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ABSTRACT

Recent research highlights the efficacy of supervised learning (SL) as a methodol-
ogy within reinforcement learning (RL), yielding commendable results. Nonethe-
less, investigations reveal that SL-based methods lack the stitching capability
typically associated with RL approaches such as TD learning, which facilitate
the resolution of tasks by stitching diverse trajectory segments. This prompts the
question: How can SL methods be endowed with stitching property and bridge
the gap with TD learning? This paper addresses this challenge by exploring the
maximization of the objective in the goal-conditioned RL. We introduce the con-
cept of Q-conditioned maximization supervised learning, grounded in the assertion
that the goal-conditioned RL objective is equivalent to maximizing the expected
Q-function under given goal distribution, thus embedding Q-function maximization
into traditional SL-based methodologies. Building upon this premise, we propose
Goal-Conditioned Reinforced Supervised Learning (GCReinSL), which enhances
SL-based approaches by incorporating maximizing Q-function. GCReinSL em-
phasizes the maximization of the Q-function during the training phase to predict
the maximum Q-function within the distribution. This optimized in-distribution
Q-function is then employed during the inference phase to guide the selection of
optimal actions. We demonstrate that GCReinSL enables SL methods to exhibit
stitching property, effectively equivalent to applying goal data augmentation to SL
methods. Experimental results on offline datasets designed to evaluate stitching
capability show that our approach not only effectively selects appropriate goals
across diverse trajectories but also outperforms previous works that applied goal
data augmentation to SL methods.

1 INTRODUCTION

Recently, numerous methods that frame reinforcement learning RL as a purely SL problem (Schmid-
huber, 2020; Chen et al., 2021; Emmons et al., 2021; Chane-Sane et al., 2021a) function by correlating
input states and desired goals with optimal actions. These techniques assign labels to state-action
pairs based on future outcomes (e.g., achieving a goal) derived from offline datasets, subsequently
maximizing the likelihood of these actions as optimal for producing the intended results. Collectively
termed outcome-conditioned behavioral cloning algorithms (OCBC), these approaches have exhibited
commendable performance on standard offline benchmarks (Emmons et al., 2021). Nevertheless,
recent investigations (Yang et al., 2023; Ghugare et al., 2024) have highlighted a critical shortcoming
of these SL methodologies: the lack of trajectory stitching capability. This property, commonly
found in temporal-difference (TD)-based RL algorithms employing dynamic programming (e.g.,
CQL(Kumar et al., 2020), and IQL(Kostrikov et al., 2021a)), is vital for addressing tasks that require
the integration of multiple trajectory segments. Thus, enhancing OCBC methods to incorporate this
characteristic and bridging the gap with TD approaches has emerged as a significant area of research.

In this paper, we examine this issue within goal-conditioned RL, focusing on navigating between
certain state-goal pairs that, while not co-occurring during training, are present in isolation. In sparse-
reward goal-conditioned RL, TD-based RL methods often face challenges such as instability during
training due to difficulties in accurately estimating the value function, inefficiencies in optimization
(Van Hasselt et al., 2018; Kumar et al., 2019a), and high sensitivity to hyperparameters (Henderson
et al., 2018). In contrast, OCBC methods are simpler, more efficient, and free from these issues,
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making the development of novel OCBC approaches highly valuable. However, OCBC lacks the
critical trajectory stitching property inherent to TD-based RL methods. Addressing this limitation to
enable stitching and bridge performance gaps in challenging environments is a key focus of current
research. We have observed that certain sequence modeling (Yamagata et al., 2023a; Wu et al.,
2023; Zhuang et al., 2024) techniques are enabling Decision Transformer (DT) (Chen et al., 2021)
within OCBC methods to acquire stitching property. However, these methods are primarily effective
within goal-conditioned scenarios. Drawing motivation and inspiration from state-of-the-art max-
return sequence modeling method (Zhuang et al., 2024), we propose the concept of Q-conditioned
maximization supervised learning within the context of goal-conditioned RL. Specifically, since the
objective in goal-conditioned RL is equivalent to maximizing the expected Q-function across all
possible goals under the given goal distribution, we commence in Section 4.1 by examining a maze
example to illustrate the detrimental impact of naively setting the Q-function to highest possible
value on trajectory stitching. An illustrative example, shown in Fig. 1, highlights the relationship
between a failing trajectory (with Q = 0, where the agent starts from the initial state but fails to reach
the final goal) and a successful trajectory (with Q = 1, where the agent reaches the final goal but
does not originate from the initial state). Ideally, the Q-function should start at 0 and shift to 1 when
transitioning to the successful trajectory. This requirement contrasts with the oversimplified approach
of artificially assigning a Q-function of 1.

And then we propose the concept of Q-conditioned maximization supervised learning, a framework
that embeds the maximization of Q-function into supervised learning. This approach aims not only to
maximize the probability of selecting appropriate actions but also to predict the highest attainable
in-distribution Q-function. To achieve this, we utilize expectile regression (Aigner et al., 1976;
Sobotka & Kneib, 2012), which seeks to ensure that the predicted Q-function closely approximates
the maximum Q-function that can be realized from the available historical trajectory. In the inference
pipeline, the model first predicts the current maximum Q-function and then identifies the best action
based on the offline dataset distribution, guided by this predicted maximum. Our findings indicate
that Q-conditioned maximization supervised learning acts as a form of goal data augmentation for
OCBC methods, leading to substantial improvements in their stitching capability. Additionally,
we present Goal-Conditioned Reinforced Supervised Learning (GCReinSL), which implements
Q-conditioned maximization supervised learning for OCBC methods, including DT (Chen et al.,
2021) and Reinforcement Learning via Supervised Learning (RvS) (Emmons et al., 2021). This
framework reinforces supervised learning through the maximization of the Q-function. In scenarios
involving trajectory stitching, as demonstrated in Fig. 1, GCReinSL typically predicts a value of 0
at the starting point and transitions to a prediction of 1 upon switching to a successful trajectory,
reflecting the predicted in-distribution maximum Q-function.

We briefly summarize our main contributions as follows: (1) Inspired by max-return sequence model-
ing (Zhuang et al., 2024), we propose a novel supervised learning framework in goal-conditioned
RL based on our concept of Q-conditioned maximization, which endows OCBC methods with
stitching ability. (2) We demonstrate that GCReinSL is equivalent to goal data augmentation for
OCBC methods. (3) Experimental results in Ghugare et al. (2024) offline datasets, designed to test
stitching ability, show that GCReinSL not only significantly enhances the stitching capability of
OCBC methods but also outperforms relevant goal data augmentation works. Additionally, in the
goal-conditioned D4RL (Fu et al., 2020) offline datasets, our method continues to outperform related
sequence modeling methods which also perform trajectory stitching.

