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ABSTRACT

In federated learning, a large number of users collaborate to learn a global model.
They alternate local computations and two-way communication with a distant
server. Communication, which can be slow and costly, is the main bottleneck in
this setting. To reduce the communication load and therefore accelerate distributed
gradient descent, two strategies are popular: 1) communicate less frequently; that
is, perform several iterations of local computations between the communication
rounds; and 2) communicate compressed information instead of full-dimensional
vectors. We propose the first algorithm for distributed optimization and federated
learning, which harnesses these two strategies jointly and converges linearly to
an exact solution in the strongly convex setting, with a doubly accelerated rate:
our algorithm benefits from the two acceleration mechanisms provided by local
training and compression, namely a better dependency on the condition number of
the functions and on the dimension of the model, respectively.

1 INTRODUCTION

Federated Learning (FL) is a novel paradigm for training supervised machine learning models.
Initiated a few years ago (Konečný et al., 2016a;b; McMahan et al., 2017; Bonawitz et al., 2017),
it has become a rapidly growing interdisciplinary field. The key idea is to exploit the wealth of
information stored on edge devices, such as mobile phones, sensors and hospital workstations, to
train global models, in a collaborative way, while handling a multitude of challenges, like data
privacy (Kairouz et al., 2021; Li et al., 2020a; Wang et al., 2021). In contrast to centralized learning
in a datacenter, in FL, the parallel computing units have private data stored on each of them and
communicate with a distant orchestrating server, which aggregates the information and synchronizes
the computations, so that the process reaches a consensus and converges to a globally optimal model.
In this framework, communication between the parallel workers and the server, which can take place
over the internet or cell phone network, can be slow, costly, and unreliable. Thus, communication
dominates the overall duration and cost of the process and is the main bottleneck to be addressed by
the community, before FL can be widely adopted and applied in our daily lives.

The baseline algorithm of distributed Gradient Descent (GD) alternates between two steps: one
round of parallel computation of the local function gradients at the current model estimate, and
one round of communication of these gradient vectors to the server, which averages them to form
the new estimate for the next iteration. To decrease the communication load, two strategies can
be used: 1) communicate less frequently, or equivalently do more local computations between
successive communication rounds; or 2) compress the communicated vectors. We detail these two
strategies in Section 1.3. In this paper, we combine them, within a unified framework for randomized
communication, and derive a new algorithm named CompressedScaffnew, with local training and
communication compression. It is variance-reduced (Hanzely & Richtárik, 2019; Gorbunov et al.,
2020a; Gower et al., 2020), so that it converges to an exact solution, and provably benefits from
the two mechanisms: the convergence rate is doubly accelerated, with a better dependency on the
condition number of the functions and on the dimension of the model, in comparison with GD. In the
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remainder of this section, we formulate the convex optimization problem to solve, we propose a new
model to characterize the communication complexity, and we present the state of the art.

1.1 FORMALISM

We consider a distributed client-server setting, in which n ≥ 2 clients perform computations in
parallel and communicate back and forth with a server. We study the convex optimization problem:

minimize
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (1)

where each function fi : Rd → R models the individual cost of client i ∈ [n] := {1, . . . , n}, based
on its underlying private data. The number n of clients, as well as the dimension d ≥ 1 of the
model, are typically large. This problem is of key importance as it is an abstraction of empirical risk
minimization, the dominant framework in supervised machine learning.

For every i ∈ [n], the function fi is supposed L-smooth and µ-strongly convex,1 for some L ≥ µ > 0
(a sublinear convergence result is derived in the Appendix for the merely convex case, i.e. µ = 0).
Thus, the sought solution x⋆ of equation 1 exists and is unique. We define κ := L

µ . We focus
on the strongly convex case, because the analysis of linear convergence rates in this setting gives
clear insights and allows us to deepen our theoretical understanding of the algorithmic mechanisms
under study; in our case, local training and communication compression. The analysis of algorithms
converging to a stationary point with nonconvex functions relies on significantly different proof
techniques (Karimireddy et al., 2021; Das et al., 2022), so the nonconvex setting is out of the scope
of this paper.

To solve equation 1, the baseline algorithm of Gradient Descent (GD) consists in the simple iteration
xt+1 := xt − γ

n

∑n
i=1 ∇fi(x

t), for some stepsize γ ∈ (0, 2
L ). That is, at iteration t ≥ 0, xt is

first broadcast by the server to all clients, which compute the gradients ∇fi(x
t) ∈ Rd in parallel.

