
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BRIDGING THE GAP BETEWEEN SL AND TD LEARNING
VIA Q-CONDITIONED MAXIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent research highlights the efficacy of supervised learning (SL) as a methodol-
ogy within reinforcement learning (RL), yielding commendable results. Nonethe-
less, investigations reveal that SL-based methods lack the stitching capability
typically associated with RL approaches such as TD learning, which facilitate
the resolution of tasks by stitching diverse trajectory segments. This prompts the
question: How can SL methods be endowed with stitching property and bridge
the gap with TD learning? This paper addresses this challenge by exploring the
maximization of the objective in the goal-conditioned RL. We introduce the con-
cept of Q-conditioned maximization supervised learning, grounded in the assertion
that the goal-conditioned RL objective is equivalent to maximizing the expected
Q-function under given goal distribution, thus embedding Q-function maximization
into traditional SL-based methodologies. Building upon this premise, we propose
Goal-Conditioned Reinforced Supervised Learning (GCReinSL), which enhances
SL-based approaches by incorporating maximizing Q-function. GCReinSL em-
phasizes the maximization of the Q-function during the training phase to predict
the maximum Q-function within the distribution. This optimized in-distribution
Q-function is then employed during the inference phase to guide the selection of
optimal actions. We demonstrate that GCReinSL enables SL methods to exhibit
stitching property, effectively equivalent to applying goal data augmentation to SL
methods. Experimental results on offline datasets designed to evaluate stitching
capability show that our approach not only effectively selects appropriate goals
across diverse trajectories but also outperforms previous works that applied goal
data augmentation to SL methods.

1 INTRODUCTION

Recently, numerous methods that frame reinforcement learning RL as a purely SL problem (Schmid-
huber, 2020; Chen et al., 2021; Emmons et al., 2021; Chane-Sane et al., 2021a) function by correlating
input states and desired goals with optimal actions. These techniques assign labels to state-action
pairs based on future outcomes (e.g., achieving a goal) derived from offline datasets, subsequently
maximizing the likelihood of these actions as optimal for producing the intended results. Collectively
termed outcome-conditioned behavioral cloning algorithms (OCBC), these approaches have exhibited
commendable performance on standard offline benchmarks (Emmons et al., 2021). Nevertheless,
recent investigations (Yang et al., 2023; Ghugare et al., 2024) have highlighted a critical shortcoming
of these SL methodologies: the lack of trajectory stitching capability. This property, commonly
found in temporal-difference (TD)-based RL algorithms employing dynamic programming (e.g.,
CQL(Kumar et al., 2020), and IQL(Kostrikov et al., 2021a)), is vital for addressing tasks that require
the integration of multiple trajectory segments. Thus, enhancing OCBC methods to incorporate this
characteristic and bridging the gap with TD approaches has emerged as a significant area of research.

In this paper, we examine this issue within goal-conditioned RL, focusing on navigating between
certain state-goal pairs that, while not co-occurring during training, are present in isolation. In sparse-
reward goal-conditioned RL, TD-based RL methods often face challenges such as instability during
training due to difficulties in accurately estimating the value function, inefficiencies in optimization
(Van Hasselt et al., 2018; Kumar et al., 2019a), and high sensitivity to hyperparameters (Henderson
et al., 2018). In contrast, OCBC methods are simpler, more efficient, and free from these issues,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

making the development of novel OCBC approaches highly valuable. However, OCBC lacks the
critical trajectory stitching property inherent to TD-based RL methods. Addressing this limitation to
enable stitching and bridge performance gaps in challenging environments is a key focus of current
research. We have observed that certain sequence modeling (Yamagata et al., 2023a; Wu et al.,
2023; Zhuang et al., 2024) techniques are enabling Decision Transformer (DT) (Chen et al., 2021)
within OCBC methods to acquire stitching property. However, these methods are primarily effective
within goal-conditioned scenarios. Drawing motivation and inspiration from state-of-the-art max-
return sequence modeling method (Zhuang et al., 2024), we propose the concept of Q-conditioned
maximization supervised learning within the context of goal-conditioned RL. Specifically, since the
objective in goal-conditioned RL is equivalent to maximizing the expected Q-function across all
possible goals under the given goal distribution, we commence in Section 4.1 by examining a maze
example to illustrate the detrimental impact of naively setting the Q-function to highest possible
value on trajectory stitching. An illustrative example, shown in Fig. 1, highlights the relationship
between a failing trajectory (with Q = 0, where the agent starts from the initial state but fails to reach
the final goal) and a successful trajectory (with Q = 1, where the agent reaches the final goal but
does not originate from the initial state). Ideally, the Q-function should start at 0 and shift to 1 when
transitioning to the successful trajectory. This requirement contrasts with the oversimplified approach
of artificially assigning a Q-function of 1.

And then we propose the concept of Q-conditioned maximization supervised learning, a framework
that embeds the maximization of Q-function into supervised learning. This approach aims not only to
maximize the probability of selecting appropriate actions but also to predict the highest attainable
in-distribution Q-function. To achieve this, we utilize expectile regression (Aigner et al., 1976;
Sobotka & Kneib, 2012), which seeks to ensure that the predicted Q-function closely approximates
the maximum Q-function that can be realized from the available historical trajectory. In the inference
pipeline, the model first predicts the current maximum Q-function and then identifies the best action
based on the offline dataset distribution, guided by this predicted maximum. Our findings indicate
that Q-conditioned maximization supervised learning acts as a form of goal data augmentation for
OCBC methods, leading to substantial improvements in their stitching capability. Additionally,
we present Goal-Conditioned Reinforced Supervised Learning (GCReinSL), which implements
Q-conditioned maximization supervised learning for OCBC methods, including DT (Chen et al.,
2021) and Reinforcement Learning via Supervised Learning (RvS) (Emmons et al., 2021). This
framework reinforces supervised learning through the maximization of the Q-function. In scenarios
involving trajectory stitching, as demonstrated in Fig. 1, GCReinSL typically predicts a value of 0
at the starting point and transitions to a prediction of 1 upon switching to a successful trajectory,
reflecting the predicted in-distribution maximum Q-function.

We briefly summarize our main contributions as follows: (1) Inspired by max-return sequence model-
ing (Zhuang et al., 2024), we propose a novel supervised learning framework in goal-conditioned
RL based on our concept of Q-conditioned maximization, which endows OCBC methods with
stitching ability. (2) We demonstrate that GCReinSL is equivalent to goal data augmentation for
OCBC methods. (3) Experimental results in Ghugare et al. (2024) offline datasets, designed to test
stitching ability, show that GCReinSL not only significantly enhances the stitching capability of
OCBC methods but also outperforms relevant goal data augmentation works. Additionally, in the
goal-conditioned D4RL (Fu et al., 2020) offline datasets, our method continues to outperform related
sequence modeling methods which also perform trajectory stitching.

2 RELATED WORK

Goal-conditioned RL This paper focus on goal-conditioned RL, a topic explored extensively in
prior research through various methodologies. Approaches such as conditional supervised learn-
ing (Ding et al., 2019; Gupta et al., 2020; Lynch et al., 2020; Ghosh et al., 2021; Emmons et al.,
2021), actor-critic frameworks (Andrychowicz et al., 2017; Nachum et al., 2018; Zhu et al., 2021;
Chane-Sane et al., 2021b), model-based strategies (Schmeckpeper et al., 2020; Charlesworth & Mon-
tana, 2020; Mendonca et al., 2021), and distance metric learning (Tian et al., 2020; Nair et al., 2020;
Durugkar et al., 2021; Liu et al., 2023a; Wang et al., 2023; Reichlin et al., 2024) have been employed
to learn goal-conditioned policies. These methods have demonstrated success across diverse tasks,
including real-world robotic systems (Ma et al., 2022; Shah et al., 2022; Zheng et al., 2023a). Unlike
techniques that depend on manually defined reward or distance functions, our approach builds on a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

self-supervised formulation of goal-conditioned RL, treating the task as one of predicting future state
visitation (Eysenbach et al., 2020; 2022b; Zheng et al., 2023b; Ghugare et al., 2024).

The Stitching Property The concept of stitching, as discussed by Ziebart et al. (2008), is a
characteristic property of TD-learning algorithms such as those described by Kumar et al. (2020);
Kostrikov et al. (2021a), which employ dynamic programming techniques. This property enables
these algorithms to integrate data from diverse trajectories, thereby improving their ability to handle
complex tasks by effectively utilizing available data (Cheikhi & Russo, 2023). On the other hand,
most SL-based RL methods lack this property. Brandfonbrener et al. (2022); Yang et al. (2023)
provide examples where SL algorithms do not perform stitching and Ghugare et al. (2024) also
indicates this from the perspective of combinatorial generalisation. In contrast, we use a simple maze
example to illustrate this viewpoint from the perspective of maximizing the RL objective.

Data Augmentation in RL Data augmentation, as an efficient method for improving generalization
ability, has been applied in RL (Lu et al., 2020; Stone et al., 2021; Kalashnikov et al., 2021; Hansen
& Wang, 2021; Kostrikov et al., 2021b; Yarats et al., 2021) and SL (Shorten & Khoshgoftaar, 2019).
We have noticed that some methods (Char et al., 2022; Yamagata et al., 2023b; Paster et al., 2023) use
dynamic programming to enhance existing trajectories to improve the performance of SL algorithms.
However, they still require dynamic programming. Another methods which are very similar to ours
is to only perform data augmentation for SL (Yang et al., 2023; Ghugare et al., 2024). However,
they may have the problem of not being able to correctly provide the augmented goal data such as
unreachable goals. Unlike these two methods, we approach from the perspective of maximizing
the goal-conditioned RL objective and endow the SL method with the ability to stitch trajectories,
providing agents with a more reasonable selection of augmented goals.

