The label embeddings of testing and training prompts are the same, i.e., either q or −q; (3) the
testing prompt is long enough to include demonstrations involving testing-relevant patterns. With
these conditions, Corollary 1 indicates that, despite distribution shift, the attention weights of testing
data also concentrate on tokens of testing-relevant patterns as training data does in Proposition 1

The success of out-of-domain generalization can be understood at a high level by considering the
properties of the trained model. The trained self-attention layer can perform demonstration selection
based on training-relevant patterns. Hence, the learned parameters enable similarity measurement
between out-of-domain testing queries and demonstrations, given that testing-relevant patterns can
be represented by training-relevant patterns. Consequently, when provided with the same label
embedding, the model can still make accurate predictions.

4 Conclusion and Future Works
This paper studies both optimization and generalization of a one-layer Transformer implementing ICL
for multi-task classification. We theoretically analyze the impact of the prompt length, the number
of iterations, and sample complexity on the performance of the Transformer for ICL. Additionally,
we investigate the conditions essential for successful out-of-domain generalization. Future research
directions include exploring generation tasks using more practical Transformer architectures and
conducting comparative studies on variants of ICL.
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A Proof of the main theorems

We first provide several key lemms for the proof of the main theorems.
Lemma 2. (Multiplicative Chernoff bounds, Theorem D.4 of [24]) Let X1, · · · , Xm be independent
random variables drawn according to some distribution D with mean p and support included in [0, 1].
Then, for any γ ∈ [0, 1

p − 1], the following inequality holds for p̂ = 1
m

∑m
i=1 Xi:

Pr(p̂ ≥ (1 + γ)p) ≤ e−
mpγ2

3 . (13)

Pr(p̂ ≤ (1− γ)p) ≤ e−
mpγ2

2 . (14)

Lemma 3. When t ≥ Ω(1), we have that for i ∈ ∪M1

l=1Wl(t) ∪ Ul(t),∥∥∥η 1

B

t−1∑
b=0

∑
l∈Bb

∂ℓ(P̃ n, yn; Ψ)

∂WO(i,·)

[dX + 1 : dX + dY ]
∥∥∥ = Θ(δβ2/a), (15)

while ∥∥∥η 1

B

t−1∑
b=0

∑
l∈Bb

∂ℓ(P̃ n, yn; Ψ)

∂WO(i,·)

[1 : dX ]
∥∥∥ = Θ(δβ2λ∗/a). (16)

For i /∈ ∪M1

l=1Wl(t) ∪ Ul(t), we can obtain∥∥∥η 1

B

t−1∑
b=0

∑
l∈Bb

∂ℓ(P̃ n, yn; Ψ)

∂WO(i,·)

[dX + dY : mb]
∥∥∥ ≲ η

√
1

B
· β

2

a
. (17)

Lemma 4. For any j, l ∈ [M1], l ̸= j

(µ⊤
j ,0

⊤)η
1

B

∑
l∈Bb

∂ℓ(P̃ n, yn; Ψ)

∂WQ

∣∣∣
t=t0

(µ⊤
j , q

⊤)⊤

≳η
1

BM1

∑
n∈Bb

t0∑
b=0

m

a
(1− ϵm − τM

π
)ζb(1− 4τ − ϵy)δ(1− γb)γbλ∗β

4,

(18)

∣∣∣(µ⊤
l ,0

⊤)η
1

B

∑
l∈Bb

∂ℓ(P̃ n, yn; Ψ)

∂WQ

∣∣∣
t=t0

(µ⊤
j ,0

⊤)⊤
∣∣∣

≲η
1

BM1

t0−1∑
b=0

∑
n∈Bb

m

a
(1− ϵm − τM1

π
)
ζiδ(1− γb)γb(1 + τ)2β4

M1
,

(19)

∥∥∥η 1

B

∑
l∈Bb

∂ℓ(P̃ n, yn; Ψ)

∂WQ

∣∣∣
t=t0

(µ⊤
j , q

⊤)⊤
∥∥∥

≳η
1

BM1

∑
n∈Bb

t0∑
b=0

m

a
(1− ϵm − τM

π
)ζb(1− 4τ − ϵy)δ(1− γb)γbλ∗β

2,

(20)