These vectors are then sent by the clients to the server, which averages them and updates the model
estimate. It is well known that for γ = Θ( 1

L ), GD converges linearly, with iteration complexity
O(κ log ϵ−1) to reach ϵ-accuracy. Since d-dimensional vectors are communicated at every iteration,
the communication complexity of GD in number of reals is O(dκ log ϵ−1). Our goal is a twofold
acceleration of GD, with a better dependency to both κ and d in this communication complexity. We
want to achieve this goal by leveraging the best of the two popular mechanisms of local training and
communication compression.

1.2 ASYMMETRIC COMMUNICATION REGIME

Uplink and downlink communication. We call uplink communication (UpCom) the parallel
transmission of data from the clients to the server and downlink communication (DownCom) the
broadcast of the same message from the server to all clients. UpCom is usually significantly
slower than DownCom, just like uploading is slower than downloading on the internet or cell phone
network. This can be due to the asymmetry of the service provider’s systems or protocols used on the
communication network, or cache memory and aggregation speed constraints of the server, which
has to decode and average the large number n of vectors received at the same time during UpCom.

Communication complexity. We measure the UpCom or DownCom complexity as the expected
number of communication rounds needed to estimate a solution with ϵ-accuracy, multiplied by the
number of real values sent during a communication round between the server and any client. Thus, the
UpCom or DownCom complexity of GD is O(dκ log ϵ−1). We leave if for future work to refine this
model of counting real numbers, to take into account how sequences of real numbers are quantized
into bitstreams, achieving further compression (Horváth et al., 2022; Albasyoni et al., 2020).

A model for the overall communication complexity. Since UpCom is usually slower than Down-
Com, we propose to measure the total communication (TotalCom) complexity as a weighted sum of

1A function f : Rd → R is said to be L-smooth if it is differentiable and its gradient is Lipschitz continuous
with constant L; that is, for every x ∈ Rd and y ∈ Rd, ∥∇f(x) − ∇f(y)∥ ≤ L∥x − y∥, where, here and
throughout the paper, the norm is the Euclidean norm. f is said to be µ-strongly convex if f − µ

2
∥ · ∥2 is convex.

We refer to Bauschke & Combettes (2017) for such standard notions of convex analysis.
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the two UpCom and DownCom complexities: we assume that the UpCom cost is 1 (unit of time per
transmitted real number), whereas the downCom cost is c ∈ [0, 1]. Therefore,

TotalCom = UpCom + c.DownCom. (2)

A symmetric but unrealistic communication regime corresponds to c = 1, whereas ignoring downCom
and focusing on UpCom, which is usually the limiting factor, corresponds to c = 0. We will provide
explicit expressions of the parameters of our algorithm to minimize the TotalCom complexity for any
given c ∈ [0, 1], keeping in mind that realistic settings correspond to small values of c. Thus, our
model of communication complexity is richer than only considering c = 0, as is usually the case.

1.3 COMMUNICATION EFFICIENCY IN FL: STATE OF THE ART

Two approaches come naturally to mind to decrease the communication load: Local Training
(LT), which consists in communicating less frequently than at every iteration, and Communication
Compression (CC), which consists in sending less than d floats during every communication round.
In this section, we review existing work related to these two strategies.

1.3.1 LOCAL TRAINING (LT)

LT is a conceptually simple and surprisingly powerful communication-acceleration technique. It
consists in the clients performing multiple local GD steps instead of only one, between successive
communication rounds. This intuitively results in “better” information being communicated, so that
less communication rounds are needed to reach a given accuracy. As shown by ample empirical
evidence, LT is very efficient in practice. It was popularized by the FedAvg algorithm of McMahan
et al. (2017), in which LT is a core component. However, LT was heuristic and no theory was
provided in their paper. LT was analyzed in several works, in the homogeneous, or i.i.d. data, regime
(Haddadpour & Mahdavi, 2019), and in the heterogeneous regime, which is more representative
in FL (Khaled et al., 2019; 2020; Stich, 2019; Woodworth et al., 2020; Li et al., 2020b; Gorbunov
et al., 2021; Glasgow et al., 2022). It stands out that LT suffers from so-called client drift, which
is the fact that the local model obtained by client i after several local GD steps approaches the
minimizer of its local cost function fi. The discrepancy between the exact solution x⋆ of equation 1
and the approximate solution obtained at convergence of LT was characterized in Malinovsky et al.
(2020). This deficiency of LT was corrected in the Scaffold algorithm of Karimireddy et al. (2020)
by introducing control variates, which correct for the client drift, so that the algorithm converges
linearly to the exact solution. S-Local-GD (Gorbunov et al., 2021) and FedLin (Mitra et al., 2021)
were later proposed, with similar convergence properties. Yet, despite the empirical superiority of
these recent algorithms relying on LT, their communication complexity remains the same as vanilla
GD, i.e. O(dκ log ϵ−1).