3 PRELIMINARIES

3.1 GOAL-CONDITIONED RL IN CONTROLLED MARKOV PROCESS

We will study the problem of goal-conditioned RL in a controlled Markov process with states s ∈ S ,
actions a ∈ A. The dynamics are p(s′ | s, a), the initial state distribution is p0(s0), the discount
factor is γ, and a reward function r(s, a, g) for each goal. The goal-conditioned policy π(a, | s, g) is
conditioned on a pair of state and goal s, g ∈ S.

We denote the t-step action-conditioned policy distribution pπt (st | s0, a0) as the distribution of
states t steps in the future given the initial state s0 and action a0 under π. For a policy π, define as
the distribution over states visited after exactly t steps. We define the discounted state occupancy
distribution as:

pπ+(st+ | s, a) ≜ (1− γ)

∞∑
t=0

γtpπt (st+ | s, a), (1)

where st+ is the variable that specifies a future state corresponding to the discounted state occupancy
distribution. For a given distribution over goals g ∼ pG , the objective of the policy π is to maximize
the probability of reaching the goal g in the future:

max
π(·|·,·)

Ep0(s0)pG(g)π(a0|s0,g)
[
pπ+(g | s0, a0)

]
. (2)

Following prior work (Eysenbach et al., 2020; Chane-Sane et al., 2021b; Blier et al., 2021; Rudner
et al., 2021; Eysenbach et al., 2022b; Bortkiewicz et al., 2024), we define the reward function r(s, a, g)
for each goal as the probability of reaching the goal at the next time step:

r(st, at, g) ≜ (1− γ)p(st+1 = g | st, at). (3)
And the Q-function can be defined for a policy π(· | ·, g):

Qπ(s, a, g) ≜ Eπ(·|g)

[∞∑
t=0

γtr(st, at, g) | s0=s,a0=a

]
. (4)

Theorem 3.1 (Rephrased from Proposition 1 of Eysenbach et al. (2022b)). The Q-function for the
goal-conditioned reward function in Eq. (4) is equivalent to the probability of goal g under the
discounted state occupancy distribution:

Qπ(s, a, g) = pπ+(st+ = g | s, a). (5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The proof is in Appendix A.1. This proposition indicates that Q-function is equivalent to the
discounted state occupancy distribution. Thus, from Eq. (2) and Eq. (5), we can conclude that the
objective of the policy π in goal-conditioned RL is equivalent to maximizing the expected Q-function
over all possible goals under the given goal distribution pG(g).

Remark 1. Translating rewards to probabilities simplifies the analysis of goal-conditioned RL
problem and allows probabilistic estimation methods (e.g., VAE (Kingma & Welling, 2014)) to be
repurposed for Q-function estimation.

Our work focuses on the offline goal-conditioned RL setting (Levine et al., 2020), the agent
can only access a static offline dataset D and cannot interact with the environment. The offline
dataset D can be collected by some unknown policies (Levine et al., 2020; Prudencio et al.,
2023). We can express the offline dataset as D := {τi}Ni=1 (Ghugare et al., 2024), where
τi :=

{
< si0, a

i
0, r

i
0 >,< si1, a

i
1, r

i
1 >, ..., < siT , a

i
T , r

i
T >

}
is the goal-conditioned trajectory and N

is the number of stored trajectories. In each τi for i ∈ 1, ..., N , si0 ∼ p0(s0).

3.2 OUTCOME CONDITIONAL BEHAVIORAL CLONING (OCBC) METHODS

We present empirical results using a simple and popular class of goal-conditioned RL methods: Out-
come conditional behavioral cloning (Eysenbach et al., 2022a) (DT (Chen et al., 2021), URL (Schmid-
huber, 2020), RvS (Emmons et al., 2021), GCSL (Chane-Sane et al., 2021a) and many others (Sun
et al., 2019; Kumar et al., 2019b)). These SL methods take as input the offline dataset D and learn a
goal-conditioned policy π(a | s, g) using a maximum likelihood objective:

max
π(·|·,·)

E(s,a,g)∼D [log π(a | s, g)] . (6)

4 METHODOLOGY

In this section, we start with a simple maze example to illustrate why classical OCBC methods
and the naive Q-conditioned maximization approach are unlikely to solve the trajectory stitching
problem. And then we employ a VAE as a neural probability estimation model to approximate
the Q-function. Further, we introduce the concept of Q-conditioned maximization supervised
learning and theoretically demonstrate that this paradigm can achieve maximum Q-function without
encountering out-of-distribution (OOD) issues. We also demonstrate that Q-conditioned maximization
supervised learning is equivalent to goal data augmentation for OCBC methods. Finally, we outline
the implementation details of our Q-conditioned maximization supervised learning, GCReinSL,
focusing on three key aspects: the model architecture, the loss function utilized during training, and
the inference pipeline.

4.1 TRAJECTORY STITCHING EXAMPLE

In the offline RL literature, trajectory stitching has garnered significant attention. Ideally, an offline
agent should be able to combine overlapping suboptimal trajectories into optimal ones (Kostrikov
et al., 2021a; Liu et al., 2023b). Both theoretical (Ghugare et al., 2024) and empirical studies (Yang
et al., 2023) have demonstrated that SL methods lack the ability to perform effective stitching. The
following example provides a detailed explanation of this limitation.

Example The Fig. 1 depicts a toy maze, where s10 is the starting state, g is the final goal

�1

�2

�

�1�’�0
1

�0
2 ��

(� =− 1)

(� = 0)

(� = 1)

Figure 1: A maze example for
trajectory stitching analysis.

with reward r = 1, g′ is a boom goal with r = −1 and other
states are all r = 0. The offline dataset contains two trajectories
one trajectory τ1 starts from the initial state s0 and reach the goal
g1 but doesn’t reach the final goal while another τ2 reaches the
final goal g but doesn’t start from s10. st is the intersection of two
trajectories and g′ is the boom goal that we aim to avoid reaching.
Trajectory stitching expects the agent can follow the first half of
τ1 (from starting state s10 to st) and then take the second half of
τ2 (from st to the goal g) to reach the goal. We first explain why
the typical OCBC methods might fail.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

If we set initial Q-function as Q̂0 = 0 at the starting state, the agent will smoothly reach the
intersection state st. However, since Q-function is still zero Q̂t = 0 at the state st, OCBC methods
will reach the state g1 rather then g. Only when Q̂t = 1, OCBC methods is possible to follow τ2. But
Q̂t = 1 is impossible to obtain given Q̂0 = 0. If we apply the naive max approach and set the initial
Q̂0 = 1, the agent might directly walk towards the boom goal g′ (r = −1) because Q̂0 = 1 is the
OOD Q-function for the starting state.

If the OCBC methods are endowed with capability to maximize the Q-function like goal-conditioned
RL, Let’s see what might happen. At the starting state s10, only τ1 is contained in dataset so the model
will predict Q̂0 = 0. When offline agent comes to the intersection st, the latter segments of both
trajectories are available. If the OCBC methods are able to maximize Q-function, then τ2 is more
likely to be selected since the Q-function Q = 1 is larger. This inspires us to bring the capability of
maximizing Q-function back into supervised learning.

4.2 Q-FUNCTION ESTIMATION WITH VAE

The central aim of goal-conditioned RL is to identify the best action for a given state and goal by
maximizing the Q-function. To achieve this, the first task is to accurately estimate the Q-function.
Drawing on previous research (Wu et al., 2022) and Theorem 3.1, we implement a Variational
Autoencoder (VAE) architecture as a probabilistic modeling tool. More specifically, we apply a
Conditional Variational Autoencoder (CVAE) (Sohn et al., 2015) for probability estimation. In
our framework, the probability pπ+(g | s0 = s, a) is modeled by a Deep Latent Variable Model,
expressed as pψ(g|s, a) =

∫
pψ(g|z, s, a)p(z|s, a)dz , with a prior distribution p(z|s, a) = N (0, I).

Although directly calculating the marginal likelihood pψ(g|s, a) is computationally infeasible, VAE
utilizes an approximate posterior qφ(z|s, a, g) ≈ pψ(z|s, a, g), enabling joint optimization of ψ and
φ parameters via the evidence lower bound (ELBO):

log pψ(g|s, a) ≥ Eqφ(z|s,a,g)

[
log

pψ(g, z|s, a)
qφ(z|s, a, g)

]
= Eqφ(z|s,a,g) [log pψ(g|z, s, a)]−KL [qφ(z|s, a, g)∥p(z|s, a)]
def
= −LELBO(s, a;φ,ψ).

(7)

After training this VAE, we can approximate the probability pπ+(g | s, a) in Eq. (5) by −LELBO. To
obtain an estimation with lower bias between log pψ(g|s, a) and pπ+(g | s, a) in Eq. (5), we use the
importance sampling technique following Rezende et al. (2014); Kingma & Welling (2019); Wu et al.
(2022):

log pψ(g|s, a) = logEqφ(z|s,a,g)

[
pψ(g, z|s, a)
qφ(z|s, a, g)

]
≈ Ez(l)∼qφ(z|s,a,g)

[
log

1

L

L∑
l=1

pψ(a, g, z
(l)|s)

qφ(z(l)|s, a, g)

]
def
= l̂og pπ+(g|s, a;φ,ψ, L).