(µ⊤
j ,0

⊤)η
1

B

∑
l∈Bb

∂ℓ(P̃ n, yn; Ψ)

∂WQ

∣∣∣
t=t0

(µ⊤
j , q

⊤)⊤

≳η
1

BM1

∑
n∈Bb

t0∑
b=0

m

a
(1− ϵm − τM

π
)ζb(1− 4τ − ϵy)δ(1− γb)γbλ∗β

4,

(21)

∣∣∣(µ⊤
l ,0

⊤)η
1

B

∑
l∈Bb

∂ℓ(P̃ n, yn; Ψ)

∂WK

∣∣∣
t=0

(µ⊤
j ,0

⊤)⊤
∣∣∣

≲η
1

BM1

t0−1∑
b=0

∑
n∈Bb

m

a
(1− ϵm − τM1

π
)
ζiδ(1− γb)γb(1 + τ)2β4

M1
.

(22)
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∥∥∥η 1

B

∑
l∈Bb

∂ℓ(P̃ n, yn; Ψ)

∂WQ

∣∣∣
t=t0

(µ⊤
j , q

⊤)⊤
∥∥∥

≳η
1

BM1

∑
n∈Bb

t0∑
b=0

m

a
(1− ϵm − τM

π
)ζb(1− 4τ − ϵy)δ(1− γb)γbλ∗β

2,

(23)

For any j ∈ [M2],∣∣∣(ν⊤
l , q⊤)η

1

B

∑
l∈Bb

∂ℓ(P̃ n, yn; Ψ)

∂WQ

∣∣∣
t=t0+1

(ν⊤
j ,0⊤)⊤

∣∣∣ ≲ ηt0
1

BM
ζiδβ

4 (24)

∥∥∥η 1

B

∑
l∈Bb

∂ℓ(P̃ n, yn; Ψ)

∂WQ

∣∣∣
t=t0+1

(ν⊤
j ,0⊤)⊤

∥∥∥ ≲ ηt0
1

BM
ζiδβ

2 (25)

Lemma 5. For pn
j that corresponds to µj

η
1

B

t0∑
b=0

∑
l∈Bb

∂ℓ(P̃ n, yn; Ψ)

∂W
(t)
V

pn
j

=η

t0∑
b=0

(
∑

i∈∪M1
l=1Wl(b)

Vi(b)W
(b)
O(i,·)

+
∑

i∈∪M1
l=1Ul(b)

Vi(b)W
(b)
O(i,·)

+
∑

i/∈∪M1
l=1Wl(b)∪Ul(b)

Vi(b)W
(b)
O(i,·)

),

(26)
where

Vi(b) ≲

√
logB

B
· β

2

a
, i /∈ ∪M1

l=1Wl(b) ∪ Ul(b), (27)

and if pn
j corresponds to q,

Vi(b) ≳ λ2
∗(1− 2γt)β

2/a, i ∈ ∪M1

l=1Wl(b), (28)

Vi(b) ≤ 0, i ∈ ∪M1

l=1Ul(b), (29)
otherwise,

Vi(b) ≳ λ2
∗(1− 2γt)β

2/a, i ∈ ∪M1

l=1Ul(b), (30)

Vi(b) ≤ 0, i ∈ ∪M1

l=1Wl(b). (31)

Lemma 6. For i ∈ ∪M1

l=1Wl(t) ∪ Ul(t),

η
1

B

t0∑
b=0

∑
l∈Bb

∂ℓ(P̃ n, yn; Ψ)

∂WO(i,·)

(pn
j
⊤,0)⊤

≳
η

Ba

t0∑
b=0

∑
n∈Bb

((2− 3γb)δβ
2λ2

∗ + η

b∑
c=0

m(1− ϵm − τM1)λ
2
∗(1− 2γc)

β2

a
· β)(1− 2γc))

(32)

∥W (t0)
O(i,·)

∥

≳
η

Ba

t0∑
b=0

∑
n∈Bb

((2− 3γb)δβλ∗ + η

b∑
c=0

m(1− ϵm − τM1)λ
2
∗(1− 2γc)