It is only very recently that Scaffnew was proposed by Mishchenko et al. (2022), a LT algorithm finally
achieving O(d

√
κ log ϵ−1) accelerated communication complexity. In Scaffnew, communication

is triggered randomly with a small probability p at every iteration. Thus, the expected number of
local GD steps between two communication rounds is 1/p. By choosing p = 1/

√
κ, the optimal

dependency on
√
κ instead of κ is obtained. Thus, Scaffnew is an important milestone, as it provides

the theoretical confirmation that LT is a communication acceleration mechanism. In this paper, we
propose to go even further and tackle the multiplicative factor d in the complexity of Scaffnew.

1.3.2 COMMUNICATION COMPRESSION (CC)

To decrease the communication complexity, a widely used strategy is to make use of (lossy) compres-
sion; that is, a possibly randomized mapping C : Rd → Rd is applied to the vector x that needs to be
communicated, with the property that it is much faster to transfer C(x) than the full d-dimensional
vector x. A popular sparsifying compressor is rand-k, for some k ∈ [d] := {1, . . . , d}, which
multiplies k elements of x, chosen uniformly at random, by d/k, and sets the other ones to zero. If
the receiver knows which coordinates have been selected, e.g. by running the same pseudo-random
generator, only these k elements of x are actually communicated, so that the communication com-
plexity is divided by the compression factor d/k. Another sparsifying compressor is top-k, which
keeps the k elements of x with largest absolute values unchanged and sets the other ones to zero.
Some compressors, like rand-k, are unbiased; that is, E[C(x)] = x for every x ∈ Rd, where E[·]

3



Under review as a conference paper at ICLR 2024

denotes the expectation. On the other hand, compressors like top-k are biased (Beznosikov et al.,
2020).

The variance-reduced algorithm DIANA (Mishchenko et al., 2019), later extended in several ways
(Horváth et al., 2022; Gorbunov et al., 2020a; Condat & Richtárik, 2022), is a major contribution, as
it converges linearly with a large class of unbiased compressors. For instance, when the clients use
independent rand-1 compressors for UpCom, the UpCom complexity of DIANA is O

(
(κ(1 + d

n ) +

d) log ϵ−1
)
. If n is large, this is much better than with GD. Algorithms converging linearly with biased

compressors have been proposed recently, like EF21 (Richtárik et al., 2021; Fatkhullin et al., 2021;
Condat et al., 2022), but the theory is less mature and the acceleration potential not as clear as with
unbiased compressors. We summarize existing results in Table 1. Our algorithm CompressedScaffnew
benefits from CC with specific unbiased compressors, with even more acceleration than DIANA. Also,
the focus in DIANA is on UpCom and its DownCom step is the same as in GD, with the full model
broadcast at every iteration, so that its TotalCom complexity can be worse than the one of GD.
Extensions of DIANA with bidirectional CC, i.e. compression in both UpCom and DownCom, have
been proposed (Gorbunov et al., 2020b; Philippenko & Dieuleveut, 2020; Liu et al., 2020; Condat
& Richtárik, 2022), but this does not improve its TotalCom complexity; see also Philippenko &
Dieuleveut (2021) and references therein on bidirectional CC. We note that if LT is disabled (p = 1),
CompressedScaffnew is still new and does not revert to a known algorithm with CC.

2 GOALS, CHALLENGES, CONTRIBUTIONS

Our new algorithm CompressedScaffnew builds upon the LT mechanism of Scaffnew and enables
CC. In short,

CompressedScaffnew = GD+ LT︸ ︷︷ ︸
Scaffnew

+ CC.