(8)

From the reward and probability transformation in Theorem 3.1, the value of the Q-function can be
derived.

4.3 Q-CONDITIONED MAXIMIZATION SUPERVISED LEARNING

After estimating the Q-function, we aim to equip supervised learning with additional maximizing Q-
function objective , analogous to the methods employed in RL. And during inference, the supervised
learning can select optimal action conditioned on the in-distribution maximized Q-function. We
introduce the expectile regression as Q-function loss to achieve this.

Expectile regression (Newey & Powell, 1987) is well studied in applied statistics and econometrics
and has been introduced into offline RL recently (Kostrikov et al., 2021a; Wu et al., 2023; Zhuang
et al., 2024). Specifically, the Q-function loss based on the expectile regression is as follows:

LmQ = E(s,a,g)∈D
[
|m− 1 (∆Q < 0)|∆Q2

]
, (9)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

here Q = Qπ(s, a, g), ∆Q = Q− Q̂ and Q̂ can come from the supervised learning model (e.g, DT
model can independently predict both the Q-function and the corresponding actions). Herem ∈ (0, 1)
is the hyperparameter of expectile regression. When m = 0.5, expectile regression degenerates
into standard regression, also MSE loss. Q̂, which aligns with the asymmetric curves in Fig. 2.

1 0 1
Q

0.0

0.2

0.4

0.6

0.8

|m
1(

Q
<0

)|
Q2

Expectile Regression

m = 0.5
m = 0.7
m = 0.9

Figure 2: Illustration of weight.

But when m > 0.5, this asymmetric loss will give more weights
to the Q larger than Q̂. Besides, The red arrow shows the weight
increases as the m becomes larger. In other words, the predicted
Q-function Q̂ will approach larger Q.

To unveil what the Q-function loss function has learned and offer a
formal elucidation of its role, we introduce the following theorem:
Theorem 4.1. Suppose Q-function is predict by the model it-
self, we first define SG=̇ (s, g, a,Q). For m ∈ (0, 1), denote
Qm (SG) = argminLmQ (SG), then we have

lim
m→1

Qm (SG) = Qmax,

where Qmax = maxa∼D Q (s, a, g) denotes the maximum Q-
function with actions from offline dataset.

The proof is in Appendix A.2. In other words, Theorem 4.1 indicates the loss LmQ will make the
model predict the maximum Q-function when m→ 1, which is similar to the maximizing objective
in goal-conditioned RL.
Corollary 1. The concept of Q-conditioned maximization supervised learning is equivalent to
applying goal data augmentation for supervised learning (SL) methods, enabling it to exhibit stitching
property.

The proof is in Appendix A.3. Corollary 1 indicates that Q-conditioned maximization supervised
learning can select state-goal pairs formed by trajectory stitching, which is consistent with the
discussion presented in Section 4.1.

4.4 IMPLEMENTATION OF GCReinSL

Now, we will focus on the specific implementation of GCReinSL, describing the architecture input
and output, training, and inference procedures. Specifically, this section describes the training and
inference pipeline using two typical OCBC algorithms: DT and RvS. Other supervised learning
algorithms can be implemented in a similar manner. The overall structure of GCReinSL for DT is
depicted in Fig. 3, with RvS being similar, differing only in terms of its architecture.

4.4.1 GCReinSL FOR DT

Model Architecture To accommodate the Q-conditioned maximization for DT (Chen et al., 2021),
which predicts the maximum Q-function and utilizes it as a condition to guide the generation of
optimal actions, we have positioned Q-function between state and goal. In detail, the input token
sequence of GCReinSL for DT and corresponding output tokens are summarized as follows:

Input:
〈
· · · , sg(n)t , Q

(n)
t , a

(n)
t

〉
Output:

〈
Q̂

(n)
t , â

(n)
t ,□

〉
sg

(n)
t represents a token formed by concatenating s(n)t and g(n)t (Schaul et al., 2015). When predicting

the Q̂(n)
t , the model takes the current state s(n)t and previous K timesteps tokens ⟨sg,Q, a⟩(n)t−K =(

sg
(n)
t−K+1, Q

(n)
t−K+1, a

(n)
t−K+1, · · · , sg

(n)
t−1, Q

(n)
t−1, a

(n)
t−1

)
into consideration. For the sake of simplicity,

SG
(n)
t−K denotes the input

[
⟨sg,Q, a⟩(n)t−K ; sg

(n)
t

]
. While the action prediction ât is based on(

SG
(n)
t−K ,Q

(n)
t−K

)
=

[
⟨sg,Q, a⟩(n)t−K ; sg

(n)
t , Q

(n)
t

]
. The □ represents this predicted token neither

participates in training nor inference so we ignore it. At the timestep t, different tokens are embedded
by different linear layers and fed into the transformers (Vaswani et al., 2017) together. The output
Q-function Q̂(n)

t is processed by a linear layer.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

1)

2)

3)

GCReinSL for DT

��

GCReinSL for DT

��−1��−1

�����

GCReinSL for DT

��

���
 12 , 34)����

 , ,)��

(a) Model Architecture

(b) Training Loss (c) Inference Pipeline

���−1

����

 12 , 34)�� ��

�� �����−1 ��−1

���−1 ��−1 ��−1

���−1 ��−1 ��−1

�� ��

��

Figure 3: The overview of GCReinSL for DT: (a) Model Architecture: The Q-function is the third
inputs of GCReinSL for DT and the outputs contain Q-value and actions. (b) Train Loss: As a
Q-conditioned maximization sequence model, GCReinSL for DT not only maximizes the action
likelihood but also maximizes Q-function by expectile regression. (c) Inference Pipeline: When
inference, GCReinSL for DT first 1) gets state and goal from the environment to predict the in-
distribution maximum Q-function. Then 2) predicted in-distribution max Q-function is concatenated
with state and goal to predict the optimal action. Finally, 3) the environment executes the predicted
action to Q-function the next state.

Training Loss Since the model predicts two parts, Q̂t and ât, the loss function is composed of
Q-function loss and action loss. For the action loss, we adopt the MSE loss function of DT and
simultaneously adjust the order of tokens:

La = Et,n
[
a
(n)
t − πθ

(
SG

(n)
t−K ,Q

(n)
t−K

)]2
. (10)

The Q-function loss is the expectile regression with the parameter m:

LmQ = Et,n
[
|m− 1 (∆Q < 0)|∆Q2

]
, (11)

with ∆Q = Q
(n)
t − πθ

(
SG

(n)
t−K

)
.

Two loss functions have the same weight so the total loss is La + LQ.

Inference Pipeline For each timestep t, the action is the last token, which means the predicted
action is affected by state from the environment and the Q-function. The Q-function of the trajectories
output by the sequence modeling exhibit a positive correlation with the initial conditioned Q-function
(Chen et al., 2021; Zheng et al., 2022). That is, within a certain range, higher initial Q-function
typically lead to better actions. In classical Q-learning (Mnih et al., 2015), the optimal value function
Q∗ can derive the optimal action a∗ given the current state. In the context of sequence modeling, we
also assume that the maximum Q-function are required to output the optimal actions. The inference
pipeline of the GCReinSL is summarized as follows:

Env7−→ (sg0)
πθ−→ Q0

πθ−→ a0
Env−−→ (sg1)

πθ−→ Q1
πθ−→ a1 → · · · (12)

Specially, the environment initializes the state-goal pair (sg0) (i.e, s0 and g0 are concatenated to
form sg0) and then the sequence modeling πθ predicts the maximum Q-function Q0 given current
state-goal pair (sg0). Concatenating Q0 with (sg0), πθ can output the optimal action a0. Then the
environment transitions to the next state s1 and the reward r1. It should be noted that this reward r1
will not participate in the inference. Repeat the above steps until the trajectory comes to an end. The
overall algorithm of GCReinSL for DT is shown in Appendix B.1.

4.4.2 GCReinSL FOR RVS

Architecture To accommodate the Q-conditioned maximization for RvS (Emmons et al., 2021),
which also predicts the maximum Q-function and utilizes it as a condition to guide the generation of
optimal actions. Unlike GCReinSL for DT, we construct a actor model for predicting actions and a

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

value model for predicting Q-function. In detail, the input of GCReinSL for RvS and corresponding
output are summarized as follows:

Input: st, gt, Qt(st, at, gt)

Value Model Output: Q̂t(st, gt)

Actor Model Output: ât

(
st, gt, Q̂t(st, gt)

)
When predicting the Q̂t, the value model takes the current state st and desired goal gt. For action
â
(n)
t , We adopt a actor model that incorporates Q-values for inference.