2 RELATED WORK

Goal-conditioned RL This paper focus on goal-conditioned RL, a topic explored extensively in
prior research through various methodologies. Approaches such as conditional supervised learn-
ing (Ding et al., 2019; Gupta et al., 2020; Lynch et al., 2020; Ghosh et al., 2021; Emmons et al.,
2021), actor-critic frameworks (Andrychowicz et al., 2017; Nachum et al., 2018; Zhu et al., 2021;
Chane-Sane et al., 2021b), model-based strategies (Schmeckpeper et al., 2020; Charlesworth & Mon-
tana, 2020; Mendonca et al., 2021), and distance metric learning (Tian et al., 2020; Nair et al., 2020;
Durugkar et al., 2021; Liu et al., 2023a; Wang et al., 2023; Reichlin et al., 2024) have been employed
to learn goal-conditioned policies. These methods have demonstrated success across diverse tasks,
including real-world robotic systems (Ma et al., 2022; Shah et al., 2022; Zheng et al., 2023a). Unlike
techniques that depend on manually defined reward or distance functions, our approach builds on a
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self-supervised formulation of goal-conditioned RL, treating the task as one of predicting future state
visitation (Eysenbach et al., 2020; 2022b; Zheng et al., 2023b; Ghugare et al., 2024).

The Stitching Property The concept of stitching, as discussed by Ziebart et al. (2008), is a
characteristic property of TD-learning algorithms such as those described by Kumar et al. (2020);
Kostrikov et al. (2021a), which employ dynamic programming techniques. This property enables
these algorithms to integrate data from diverse trajectories, thereby improving their ability to handle
complex tasks by effectively utilizing available data (Cheikhi & Russo, 2023). On the other hand,
most SL-based RL methods lack this property. Brandfonbrener et al. (2022); Yang et al. (2023)
provide examples where SL algorithms do not perform stitching and Ghugare et al. (2024) also
indicates this from the perspective of combinatorial generalisation. In contrast, we use a simple maze
example to illustrate this viewpoint from the perspective of maximizing the RL objective.

Data Augmentation in RL Data augmentation, as an efficient method for improving generalization
ability, has been applied in RL (Lu et al., 2020; Stone et al., 2021; Kalashnikov et al., 2021; Hansen
& Wang, 2021; Kostrikov et al., 2021b; Yarats et al., 2021) and SL (Shorten & Khoshgoftaar, 2019).
We have noticed that some methods (Char et al., 2022; Yamagata et al., 2023b; Paster et al., 2023) use
dynamic programming to enhance existing trajectories to improve the performance of SL algorithms.
However, they still require dynamic programming. Another methods which are very similar to ours
is to only perform data augmentation for SL (Yang et al., 2023; Ghugare et al., 2024). However,
they may have the problem of not being able to correctly provide the augmented goal data such as
unreachable goals. Unlike these two methods, we approach from the perspective of maximizing
the goal-conditioned RL objective and endow the SL method with the ability to stitch trajectories,
providing agents with a more reasonable selection of augmented goals.

3 PRELIMINARIES

3.1 GOAL-CONDITIONED RL IN CONTROLLED MARKOV PROCESS

We will study the problem of goal-conditioned RL in a controlled Markov process with states s ∈ S ,
actions a ∈ A. The dynamics are p(s′ | s, a), the initial state distribution is p0(s0), the discount
factor is γ, and a reward function r(s, a, g) for each goal. The goal-conditioned policy π(a, | s, g) is
conditioned on a pair of state and goal s, g ∈ S.

We denote the t-step action-conditioned policy distribution pπt (st | s0, a0) as the distribution of
states t steps in the future given the initial state s0 and action a0 under π. For a policy π, define as
the distribution over states visited after exactly t steps. We define the discounted state occupancy
distribution as:

pπ+(st+ | s, a) ≜ (1− γ)

∞∑
t=0

γtpπt (st+ | s, a), (1)

where st+ is the variable that specifies a future state corresponding to the discounted state occupancy
distribution. For a given distribution over goals g ∼ pG , the objective of the policy π is to maximize
the probability of reaching the goal g in the future:

max
π(·|·,·)

Ep0(s0)pG(g)π(a0|s0,g)
[
pπ+(g | s0, a0)

]
. (2)

Following prior work (Eysenbach et al., 2020; Chane-Sane et al., 2021b; Blier et al., 2021; Rudner
et al., 2021; Eysenbach et al., 2022b; Bortkiewicz et al., 2024), we define the reward function r(s, a, g)
for each goal as the probability of reaching the goal at the next time step:

r(st, at, g) ≜ (1− γ)p(st+1 = g | st, at). (3)
And the Q-function can be defined for a policy π(· | ·, g):

Qπ(s, a, g) ≜ Eπ(·|g)

[ ∞∑
t=0

γtr(st, at, g) | s0=s,a0=a

]
. (4)

Theorem 3.1 (Rephrased from Proposition 1 of Eysenbach et al. (2022b)). The Q-function for the
goal-conditioned reward function in Eq. (4) is equivalent to the probability of goal g under the
discounted state occupancy distribution:

Qπ(s, a, g) = pπ+(st+ = g | s, a). (5)
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The proof is in Appendix A.1. This proposition indicates that Q-function is equivalent to the
discounted state occupancy distribution. Thus, from Eq. (2) and Eq. (5), we can conclude that the
objective of the policy π in goal-conditioned RL is equivalent to maximizing the expected Q-function
over all possible goals under the given goal distribution pG(g).

Remark 1. Translating rewards to probabilities simplifies the analysis of goal-conditioned RL
problem and allows probabilistic estimation methods (e.g., VAE (Kingma & Welling, 2014)) to be
repurposed for Q-function estimation.

Our work focuses on the offline goal-conditioned RL setting (Levine et al., 2020), the agent
can only access a static offline dataset D and cannot interact with the environment. The offline
dataset D can be collected by some unknown policies (Levine et al., 2020; Prudencio et al.,
2023). We can express the offline dataset as D := {τi}Ni=1 (Ghugare et al., 2024), where
τi :=

{
< si0, a

i
0, r

i
0 >,< si1, a

i
1, r

i
1 >, ..., < siT , a

i
T , r

i
T >

}
is the goal-conditioned trajectory and N

is the number of stored trajectories. In each τi for i ∈ 1, ..., N , si0 ∼ p0(s0).

3.2 OUTCOME CONDITIONAL BEHAVIORAL CLONING (OCBC) METHODS

We present empirical results using a simple and popular class of goal-conditioned RL methods: Out-
come conditional behavioral cloning (Eysenbach et al., 2022a) (DT (Chen et al., 2021), URL (Schmid-
huber, 2020), RvS (Emmons et al., 2021), GCSL (Chane-Sane et al., 2021a) and many others (Sun
et al., 2019; Kumar et al., 2019b)). These SL methods take as input the offline dataset D and learn a
goal-conditioned policy π(a | s, g) using a maximum likelihood objective:

max
π(·|·,·)

E(s,a,g)∼D [log π(a | s, g)] . (6)

4 METHODOLOGY

In this section, we start with a simple maze example to illustrate why classical OCBC methods
and the naive Q-conditioned maximization approach are unlikely to solve the trajectory stitching
problem. And then we employ a VAE as a neural probability estimation model to approximate
the Q-function. Further, we introduce the concept of Q-conditioned maximization supervised
learning and theoretically demonstrate that this paradigm can achieve maximum Q-function without
encountering out-of-distribution (OOD) issues. We also demonstrate that Q-conditioned maximization
supervised learning is equivalent to goal data augmentation for OCBC methods. Finally, we outline
the implementation details of our Q-conditioned maximization supervised learning, GCReinSL,
focusing on three key aspects: the model architecture, the loss function utilized during training, and
the inference pipeline.