We focus on the strongly convex setting but we also prove sublinear convergence of Compressed-
Scaffnew in the merely convex case in the Appendix. We emphasize that the problem can be arbitrarily
heterogeneous: we don’t make any assumption on the functions fi beyond smoothness and strong
convexity, and there is no notion of data similarity whatsoever. We also stress that our goal is to
deepen our theoretical understanding of LT and CC, and to make these two intuitive and effective
mechanisms, which are widely used in practice, work in the best possible way when harnessed to
GD. It would certainly be interesting to consider possibly variance-reduced (Gorbunov et al., 2020a;
Gower et al., 2020) SGD local steps, as was done for Scaffnew in Malinovsky et al. (2022). We leave
it for future work, since we focus on the communication complexity, and stochastic gradients can only
worsen it. Reducing the computation complexity using accelerated (Nesterov, 2004) or stochastic
GD steps is somewhat orthogonal to our present study.

It is very challenging to combine LT and CC. In the strongly convex and heterogeneous case
considered here, the methods Qsparse-local-SGD (Basu et al., 2020) and FedPAQ (Reisizadeh et al.,
2020) do not converge linearly. The only linearly converging LT + CC algorithm we are aware of
is FedCOMGATE (Haddadpour et al., 2021). But its rate is O(dκ log ϵ−1), which does not show
any acceleration. By contrast, our algorithm is the first, to the best of our knowledge, to exhibit a
doubly-accelerated linear rate, by leveraging LT and CC. We note that random reshuffling, which
can be seen as a kind of LT, has been combined with CC in Sadiev et al. (2022). The TotalCom
complexity of the various algorithms is reported in Table 1.

The program of combining LT and CC looks simple, but the naive approach of plugging compressors
into Scaffnew does not work. The key of our design is to combine the two stochastic processes of
probabilistic communication and compression with a random mask in two different ways, for updating
after communication the model estimates xi on one hand, and the control variates hi on the other
hand. Indeed, a crucial property is that the sum of the control variates over all clients always remains
zero. If there is no compression (s = n), the two mechanisms coincide, since there is only one source
of randomness, which is the coin flip to trigger communication, and CompressedScaffnew reverts to
Scaffnew. Our approach relies on a dedicated design of the compressors, explained in Figure 1, so
that the messages sent by the different clients complement each other, to keep a tight control of the
variance after aggregation. We currently don’t know how to use any other type of compressors in
CompressedScaffnew.
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Algorithm 1 CompressedScaffnew

1: input: stepsizes γ > 0, η > 0, probability p ∈ (0, 1], s ∈ {2, . . . , n}, initial iterates
x0
1, . . . , x

0
n ∈ Rd, initial control variates h0

1, . . . , h
0
n ∈ Rd such that

∑n
i=1 h

0
i = 0, sequence of

independent coin flips θ0, θ1, . . . with Prob(θt = 1) = p, known by the server and all clients,
and for every t with θt = 1, a random binary mask qt = (qti)

n
i=1 ∈ Rd×n with s ones per row,

generated as explained in Figure 1, so that the binary vector qti ∈ Rd is known by client i and the
server. The compressed vector Ct

i (v) is v multiplied elementwise by qti .
2: for t = 0, 1, . . . do
3: for i = 1, . . . , n, at clients in parallel, do
4: x̂t

i := xt
i − γ∇fi(x

t
i) + γht

i
5: if θt = 1 then
6: send Ct

i (x̂
t
i) to the server, which aggregates and broadcasts x̄t := 1

s

∑n
j=1 Ct

j(x̂
t
j)

7: xt+1
i := x̄t

8: ht+1
i := ht

i +
pη
γ

(
Ct
i (x̄

t)− Ct
i (x̂

t
i)
)

9: else
10: xt+1

i := x̂t
i

11: ht+1
i := ht

i
12: end if
13: end for
14: end for

(a) (b) (c) (d)

Figure 1: The random sampling pattern qt = (qti)
n
i=1 ∈ Rd×n used for communication is generated

by a random permutation of the columns of a fixed binary template pattern, which has the prescribed
number s ≥ 2 of ones in every row. In (a) with (d, n, s) = (5, 6, 2) and (b) with (d, n, s) = (5, 7, 2),
with ones in blue and zeros in white, examples of the template pattern used when d ≥ n

s : for every
row k ∈ [d], there are s ones at columns i = mod(s(k − 1), n) + 1, . . . ,mod(sk − 1, n) + 1. Thus,
there are ⌊ sd

n ⌋ or ⌈ sd
n ⌉ ones in every column vector qi. In (c), an example of sampling pattern obtained

