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Abstract

We present a novel confidence refinement scheme that enhances pseudo-labels in1

semi-supervised semantic segmentation. Unlike current leading methods, which2

filter pixels with low-confidence teacher predictions in isolation, our approach3

leverages the spatial correlation of labels in segmentation maps by grouping4

neighboring pixels and considering their pseudo-labels collectively. With this5

contextual information, our method, named S4MC, increases the amount of6

unlabeled data used during training while maintaining the quality of the pseudo-7

labels, all with negligible computational overhead. Through extensive experiments8

on standard benchmarks, we demonstrate that S4MC outperforms existing state-9

of-the-art semi-supervised learning approaches, offering a promising solution for10

reducing the cost of acquiring dense annotations. For example, S4MC achieves11

a substantial 6.34 mIoU improvement over the prior state-of-the-art method12

on PASCAL VOC 12 with 92 annotated images. The code to reproduce our13

experiments is available at https://s4mcontext.github.io/.14

1 Introduction15

Supervised learning has been the driving force behind advancements in modern computer vision,16

including classification (Krizhevsky et al., 2012; Dai et al., 2021), object detection (Girshick, 2015;17

Zong et al., 2022), and segmentation (Zagoruyko et al., 2016; Chen et al., 2018a; Li et al., 2022;18

Kirillov et al., 2023). However, it requires extensive amounts of labeled data, which can be costly and19

time-consuming to obtain. In many practical scenarios, while there is no shortage of available data,20

only a fraction can be labeled due to resource constraints. This challenge has led to the development21

of semi-supervised learning (SSL) (Rasmus et al., 2015; Berthelot et al., 2019b; Sohn et al., 2020a;22

Yang et al., 2022a), a methodology that leverages both labeled and unlabeled data for model training.23

This paper focuses on applying SSL to semantic segmentation, which has applications in various24

areas such as perception for autonomous vehicles (Bartolomei et al., 2020), mapping (Van Etten et al.,25

2018) and agriculture (Milioto et al., 2018). SSL is particularly appealing for segmentation tasks, as26

manual labeling can be prohibitively expensive.27

A widely adopted approach for SSL is pseudo-labeling (Lee, 2013; Arazo et al., 2020). This28

technique dynamically assigns supervision targets to unlabeled data during training based on the29

model’s predictions. To generate a meaningful training signal, it is essential to adapt the predictions30

before integrating them into the learning process. Several techniques have been proposed for that,31

such as using a teacher network to generate supervision to a student network (Hinton et al., 2015).32

The teacher network can be made more powerful during training by applying a moving average to33

the student network’s weights (Tarvainen and Valpola, 2017). Additionally, the teacher may undergo34

weaker augmentations than the student (Berthelot et al., 2019b), simplifying the teacher’s task.35
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Figure 1: Confidence refinement. Left: pseudo-labels generated by the teacher network without
refinement. Middle: pseudo-labels obtained from the same model after refinement with marginal
contextual information. Right Top: predicted probabilities of the top two classes of the pixel
highlighted by the red square before, and Bottom: after refinement. S4MC allows additional correct
pseudo labels to propagate.

However, pseudo-labeling is intrinsically susceptible to confirmation bias, which tends to reinforce36

the model predictions instead of improving the student model. Mitigating confirmation bias becomes37

particularly important when dealing with erroneous predictions made by the teacher network.38

One popular technique to address this issue is confidence-based filtering (Sohn et al., 2020a). This39

approach assigns pseudo-labels only when the model’s confidence surpasses a specified threshold,40

thereby reducing the number of incorrect pseudo-labels. Though simple, this strategy was proven41

effective and inspired multiple improvements in semi-supervised classification (Zhang et al., 2021;42

Rizve et al., 2021), segmentation (Wang et al., 2022), and object detection in images (Sohn et al.,43

2020b; Liu et al., 2021) and 3D scenes (Zhao et al., 2020; Wang et al., 2021). However, the strict44

filtering of the supervision signal leads to extended training periods and, potentially, to overfitting45

when the labeled instances used are insufficient to represent the entire sample distribution. Lowering46

the threshold would allow for higher training volumes at the cost of reduced quality, further hindering47

the performance (Sohn et al., 2020a).48

In response to these challenges, we introduce a novel confidence refinement scheme for the teacher49

network predictions in segmentation tasks, designed to increase the availability of pseudo-labels50

without sacrificing their accuracy. Drawing on the observation that labels in segmentation maps51

exhibit strong spatial correlation, we propose to group neighboring pixels and collectively consider52

their pseudo-labels. When considering pixels in spatial groups, we asses the event-union probability,53

which is the probability that at least one pixel belongs to a given class. We assign a pseudo-label if54

this probability is sufficiently larger that the event-union probability of any other class. By taking55

context into account, our approach Semi-Supervised Semantic Segmentation via Marginal Contextual56