Training Procedure and Inference Pipeline Like GCReinSL for DT, the total loss function is
also composed of Q-function loss and action loss, and the form is the same. At each step of the
inference pipeline, the value model outputs the maximum Q-function value for the input state-goal
pair, and then the actor model outputs the corresponding action. Note that in this state-goal pair, the
state and the goal are treated as distinct elements. In the context of RvS, we also assume that the
maximum Q-function are required to output the optimal actions. The training procedure is similar to
that of GCReinSL for DT, with the key distinction that the prediction of Q-values is generated by a
value model. The inference pipeline of the GCReinSL is summarized as follows:

Env7−→ (s0, g0)
vϕ−→ Q0

πθ−→ a0
Env−−→ (s1, g1)

vϕ−→ Q1
πθ−→ a1 → · · · (13)

Specially, the environment initializes the state-goal pair (s0, g0) and then the value model vϕ predicts
the maximum Q-function Q0 given current state-goal pair (s0, g0). Concatenating Q0 with (s0, g0),
πθ can output the optimal action a0. The overall algorithm of GCReinSL for RvS is shown in
Appendix B.2.

5 EXPERIMENTS

To rigorously evaluate the stitching capability of GCReinSL, we employ the offline goal-conditioned
datasets configuration as outlined in Ghugare et al. (2024). For the evaluation, we follow the
methodology outlined by Ghugare et al. (2024), modifying the the GCReinSL policy to navigate
between previously unseen combinatorial (state, goal) pairs and subsequently measure the success
rate. We then add the corresponding goal data augmentation techniques into the OCBC methods for
a comparative analysis with our proposed approach. We additionally compared GCReinSL with
the previous sequence modeling methods on D4RL (Fu et al., 2020) complex offline Antmaze-v2
datasets. Both offline goal-conditioned datasets are characterized by sparse rewards (i.e, reaching the
goal results in a reward of 1, otherwise 0) and are designed to test stitching capabilities.

5.1 EXPERIMENTAL SETUP

We conducted a series of comparative experiments by implementing the OCBC methods within
the same framework, as well as related goal data augmentation approaches. Specifically, we select
RvS (Emmons et al., 2021) and DT (Chen et al., 2021), two competitive methods in OCBC, as
baseline models for comparison. For goal data augmentation methods, we select Swapped Goal
Data Augmentation (SGDA) (Yang et al., 2023) and Temporal Goal Data Augmentation (TGDA)
(Ghugare et al., 2024) as advanced methodologies to serve as comparative baselines for our goal
data augmentation study. SGDA (Yang et al., 2023) proposes a method that randomly choose
augmented goals from different trajectories. TGDA (Ghugare et al., 2024) proposed a another
goal data augmentation approach from the perspective of combinatorial optimization. It employs
k-means (Lloyd, 1982) to cluster the goal and certain states into a group, and samples goals from
later stages of these state trajectories as augmented goals. For related sequence modeling approaches,
we select state-of-the-art methods, including Elastic Decision Transformer (EDT) (Wu et al., 2023)
and Max-Return Sequence Modeling (Reinformer) (Zhuang et al., 2024), as baselines. Both of these
methods, like ours, exhibit stitching property without requiring dynamic programming. Additionally,
we compare these sequence modeling approaches to traditional reinforcement learning methods such
as CQL and IQL. All experiments are conducted using five random seeds. Detailed implementations
and hyperparameter settings are outlined in Appendix C and Appendix D, respectively.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

OCBC SGDA TGDA GCReinSL (Ours)

DT RvS
Methods

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

Pointmaze-Umaze

DT RvS
Methods

0.00

0.25

0.50

0.75 Pointmaze-Medium

DT RvS
Methods

0.00

0.25

0.50

0.75 Pointmaze-Large

Figure 4: Performance of the original OCBC, as well as OCBC with corresponding goal data
augmentation, compared to our SL method on the Pointmaze datasets from Ghugare et al. (2024).
We use the final score as the report. GCReinSL not only improves the performance of DT and RvS
in all tasks, but also outperforms exist goal data augmentation methods.

5.2 TESTING THE ABILITY OF GCReinSL AND COMPARED WITH PREVIOUS GOAL DATA
AUGMENTATION METHODS

As shown in Fig. 4, it is evident that DT and RvS are struggle to demonstrate stitching property,
particularly in the Pointmaze-Umaze and Pointmaze-Large datasets, where their perfor-
mance is notably poor. However, when Q-conditioned maximization is incorporated into the OCBC
methods, performance improvements were observed across all tasks, albeit to varying degrees. This
enhancement is attributed to the fact that GCReinSL allows for the sampling of unseen (state,
goal) combinations during the training phase, thereby improving the generalization and stitching
capability of the models. Our GCReinSL consistently outperforms the other data augmentation ap-
proaches across all Pointmaze datasets, particularly in the more complex Pointmaze-Medium
and Pointmaze-Large datasets. This suggests that our approach enables the selection of more
suitable goals, facilitating more effective trajectory stitching.

5.3 SCALING TO HIGHER-DIMENSIONAL DATASETS

To evaluate the applicability of our GCReinSL to tasks with higher-dimensional input spaces, we
implemented it on a robotic control dataset with 111-dimensions (Antmaze (Ghugare et al., 2024)).
In Fig. 5, we observe that GCReinSL improves the performance of DT and RvS across all Antmaze
datasets, with particularly notable improvements on the medium and large datasets.

OCBC SGDA TGDA GCReinSL (Ours)

DT RvS
Methods

0.000

0.125

0.250

0.375

Su
cc

es
s R

at
e

Antmaze-Umaze

DT RvS
Methods

0.000

0.125

0.250

0.375 Antmaze-Medium

DT RvS
Methods

0.000

0.125

0.250

0.375 Antmaze-Large

Figure 5: Performance on high-dimensional Antmaze datasets: GCReinSL can still improve the
performance of DT and RvS on high-dimensional Antmaze datasets. We also use the final score
as the report. However, in some datasets such as Antmaze-Medium, GCReinSL is inferior to
advanced TGDA method.

5.4 COMPARED GCREINSL WITH THE PREVIOUS MAX-RETURN SEQUENCE MODELING
METHOD

We also compared our method with relevant sequence modeling approaches that perform stitching
property on the standard offline dataset D4RL (Fu et al., 2020), specifically on the Antmaze-v2
datasets, as shown in Table 1. From Table 1, it is evident that in the majority of the AntMaze datasets,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

particularly in the complex medium and large AntMaze tasks, the GCReinSL approach demonstrates
superior performance, significantly closing the gap with TD learning methods such as CQL.

Antmaze-v2
RL Sequence Modeling

CQL IQL DT EDT Reinformer GCReinSL (ours)

umaze 94.8 ± 0.8 84.00 ± 4.1 64.5 ± 2.1 67.8± 3.2 84.4±2.7 80.1±5.3
umaze-diverse 53.8 ± 2.1 79.5 ± 3.4 60.5 ± 2.3 58.3± 1.9 65.8±4.1 67.2±5.3
medium-play 80.5 ± 3.4 78.5 ± 3.8 0.8 ± 0.4 0.0± 0.0 13.2±6.1 49.0±3.5
medium-diverse 71.0 ± 4.5 83.5 ± 1.8 0.5 ± 0.5 0.0± 0.0 10.6±6.9 51.7±4.4
large-play 34.8 ± 5.9 53.5 ± 2.5 0.0 ± 0.0 0.6± 0.5 0.4 ±0.5 28.2±1.8
large-diverse 36.3 ± 3.3 53.0 ± 3.00 0.0 ± 0.0 0.0± 0.0 0.4 ±0.5 30.2±2.4

Total 371.2 432.0 126.3 126.7 174.8 306.4

Table 1: The normalized best score on D4RL (Fu et al., 2020) Antmaze-v2 datasets. The results come from
its original Reinformer (Zhuang et al., 2024) paper except GCReinSL. The best result is bold and the blue result
means the best result among sequence modeling.

5.5 ABLATION STUDY

In this section, we analyze the impact of the hyperparameter L in the probability estimator and m
in the Q-function loss. As illustrated in the left panel of Fig. 6, the performance does not exhibit a
linear relationship with increasing values of L. Therefore, we set L = 500 as the default value for the
datasets employed in Ghugare et al. (2024). For the D4RL Antmaze-v2 dataset (Fu et al., 2020),
we select L = 5, in line with the methodology outlined by Wu et al. (2022).

As stated in Theorem 4.1, as m → 1, the learned Q-function asymptot-
ically converges to the maximum Q-function within the offline distribution.

0.00 0.25 0.60
Success Rate

DT

RvS

M
et

ho
ds

Pointmaze-Large L Ablation
L-100
L-500
L-1000

0.5 0.7 0.9 0.99 0.999
m

0.00

0.25

0.50

0.75

Su
cc

es
s R

at
e

Pointmaze-Medium m Ablation
DT
RvS

Figure 6: Ablation study of different hyperparameter L and m in
Ghugare et al. (2024) datasets. (left): The performance on the
Pointmaze-Large dataset when applying different values of L
to the importance sampling estimator. (right): The trend of last results
as m varies on Pointmaze-Medium dataset.

Given that a higher in-
distribution Q-function cor-
responds to improved ac-
tion selection, we can in-
fer that performance will
improve as m approaches
1. The experimental results
presented in the right panel
of Fig. 6 are consistent with
this theoretical prediction.
However, larger values of
m do not consistently lead
to more effective training
or higher performance; in
some cases, they may re-
sult in a performance de-
cline. This could be attributed to overfitting to excessively large Q-function values present in
the offline dataset.