4.1 TRAJECTORY STITCHING EXAMPLE

In the offline RL literature, trajectory stitching has garnered significant attention. Ideally, an offline
agent should be able to combine overlapping suboptimal trajectories into optimal ones (Kostrikov
et al., 2021a; Liu et al., 2023b). Both theoretical (Ghugare et al., 2024) and empirical studies (Yang
et al., 2023) have demonstrated that SL methods lack the ability to perform effective stitching. The
following example provides a detailed explanation of this limitation.

Example The Fig. 1 depicts a toy maze, where s10 is the starting state, g is the final goal

�1

�2

�

�1�’�0
1

�0
2 ��

(� =− 1)

(� = 0)

(� = 1)

Figure 1: A maze example for
trajectory stitching analysis.

with reward r = 1, g′ is a boom goal with r = −1 and other
states are all r = 0. The offline dataset contains two trajectories
one trajectory τ1 starts from the initial state s0 and reach the goal
g1 but doesn’t reach the final goal while another τ2 reaches the
final goal g but doesn’t start from s10. st is the intersection of two
trajectories and g′ is the boom goal that we aim to avoid reaching.
Trajectory stitching expects the agent can follow the first half of
τ1 (from starting state s10 to st) and then take the second half of
τ2 (from st to the goal g) to reach the goal. We first explain why
the typical OCBC methods might fail.
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If we set initial Q-function as Q̂0 = 0 at the starting state, the agent will smoothly reach the
intersection state st. However, since Q-function is still zero Q̂t = 0 at the state st, OCBC methods
will reach the state g1 rather then g. Only when Q̂t = 1, OCBC methods is possible to follow τ2. But
Q̂t = 1 is impossible to obtain given Q̂0 = 0. If we apply the naive max approach and set the initial
Q̂0 = 1, the agent might directly walk towards the boom goal g′ (r = −1) because Q̂0 = 1 is the
OOD Q-function for the starting state.

If the OCBC methods are endowed with capability to maximize the Q-function like goal-conditioned
RL, Let’s see what might happen. At the starting state s10, only τ1 is contained in dataset so the model
will predict Q̂0 = 0. When offline agent comes to the intersection st, the latter segments of both
trajectories are available. If the OCBC methods are able to maximize Q-function, then τ2 is more
likely to be selected since the Q-function Q = 1 is larger. This inspires us to bring the capability of
maximizing Q-function back into supervised learning.

4.2 Q-FUNCTION ESTIMATION WITH VAE

The central aim of goal-conditioned RL is to identify the best action for a given state and goal by
maximizing the Q-function. To achieve this, the first task is to accurately estimate the Q-function.
Drawing on previous research (Wu et al., 2022) and Theorem 3.1, we implement a Variational
Autoencoder (VAE) architecture as a probabilistic modeling tool. More specifically, we apply a
Conditional Variational Autoencoder (CVAE) (Sohn et al., 2015) for probability estimation. In
our framework, the probability pπ+(g | s0 = s, a) is modeled by a Deep Latent Variable Model,
expressed as pψ(g|s, a) =

∫
pψ(g|z, s, a)p(z|s, a)dz , with a prior distribution p(z|s, a) = N (0, I).

Although directly calculating the marginal likelihood pψ(g|s, a) is computationally infeasible, VAE
utilizes an approximate posterior qφ(z|s, a, g) ≈ pψ(z|s, a, g), enabling joint optimization of ψ and
φ parameters via the evidence lower bound (ELBO):

log pψ(g|s, a) ≥ Eqφ(z|s,a,g)

[
log

pψ(g, z|s, a)
qφ(z|s, a, g)

]
= Eqφ(z|s,a,g) [log pψ(g|z, s, a)]−KL [qφ(z|s, a, g)∥p(z|s, a)]
def
= −LELBO(s, a;φ,ψ).

(7)

After training this VAE, we can approximate the probability pπ+(g | s, a) in Eq. (5) by −LELBO. To
obtain an estimation with lower bias between log pψ(g|s, a) and pπ+(g | s, a) in Eq. (5), we use the
importance sampling technique following Rezende et al. (2014); Kingma & Welling (2019); Wu et al.
(2022):

log pψ(g|s, a) = logEqφ(z|s,a,g)

[
pψ(g, z|s, a)
qφ(z|s, a, g)

]
≈ Ez(l)∼qφ(z|s,a,g)

[
log

1

L

L∑
l=1

pψ(a, g, z
(l)|s)

qφ(z(l)|s, a, g)

]
def
= l̂og pπ+(g|s, a;φ,ψ, L).

(8)

From the reward and probability transformation in Theorem 3.1, the value of the Q-function can be
derived.

4.3 Q-CONDITIONED MAXIMIZATION SUPERVISED LEARNING

After estimating the Q-function, we aim to equip supervised learning with additional maximizing Q-
function objective , analogous to the methods employed in RL. And during inference, the supervised
learning can select optimal action conditioned on the in-distribution maximized Q-function. We
introduce the expectile regression as Q-function loss to achieve this.

Expectile regression (Newey & Powell, 1987) is well studied in applied statistics and econometrics
and has been introduced into offline RL recently (Kostrikov et al., 2021a; Wu et al., 2023; Zhuang
et al., 2024). Specifically, the Q-function loss based on the expectile regression is as follows:

LmQ = E(s,a,g)∈D
[
|m− 1 (∆Q < 0)|∆Q2

]
, (9)
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here Q = Qπ(s, a, g), ∆Q = Q− Q̂ and Q̂ can come from the supervised learning model (e.g, DT
model can independently predict both the Q-function and the corresponding actions). Herem ∈ (0, 1)
is the hyperparameter of expectile regression. When m = 0.5, expectile regression degenerates
into standard regression, also MSE loss. Q̂, which aligns with the asymmetric curves in Fig. 2.

1 0 1
Q

0.0

0.2

0.4

0.6

0.8

|m
1(

Q
<0

)|
Q2

Expectile Regression

m = 0.5
m = 0.7
m = 0.9

Figure 2: Illustration of weight.

But when m > 0.5, this asymmetric loss will give more weights
to the Q larger than Q̂. Besides, The red arrow shows the weight
increases as the m becomes larger. In other words, the predicted
Q-function Q̂ will approach larger Q.

To unveil what the Q-function loss function has learned and offer a
formal elucidation of its role, we introduce the following theorem:
Theorem 4.1. Suppose Q-function is predict by the model it-
self, we first define SG=̇ (s, g, a,Q). For m ∈ (0, 1), denote
Qm (SG) = argminLmQ (SG), then we have

lim
m→1

Qm (SG) = Qmax,

where Qmax = maxa∼D Q (s, a, g) denotes the maximum Q-
function with actions from offline dataset.

The proof is in Appendix A.2. In other words, Theorem 4.1 indicates the loss LmQ will make the
model predict the maximum Q-function when m→ 1, which is similar to the maximizing objective
in goal-conditioned RL.
Corollary 1. The concept of Q-conditioned maximization supervised learning is equivalent to
applying goal data augmentation for supervised learning (SL) methods, enabling it to exhibit stitching
property.