β2

a
(1− 2γc))

(33)

For i /∈ ∪M1

l=1(Wl(t) ∪ Ul(t)), we have

η
1

B

t0∑
b=0

∑
l∈Bb

∂ℓ(P̃ n, yn; Ψ)

∂WO(i,·)

(pn
j
⊤,0)⊤ ≤ η

√
logBt0
Bt0

β2

a
(34)

Lemma 7. If the number of neurons m is larger enough such that

m ≥ ϵ−2
m M2

1 logN, (35)

the number of lucky neurons at the initialization |W(0)|, |U(0)| satisfies

|W(0)|, |U(0)| ≥ m

16
(1− ϵm − τM1) (36)
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A.1 Proof of Theorem 1

We first look at the required length of the prompt. Define mi as the corresponding task-relevant
features in the i-th demonstration. Consider the multinomial distribution where the probabilities of
selecting µa and µb are α/2 respectively. By the Chernoff bound of Bernoulli distribution in Lemma
2, we can obtain

Pr(
1

l

l∑
i=1

1[mi = µa] ≤ (1− c)
α

2
) ≤ e−lc2 α

2 = M−C
1 , (37)

for some c ∈ (0, 1) and C > 0. Hence, with a high probability,

l ≥ 2 logM1

α
, (38)

By the solution to the Coupon collector’s problem, we know that

B ≥ M1 logM1, (39)

For yn = +1, we have that for i such that ai > 0 but i /∈ ∪l∈[M1]Wl(t),

aiRelu(W (T )
O(i,·)

l+1∑
s=1

(W
(T )
V pn

s )softmax((W (T )
K pn

s )
⊤W

(T )
Q pn

l+1)) ≥ 0. (40)

Furthermore, we have that for i ∈ Wl(t) where l ∈ [M1],

W
(T )
O(i,·)

W
(T )
V pn

s

=W
(T )
O(i,·)

(δ(pn
s
⊤,0⊤)⊤ +

t−1∑
b=0

η(
∑

i∈W(b)

Vi(b)W
(b)
O(i,·)

+
∑

i∈U(b)

Vi(b)W
(b)
O(i,·)

+
∑

i/∈W(b)∪U(b)

Vi(b)W
(b)
O(i,·)

)⊤)

≳δ · η

Ba

t0+1∑
b=0

∑
n∈Bb

((2− 3γb)δβ
2λ2

∗ + η

b∑
c=0

m(1− ϵm − τM1)λ
2
∗(1− 2γc)

β2

a
· β(1− 2γc))

+

T−1∑
b=0

η
η

Ba

t0+1∑
b=0

∑
n∈Bb

((2− 3γb)δβλ∗ + η

b∑
c=0

m(1− ϵm − τM1)λ
2
∗(1− 2γc)

β2

a
(1− 2γc))

· λ2
∗(1− γT )

β2

a
.

(41)∑
i∈W(t)

aiRelu(W (T )
O(i,·)

l+1∑
s=1

(W
(T )
V pn

s )softmax((W (T )
K pn

s )
⊤W

(T )
Q pn

l+1))

≳
m

a
(1− ϵm − τM1)(1− γT ) ·

(
δ · η

Ba

T∑
b=0

∑
n∈Bb

((2− 3γb)λ
2
∗δβ

2 + η

b∑
c=0

m(1− ϵm − τM1)

· λ2
∗(1− 2γc)

β2

a
· β(1− 2γc)) +

T−1∑
b=0

η
η

Ba

T−1∑
c=0

∑
n∈Bb

((2− 3γb)δβλ∗

+ η

b∑
c=0

m(1− ϵm − τM1)λ
2
∗(1− 2γc)

β2

a
(1− 2γc)) · λ2

∗(1− γT )
β2

a

)
.