6 CONCLUSION

In this work, we propose the paradigm of Q-conditioned maximization supervised learning which
considers the RL objective that maximizes Q-function for SL-based methods (OCBC methods).
Both theoretical analysis and experiments indicate that our proposed model GCReinSL reduces the
performance gap between itself and classical RL approaches. However, our approach still exhibits a
gap compared to classical RL methods and is sensitive to certain hyperparameters. Future work could
focus on developing more robust SL architectures that are better suited for scenarios where classical
RL excels, particularly in trajectory stitching. This would provide a more nuanced understanding of
the respective strengths and applications of each approach.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Dennis J Aigner, Takeshi Amemiya, and Dale J Poirier. On the estimation of production frontiers:
maximum likelihood estimation of the parameters of a discontinuous density function. International
economic review, pp. 377–396, 1976.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
Advances in neural information processing systems, 30, 2017.

Léonard Blier, Corentin Tallec, and Yann Ollivier. Learning successor states and goal-dependent
values: A mathematical viewpoint. arXiv preprint arXiv:2101.07123, 2021.

Michał Bortkiewicz, Władek Pałucki, Vivek Myers, Tadeusz Dziarmaga, Tomasz Arczewski, Łukasz
Kuciński, and Benjamin Eysenbach. Accelerating goal-conditioned rl algorithms and research.
arXiv preprint arXiv:2408.11052, 2024.

David Brandfonbrener, Alberto Bietti, Jacob Buckman, Romain Laroche, and Joan Bruna. When does
return-conditioned supervised learning work for offline reinforcement learning? In Alice H. Oh,
Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information
Processing Systems, 2022. URL https://openreview.net/forum?id=XByg4kotW5.

Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement learning with
imagined subgoals. 2021a.

Elliot Chane-Sane, Cordelia Schmid, and Ivan Laptev. Goal-conditioned reinforcement learning with
imagined subgoals. In International conference on machine learning, pp. 1430–1440. PMLR,
2021b.

Ian Char, Viraj Mehta, Adam Villaflor, John M. Dolan, and Jeff Schneider. Bats: Best action trajectory
stitching, 2022.

Henry Charlesworth and Giovanni Montana. Plangan: Model-based planning with sparse rewards
and multiple goals. Advances in Neural Information Processing Systems, 33:8532–8542, 2020.

David Cheikhi and Daniel Russo. On the statistical benefits of temporal difference learning. In
International Conference on Machine Learning, pp. 4269–4293. PMLR, 2023.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.

Yiming Ding, Carlos Florensa, Pieter Abbeel, and Mariano Phielipp. Goal-conditioned imitation
learning. Advances in neural information processing systems, 32, 2019.

Ishan Durugkar, Mauricio Tec, Scott Niekum, and Peter Stone. Adversarial intrinsic motivation for
reinforcement learning. Advances in Neural Information Processing Systems, 34:8622–8636, 2021.

Scott Emmons, Benjamin Eysenbach, Ilya Kostrikov, and Sergey Levine. Rvs: What is essential for
offline rl via supervised learning? arXiv preprint arXiv:2112.10751, 2021.

Benjamin Eysenbach, Ruslan Salakhutdinov, and Sergey Levine. C-learning: Learning to achieve
goals via recursive classification. arXiv preprint arXiv:2011.08909, 2020.

Benjamin Eysenbach, Soumith Udatha, Russ R Salakhutdinov, and Sergey Levine. Imitating past
successes can be very suboptimal. Advances in Neural Information Processing Systems, 35:
6047–6059, 2022a.

Benjamin Eysenbach, Tianjun Zhang, Sergey Levine, and Russ R Salakhutdinov. Contrastive learning
as goal-conditioned reinforcement learning. Advances in Neural Information Processing Systems,
35:35603–35620, 2022b.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

11

https://openreview.net/forum?id=XByg4kotW5

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Hiroki Furuta, Yutaka Matsuo, and Shixiang Shane Gu. Generalized decision transformer for offline
hindsight information matching. arXiv preprint arXiv:2111.10364, 2021.

Dibya Ghosh, Abhishek Gupta, Ashwin Reddy, Justin Fu, Coline Manon Devin, Benjamin Eysenbach,
and Sergey Levine. Learning to reach goals via iterated supervised learning. In International
Conference on Learning Representations, 2021.

Raj Ghugare, Matthieu Geist, Glen Berseth, and Benjamin Eysenbach. Closing the gap between TD
learning and supervised learning - a generalisation point of view. In The Twelfth International
Conference on Learning Representations, 2024.

Abhishek Gupta, Vikash Kumar, Corey Lynch, Sergey Levine, and Karol Hausman. Relay policy
learning: Solving long-horizon tasks via imitation and reinforcement learning. In Conference on
Robot Learning, pp. 1025–1037. PMLR, 2020.

Nicklas Hansen and Xiaolong Wang. Generalization in reinforcement learning by soft data augmen-
tation, 2021.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic rein-
forcement learning at scale, 2021.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. Computer Science,
2014.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In ICLR, 2014.

Diederik P Kingma and Max Welling. An introduction to variational autoencoders. arXiv preprint
arXiv:1906.02691, 2019.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In International Conference on Machine Learning, pp.
5774–5783. PMLR, 2021a.

Ilya Kostrikov, Denis Yarats, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels, 2021b.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in neural information processing systems,
32, 2019a.

Aviral Kumar, Xue Bin Peng, and Sergey Levine. Reward-conditioned policies. arXiv preprint
arXiv:1912.13465, 2019b.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Bo Liu, Yihao Feng, Qiang Liu, and Peter Stone. Metric residual network for sample efficient
goal-conditioned reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pp. 8799–8806, 2023a.

Jinxin Liu, Li He, Yachen Kang, Zifeng Zhuang, Donglin Wang, and Huazhe Xu. Ceil: Generalized
contextual imitation learning. Advances in Neural Information Processing Systems, 36:75491–
75516, 2023b.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):
129–137, 1982.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

I Loshchilov. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.

Chaochao Lu, Biwei Huang, Ke Wang, José Miguel Hernández-Lobato, Kun Zhang, and Bernhard
Schölkopf. Sample-efficient reinforcement learning via counterfactual-based data augmentation,
2020.

Corey Lynch, Mohi Khansari, Ted Xiao, Vikash Kumar, Jonathan Tompson, Sergey Levine, and
Pierre Sermanet. Learning latent plans from play. In Conference on robot learning, pp. 1113–1132.
PMLR, 2020.

Yecheng Jason Ma, Shagun Sodhani, Dinesh Jayaraman, Osbert Bastani, Vikash Kumar, and Amy
Zhang. Vip: Towards universal visual reward and representation via value-implicit pre-training.
arXiv preprint arXiv:2210.00030, 2022.

Russell Mendonca, Oleh Rybkin, Kostas Daniilidis, Danijar Hafner, and Deepak Pathak. Discovering
and achieving goals via world models. Advances in Neural Information Processing Systems, 34:
24379–24391, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018.

Suraj Nair, Silvio Savarese, and Chelsea Finn. Goal-aware prediction: Learning to model what
matters. In International Conference on Machine Learning, pp. 7207–7219. PMLR, 2020.

Whitney K Newey and James L Powell. Asymmetric least squares estimation and testing. Economet-
rica: Journal of the Econometric Society, pp. 819–847, 1987.

Keiran Paster, Silviu Pitis, Sheila A. McIlraith, and Jimmy Ba. Return augmentation gives super-
vised RL temporal compositionality, 2023. URL https://openreview.net/forum?id=
BKuboEUJd8u.

Rafael Figueiredo Prudencio, Marcos ROA Maximo, and Esther Luna Colombini. A survey on offline
reinforcement learning: Taxonomy, review, and open problems. IEEE Transactions on Neural
Networks and Learning Systems, 2023.

Alfredo Reichlin, Miguel Vasco, Hang Yin, and Danica Kragic. Goal-conditioned offline reinforce-
ment learning via metric learning. arXiv preprint arXiv:2402.10820, 2024.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In ICML, 2014.

Tim GJ Rudner, Vitchyr Pong, Rowan McAllister, Yarin Gal, and Sergey Levine. Outcome-driven
reinforcement learning via variational inference. Advances in Neural Information Processing
Systems, 34:13045–13058, 2021.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators.
In International conference on machine learning, pp. 1312–1320. PMLR, 2015.

Karl Schmeckpeper, Annie Xie, Oleh Rybkin, Stephen Tian, Kostas Daniilidis, Sergey Levine,
and Chelsea Finn. Learning predictive models from observation and interaction. In European
Conference on Computer Vision, pp. 708–725. Springer, 2020.

Juergen Schmidhuber. Reinforcement learning upside down: Don’t predict rewards – just map them
to actions, 2020.

Dhruv Shah, Benjamin Eysenbach, Nicholas Rhinehart, and Sergey Levine. Rapid exploration for
open-world navigation with latent goal models. In Conference on Robot Learning, pp. 674–684.
PMLR, 2022.

13

https://openreview.net/forum?id=BKuboEUJd8u
https://openreview.net/forum?id=BKuboEUJd8u

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Connor Shorten and Taghi M. Khoshgoftaar. A survey on image data augmentation for deep
learning. Journal of Big Data, 6:1–48, 2019. URL https://api.semanticscholar.
org/CorpusID:195811894.

Fabian Sobotka and Thomas Kneib. Geoadditive expectile regression. Computational Statistics &
Data Analysis, 56(4):755–767, 2012.