The proof is in Appendix A.3. Corollary 1 indicates that Q-conditioned maximization supervised
learning can select state-goal pairs formed by trajectory stitching, which is consistent with the
discussion presented in Section 4.1.

4.4 IMPLEMENTATION OF GCReinSL

Now, we will focus on the specific implementation of GCReinSL, describing the architecture input
and output, training, and inference procedures. Specifically, this section describes the training and
inference pipeline using two typical OCBC algorithms: DT and RvS. Other supervised learning
algorithms can be implemented in a similar manner. The overall structure of GCReinSL for DT is
depicted in Fig. 3, with RvS being similar, differing only in terms of its architecture.

4.4.1 GCReinSL FOR DT

Model Architecture To accommodate the Q-conditioned maximization for DT (Chen et al., 2021),
which predicts the maximum Q-function and utilizes it as a condition to guide the generation of
optimal actions, we have positioned Q-function between state and goal. In detail, the input token
sequence of GCReinSL for DT and corresponding output tokens are summarized as follows:

Input:
〈
· · · , sg(n)t , Q

(n)
t , a

(n)
t

〉
Output:

〈
Q̂

(n)
t , â

(n)
t ,□

〉
sg

(n)
t represents a token formed by concatenating s(n)t and g(n)t (Schaul et al., 2015). When predicting

the Q̂(n)
t , the model takes the current state s(n)t and previous K timesteps tokens ⟨sg,Q, a⟩(n)t−K =(

sg
(n)
t−K+1, Q

(n)
t−K+1, a

(n)
t−K+1, · · · , sg

(n)
t−1, Q

(n)
t−1, a

(n)
t−1

)
into consideration. For the sake of simplicity,

SG
(n)
t−K denotes the input

[
⟨sg,Q, a⟩(n)t−K ; sg

(n)
t

]
. While the action prediction ât is based on(

SG
(n)
t−K ,Q

(n)
t−K

)
=

[
⟨sg,Q, a⟩(n)t−K ; sg

(n)
t , Q

(n)
t

]
. The □ represents this predicted token neither

participates in training nor inference so we ignore it. At the timestep t, different tokens are embedded
by different linear layers and fed into the transformers (Vaswani et al., 2017) together. The output
Q-function Q̂(n)

t is processed by a linear layer.
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Figure 3: The overview of GCReinSL for DT: (a) Model Architecture: The Q-function is the third
inputs of GCReinSL for DT and the outputs contain Q-value and actions. (b) Train Loss: As a
Q-conditioned maximization sequence model, GCReinSL for DT not only maximizes the action
likelihood but also maximizes Q-function by expectile regression. (c) Inference Pipeline: When
inference, GCReinSL for DT first 1) gets state and goal from the environment to predict the in-
distribution maximum Q-function. Then 2) predicted in-distribution max Q-function is concatenated
with state and goal to predict the optimal action. Finally, 3) the environment executes the predicted
action to Q-function the next state.

Training Loss Since the model predicts two parts, Q̂t and ât, the loss function is composed of
Q-function loss and action loss. For the action loss, we adopt the MSE loss function of DT and
simultaneously adjust the order of tokens:

La = Et,n
[
a
(n)
t − πθ

(
SG

(n)
t−K ,Q

(n)
t−K

)]2
. (10)

The Q-function loss is the expectile regression with the parameter m:

LmQ = Et,n
[
|m− 1 (∆Q < 0)|∆Q2

]
, (11)

with ∆Q = Q
(n)
t − πθ

(
SG

(n)
t−K

)
.

Two loss functions have the same weight so the total loss is La + LQ.

Inference Pipeline For each timestep t, the action is the last token, which means the predicted
action is affected by state from the environment and the Q-function. The Q-function of the trajectories
output by the sequence modeling exhibit a positive correlation with the initial conditioned Q-function
(Chen et al., 2021; Zheng et al., 2022). That is, within a certain range, higher initial Q-function
typically lead to better actions. In classical Q-learning (Mnih et al., 2015), the optimal value function
Q∗ can derive the optimal action a∗ given the current state. In the context of sequence modeling, we
also assume that the maximum Q-function are required to output the optimal actions. The inference
pipeline of the GCReinSL is summarized as follows:

Env7−→ (sg0)
πθ−→ Q0

πθ−→ a0
Env−−→ (sg1)

πθ−→ Q1
πθ−→ a1 → · · · (12)

Specially, the environment initializes the state-goal pair (sg0) (i.e, s0 and g0 are concatenated to
form sg0) and then the sequence modeling πθ predicts the maximum Q-function Q0 given current
state-goal pair (sg0). Concatenating Q0 with (sg0), πθ can output the optimal action a0. Then the
environment transitions to the next state s1 and the reward r1. It should be noted that this reward r1
will not participate in the inference. Repeat the above steps until the trajectory comes to an end. The
overall algorithm of GCReinSL for DT is shown in Appendix B.1.

4.4.2 GCReinSL FOR RVS

Architecture To accommodate the Q-conditioned maximization for RvS (Emmons et al., 2021),
which also predicts the maximum Q-function and utilizes it as a condition to guide the generation of
optimal actions. Unlike GCReinSL for DT, we construct a actor model for predicting actions and a

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

value model for predicting Q-function. In detail, the input of GCReinSL for RvS and corresponding
output are summarized as follows:

Input: st, gt, Qt(st, at, gt)

Value Model Output: Q̂t(st, gt)

Actor Model Output: ât

(
st, gt, Q̂t(st, gt)

)
When predicting the Q̂t, the value model takes the current state st and desired goal gt. For action
â
(n)
t , We adopt a actor model that incorporates Q-values for inference.

Training Procedure and Inference Pipeline Like GCReinSL for DT, the total loss function is
also composed of Q-function loss and action loss, and the form is the same. At each step of the
inference pipeline, the value model outputs the maximum Q-function value for the input state-goal
pair, and then the actor model outputs the corresponding action. Note that in this state-goal pair, the
state and the goal are treated as distinct elements. In the context of RvS, we also assume that the
maximum Q-function are required to output the optimal actions. The training procedure is similar to
that of GCReinSL for DT, with the key distinction that the prediction of Q-values is generated by a
value model. The inference pipeline of the GCReinSL is summarized as follows:

Env7−→ (s0, g0)
vϕ−→ Q0

πθ−→ a0
Env−−→ (s1, g1)

vϕ−→ Q1
πθ−→ a1 → · · · (13)

Specially, the environment initializes the state-goal pair (s0, g0) and then the value model vϕ predicts
the maximum Q-function Q0 given current state-goal pair (s0, g0). Concatenating Q0 with (s0, g0),
πθ can output the optimal action a0. The overall algorithm of GCReinSL for RvS is shown in
Appendix B.2.

5 EXPERIMENTS

To rigorously evaluate the stitching capability of GCReinSL, we employ the offline goal-conditioned
datasets configuration as outlined in Ghugare et al. (2024). For the evaluation, we follow the
methodology outlined by Ghugare et al. (2024), modifying the the GCReinSL policy to navigate
between previously unseen combinatorial (state, goal) pairs and subsequently measure the success
rate. We then add the corresponding goal data augmentation techniques into the OCBC methods for
a comparative analysis with our proposed approach. We additionally compared GCReinSL with
the previous sequence modeling methods on D4RL (Fu et al., 2020) complex offline Antmaze-v2
datasets. Both offline goal-conditioned datasets are characterized by sparse rewards (i.e, reaching the
goal results in a reward of 1, otherwise 0) and are designed to test stitching capabilities.