(42)
We next give a bound for γT . Note that

1− γT =
∑

s∈Nn
n1

softmax((W (T )
K pn

s )
⊤W

(T )
Q pn

l+1). (43)
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When T = Θ(Mω), we have

(W
(T )
K pn

s )
⊤W

(T )
Q pn

l+1

≳(η
1

BM1

∑
n∈Bb

T−1∑
b=0

m

a
(1− ϵm − τM)ζb(1− 4τ − ϵy)δ(1− γb)γbλ∗β

2)2

≳
η2

M2
1

(

T−1∑
b=0

η2b2

a
γb)

2,

(44)

where in the last step, we only consider the term related to T and γb. Then,

∑
s∈Nn

n1

softmax(pn
s
⊤W

(t)
K

⊤
W

(t)
Q pn

l+1)

≥

∑
s∈Nn

n1

e
Θ(δ2β2)+ η2

M2
1
(
∑T−1

b=0
η2b2

a γb)
2

∑
s∈Nn

n1

e
Θ(δ2β2)+ η2

M2
1
(
∑T−1

b=0
η2b2

a γb)2

+
∑

s∈[l]−Nn
n1

e
δ2β2(τ+κ)+ η2

M4
1
(
∑T−1

b=0
η2b2

a γb)2

≥1− 1− α

α
e
− η2

M2
1
(
∑T−1

b=0
η2b2

a γb)
2

.

(45)

Combining with (43), we can derive

γT ≤ 1− α

α
e
− η2

M2
1
(
∑T−1

b=0
η2b2

a γb)
2

=
1− α

α
e
− η2

M2
1
(
∑T−2

b=0
η2b2

a γb)
2

·e
− η2

M2
1
γT−1

η2(T−1)2

a ·2
∑T−1

b=0
η2b2

a γb
.

(46)
When T is large, γT is approaching zero. Hence, the equality of (84) is close to being achieved, in
which case,

γT ≈ 1− α

α
γT−1 · e

− η2

M2
1
γT−1

η2(T−1)2

a ·2
∑T−1

b=0
η2b2

a γb
. (47)

We can observe that when
∑t0−1

b=0 η2b2γb/a ≥ (1 − α)/α · η−1M1

√
logM , γt0 reaches Θ(1/M).

Similarly, when
∑t′0−1

b=0 η2b2γb/a ≤ (1− α)/α · η−1M1

√
logC for some C > 1, γt′0 is still Θ(1),

which indicates t′0 ≤ Cη−1((1 − α)/α · MM1

√
logC)

1
3 . Since we require M ≥ M2

1 , we have
T ≥ Θ(η−1((1− α)/α ·MM1

√
logC)

1
3 ). Therefore, we can conclude that γT = Θ(1/M). Then,

for some large C > 1,∑
i∈W(t)

aiRelu(W (T )
O(i,·)

l+1∑
s=1

(W
(T )
V pn

s )softmax((W (T )
K pn

s )
⊤W

(T )
Q pn

l+1))

≳
m

a
(1− ϵm − τM1)(1−

1

M
) ·
(ηT

a
(1− 1

C
α−1) +

η2T 2

a
(1− 1

C
α−1)2λ2

∗

· (1− ϵm − τM1) +
η2T 2

a
((1− 1

C
α−1)2 + (1− 1

C
α−1)3ηT (1− ϵm − τM1)λ

2
∗)λ

2
∗
1

a

)
.

(48)
We next look at i where ai < 0. If i ∈ Ul(t) where l ∈ [M1], we have that for s such that the
y-embedding of pn

s is q, the summation of corresponding softmax value is 1− γT . Furthermore,

W
(T )
O(i,·)

W
(T )
V pn

s

≲−
T−1∑
b=0

η
η

Ba

t0+1∑
b=0

∑
n∈Bb

((2− 3γb)δβλ
2
∗

− ηm(1− ϵm − τM1)λ
2
∗(1− γb)

β2

a
)(1− 2γb)) · λ2

∗(1− γT )
β2

a
.

(49)

Hence,

Relu(W (T )
O(i,·)

l+1∑
s=1

(W
(T )
V pn

s )softmax((W (T )
K pn

s )
⊤W

(T )
Q pn

l+1)) = 0. (50)
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If i /∈ W(T ) ∪ U(T ), we have,

W
(T )
O(i,·)

W
(T )
V pn

s

≲η

√
logBT

BT

β

a
· ηTλ2

∗(1− γt)
β2

a
∥W (T )

O(j,·)
∥

≲η · 1√
M

,

(51)

where the last step holds when ηT = Θ(
√
M) and ∥W (T )

O(j,·)
∥ = Θ(1) by its lower bound. Since the

further computation of F (pn
l+1) is by subtraction between terms related to the lower bound and upper

bound of ∥W (T )
O(j,·)

∥, the final lower bound of F (pn
l+1) is based on the lower bound of ∥W (T )

O(j,·)
∥.