Kihyuk Sohn, Honglak Lee, and Xinchen Yan. Learning structured output representation using deep
conditional generative models. Advances in neural information processing systems, 28, 2015.

Austin Stone, Oscar Ramirez, Kurt Konolige, and Rico Jonschkowski. The distracting control suite –
a challenging benchmark for reinforcement learning from pixels, 2021.

Hao Sun, Zhizhong Li, Xiaotong Liu, Bolei Zhou, and Dahua Lin. Policy continuation with hindsight
inverse dynamics. Advances in Neural Information Processing Systems, 32, 2019.

Stephen Tian, Suraj Nair, Frederik Ebert, Sudeep Dasari, Benjamin Eysenbach, Chelsea Finn, and
Sergey Levine. Model-based visual planning with self-supervised functional distances. arXiv
preprint arXiv:2012.15373, 2020.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu,
Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea
Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium,
March 2023. URL https://zenodo.org/record/8127025.

Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph
Modayil. Deep reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648,
2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Tongzhou Wang, Antonio Torralba, Phillip Isola, and Amy Zhang. Optimal goal-reaching reinforce-
ment learning via quasimetric learning. In International Conference on Machine Learning, pp.
36411–36430. PMLR, 2023.

Jialong Wu, Haixu Wu, Zihan Qiu, Jianmin Wang, and Mingsheng Long. Supported policy optimiza-
tion for offline reinforcement learning. Advances in Neural Information Processing Systems, 35:
31278–31291, 2022.

Yueh-Hua Wu, Xiaolong Wang, and Masashi Hamaya. Elastic decision transformer. arXiv preprint
arXiv:2307.02484, 2023.

Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
Leveraging dynamic programming for conditional sequence modelling in offline rl. In International
Conference on Machine Learning, pp. 38989–39007. PMLR, 2023a.

Taku Yamagata, Ahmed Khalil, and Raul Santos-Rodriguez. Q-learning decision transformer:
Leveraging dynamic programming for conditional sequence modelling in offline RL, 2023b. URL
https://openreview.net/forum?id=oIkZyOytR3g.

Wenyan Yang, Huiling Wang, Dingding Cai, Joni Pajarinen, and Joni-Kristen Kämäräinen. Swapped
goal-conditioned offline reinforcement learning. arXiv preprint arXiv:2302.08865, 2023.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous control:
Improved data-augmented reinforcement learning, 2021.

Chongyi Zheng, Benjamin Eysenbach, Homer Walke, Patrick Yin, Kuan Fang, Ruslan Salakhutdinov,
and Sergey Levine. Stabilizing contrastive rl: Techniques for offline goal reaching. arXiv preprint
arXiv:2306.03346, 2023a.

Chongyi Zheng, Ruslan Salakhutdinov, and Benjamin Eysenbach. Contrastive difference predictive
coding. arXiv preprint arXiv:2310.20141, 2023b.

14

https://api.semanticscholar.org/CorpusID:195811894
https://api.semanticscholar.org/CorpusID:195811894
https://zenodo.org/record/8127025
https://openreview.net/forum?id=oIkZyOytR3g

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Qinqing Zheng, Amy Zhang, and Aditya Grover. Online decision transformer. In international
conference on machine learning, pp. 27042–27059. PMLR, 2022.

Menghui Zhu, Minghuan Liu, Jian Shen, Zhicheng Zhang, Sheng Chen, Weinan Zhang, Deheng Ye,
Yong Yu, Qiang Fu, and Wei Yang. Mapgo: Model-assisted policy optimization for goal-oriented
tasks. arXiv preprint arXiv:2105.06350, 2021.

Zifeng Zhuang, Dengyun Peng, Ziqi Zhang, Donglin Wang, et al. Reinformer: Max-return sequence
modeling for offline rl. arXiv preprint arXiv:2405.08740, 2024.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Contents of Appendix

A Proofs 17

A.1 Proof of Theorem 3.1 . 17

A.2 Proof of Theorem 4.1 . 18

A.3 Proof of Corollary 1 . 19

B GCReinSL Algorithm 20

B.1 GCReinSL Algorithm for DT . 20

B.2 GCReinSL Algorithm for RvS . 20

C Experiment Details 21

C.1 Offline Datasets . 21

C.2 Implementation Details . 22

D Hyperparameters 22

D.1 Hyperparameter m . 22

D.2 Context Length K . 23

D.3 Training Steps and Learning Rate . 23

E Training Curves 23

E.1 Goal-conditioned Datasets from Ghugare et al. (2024) 23

E.2 Goal-conditioned Datasets from Fu et al. (2020) 24

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A PROOFS

In this section, we restate theorems in the paper and present their proofs.

A.1 PROOF OF THEOREM 3.1

Definitions Before proving this theorem, we first have the following definitions:

(1) We begin by defining the Q-function in the form of the expected reward:

Qπ(s, a, g) ≜ Eπ(·|g)

[∞∑
t=0

γtr(st, at, g) | s0=s,a0=a

]
. (14)

(2) Then we will define rewards conditioned with goal g as:

r(s, a, g) ≜

{
(1− γ)

(
p0(s0 = g) + γp(s1 = g | s0, a0)

)
, t = 0

(1− γ)γp(st+1 = g | st, at), t > 0.
(15)

(3) Finally, We define the discounted state occupancy distribution, as:

pπ+(g) = (1− γ)

∞∑
t=0

γtpπt (g). (16)

And We can rewrite Eq. (16) as

pπ+(g) = (1− γ)pπ0 (g) + (1− γ)

∞∑
t=1

γtpπt (g). (17)

Proof Objective Our objective is to establish a relationship between the Q-function and the
discounted state occupancy distribution:

Qπ(s, a, g) = pπ+(g | s, a) (18)

Proof We begin by examining the term for t = 0, followed by an analysis of the term for t > 0.
The probability of visiting a state at time t = 0 corresponds to the initial state distribution:

pπ0 (g) = p0(g).

For t > 0, the term pπt (g) in Eq. (17) is a probability of reaching the goal g at timestep t with policy
conditioned on g, then we can write this term as follows:

pπt (g) = Eπ(·|g) [pt(g | st−1, at−1)]

= Eπ(·|g) [p(st = g | st−1, at−1)] .

In the second line, we apply the Markov property, which implies that the probability of reaching g at
time t depends solely on the dynamics, p(st+1 | st, at).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Substituting this into Eq. (17), we obtain:

pπ+(g) = (1− γ)pπ0 (g) + (1− γ)

∞∑
t=1

γtpπt (g)

= (1− γ)pπ0 (g) + (1− γ)

∞∑
t=1

γtEπ(·|g)
[
p(st = g | st−1, at−1)

]
= (1− γ)pπ0 (g) + (1− γ)

∞∑
t=0

γt+1Eπ(·|g)
[
p(st+1 = g | st, at)

]
= (1− γ)pπ0 (g) + (1− γ)Eπ(·|g)

[∞∑
t=0

γt+1p(st+1 = g | st, at)

]

= Eπ(·|g)

[
(1− γ)p0(s0 = g) + (1− γ)

∞∑
t=0

γt+1p(st+1 = g | st, at)

]

= Eπ(·|g)

(1− γ) (p0(s0 = g) + γp(s1 = g | s0, a0))︸ ︷︷ ︸
r(s0,a0,g)

+

∞∑
t=1

γt (1− γ)γp(st+1 = g | st, at)︸ ︷︷ ︸
r(st,at,g)


= Eπ(·|g)

[∞∑
t=0

γtr(st, at, g)

]
.

In the third line, we adjust the bounds of the summation to begin at 0, modifying the terms inside the
summation accordingly. In the fourth line, we apply the linearity of expectation to shift the summation
inside the expectation. In the fifth line, we again utilize the linearity of expectation to incorporate the
term for t = 0 within the expectation. In the final two lines, we substitute the definition of r(s, a, g)
to derive the desired result.

For a set state-action pair (s, a), we can obtain:

pπ+(g | s, a) = Eπ(·|g)

[∞∑
t=0

γtr(st, at, g) | s0=s,
a0=a

]
= Qπ(s, a, g). (19)

Thus, the relationship between the Q-function and the discounted state occupancy distribution is
formally established.

A.2 PROOF OF THEOREM 4.1

Definitions Before proving this theorem, we first have the following definitions:

(1) Expectile Regression Loss: The m-expectile regression loss for a predicted Q-function Qm

(Qm := Qm (SG) = argminLmQ (SG) ,SG := (s, g, a,Q)):

LmQ = E(s,a,g)∈D
[
|m− 1 (∆Q < 0)|∆Q2

]
, (20)

here Q = Qπ(s, a, g), ∆Q = Q − Qm and Qm can come from the supervised learning model.
1 (∆Q < 0) is an indicator function that equals 1 when (∆Q < 0). This loss introduces an asym-
metric penalty depending on whether Qm overestimates or underestimates the target Q(s, a, g).

(2) Maximum Q-function: The maximum Q-function with actions for a given (s, a, g) from offline
dataset D:

Qmax = max
a∼D

Q (s, a, g) (21)

Note that Q(s, a, g) is estimated from the offline dataset D using a VAE model, as detailed in
Section 4.2.

(3) Element-wise Interpretation: All inequalities involving Qm in this proof are interpreted element-
wise, meaning they apply independently to each tuple (s, a, g) in the offline dataset.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Proof Objective Suppose the Q-function is predicted by the supervised learning model itself using
m-expectile regression, For m ∈ (0, 1), let this predicted Q-function be Qm, which minimizes the
expectile regression loss LmQ . Then as m→ 1, Qm → Qmax.