5.1 EXPERIMENTAL SETUP

We conducted a series of comparative experiments by implementing the OCBC methods within
the same framework, as well as related goal data augmentation approaches. Specifically, we select
RvS (Emmons et al., 2021) and DT (Chen et al., 2021), two competitive methods in OCBC, as
baseline models for comparison. For goal data augmentation methods, we select Swapped Goal
Data Augmentation (SGDA) (Yang et al., 2023) and Temporal Goal Data Augmentation (TGDA)
(Ghugare et al., 2024) as advanced methodologies to serve as comparative baselines for our goal
data augmentation study. SGDA (Yang et al., 2023) proposes a method that randomly choose
augmented goals from different trajectories. TGDA (Ghugare et al., 2024) proposed a another
goal data augmentation approach from the perspective of combinatorial optimization. It employs
k-means (Lloyd, 1982) to cluster the goal and certain states into a group, and samples goals from
later stages of these state trajectories as augmented goals. For related sequence modeling approaches,
we select state-of-the-art methods, including Elastic Decision Transformer (EDT) (Wu et al., 2023)
and Max-Return Sequence Modeling (Reinformer) (Zhuang et al., 2024), as baselines. Both of these
methods, like ours, exhibit stitching property without requiring dynamic programming. Additionally,
we compare these sequence modeling approaches to traditional reinforcement learning methods such
as CQL and IQL. All experiments are conducted using five random seeds. Detailed implementations
and hyperparameter settings are outlined in Appendix C and Appendix D, respectively.
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Figure 4: Performance of the original OCBC, as well as OCBC with corresponding goal data
augmentation, compared to our SL method on the Pointmaze datasets from Ghugare et al. (2024).
We use the final score as the report. GCReinSL not only improves the performance of DT and RvS
in all tasks, but also outperforms exist goal data augmentation methods.

5.2 TESTING THE ABILITY OF GCReinSL AND COMPARED WITH PREVIOUS GOAL DATA
AUGMENTATION METHODS

As shown in Fig. 4, it is evident that DT and RvS are struggle to demonstrate stitching property,
particularly in the Pointmaze-Umaze and Pointmaze-Large datasets, where their perfor-
mance is notably poor. However, when Q-conditioned maximization is incorporated into the OCBC
methods, performance improvements were observed across all tasks, albeit to varying degrees. This
enhancement is attributed to the fact that GCReinSL allows for the sampling of unseen (state,
goal) combinations during the training phase, thereby improving the generalization and stitching
capability of the models. Our GCReinSL consistently outperforms the other data augmentation ap-
proaches across all Pointmaze datasets, particularly in the more complex Pointmaze-Medium
and Pointmaze-Large datasets. This suggests that our approach enables the selection of more
suitable goals, facilitating more effective trajectory stitching.

5.3 SCALING TO HIGHER-DIMENSIONAL DATASETS

To evaluate the applicability of our GCReinSL to tasks with higher-dimensional input spaces, we
implemented it on a robotic control dataset with 111-dimensions (Antmaze (Ghugare et al., 2024)).
In Fig. 5, we observe that GCReinSL improves the performance of DT and RvS across all Antmaze
datasets, with particularly notable improvements on the medium and large datasets.

OCBC SGDA TGDA GCReinSL (Ours)

DT RvS
Methods
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0.250
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Figure 5: Performance on high-dimensional Antmaze datasets: GCReinSL can still improve the
performance of DT and RvS on high-dimensional Antmaze datasets. We also use the final score
as the report. However, in some datasets such as Antmaze-Medium, GCReinSL is inferior to
advanced TGDA method.

5.4 COMPARED GCREINSL WITH THE PREVIOUS MAX-RETURN SEQUENCE MODELING
METHOD

We also compared our method with relevant sequence modeling approaches that perform stitching
property on the standard offline dataset D4RL (Fu et al., 2020), specifically on the Antmaze-v2
datasets, as shown in Table 1. From Table 1, it is evident that in the majority of the AntMaze datasets,
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particularly in the complex medium and large AntMaze tasks, the GCReinSL approach demonstrates
superior performance, significantly closing the gap with TD learning methods such as CQL.

Antmaze-v2
RL Sequence Modeling

CQL IQL DT EDT Reinformer GCReinSL (ours)

umaze 94.8 ± 0.8 84.00 ± 4.1 64.5 ± 2.1 67.8± 3.2 84.4±2.7 80.1±5.3
umaze-diverse 53.8 ± 2.1 79.5 ± 3.4 60.5 ± 2.3 58.3± 1.9 65.8±4.1 67.2±5.3
medium-play 80.5 ± 3.4 78.5 ± 3.8 0.8 ± 0.4 0.0± 0.0 13.2±6.1 49.0±3.5
medium-diverse 71.0 ± 4.5 83.5 ± 1.8 0.5 ± 0.5 0.0± 0.0 10.6±6.9 51.7±4.4
large-play 34.8 ± 5.9 53.5 ± 2.5 0.0 ± 0.0 0.6± 0.5 0.4 ±0.5 28.2±1.8
large-diverse 36.3 ± 3.3 53.0 ± 3.00 0.0 ± 0.0 0.0± 0.0 0.4 ±0.5 30.2±2.4

Total 371.2 432.0 126.3 126.7 174.8 306.4

Table 1: The normalized best score on D4RL (Fu et al., 2020) Antmaze-v2 datasets. The results come from
its original Reinformer (Zhuang et al., 2024) paper except GCReinSL. The best result is bold and the blue result
means the best result among sequence modeling.

5.5 ABLATION STUDY

In this section, we analyze the impact of the hyperparameter L in the probability estimator and m
in the Q-function loss. As illustrated in the left panel of Fig. 6, the performance does not exhibit a
linear relationship with increasing values of L. Therefore, we set L = 500 as the default value for the
datasets employed in Ghugare et al. (2024). For the D4RL Antmaze-v2 dataset (Fu et al., 2020),
we select L = 5, in line with the methodology outlined by Wu et al. (2022).

As stated in Theorem 4.1, as m → 1, the learned Q-function asymptot-
ically converges to the maximum Q-function within the offline distribution.
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Figure 6: Ablation study of different hyperparameter L and m in
Ghugare et al. (2024) datasets. (left): The performance on the
Pointmaze-Large dataset when applying different values of L
to the importance sampling estimator. (right): The trend of last results
as m varies on Pointmaze-Medium dataset.

Given that a higher in-
distribution Q-function cor-
responds to improved ac-
tion selection, we can in-
fer that performance will
improve as m approaches
1. The experimental results
presented in the right panel
of Fig. 6 are consistent with
this theoretical prediction.
However, larger values of
m do not consistently lead
to more effective training
or higher performance; in
some cases, they may re-
sult in a performance de-
cline. This could be attributed to overfitting to excessively large Q-function values present in
the offline dataset.