Then, combining (40), (48), (50), and (51), we can derive

F (pn
l+1)

≳
m

a
(1− ϵm − τM1)(1−

1

M
) · η

2T 2

a
(1− 1

C
α−1)2λ2

∗

≥1.

(52)

Therefore, as long as

T = Θ(

√
Mλ−1

∗ η−1√
(1− ϵm − τM1)

· C

C − α−1
), (53)

for some large C > 1, we can obtain
F (pn

l+1) > 1. (54)

Hence, ω = 1/2. Combining (112), we have

BT ≳ (
M1 · 1

M

η−1M1

√
logM

)2. (55)

We can conclude that B ≳ Θ(M1 logM1).
Similarly, we can derive that for yn = −1,

F (pn
l+1) < −1. (56)

Hence, for all n ∈ [N ],
Loss(P̃ n, yn) = 0. (57)

We also have
E(P̃n,yn)∼D[Loss(P̃ n, yn)] = 0. (58)

with the conditions of sample complexity and the number of iterations.

A.2 Proof of Proposition 1

This is a corollary of Lemma 4. We can derive that∥∥∥W (T )
Q [:, 0 : dX ]µj

∥∥∥
≥η

1

BM1

∑
n∈Bb

T∑
b=0

m

a
(1− ϵm − τM

π
)ζb(1− 4τ − ϵy)δ(1− γb)γbλ∗β

4

≥ η

M1

T−1∑
b=0

η2b2

a
γb

≥ η

M1
· 1− α

α
· η−1M1

√
logM1

≳
√
logM1,

(59)
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where the second to last step follows the derivation of γT in proving Theorem 1. Similarly,∥∥∥W (T )
K [:, 0 : dX ]µj

∥∥∥ ≳
√
logM1, (60)

Meanwhile, ∥∥∥W (T )
Q [:, 0 : dX ]νj

∥∥∥
≲ηT

1

BM
ζiδβ

2 + δ2β2

≲
1

M2
1 logM1

+ δ2β2

≲Θ(1),

(61)

∥∥∥W (T )
K [:, 0 : dX ]νj

∥∥∥ ≲ Θ(1), (62)

A.3 Proof of Proposition 2

By (136), we know that the contribution of the label space embedding is more than that of the feature
space embedding in the MLP layer for each W

(t)
V ps. Since that γT ≤ 1/M1, we have that there

exists a constant C > 1, such that

W
(T )
O(i,·)

[dX : dX+dY ]

l+1∑
s=1

(W
(t)
V pn

s )softmax(pn
s
⊤W

(t)
K

⊤
W

(t)
Q pn

l+1)[dX : dX+dY ]

≥C ·W (t)
O(i,·)

[0 : dX ]

l+1∑
s=1

(W
(t)
V pn

s )softmax(pn
s
⊤W

(t)
K

⊤
W

(t)
Q pn

l+1)[0 : dX ]

(63)

A.4 Proof of Theorem 2

Note that we need at least one demonstration of the same µ′
l as the query in the testing prompt. Hence,

with high probability,

l ≥ 2

α′ . (64)

Consider pn
l+1

′ such that the label is +1. Let µ′
j =

∑M1

j=1 cjµj where
∑M1

j=1 c
2
j = 1. By Lemma 4,

we have that for s ∈ Nn,

(W
(T )
K pn

s
′)⊤W

(T )
Q pn

l+1
′

≳
M1∑
j=1

c2j · (η
1

BM1

∑
n∈Bb

T−1∑
b=0

m

a
(1− ϵm − τM)ζb(1− 4τ − ϵy)δ(1− γb)γbλ∗β

2)2

· (1− 1√
M1

· 1√
M1

)

≳
η2

M2
1

(

T−1∑
b=0

η2b2

a
γb)

2

≳(α−1 − 1)2 logM.