Information (S4MC), enables a relaxed filtering criterion which increases the number of unlabeled57

pixels utilized for learning while maintaining high-quality labeling, as demonstrated in Fig. 1.58

We evaluated S4MC on multiple semi-supervised segmentation benchmarks. S4MC achieves59

significant improvements in performance over previous state-of-the-art methods. In particular,60

we observed a remarkable increase of +6.34 mIoU on PASCAL VOC 12 (Everingham et al., 2010)61

using only 92 annotated images and an increase of +1.85 mIoU on Cityscapes (Cordts et al., 2016)62

using only 186 annotated images. These findings highlight the effectiveness of S4MC in producing63

high-quality segmentation results with minimal labeled data.64

2 Related Work65

2.1 Semi-Supervised Learning66

Pseudo-labeling (Lee, 2013) is a popular and effective technique in SSL, where labels are assigned to67

unlabeled data based on model predictions. To make the most of these labels during training, it is68

essential to refine them (Laine and Aila, 2016; Berthelot et al., 2019b,a; Xie et al., 2020). One way to69

achieve this is through consistency regularization (Laine and Aila, 2016; Tarvainen and Valpola, 2017;70

Miyato et al., 2018), which ensures consistent predictions between different views of the unlabeled71
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data. Alternatively, a teacher model can be used to obtain pseudo-labels, which are then used to train72

a student model. To ensure that the pseudo-labels are useful, the temperature of the prediction (soft73

pseudo-labels; Berthelot et al., 2019b) can be increased, or the label can be assigned to samples with74

high confidence (hard pseudo-labels; Xie et al., 2020; Sohn et al., 2020a; Zhang et al., 2021). In this75

work we follow the hard pseudo-label assignment approach and improve upon previous methods by76

proposing a confidence refinement scheme.77

2.2 Semi-Supervised Semantic Segmentation78

In semantic segmentation, most SSL methods rely on a combination of consistency regularization79

and the development of augmentation strategies compatible with segmentation tasks. Given the80

uneven distribution of labels typically encountered in segmentation maps, techniques such as adaptive81

sampling, augmentation, and loss re-weighting are commonly employed (Hu et al., 2021). Feature82

perturbations on unlabeled data (Ouali et al., 2020; Zou et al., 2021; Liu et al., 2022b) are also used83

to enhance consistency, along with the application of virtual adversarial training (Liu et al., 2022b).84

Curriculum learning strategies that incrementally increase the proportion of data used over time85

are beneficial in exploiting more unlabeled data (Yang et al., 2022b; Wang et al., 2022). A recent86

approach introduced by (Wang et al., 2022) cleverly utilizes unreliable predictions by employing87

contrastive loss with the least confident classes predicted by the model. However, most existing88

works primarily focus on individual pixel label predictions. In contrast, we delve into the contextual89

information offered by spatial predictions on unlabeled data.90

2.3 Contextual Information91

Contextual information encompasses environmental cues that assist in interpreting and extracting92

meaningful insights from visual perception (Toussaint, 1978; Elliman and Lancaster, 1990).93

Incorporating spatial context explicitly has been proven beneficial in segmentation tasks, for example,94

by encouraging smoothness like in the Conditional Random Fields (CRF) method (Chen et al.,95

2018a) and attention mechanisms (Vaswani et al., 2017; Dosovitskiy et al., 2021; Wang et al., 2020).96

Combating dependence on context has shown to be useful by Nekrasov et al. (2021). In this work,97

we leverage the context from neighboring pixel predictions to enhance pseudo-label propagation.98