6 CONCLUSION

In this work, we propose the paradigm of Q-conditioned maximization supervised learning which
considers the RL objective that maximizes Q-function for SL-based methods (OCBC methods).
Both theoretical analysis and experiments indicate that our proposed model GCReinSL reduces the
performance gap between itself and classical RL approaches. However, our approach still exhibits a
gap compared to classical RL methods and is sensitive to certain hyperparameters. Future work could
focus on developing more robust SL architectures that are better suited for scenarios where classical
RL excels, particularly in trajectory stitching. This would provide a more nuanced understanding of
the respective strengths and applications of each approach.
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A PROOFS

In this section, we restate theorems in the paper and present their proofs.

A.1 PROOF OF THEOREM 3.1

Definitions Before proving this theorem, we first have the following definitions:

(1) We begin by defining the Q-function in the form of the expected reward:

Qπ(s, a, g) ≜ Eπ(·|g)

[ ∞∑
t=0

γtr(st, at, g) | s0=s,a0=a

]
. (14)

(2) Then we will define rewards conditioned with goal g as:

r(s, a, g) ≜

{
(1− γ)

(
p0(s0 = g) + γp(s1 = g | s0, a0)

)
, t = 0

(1− γ)γp(st+1 = g | st, at), t > 0.
(15)

(3) Finally, We define the discounted state occupancy distribution, as:

pπ+(g) = (1− γ)

∞∑
t=0

γtpπt (g). (16)

And We can rewrite Eq. (16) as

pπ+(g) = (1− γ)pπ0 (g) + (1− γ)

∞∑
t=1

γtpπt (g). (17)

Proof Objective Our objective is to establish a relationship between the Q-function and the
discounted state occupancy distribution:

Qπ(s, a, g) = pπ+(g | s, a) (18)

Proof We begin by examining the term for t = 0, followed by an analysis of the term for t > 0.
The probability of visiting a state at time t = 0 corresponds to the initial state distribution:

pπ0 (g) = p0(g).

For t > 0, the term pπt (g) in Eq. (17) is a probability of reaching the goal g at timestep t with policy
conditioned on g, then we can write this term as follows:

pπt (g) = Eπ(·|g) [pt(g | st−1, at−1)]

= Eπ(·|g) [p(st = g | st−1, at−1)] .

In the second line, we apply the Markov property, which implies that the probability of reaching g at
time t depends solely on the dynamics, p(st+1 | st, at).

17
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Substituting this into Eq. (17), we obtain:

pπ+(g) = (1− γ)pπ0 (g) + (1− γ)

∞∑
t=1

γtpπt (g)

= (1− γ)pπ0 (g) + (1− γ)

∞∑
t=1

γtEπ(·|g)
[
p(st = g | st−1, at−1)

]
= (1− γ)pπ0 (g) + (1− γ)

∞∑
t=0

γt+1Eπ(·|g)
[
p(st+1 = g | st, at)

]
= (1− γ)pπ0 (g) + (1− γ)Eπ(·|g)

[ ∞∑
t=0

γt+1p(st+1 = g | st, at)

]

= Eπ(·|g)

[
(1− γ)p0(s0 = g) + (1− γ)

∞∑
t=0

γt+1p(st+1 = g | st, at)

]

= Eπ(·|g)

(1− γ) (p0(s0 = g) + γp(s1 = g | s0, a0))︸ ︷︷ ︸
r(s0,a0,g)

+

∞∑
t=1

γt (1− γ)γp(st+1 = g | st, at)︸ ︷︷ ︸
r(st,at,g)


= Eπ(·|g)

[ ∞∑
t=0

γtr(st, at, g)

]
.

In the third line, we adjust the bounds of the summation to begin at 0, modifying the terms inside the
summation accordingly. In the fourth line, we apply the linearity of expectation to shift the summation
inside the expectation. In the fifth line, we again utilize the linearity of expectation to incorporate the
term for t = 0 within the expectation. In the final two lines, we substitute the definition of r(s, a, g)
to derive the desired result.

For a set state-action pair (s, a), we can obtain:

pπ+(g | s, a) = Eπ(·|g)

[ ∞∑
t=0

γtr(st, at, g) | s0=s,
a0=a

]
= Qπ(s, a, g). (19)

Thus, the relationship between the Q-function and the discounted state occupancy distribution is
formally established.

A.2 PROOF OF THEOREM 4.1

Definitions Before proving this theorem, we first have the following definitions:

(1) Expectile Regression Loss: The m-expectile regression loss for a predicted Q-function Qm

(Qm := Qm (SG) = argminLmQ (SG) ,SG := (s, g, a,Q)):

LmQ = E(s,a,g)∈D
[
|m− 1 (∆Q < 0)|∆Q2

]
, (20)

here Q = Qπ(s, a, g), ∆Q = Q − Qm and Qm can come from the supervised learning model.
1 (∆Q < 0) is an indicator function that equals 1 when (∆Q < 0). This loss introduces an asym-
metric penalty depending on whether Qm overestimates or underestimates the target Q(s, a, g).

(2) Maximum Q-function: The maximum Q-function with actions for a given (s, a, g) from offline
dataset D:

Qmax = max
a∼D

Q (s, a, g) (21)

Note that Q(s, a, g) is estimated from the offline dataset D using a VAE model, as detailed in
Section 4.2.

(3) Element-wise Interpretation: All inequalities involving Qm in this proof are interpreted element-
wise, meaning they apply independently to each tuple (s, a, g) in the offline dataset.

18
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Proof Objective Suppose the Q-function is predicted by the supervised learning model itself using
m-expectile regression, For m ∈ (0, 1), let this predicted Q-function be Qm, which minimizes the
expectile regression loss LmQ . Then as m→ 1, Qm → Qmax.

Proof The proof primarily relies on the monotonicity property of m-expectile regression and
employs a proof by contradiction.

Firstly, leveraging the monotonicity property of m-expectile regression (Newey & Powell, 1987), it
follows that Qm1 ≤ Qm2 for 0 < m1 < m2 < 1.

Secondly, for all m ∈ (0, 1), it holds that Qm ≤ Qmax. Assume there exists some m3 such
that Qm3 > Qmax. In this case, all Q-values from the offline dataset would satisfy Q < Qm3 .
Consequently, the Q-function loss can be simplified, given the constant weight 1−m3.

Lm3

Q = E
[
(1−m3) (Q−Qm3)

2
]

> E
[
(1−m3)

(
Q−max[Q

(n)
t ]

)2
]
.

This inequality holds because Q ≤ max[Q] < Qm3 . However, this contradicts the fact that Qm3 is
derived by minimizing the Q-function loss. Therefore, the assumption is invalid, and we conclude
that Qm ≤ Qmax is true. This proof step demonstrates that the predicted Q-function does not suffer
from out-of-distribution (OOD) issues.

Finally, the convergence to this limit is a direct consequence of the properties of bounded and
monotonically non-decreasing functions, thereby demonstrating the validity of the theorem.