(65)

Therefore, ∑
s∈Nn

n1

softmax((W (T )
K pn

s
′)⊤(W

(T )
Q pn

l+1
′)) ≥ 1−Θ(

1

M
). (66)
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Meanwhile, we have that for a certain i ∈ Wl(t) where l ∈ [M1] and pn
s where the corresponding

y-space embedding is q,

W
(T )
O(i,·)

W
(T )
V pn

s
′

≳
(
δ

η

Ba

T−1∑
b=0

∑
n∈Bb

((2− 3γb)δβ
2λ2

∗ + η

b∑
c=0

m(1− ϵm − τM1)λ
2
∗(1− 2γc)

β2

a
· β(1− 2γc))

+

T−1∑
b=0

η
η

Ba

T−1∑
b=0

∑
n∈Bb

((2− 3γb)δβλ∗ + η

b∑
c=0

m(1− ϵm − τM1)λ
2
∗(1− 2γc)

β2

a
(1− 2γc))

· λ2
∗(1− γT )

β2

a

)
· (1− 1

M1
)

≳(

√
M

M
+ 1 +

M

M2
+

M
3
2

M2
) · (1− 1

M1
)

≥1− 1

M1
,

(67)∑
i∈Wl(t)

aiRelu(W (T )
O(i,·)

l+1∑
s=1

W
(T )
V pn

s
′softmax((W (T )

K pn
s
′)⊤W

(T )
Q pn

l+1
′))

≳
m

a
(1− ϵm − τM1)(1− γT )(1−

1

M1
) ·Θ(1)

>1− 1

M1
.

(68)

We can similarly derive

F (pn
l+1

′) > (1− 1

M1
) (69)

by bounding the components where ai < 0 following the proof of Theorem 1.
Likewise, for pn
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′ such that the label is −1, we can obtain

F (pn
l+1

′) < −(1− 1

M1
). (70)

Therefore, as long as M1 ≥ ϵ−1,

Loss(P̃ n, yn) ≤ ϵ. (71)

B Partial proof of key lemmas

B.1 Proof of Lemma 3
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We have that for s ∈ Nn
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, i ∈ W(t) and yn = 1,
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and for s /∈ Nn
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Hence, we can obtain that
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(75)

where ζi = ∥WO(i,·) [dX + 1 : dX + dY ]∥ with high probability. Hence, for i ∈ Wl(t) ∪ Ul(t),
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For i /∈ W(t) ∪ U(t), we have
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Therefore, when t ≥ Ω(η−1), we have that for i ∈ Wl(t) ∪ Ul(t),∥∥∥η 1
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B.2 Proof of Lemma 4

We first study the gradient of W (t+1)
Q in part (a) and the gradient of W (t+1)

K in part (b). The proof is
derived with a framework of induction combined with Lemma 5 and 6.
(a) From the training loss function, we can obtain
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If t = 0, we have that
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where the second step is by logM2 ≥ δ2β2. Similarly, for s ∈ Nn
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Therefore, since logM1 ≤ δ2β2, we can obtain that
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where ζi = ∥WO(i,·) [dX + 1 : dX + dY ]∥. Then we derive
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for some ∥n∥ ≤ τ . One can observe that∑
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To deal with s ∈ [l]−Nn
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, we compare (84) and (86). We can then derive that for s ∈ Nn
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Note that here for the computation of yn
s space, we consider the majority voting, which enables us to

only focus on yns = yn for s ∈ Nn.
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If i ∈ U(t), since that yn = 1, by the majority voting, the resulting gradient update does not exceed
that of i ∈ W(t) by magnitude. If i /∈ W(t) ∪ U(t), by the uniform distribution of ai, we have that,
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Therefore,
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Then, by combining (100) and (102), we have
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where l ̸= j. Similarly, since that with probability 1/M2 = Θ(1/M) one demonstration contains νj ,
then by Chernoff bounds in Lemma 2,
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If Bl ≲ M1 log
2 M , we have that at most one demonstration contains vj in the whole batch Bb for

any j ∈ [M2]. Therefore,∣∣∣(ν⊤
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For the yn
(·)-space feature, we have
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Since that W (t)
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where the last step comes from the equal probability of two signs and the upper bound of the inner
product.
We need