3 Method99

3.1 Overview100

In semi-supervised semantic segmentation, we are given a labeled training set of images Dℓ =101 {
(xℓ

i ,yi)
}Nℓ

i=1
, and an unlabeled set Du = {xu

i }
Nu

i=1 sampled from the same distribution, i.e.,102 {
xℓ
i ,x

u
i

}
∼ Dx. Here, y are 2D tensors of shape H × W , assigning a semantic label to each103

pixel of x. We aim to train a neural network fθ to predict the semantic segmentation of unseen images104

sampled from Dx.105

We follow a teacher–student approach (Tarvainen and Valpola, 2017) and train two networks fθs106

and fθt that share the same architecture but update their parameters separately. The student network107

fθs is trained using supervision from the labeled samples and pseudo-labels created by the teacher’s108

predictions for unlabeled ones. The teacher model fθt is updated as an exponential moving average109

(EMA) of the student weights. fθs(xi) and fθt(xi) denote the predictions of the student and teacher110

models for the xi sample, respectively. At each training step, a batch of Bℓ and Bu images is sampled111

from Dℓ and Du, respectively. The optimization objective can be written as the following loss:112

L = Ls + λLu (1)

Ls =
1

Ml

∑
xℓ
i ,yi∈Bl

ℓCE(fθs(x
ℓ
i),yi) (2)

Lu =
1

Mu

∑
xu
i ∈Bu

ℓCE(fθs(x
u
i ), ŷi), (3)

where Ls and Lu are the losses over the labeled and unlabeled data correspondingly, λ is a113

hyperparameter controlling their relative weight, and ŷi is the pseudo-label for the i-th unlabeled114
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Figure 2: Left: S4MC employs a teacher-student paradigm for semi-supervised segmentation.
Labeled images are used to supervise the student network directly. Both teacher and student networks
process unlabeled images. Predictions from the teacher network are refined and used to evaluate the
margin value, which is then thresholded to produce pseudo-labels that guide the student network.
The threshold, denoted as γt, is dynamically adjusted based on the teacher network’s predictions.
Right: Our confidence refinement module exploits neighboring pixels to adjust per-class predictions,
as detailed in Section 3.2.1. The class distribution of the pixel marked by the yellow circle on the left
is changed. Before refinement, the margin surpasses the threshold and erroneously assigns the blue
class (dog) as a pseudo-label. However, after refinement, the margin significantly reduces, thereby
preventing the propagation of this error.

image. Not every pixel of xi has a corresponding label or pseudo-label, and Ml and Mu denote the115

number of pixels with label and assigned pseudo-label in the image batch, respectively.116

3.1.1 Pseudo-label Propagation117

For a given image xi, we denote by xi
j,k the pixel in the j-th row and k-th column. We adopt a118

thresholding-based criterion inspired by (Sohn et al., 2020a). By establishing a score, denoted as κ,119

which is based on the class distribution predicted by the teacher network, we assign a pseudo-label to120

a pixel if its score exceeds a threshold γt:121

ŷi
j,k =

{
argmaxc{pc(xi

j,k)} if κ(xi
j,k; θt) > γt,

ignore otherwise,
, (4)

where pc(x
i
j,k) is the pixel probability of class c. A commonly used score is given by κ(xi

j,k; θt) =122

maxc{pc(xi
j,k)}. However, we found that using a pixel-wise margin, inspired by the work of Scheffer123

et al. (2001) and Shin et al. (2021), produces more stable results. This approach calculates the margin124

as the difference between the highest and the second-highest values of the probability vector:125

κmargin(x
i
j,k) = max

c
{pc(xi

j,k)} −max2
c

{pc(xi
j,k)}. (5)

3.1.2 Dynamic Partition Adjustment (DPA)126

Following U2PL (Wang et al., 2022), we use a decaying threshold γt. DPA replaces the fixed threshold127

with a quantile-based threshold that decreases with time. At each iteration, we set γt as the αt-th128

quantile of κmargin over all pixels of all images in the batch. αt is defined as follows:129

αt = α0 · (1− t/iterations). (6)