Proof The proof primarily relies on the monotonicity property of m-expectile regression and
employs a proof by contradiction.

Firstly, leveraging the monotonicity property of m-expectile regression (Newey & Powell, 1987), it
follows that Qm1 ≤ Qm2 for 0 < m1 < m2 < 1.

Secondly, for all m ∈ (0, 1), it holds that Qm ≤ Qmax. Assume there exists some m3 such
that Qm3 > Qmax. In this case, all Q-values from the offline dataset would satisfy Q < Qm3 .
Consequently, the Q-function loss can be simplified, given the constant weight 1−m3.

Lm3

Q = E
[
(1−m3) (Q−Qm3)

2
]

> E
[
(1−m3)

(
Q−max[Q

(n)
t]

)2
]
.

This inequality holds because Q ≤ max[Q] < Qm3 . However, this contradicts the fact that Qm3 is
derived by minimizing the Q-function loss. Therefore, the assumption is invalid, and we conclude
that Qm ≤ Qmax is true. This proof step demonstrates that the predicted Q-function does not suffer
from out-of-distribution (OOD) issues.

Finally, the convergence to this limit is a direct consequence of the properties of bounded and
monotonically non-decreasing functions, thereby demonstrating the validity of the theorem.

A.3 PROOF OF COROLLARY 1

The conclusion drawn from Furuta et al. (2021) indicates that the OCBC methods can be summarized
as performing Hindsight Information Matching (HIM): Given a offline dataset D and its informa-
tion statistics I(τt), OCBC methods are trying to learn a goal-conditioned policy π(a|s, g) whose
trajectory rollouts satisfy some desired information statistics value g:

min
π
Eg∼D [D(I(τ), g)] , (22)

whereD is a divergence measure for information matching such as Kullback-Leibler (KL) divergence.
Within the HIM framework, the optimization objective of Q-conditioned maximization supervised
learning can be interpreted as aligning with the statistical property of future trajectories. In goal-
conditioned reinforcement learning (RL), this statistical information is defined as the probability
of reaching the goal g in the future. Since the Q-function aggregates future rewards, it acts as a
statistical summary of the trajectory τ1 (i.e., the expected maximum return). Therefore, the Q-value
in Q-conditioned maximization supervised learning can be understood as the trajectory information
statistic I(τ) within the HIM framework:

I(τ) = Qπ(s, a, g). (23)

Thus, the optimization objective of Q-conditioned maximization supervised learning can be expressed
as:

min
π
Eg∼D [D(Qπ(s, a, g), g)] . (24)

This is equivalent to the HIM objective of aligning trajectory statistics with a de-
fined statistical objective. Both approaches optimize the policy by matching the fu-
ture trajectory information to the desired objective. Consider two trajectories in the
offline dataset: τ1 =

{
< s10, a

1
0, r

1
0 >,< s11, a

1
1, r

1
1 >, ..., < s1T , a

1
T , r

1
T >

}
and τ2 ={

< s20, a
2
0, r

2
0 >,< s22, a

2
2, r

2
2 >, ..., < s2T , a

2
T , r

2
T >

}
, which respectively reach goals g1 and g2. If

we start from state s10 and expect to reach the final goal g, but the goal g1 achieves a lower cumulative
reward compared to the reached goal g2, Q-conditioned maximization supervised learning will tend
to select g2 as the global goal. Consequently, g2 can be utilized as an augmented goal for the initial
state s10, enhancing the overall trajectory performance. In summary, Q-conditioned maximization
supervised learning attains the optimal policy by selecting high-reward goals and stitching together
distinct trajectory segments.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

B GCReinSL ALGORITHM

Below we provide a detailed outline of the GCReinSL algorithm for DT and RvS.

B.1 GCReinSL ALGORITHM FOR DT

Algorithm 1 GCReinSL for DT

1: Input: offline dataset D, sequence modeling πθ
2: Initialize VAE with parameters ψ and φ
3: Function VAE Training
4: Sample minibatch of transitions from offline dataset D: (s, a, g) ∼ D
5: Update ψ,φ minimizing LELBO(s, a, g;φ,ψ) in Eq. (7)
6: //Training Procedure
7: for sample ⟨ · · · , st, gt, at ⟩ from D do
8: Get Qt with probability estimator with Eq. (8)
9: Get Q̂t, ât with sequence modeling πθ: Q̂t, ât = πθ (· · · , sgt, at, Qt)

10: Calculate total loss La + LmQ by Equation Eq. (10) and Eq. (11)
11: Take gradient descent step on ∇θ

(
La + LmQ

)
12: end for
13: //Inference Pipeline
14: Input: sequence modeling πθ, environment Env
15: s0 = Env.reset() and t = 0
16: repeat
17: Predict maximum Q-function Q̂t = πθ (· · · , sgt,□,□)

18: Predict optimal action ât = πθ

(
· · · , sgt, Q̂t,□

)
19: st+1, rt = Env.step(ât) and t = t+ 1
20: until done

B.2 GCReinSL ALGORITHM FOR RVS

Algorithm 2 GCReinSL for RvS

1: Input: offline dataset D, actor model πθ, value model vϕ
2: VAE training is similar to GCReinSL for DT.
3: //Training Procedure
4: for sample ⟨ · · · , st, gt, at ⟩ from D do
5: Get Qt with probability estimator with Eq. (8)
6: Predict maximum Q-function Q̂t = vϕ (st, gt)

7: Predict optimal action ât = πθ

(
st, gt, Q̂t

)
8: The calculation of the total loss is also the same as in GCReinSL for DT.
9: end for

10: //Inference Pipeline
11: Input: value model vϕ, actor model πθ, environment Env
12: s0 = Env.reset() and t = 0
13: repeat
14: Predict maximum Q-function Q̂t = vϕ (st, gt)

15: Predict optimal action ât = πθ

(
st, gt, Q̂t

)
16: st+1, rt = Env.step(ât) and t = t+ 1
17: until done

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Umaze Medium Large(a) UmazeUmaze Medium Large(b) MediumUmaze Medium Large(c) Large

Figure 7: Goal-conditioned datasets from Ghugare et al. (2024): Different colors represent the
navigation regions of various data collection policies. During data collection, these policies navigate
between randomly selected state-goal pairs within their respective navigation regions. These visual-
izations pertain to the Pointmaze dataset, with similar patterns observed in the Antmaze dataset.

(a) Umaze (b) Medium (c) Large

Figure 8: Goal-conditioned Datasets from Fu et al. (2020): The AntMaze-v2 datasets involve
controlling an 8-DoF quadruped to navigate towards a specified goal state. This benchmark requires
value propagation to effectively stitch together sub-optimal trajectories from the collected data.

C EXPERIMENT DETAILS

In this section we provide all the implementation details as well as hyperparameters used for all the
algorithms in our experiments – DT, RvS, VAE, and GCReinSL.

C.1 OFFLINE DATASETS

Goal-conditioned Datsets from Ghugare et al. (2024) We utilize the Pointmaze and Antmaze
datasets, as presented in Ghugare et al. (2024). As described in Section 5, both offline datasets contain
106 transitions and are specifically constructed to evaluate trajectory stitching in a combinatorial
setting (see Fig. 7). In the Pointmaze dataset, the task involves controlling a ball with two degrees
of freedom by applying forces along the Cartesian x and y axes. By contrast, the Antmaze dataset
features a 3D ant agent, provided by the Farama Foundation (Towers et al., 2023). The Pointmaze
datasets were collected using a PID controller, while the Antmaze datasets were generated using a
pre-trained policy from D4RL (Fu et al., 2020). Visual representations of the various Pointmaze
configurations can be found in Fig. 7.

Goal-conditioned Datasets from Fu et al. (2020) In the experiments comparing with related
sequence modeling approaches, we follow the methodology outlined in Zhuang et al. (2024) to
construct the AntMaze-v2 datasets using D4RL, which also contain 106 transitions (see Fig. 8).
These AntMaze-v2 datasets are characterized by sparse rewards, where r = 1 is awarded upon
reaching the goal. Both the medium and large datasets lack complete trajectories from the starting
point to the goal, requiring the algorithm to stitch together incomplete or failed trajectories to achieve
the desired goal.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

C.2 IMPLEMENTATION DETAILS

We use the default configurations of DT and RvS as described in Ghugare et al. (2024), with some
values modified. Note that in specific datasets, certain parameter values have been adjusted. The
architecture and training process of the VAE are identical to those described in SPOT (Wu et al.,
2022).

Our GCReinSL for DT implementation draws inspiration from and references the following four
repositories:

• TGDA: https://github.com/RajGhugare19/stitching-is-
combinatorial-generalisation;

• SPOT: https://github.com/thuml/SPOT;

• Reinformer: https://github.com/Dragon-Zhuang/Reinformer.