B ≥
(ϵ−1

y ξM)2

ζ2i
(110)

to make (109) upper bounded by ϵy ∈ (0, 1/2).
Hence, the conclusion holds when t = 1. Suppose that the statement also holds when t = t0. When
t = t0 + 1, the gradient update is the same as in (100) and (102). The only difference is the changes
in ζt and γt. Thus, we can obtain
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where the last step holds as long as
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We know that WQ is used for the computation with the l + 1-th input. Then we have
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where the last step comes from the basic mathematical computation.
Similarly, for j ̸= l ∈ [M1],∣∣∣(µ⊤
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Meanwhile, for j ̸= l ∈ [M2],∣∣∣(ν⊤
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(b) Then we study the updates of WK . We can compute the gradient as
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If we investigate W
(t)
K pn

s , we can tell that the output is a weighed summation of multiple W
(t)
Q pn

l+1.

Similarly, the output of W (t)
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l+1 is a weighed summation of multiple W
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K ps. Given the initializa-

tion W
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Q and W
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K , the update of W (t)

K pn
s and W

(t)
Q pn

l+1 only contains the contribution from the
feature space embeddings at the initialization. Therefore, along further iterations, only feature space
embeddings matter.
Following the steps in Part (a), we can obtain
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and for j ̸= l ∈ [M1],
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B.3 Proof of Lemma 5
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For pn
l+1 which corresponds to the task-relevant feature µa,
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Since that Wa(t) ⊂ Wa(0), such conclusion holds when t ≥ 1. Note that for i ∈ We(t) where e ̸= a
and
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[0 : dX ]∥, (135)

where C > 1, we also have (134) holds. By Gaussian initialization, with high probability, (135)
attains equality with some constant C. Hence, by the summation of WO(i,·) in (131), we can obtain
that with high probability, when t ≥ Θ(1), for i ∈ ∪M1
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for some C ′ > 1. This indicates that as long as t is large enough such that γt is trivial (such condition
is achievable finally), we have
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During our analysis, for simplicity, we directly say (137) for i ∈ W(t) holds when t is large without
characterizing the lower bound of t. This shall only hold in a subset of W(t), but it does not affect
the conclusion of this lemma.
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where
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where
Vi(t) ≳ λ2

∗(1− 2γt)β
2/a, i ∈ U(t), (148)

Vi(t) ≲ (1− 1)β2/a ≤ 0, i ∈ W(t), (149)
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√
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B
· β

2

a
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B.4 Proof of Lemma 6
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We have that
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Consider a certain pn
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When t = 1, we can obtain that for i ∈ Wa(t),
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as long as logM1 ≥ δ2β2 and B ≥ λ−4
∗ . For i ∈ Ua(t), we also have
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if pn
j corresponds to label −1 in this task. For i /∈ Wa(t) ∪ Ua(t), we have
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Suppose that the conclusion holds when t ≤ t0. Then when t = t0 + 1, we have that for i ∈ Wa(t),
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For i /∈ Wa(t) ∪ Ua(t), we have
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By the derivation of (137), we have that (158), (159), and (160) holds for i ∈ W(t).

C Related works

Theoretical analysis of learning and generalization of neural networks. Some works [41, 11, 40,
18, 38] study the generalization performance following the model recovery framework by probing
the local convexity around a ground truth parameter. The neural-tangent-kernel (NTK) analysis
[13, 2, 3, 7, 42, 8, 17] considers strongly overparameterized networks to linearize the neural network
around the initialization. The generalization performance is independent of the feature distribution.
[10, 29, 15, 6, 39, 16] investigate the generalization of neural networks assuming a data model
consisting of discriminative patterns and background patterns.

Theoretical study on in-context learning. Existing theoretical works on in-context learning include
the expressive power of the introduced parameter [4, 1], the optimization process [33], and the
generalization analysis [36, 37, 19]. Most studies concentrate on linear regression tasks on in-context
learning.
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