As the model predictions improve with each iteration, gradually lowering the threshold increases the130

number of propagated pseudo-labels without compromising their quality.131

3.2 Marginal Contextual Information132

Utilizing contextual information (Section 2.3), we look at surrounding predictions (predictions on133

neighboring pixels) to refine the semantic map at each pixel. We introduce the concept of “Marginal134
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Contextual Information,” which involves integrating additional information to enhance predictions135

across all classes. At the same time, reliability-based pseudo-label methods focus on the dominant136

class only (Sohn et al., 2020a; Wang et al., 2023). Section 3.2.1 describes our confidence refinement,137

followed by our thresholding strategy and a description of S4MC methodology.138

3.2.1 Confidence Margin Refinement139

We refine the predicted pseudo-label of each pixel by considering the predictions of its neighboring140

pixels. Given a pixel xi
j,k with a corresponding per-class prediction pc(x

i
j,k), we examine neighboring141

pixels xi
ℓ,m within an N ×N pixel neighborhood surrounding it. We then calculate the probability142

that at least one of the two pixels belongs to class c:143

p̃c(x
i
j,k) = pc(x

i
j,k) + pc(x

i
ℓ,m)− pc(x

i
j,k, x

i
ℓ,m), (7)

where pc(xi
j,k, x

i
ℓ,m) denote the joint probability of both xi

j,k and xi
ℓ,m belonging to the same class c.144

While the model does not predict joint probabilities, it is reasonable to assume a non-negative145

correlation between the probabilities of neighboring pixels. This is largely due to the nature of146

segmentation maps, which are typically piecewise constant. Consequently, any information regarding147

the model’s prediction of neighboring pixels belonging to a specific class should not lead to a reduction148

in the posterior probability of the given pixel also falling into that class. The joint probability can149

thus be bounded from below by assuming independence: pc(xi
j,k, x

i
ℓ,m) ⩾ pc(x

i
j,k) · pc(xi

ℓ,m). By150

substituting this into Eq. (7), we obtain an upper bound for the event union probability:151

p̃c(x
i
j,k) ≤ pc(x

i
j,k) + pc(x

i
ℓ,m)− pc(x

i
j,k) · pc(xi

ℓ,m). (8)

This formulation allows us to filter out confidence margins that do not exceed the threshold.152

For each class c, we select the neighbor with the maximal information gain using Eq. (8):153

p̃Nc (xi
j,k) = max

ℓ,m
p̃c(x

i
j,k). (9)

Computing the event union over all classes employs neighboring predictions to amplify differences154

in ambiguous cases. Consider, for instance, an uncertain pixel prediction with a 0.5 probability of155

belonging to one of two classes. If a neighboring pixel has a 0.7 probability of belonging to the156

first class and only a 0.3 probability of belonging to the second, this results in a significant event157

union probabilities margin of 0.2. Similarly, this prediction refinement prevents the creation of158

over-confident predictions that is not supported by additional spatial evidence and helps in reducing159

confirmation bias. The refinement is visualized in Fig. 1. In our experiments, we used a neighborhood160

size of 3× 3. To determine whether the incorporation of contextual information could be enhanced161

with larger neighborhoods, we conducted an ablation study focusing on the neighborhood size and162

the neighbor selection criterion, as detailed in Table 4a. For larger neighborhoods, we decrease the163

probability contribution of the neighboring pixels with a distance-dependent factor:164

p̃c(x
i
j,k) = pc(x

i
j,k) + βℓ,m

[
pc(x

i
ℓ,m)− pc(x

i
j,k, x

i
ℓ,m)

]
, (10)

where βℓ,m = exp
(
− 1

2 (|ℓ− j|+ |m− k|)
)

is a spatial weighting function. Empirically, contextual165

information refinement affects mainly the most probable one or two classes. This aligns well with166

our choice to use the margin confidence (5).167

Considering more than two events (more than one neighbor), one can use the formulation for three or168

four event-union. In practice, we find two event-union using Eq. (10), assign it as pc(xi
j,k), find the169

next desired event using Eq. (9) with the remaining neighbors, and repeat the process.170

3.2.2 Threshold Setting171

Setting a high threshold can mitigate confirmation bias from the teacher model’s “beliefs” transferring172

to the student model. However, this comes at the expense of learning from fewer examples, potentially173

resulting in a less comprehensive model. Dynamic Partition Adjustment (DPA; Wang et al., 2022)174

attempt to address this issue by setting a threshold that decreases over time. We adopt this method in175

determining the threshold from the teacher predictions pre-refinement pc(xi
j,k), but we filter values176

based on p̃c(x
i
j,k). Consequently, more pixels pass the threshold that remains unaffected. We set177

α0 = 0.4, i.e., 60% of raw predictions pass the threshold at t = 0, as this value demonstrated superior178

performance in our experiments. An ablation study for α0 is provided in Table 4b.179
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Figure 3: Qualitative results of S4MC. The outputs of two trained models and the annotated ground
truth. The segmentation map predicted by S4MC (Ours) compared to the segmentation map using
no refinement module (Baseline) and to the ground truth. Heat map represents the uncertainty of
the model as κ−1, showing a more confident prediction over certain areas, yielding to a smother
segmentation maps (compared in the red boxes).