The state-goal pair tokens, Q-function tokens and action tokens are first processed by different linear
layers. Then these tokens are fed into the decoder layer to obtain the embedding. Here the decoder
layer is a lightweight implementation from Reinformer (Zhuang et al., 2024). The context length for
the decoder layer is denoted as K. Our GCReinSL for RvS implementation is similar to the idea of
GCReinSL for DT, but it is divided into value networks and policy networks. The value network
outputs the expected Q-function from state s to goal g. This expected Q-function, along with the state
s and goal g, is then used as input to the policy network. We employed both the AdamW (Loshchilov,
2017) and Adam (Kingma & Ba, 2014) optimizers to optimize the total loss (i.e, action loss and
Q-function loss) for DT and RvS, respectively, in alignment with the methodologies outlined in their
original papers. The hyperparameter of Q-function loss is denoted as m.

D HYPERPARAMETERS

In this section, we will provide a detailed description of parameter settings for in our experiments.
The hyperparameters of SGDA and TGDA remain consistent with their original settings. For fair
comparison, our method still sets the same augmentation rate of 0.5 as theirs. The hyperparameters
of GCReinSL for DT in various datasets are presented in the tables below. In all tables, the arrows
indicate the directional change in the corresponding values for RvS.

D.1 HYPERPARAMETER m

The hyperparameter m is crucially related to the Q-function loss and is one of our primary focuses
for tuning. We explore values within the range of m = [0.7, 0.9, 0.99, 0.999]. When m = 0.5,
the expectile loss function will degenerate into MSE loss, which means the model is unable to
output a maximized Q-function. So we do not take m = 0.5 into consideration. We observe that
performance is generally lower at m = 0.9 compared to others except Pointmaze-Umaze. Only
Pointmaze-Large adopt the parameter m = 0.999 while m = 0.99 are generally better than
m = 0.999 on other datasets. The detailed hyperparameter selection of m is summarized in the
following table:

Table 2: Hyperparameters m of Q-function loss on different datasets.

Dataset m Antmaze-Umaze 0.9
Pointmaze-Umaze 0.99 → 0.9 Antmaze-umaze-diverse 0.99
Pointmaze-Medium 0.99 Antmaze-medium-play 0.99
Pointmaze-Large 0.99 → 0.999 Antmaze-medium-diverse 0.99
Antmaze-Umaze 0.99 Antmaze-large-play 0.99
Antmaze-Medium/Large 0.99 Antmaze-large-diverse 0.99

22

https://github.com/RajGhugare19/stitching-is-
combinatorial-generalisation
https://github.com/thuml/SPOT
https://github.com/Dragon-Zhuang/Reinformer

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

D.2 CONTEXT LENGTH K

The context length K is another key hyperparameter in GCReinSL for DT, and we conduct a
parameter search across the values K = [2, 5, 10, 20]. The maximum value is 20 because the default
context length for DT (Chen et al., 2021) is 20. The minimum is 2, which corresponds to the shortest
sequence length (setting K = 1 would no longer constitute sequence learning). Overall, we found
that K = 10 and K = 20 lead to more stable learning and better performance on Ghugare et al.
(2024) Pointmaze and Antmaze datasets. Conversely, a smaller context length is preferable on
D4RL (Fu et al., 2020) Antmaze-v2 dataset. The parameter K has been summarized as follows:

Table 3: Context length K on different datasets.

Dataset K Antmaze-Umaze 2
Pointmaze-Umaze 10 Antmaze-umaze-diverse 2
Pointmaze-Medium 10 Antmaze-medium-play 3
Pointmaze-Large 5 Antmaze-medium-diverse 2
Antmaze-Umaze 20 Antmaze-large-play 3
Antmaze-Medium/Large 20 Antmaze-large-diverse 2

D.3 TRAINING STEPS AND LEARNING RATE

The default number of training steps is 50000, with a learning rate of 0.0002. With these default
settings, if the training score continues to rise, we would consider increasing the number of training
steps or doubling the learning rate. For some datasets, 50000 steps may cause overfitting and less
training steps are better. The training steps are presented in Table 4. The learning rate remains
unchanged across all (Ghugare et al., 2024) goal-conditioned datasets and is set to be the same on
the goal-conditioned dataset (Fu et al., 2020) as in (Zhuang et al., 2024). We evaluate the policy
every 10 times to obtain a mean success rate in goal-conditioned datasets or normalized score in goal-
conditioned datasets. For each seed, the mean success rate and normalized score are all calculated as
the average results of 100 trajectories.

Table 4: The training steps on different datasets.

Dataset Training Steps Antmaze-umaze 100000
Pointmaze-Umaze 50000 → 18000 Antmaze-umaze-diverse 50000
Pointmaze-Medium 80000 → 30000 Antmaze-medium-play 100000
Pointmaze-Large 80000 → 50000 Antmaze-medium-diverse 100000
Antmaze-Umaze 50000 → 60000 Antmaze-large-play 100000
Antmaze-Medium/Large 80000 → 100000 Antmaze-large-diverse 100000

E TRAINING CURVES

We exhibit the training curves on five seeds. The black line represents the mean of these five seeds
and the red shaded area represents the variance.

E.1 GOAL-CONDITIONED DATASETS FROM GHUGARE ET AL. (2024)

The training curves for nine datasets from Ghugare et al. (2024) are shown in Fig. 10. The training
process for Pointmaze-Umaze exhibits relatively stable behavior. However, the training on
Pointmaze-Medium and Pointmaze-Large is characterized by high variance and significant
fluctuations. Similarly, the Antmaze-Umaze dataset shows some degree of instability, while the
performance on the Antmaze-Medium dataset is particularly poor.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

OCBC TGDA GCReinSL (Ours)

3600 7200 10800 14400 18000
Iteration Steps

0.00

0.25

0.50

0.75

1.00

Su
cc

es
s R

at
e

Pointmaze-Umaze RvS

10000 20000 30000 40000 50000
Iteration Steps

0.00

0.25

0.50

0.75

1.00
Pointmaze-Umaze DT

6000 12000 18000 24000 30000
Iteration Steps

0.00

0.25

0.50

0.75 Pointmaze-Medium RvS

16000 32000 48000 64000 80000
Iteration Steps

0.00

0.25

0.50

0.75

Su
cc

es
s R

at
e

Pointmaze-Medium DT

10000 20000 30000 40000 50000
Iteration Steps

0.000

0.125

0.250

0.375

0.500 Pointmaze-Large RvS

16000 32000 48000 64000 80000
Iteration Steps

0.00

0.25

0.50

0.75 Pointmaze-Large DT

12000 24000 36000 48000 60000
Iteration Steps

0.000

0.125

0.250

Su
cc

es
s R

at
e

Antmaze-Umaze RvS

3600 7200 10800 14400 18000
Iteration Steps

0.000

0.125

0.250 Antmaze-Umaze DT

20000 40000 60000 80000 100000
Iteration Steps

0.000

0.125

0.250

0.375 Antmaze-Medium RvS

Figure 9: Training curves of OCBC and related goal data augmentation methods on Ghugare et al.
(2024) dataset. Although our GCReinSL method exhibits some instability on certain datasets, on
average, GCReinSL tends to improve and achieves promising results with extended training. A
potential direction for future research is to develop a more robust GCReinSL method that requires
less hyperparameter tuning.

E.2 GOAL-CONDITIONED DATASETS FROM FU ET AL. (2020)

Since we report the best score during training rather than the final score, we do not include training
curves for Antmaze. As the Antmaze datasets contain sparse rewards, to prevent the occurrence of
invalid values during training, we follow the approach of Zhuang et al. (2024) and modify the reward
function to r̂ = 100 × r + 1. In the Fig. 10, we visualize the performance of the state-of-the-art
Reinformer algorithm and our method on Antmaze, and compare the results with those of the classic
TD learning algorithm, IQL. In Fig. 10, we provide a detailed performance comparison with TD
learning methods.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Reinformer GAPGCReinSL (Ours) IQL

umaze

umaze
-divers

e

medium-play

medium-divers
e

larg
e-p

lay

larg
e-d

ivers
e

Datasets

0
10
20
30
40
50
60
70
80
90

No
rm

ali
ze

d B
es

t S
co

re

Antmaze-v2

Figure 10: Performance of Reinfromer and GCReinSL on four different goal-conditioned
Antmaze-v2 datasets from Fu et al. (2020). The gap between the two orange bars represents
the difference from the IQL algorithm, with shorter gaps indicating better performance. Our SL
method outperforms advanced method Reinformer across three datasets, further reducing the gap
with TD learning methods.

25

	Introduction
	Related Work
	PRELIMINARIES
	Goal-conditioned RL in Controlled Markov Process
	Outcome Conditional Behavioral Cloning (OCBC) Methods

	METHODOLOGY
	Trajectory Stitching Example
	Q-function Estimation with VAE
	Q-conditioned maximization supervised learning
	Implementation of GCReinSL
	GCReinSL for DT
	GCReinSL for RvS

	Experiments
	Experimental setup
	Testing the ability of GCReinSL and Compared with previous goal data augmentation methods
	Scaling to higher-dimensional datasets
	Compared GCReinSL with the previous max-return sequence modeling method
	Ablation Study

	Conclusion
	Proofs
	Proof of Theorem 3.1
	Proof of Theorem 4.1
	Proof of Corollary 1

	GCReinSL Algorithm
	GCReinSL Algorithm for DT
	GCReinSL Algorithm for RvS

	Experiment Details
	Offline Datasets
	Implementation Details

	Hyperparameters
	Hyperparameter m
	Context Length K
	Training Steps and Learning Rate

	Training Curves
	Goal-conditioned Datasets from ghugare2024closing
	Goal-conditioned Datasets from fu2020d4rl