A.3 PROOF OF COROLLARY 1

The conclusion drawn from Furuta et al. (2021) indicates that the OCBC methods can be summarized
as performing Hindsight Information Matching (HIM): Given a offline dataset D and its informa-
tion statistics I(τt), OCBC methods are trying to learn a goal-conditioned policy π(a|s, g) whose
trajectory rollouts satisfy some desired information statistics value g:

min
π
Eg∼D [D(I(τ), g)] , (22)

whereD is a divergence measure for information matching such as Kullback-Leibler (KL) divergence.
Within the HIM framework, the optimization objective of Q-conditioned maximization supervised
learning can be interpreted as aligning with the statistical property of future trajectories. In goal-
conditioned reinforcement learning (RL), this statistical information is defined as the probability
of reaching the goal g in the future. Since the Q-function aggregates future rewards, it acts as a
statistical summary of the trajectory τ1 (i.e., the expected maximum return). Therefore, the Q-value
in Q-conditioned maximization supervised learning can be understood as the trajectory information
statistic I(τ) within the HIM framework:

I(τ) = Qπ(s, a, g). (23)

Thus, the optimization objective of Q-conditioned maximization supervised learning can be expressed
as:

min
π
Eg∼D [D(Qπ(s, a, g), g)] . (24)

This is equivalent to the HIM objective of aligning trajectory statistics with a de-
fined statistical objective. Both approaches optimize the policy by matching the fu-
ture trajectory information to the desired objective. Consider two trajectories in the
offline dataset: τ1 =

{
< s10, a

1
0, r

1
0 >,< s11, a

1
1, r

1
1 >, ..., < s1T , a

1
T , r

1
T >

}
and τ2 ={

< s20, a
2
0, r

2
0 >,< s22, a

2
2, r

2
2 >, ..., < s2T , a

2
T , r

2
T >

}
, which respectively reach goals g1 and g2. If

we start from state s10 and expect to reach the final goal g, but the goal g1 achieves a lower cumulative
reward compared to the reached goal g2, Q-conditioned maximization supervised learning will tend
to select g2 as the global goal. Consequently, g2 can be utilized as an augmented goal for the initial
state s10, enhancing the overall trajectory performance. In summary, Q-conditioned maximization
supervised learning attains the optimal policy by selecting high-reward goals and stitching together
distinct trajectory segments.
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B GCReinSL ALGORITHM

Below we provide a detailed outline of the GCReinSL algorithm for DT and RvS.

B.1 GCReinSL ALGORITHM FOR DT

Algorithm 1 GCReinSL for DT

1: Input: offline dataset D, sequence modeling πθ
2: Initialize VAE with parameters ψ and φ
3: Function VAE Training
4: Sample minibatch of transitions from offline dataset D: (s, a, g) ∼ D
5: Update ψ,φ minimizing LELBO(s, a, g;φ,ψ) in Eq. (7)
6: //Training Procedure
7: for sample ⟨ · · · , st, gt, at ⟩ from D do
8: Get Qt with probability estimator with Eq. (8)
9: Get Q̂t, ât with sequence modeling πθ: Q̂t, ât = πθ (· · · , sgt, at, Qt)

10: Calculate total loss La + LmQ by Equation Eq. (10) and Eq. (11)
11: Take gradient descent step on ∇θ

(
La + LmQ

)
12: end for
13: //Inference Pipeline
14: Input: sequence modeling πθ, environment Env
15: s0 = Env.reset( ) and t = 0
16: repeat
17: Predict maximum Q-function Q̂t = πθ (· · · , sgt,□,□ )

18: Predict optimal action ât = πθ

(
· · · , sgt, Q̂t,□

)
19: st+1, rt = Env.step(ât) and t = t+ 1
20: until done

B.2 GCReinSL ALGORITHM FOR RVS

Algorithm 2 GCReinSL for RvS

1: Input: offline dataset D, actor model πθ, value model vϕ
2: VAE training is similar to GCReinSL for DT.
3: //Training Procedure
4: for sample ⟨ · · · , st, gt, at ⟩ from D do
5: Get Qt with probability estimator with Eq. (8)
6: Predict maximum Q-function Q̂t = vϕ (st, gt)

7: Predict optimal action ât = πθ

(
st, gt, Q̂t

)
8: The calculation of the total loss is also the same as in GCReinSL for DT.
9: end for

10: //Inference Pipeline
11: Input: value model vϕ, actor model πθ, environment Env
12: s0 = Env.reset( ) and t = 0
13: repeat
14: Predict maximum Q-function Q̂t = vϕ (st, gt)

15: Predict optimal action ât = πθ

(
st, gt, Q̂t

)
16: st+1, rt = Env.step(ât) and t = t+ 1
17: until done
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Umaze Medium Large(a) UmazeUmaze Medium Large(b) MediumUmaze Medium Large(c) Large

Figure 7: Goal-conditioned datasets from Ghugare et al. (2024): Different colors represent the
navigation regions of various data collection policies. During data collection, these policies navigate
between randomly selected state-goal pairs within their respective navigation regions. These visual-
izations pertain to the Pointmaze dataset, with similar patterns observed in the Antmaze dataset.

(a) Umaze (b) Medium (c) Large

Figure 8: Goal-conditioned Datasets from Fu et al. (2020): The AntMaze-v2 datasets involve
controlling an 8-DoF quadruped to navigate towards a specified goal state. This benchmark requires
value propagation to effectively stitch together sub-optimal trajectories from the collected data.

C EXPERIMENT DETAILS

In this section we provide all the implementation details as well as hyperparameters used for all the
algorithms in our experiments – DT, RvS, VAE, and GCReinSL.

C.1 OFFLINE DATASETS

Goal-conditioned Datsets from Ghugare et al. (2024) We utilize the Pointmaze and Antmaze
datasets, as presented in Ghugare et al. (2024). As described in Section 5, both offline datasets contain
106 transitions and are specifically constructed to evaluate trajectory stitching in a combinatorial
setting (see Fig. 7). In the Pointmaze dataset, the task involves controlling a ball with two degrees
of freedom by applying forces along the Cartesian x and y axes. By contrast, the Antmaze dataset
features a 3D ant agent, provided by the Farama Foundation (Towers et al., 2023). The Pointmaze
datasets were collected using a PID controller, while the Antmaze datasets were generated using a
pre-trained policy from D4RL (Fu et al., 2020). Visual representations of the various Pointmaze
configurations can be found in Fig. 7.

Goal-conditioned Datasets from Fu et al. (2020) In the experiments comparing with related
sequence modeling approaches, we follow the methodology outlined in Zhuang et al. (2024) to
construct the AntMaze-v2 datasets using D4RL, which also contain 106 transitions (see Fig. 8).
These AntMaze-v2 datasets are characterized by sparse rewards, where r = 1 is awarded upon
reaching the goal. Both the medium and large datasets lack complete trajectories from the starting
point to the goal, requiring the algorithm to stitch together incomplete or failed trajectories to achieve
the desired goal.
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C.2 IMPLEMENTATION DETAILS

We use the default configurations of DT and RvS as described in Ghugare et al. (2024), with some
values modified. Note that in specific datasets, certain parameter values have been adjusted. The
architecture and training process of the VAE are identical to those described in SPOT (Wu et al.,
2022).

Our GCReinSL for DT implementation draws inspiration from and references the following four
repositories:

• TGDA: https://github.com/RajGhugare19/stitching-is-
combinatorial-generalisation;

• SPOT: https://github.com/thuml/SPOT;

• Reinformer: https://github.com/Dragon-Zhuang/Reinformer.