3.3 Putting it All Together180

We perform semi-supervised for semantic segmentation by pseudo-labeling pixels using their181

neighbors’ contextual information. Labeled images are only fed into the student model, producing the182

supervised loss (Eq. (2)). Unlabeled images are fed into the student and teacher models. We sort the183

margin based κmargin (Eq. (5)) values of teacher predictions and set γt as described in Section 3.2.2.184

The per-class teacher predictions are refined using the weighted union event relaxation, as defined in185

Eq. (10). Pixels with higher margin values than γt are assigned with pseudo-labels as described in186

Eq. (4), producing the unsupervised loss (Eq. (3)). A visualization of the entire pipeline is depicted in187

Fig. 2.188

The impact of S4MC is demonstrated in Fig. 4, which compares the fraction of pixels that pass the189

threshold with and without refinement. (a) Our method makes greater use of unlabeled data during190

most of the training process, (b) while the refinement ensures high-quality pseudo-labels. Qualitative191

results are presented in Fig. 3, where one can see both the confidence heatmap and the pseudo-labels192

with and without the impact of S4MC.193

4 Experiments194

This section presents our experimental results. The setup for the different datasets and partition195

protocols is detailed in Section 4.1. Section 4.2 compares our method against existing approaches and196

Section 4.3 provides the ablation study. Further implementation details are given in the Appendix.197

4.1 Setup198

Datasets In our experiments, we use PASCAL VOC 2012 (Everingham et al., 2010) and Cityscapes199

(Cordts et al., 2016) datasets.200

The PASCAL VOC dataset comprises 20 object classes (plus background). The dataset includes201

2,913 annotated images, divided into a training set of 1,464 images and a validation set of 1,449202

images. In addition, the dataset includes 9,118 coarsely annotated training images (Hariharan et al.,203

2011), in which only a subset of the pixels are labeled. Following previous research, we conduct two204

sets of experiments. The ’classic’ experiment utilizes only the original training set (Wang et al., 2022;205

Zou et al., 2021), while the ’coarse’ experiment uses all available data (Wang et al., 2022; Chen et al.,206

2021; Hu et al., 2021).207

The Cityscapes (Cordts et al., 2016) dataset includes urban scenes from 50 different cities with208

30 classes, of which only 19 are typically used for evaluation (Chen et al., 2018a,b). Similarly209

to PASCAL, in addition to 2,975 training and 500 validation images, the dataset includes 19,998210

coarsely annotated images, which we do not use in our experiment.211
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(a) Data fraction that passes the threshold. The
baseline model has a fixed percentage, as it is based
on DPA. Our method increases the number of pixels
assigned pseudo-label, mostly in the early stage of the
training when the model is under-confident.
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(b) Fraction of correct pseudo-labels the assigned
pseudo-labels with the correct class divided by the total
assigned pseudo-label. S4MC produces more quality
pseudo-labels during the training process, most notably
at the early stages.

Figure 4: Pseudo-label quantity and quality on PASCAL VOC 2012 (Everingham et al., 2010) with
366 labeled images using our margin (5) confidence function.

Table 1: Comparison between our method and prior art on the PASCAL VOC 2012 val on different
partition protocols. the caption describes the share of the training set used as labeled data and, in
parentheses, the actual number of labeled images. Larger improvement can be observed for partitions
of extremely low annotated data, where other methods suffer from starvation due to poor teacher
generalization.

Method 1/16 (92) 1/8 (183) 1/4 (366) 1/2 (732) Full (1464)
Supervised Only 45.77 54.92 65.88 71.69 72.50

CutMix-Seg (French et al., 2020) 52.16 63.47 69.46 73.73 76.54
PseudoSeg (Zou et al., 2021) 57.60 65.50 69.14 72.41 73.23
PC2Seg (Zhong et al., 2021) 57.00 66.28 69.78 73.05 74.15
CPS (Chen et al., 2021) 64.10 67.40 71.70 75.90 -
ReCo (Liu et al., 2022a) 64.80 72.0 73.10 74.70 -
ST++ (Yang et al., 2022b) 65.2 71.0 74.6 77.3 79.1
U2PL (Wang et al., 2022) 67.98 69.15 73.66 76.16 79.49
PS-MT (Liu et al., 2022b) 65.8 69.6 76.6 78.4 80.0

S4MC + CutMix-Seg (Ours) 70.96 71.69 75.41 77.73 80.58
S4MC + FixMatch (Ours) 74.32 75.62 77.84 79.72 81.51

Implementation details We implement S4MC on top of two framework variants: CutMix-Seg212

(French et al., 2020) and FixMatch (Sohn et al., 2020a). Both use DeepLabv3+ (Chen et al., 2018b)213

with a Imagenet-pre-trained (Russakovsky et al., 2015) ResNet-101 (He et al., 2016). The teacher214

parameters θt are updated via an exponential moving average (EMA) of the student parameters215

Tarvainen and Valpola (2017): θηt = τθη−1
t + (1 − τ)θηs , where 0 ≤ τ ≤ 1 defines how close the216

teacher is to the student and η denotes the training iteration. We used τ = 0.99. Additional details217

are provided in Appendix D.218

Evaluation We compare S4MC with baselines under the common partition protocols – using 1/2,219

1/4, 1/8, and 1/16 of the training data as labeled data. For the ’classic’ setting of the PASCAL220

experiment, we additionally compare using all the finely annotated images. We follow standard221

protocols and use mean Intersection over Union (mIoU) as our evaluation metric. We use the data222

split published by Wang et al. (2022) when available to ensure a fair comparisons. For the ablation223

studies, we use PASCAL VOC 2012 val with 1/4 partition.224

Methods in comparison We compare against popular SSL segmentation methods: CutMix-Seg225

(French et al., 2020), CCT (Ouali et al., 2020), GCT (Ke et al., 2020), PseudoSeg (Zou et al., 2021),226

CPS (Chen et al., 2021), PC2Seg (Zhong et al., 2021), AEL (Hu et al., 2021), U2PL (Wang et al.,227
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Table 2: Comparison between our method and prior art on the ’coarse’ PASCAL VOC 2012 val
dataset under different partition protocols, using additional unlabeled data from (Hariharan et al.,
2011). For each partition ratio we included the number of labeled images in parentheses. As in 1,
larger improvements are observed for partitions with less annotated data.

Method 1/16 (662) 1/8 (1323) 1/4 (2646) 1/2 (5291)
Supervised Only 67.87 71.55 75.80 77.13

CutMix-Seg (French et al., 2020) 71.66 75.51 77.33 78.21
CCT (Ouali et al., 2020) 71.86 73.68 76.51 77.40
GCT (Ke et al., 2020) 70.90 73.29 76.66 77.98
CPS (Chen et al., 2021) 74.48 76.44 77.68 78.64
AEL (Hu et al., 2021) 77.20 77.57 78.06 80.29
PS-MT (Liu et al., 2022b) 75.5 78.2 78.7 -
U2PL (Wang et al., 2022) 77.21 79.01 79.3 80.50

S4MC + CutMix-Seg (Ours) 78.49 79.67 79.85 81.11
S4MC + FixMatch (Ours) 80.77 81.9 82.3 83.3

Table 3: Comparison between our method and prior art on the Cityscapes val dataset under different
partition protocols. Labeled and unlabeled images are selected from the Cityscapes training
dataset.For each partition protocol, the caption gives the share of the training set used as labeled data,
in parentheses, the number of labeled images.

Method 1/16 (186) 1/8 (372) 1/4 (744) 1/2 (1488)
Supervised Only 62.96 69.81 74.08 77.46

CutMix-Seg (French et al., 2020) 69.03 72.06 74.20 78.15
CCT (Ouali et al., 2020) 69.32 74.12 75.99 78.10
GCT (Ke et al., 2020) 66.75 72.66 76.11 78.34
CPS (Chen et al., 2021) 69.78 74.31 74.58 76.81
AEL (Hu et al., 2021) 74.45 75.55 77.48 79.01
U2PL (Wang et al., 2022) 70.30 74.37 76.47 79.05
PS-MT (Liu et al., 2022b) - 76.89 77.6 79.09

S4MC + CutMix-Seg (Ours) 75.03 77.02 78.78 78.86
S4MC + FixMatch (Ours) 76.3 78.25 78.95 79.13