The state-goal pair tokens, Q-function tokens and action tokens are first processed by different linear
layers. Then these tokens are fed into the decoder layer to obtain the embedding. Here the decoder
layer is a lightweight implementation from Reinformer (Zhuang et al., 2024). The context length for
the decoder layer is denoted as K. Our GCReinSL for RvS implementation is similar to the idea of
GCReinSL for DT, but it is divided into value networks and policy networks. The value network
outputs the expected Q-function from state s to goal g. This expected Q-function, along with the state
s and goal g, is then used as input to the policy network. We employed both the AdamW (Loshchilov,
2017) and Adam (Kingma & Ba, 2014) optimizers to optimize the total loss (i.e, action loss and
Q-function loss) for DT and RvS, respectively, in alignment with the methodologies outlined in their
original papers. The hyperparameter of Q-function loss is denoted as m.

D HYPERPARAMETERS

In this section, we will provide a detailed description of parameter settings for in our experiments.
The hyperparameters of SGDA and TGDA remain consistent with their original settings. For fair
comparison, our method still sets the same augmentation rate of 0.5 as theirs. The hyperparameters
of GCReinSL for DT in various datasets are presented in the tables below. In all tables, the arrows
indicate the directional change in the corresponding values for RvS.

D.1 HYPERPARAMETER m

The hyperparameter m is crucially related to the Q-function loss and is one of our primary focuses
for tuning. We explore values within the range of m = [0.7, 0.9, 0.99, 0.999]. When m = 0.5,
the expectile loss function will degenerate into MSE loss, which means the model is unable to
output a maximized Q-function. So we do not take m = 0.5 into consideration. We observe that
performance is generally lower at m = 0.9 compared to others except Pointmaze-Umaze. Only
Pointmaze-Large adopt the parameter m = 0.999 while m = 0.99 are generally better than
m = 0.999 on other datasets. The detailed hyperparameter selection of m is summarized in the
following table:

Table 2: Hyperparameters m of Q-function loss on different datasets.

Dataset m Antmaze-Umaze 0.9
Pointmaze-Umaze 0.99 → 0.9 Antmaze-umaze-diverse 0.99
Pointmaze-Medium 0.99 Antmaze-medium-play 0.99
Pointmaze-Large 0.99 → 0.999 Antmaze-medium-diverse 0.99
Antmaze-Umaze 0.99 Antmaze-large-play 0.99
Antmaze-Medium/Large 0.99 Antmaze-large-diverse 0.99
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D.2 CONTEXT LENGTH K

The context length K is another key hyperparameter in GCReinSL for DT, and we conduct a
parameter search across the values K = [2, 5, 10, 20]. The maximum value is 20 because the default
context length for DT (Chen et al., 2021) is 20. The minimum is 2, which corresponds to the shortest
sequence length (setting K = 1 would no longer constitute sequence learning). Overall, we found
that K = 10 and K = 20 lead to more stable learning and better performance on Ghugare et al.
(2024) Pointmaze and Antmaze datasets. Conversely, a smaller context length is preferable on
D4RL (Fu et al., 2020) Antmaze-v2 dataset. The parameter K has been summarized as follows:

Table 3: Context length K on different datasets.

Dataset K Antmaze-Umaze 2
Pointmaze-Umaze 10 Antmaze-umaze-diverse 2
Pointmaze-Medium 10 Antmaze-medium-play 3
Pointmaze-Large 5 Antmaze-medium-diverse 2
Antmaze-Umaze 20 Antmaze-large-play 3
Antmaze-Medium/Large 20 Antmaze-large-diverse 2

D.3 TRAINING STEPS AND LEARNING RATE

The default number of training steps is 50000, with a learning rate of 0.0002. With these default
settings, if the training score continues to rise, we would consider increasing the number of training
steps or doubling the learning rate. For some datasets, 50000 steps may cause overfitting and less
training steps are better. The training steps are presented in Table 4. The learning rate remains
unchanged across all (Ghugare et al., 2024) goal-conditioned datasets and is set to be the same on
the goal-conditioned dataset (Fu et al., 2020) as in (Zhuang et al., 2024). We evaluate the policy
every 10 times to obtain a mean success rate in goal-conditioned datasets or normalized score in goal-
conditioned datasets. For each seed, the mean success rate and normalized score are all calculated as
the average results of 100 trajectories.

Table 4: The training steps on different datasets.

Dataset Training Steps Antmaze-umaze 100000
Pointmaze-Umaze 50000 → 18000 Antmaze-umaze-diverse 50000
Pointmaze-Medium 80000 → 30000 Antmaze-medium-play 100000
Pointmaze-Large 80000 → 50000 Antmaze-medium-diverse 100000
Antmaze-Umaze 50000 → 60000 Antmaze-large-play 100000
Antmaze-Medium/Large 80000 → 100000 Antmaze-large-diverse 100000

E TRAINING CURVES

We exhibit the training curves on five seeds. The black line represents the mean of these five seeds
and the red shaded area represents the variance.

E.1 GOAL-CONDITIONED DATASETS FROM GHUGARE ET AL. (2024)

The training curves for nine datasets from Ghugare et al. (2024) are shown in Fig. 10. The training
process for Pointmaze-Umaze exhibits relatively stable behavior. However, the training on
Pointmaze-Medium and Pointmaze-Large is characterized by high variance and significant
fluctuations. Similarly, the Antmaze-Umaze dataset shows some degree of instability, while the
performance on the Antmaze-Medium dataset is particularly poor.
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Figure 9: Training curves of OCBC and related goal data augmentation methods on Ghugare et al.
(2024) dataset. Although our GCReinSL method exhibits some instability on certain datasets, on
average, GCReinSL tends to improve and achieves promising results with extended training. A
potential direction for future research is to develop a more robust GCReinSL method that requires
less hyperparameter tuning.

E.2 GOAL-CONDITIONED DATASETS FROM FU ET AL. (2020)

Since we report the best score during training rather than the final score, we do not include training
curves for Antmaze. As the Antmaze datasets contain sparse rewards, to prevent the occurrence of
invalid values during training, we follow the approach of Zhuang et al. (2024) and modify the reward
function to r̂ = 100 × r + 1. In the Fig. 10, we visualize the performance of the state-of-the-art
Reinformer algorithm and our method on Antmaze, and compare the results with those of the classic
TD learning algorithm, IQL. In Fig. 10, we provide a detailed performance comparison with TD
learning methods.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Reinformer GAPGCReinSL (Ours) IQL

umaze

umaze
-divers

e

medium-play

medium-divers
e

larg
e-p

lay

larg
e-d

ivers
e

Datasets

0
10
20
30
40
50
60
70
80
90

No
rm

ali
ze

d B
es

t S
co

re

Antmaze-v2

Figure 10: Performance of Reinfromer and GCReinSL on four different goal-conditioned
Antmaze-v2 datasets from Fu et al. (2020). The gap between the two orange bars represents
the difference from the IQL algorithm, with shorter gaps indicating better performance. Our SL
method outperforms advanced method Reinformer across three datasets, further reducing the gap
with TD learning methods.
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