2022), PS-MT (Liu et al., 2022b), and ST++ (Yang et al., 2022b). “Supervised Only” stands for228

supervised training without using any unlabeled data. As a baseline, we use CutMix-Seg (French229

et al., 2020).230

4.2 Results231

PASCAL VOC 2012. Table 1 compares our method with state-of-the-art baselines on the PASCAL232

VOC 2012 dataset. While Table 2 shows the comparison results on the PASCAL VOC 2012 dataset233

with additional coarsely annotated data from SBD (Hariharan et al., 2011). In both setups, S4MC234

outperform all the compared methods in standard partition protocols, both when using labels only for235

the original PASCAL VOC 12 dataset and when using SBD annotations as well. Qualitative results236

are shown in Fig. 3. As can be seen our refinement procedure aids in both adding falsely filtered237

pseduo-labels as well as removing erroneous ones.238

Cityscapes. Table 3 Presents the comparison results on the Cityscapes val dataset. Table 3239

compares our method with other state-of-the-art methods on the Cityscapes (Cordts et al., 2016)240

dataset under various partition protocols. S4MC outperforms the compared methods in most partitions,241

except for the 1/2 setting, and combined with Fixmatch scheme, S4MC outperforms compared242

approaches across all partitions.243
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Table 4: The effect of neighborhood size and neighbor selection criterion.

(a) Neighborhood choice.

Selection criterion Neighborhood size N

3× 3 5× 5 7× 7

Random neighbor 73.25 71.1 70.41
Max neighbor 75.41 75.18 74.89
Min neighbor 74.54 74.11 70.28
Two max neighbors 74.14 75.15 74.36

(b) α0 in Eq. (6), which controls the initial proportion
of confidence pixels

20% 30% 40% 50% 60%

74.45 73.85 75.41 74.56 74.31

Contextual information at inference. Given that our margin refinement scheme operates through244

prediction adjustments, we explored whether it could be employed at inference time to further enhance245

performance. The results reveal a negligible improvement in the DeepLab-V3-plus model, from an246

85.7 mIOU to 85.71. This underlines that the performance advantage of S4MC primarily derives247

from the adjusted margin, as the most confident class is rarely swapped. A heatmap of the prediction248

over several samples is presented in Fig. 3 and Appendix E.249

4.3 Ablation Study250

We ablate different components of our method using the CutMix-Seg framework variant, and evaluated251

using the Pascal VOC 12 dataset with a partition protocol of 1/4 labeled images.252

Neighborhood size and neighbor selection criterion. Our prediction refinement scheme employs253

event-union probability with neighboring pixels, which depends on the chosen neighbor to pair with254

the current pixel. To assess this, we tested varying neighborhood sizes (N = 3, 5, 7) and criteria255

for selecting the neighboring pixel: (a) random, (b) maximal class probability, (c) minimal class256

probability, and (d) two neighbors, as described in Section 3.2.1. As shown in Table 4a, a small 3× 3257

neighborhood with one neighboring pixel of the highest class probability proved most efficient in our258

experiments.259

Threshold parameter tuning As outlined in Section 3.1.2, we utilize a dynamic threshold that260

depends on an initial value, α0. In Table 4b, we examine the effect of different initial quantiles261

to establish this threshold. A smaller α0 would propagate too many errors, leading to significant262

confirmation bias. In contrast, a larger α0 would mask most of the data, resulting in insufficient label263

propagation, rendering the semi-supervised learning process lengthy and inefficient. We found that264

an α0 of 40% yields the best performance.265

5 Conclusion266

In this paper, we introduce S4MC, a novel approach for incorporating spatial contextual information267

in semi-supervised segmentation. This strategy refines confidence levels and enables us to leverage a268

larger portion of unlabeled data. S4MC outperforms existing approaches and achieves state-of-the-art269

results on multiple popular benchmarks under various data partition protocols, such as Cityscapes270

and Pascal VOC 12. While we believe S4MC offers a good solution to lowering the annotation271

requirement, it has several limitations. First, the event-union relaxation is relevant in problems272

where spatial coherency is expected. The generalization of our framework to other dense prediction273

tasks would necessitate an assessment of whether this relaxation is applicable. Furthermore, our274

method employs a fixed shape neighborhood without considering the structure of objects. It would275

be intriguing to investigate the use of segmented regions to define new neighborhoods, and this is a276

direction we plan to explore in the future.277
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