after a permutation of the columns of the template pattern in (a). In (d) with (d, n, s) = (3, 10, 2), an
example of the template pattern used when n

s ≥ d: for every column i = 1, . . . , ds, there is 1 one at
row k = mod(i− 1, d) + 1. Thus, there is 0 or 1 one in every column vector qi. We can note that
when d = n

s , the two different rules for d ≥ n
s and n

s ≥ d for constructing the template pattern are
equivalent, since they give exactly the same set of sampling patterns when permuting their columns.
These two rules make it possible to generate easily the columns qti of qt on the fly, without having to
generate the whole mask qt explicitly.

Thus, by making use of CC on top of LT, CompressedScaffnew establishes the new state of the art in
communication efficiency. If c is small and n is large, its TotalCom complexity is

O
((√

d
√
κ+ d

)
log ϵ−1

)
;

our general result is in Theorem 3. Thus, CompressedScaffnew enjoys twofold acceleration, with√
κ instead of κ thanks to LT and

√
d instead of d thanks to CC.

3 PROPOSED ALGORITHM CompressedScaffnew

The proposed algorithm CompressedScaffnew is shown as Algorithm 1. At every iteration t ≥ 0,
every client i ∈ [n] performs a gradient descent step with respect to its private cost fi, evaluated
at its local model xt

i, with a correction term by its control variate ht
i. This yields a prediction x̂t

i
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Table 1: TotalCom complexity of linearly converging algorithms using Local Training (LT), Com-
munication Compression (CC), or both. The Õ notation hides the log ϵ−1 factor. We note that
some of the referenced methods incorporate features of practical interest like the use of stochastic
gradients or partial participation. They are irrelevant for our purpose, since they can only worsen the
communication complexity, which is the object of our study.

Algorithm LT CC TotalCom TotalCom=UpCom when c = 0

DIANA (a) ✗ ✓ Õ
(
(1+cd+ d+cd2

n
)κ+d+cd2

)
Õ
(
(1 + d

n
)κ+ d

)
EF21 (b) ✗ ✓ Õ(dκ) Õ(dκ)

Scaffold ✓ ✗ Õ(dκ) Õ(dκ)

FedLin ✓ ✗ Õ(dκ) Õ(dκ)

S-Local-GD ✓ ✗ Õ(dκ) Õ(dκ)

Scaffnew ✓ ✗ Õ(d
√
κ) Õ(d

√
κ)

FedCOMGATE ✓ ✓ Õ(dκ) Õ(dκ)

CompressedScaffnew ✓ ✓ Õ
(
d

√
κ√
n
+
√
d
√
κ+d+

√
c d

√
κ
)

Õ
(
d

√
κ√
n
+

√
d
√
κ+ d

)
(a) using independent rand-1 compressors, for instance. Note that O(

√
d
√
κ+ d) is better than O(κ+ d)

and O(d
√

κ√
n
+ d) is better than O( d

n
κ+ d), so that CompressedScaffnew has a better complexity than DIANA.

(b) using top-k compressors with any k, for instance.

of the updated local model. Then a random coin flip is made, to decide whether communication
occurs or not. Communication occurs with probability p ∈ (0, 1], with p typically small. If there is
no communication, xt+1

i is simply set as x̂t
i and hi is unchanged. If communication occurs, every

client sends a compressed version of x̂t
i; that is, it sends only a few of its elements, selected randomly

according to the rule explained in Figure 1 and known by both the clients and the server (for decoding).
The server aggregates the received vectors and forms x̄t, which is broadcast to all clients. They
all resume with this fresh estimate of the solution. Every client updates its control variates hi by
modifying only the coordinates which have been involved in the communication process; that is, for
which qti has a one. Indeed, the other coordinates of x̂t

i have not participated to the formation of x̄t,
so the received vector x̄t does not contain relevant information to update ht

i at these coordinates.

The probability p ∈ (0, 1] of communication controls the amount of LT, since the expected number
of local GD steps between two successive communication rounds is 1/p. If p = 1, communication
happens at every iteration and LT is disabled. The sparsity index s ∈ {2, . . . , n} controls the amount
of compression: the lower s, the more compression. If s = n and η = 1, there is no compression and
Ct
i (v) = v for any v; then CompressedScaffnew reverts to Scaffnew.

Our main result, stating linear convergence of CompressedScaffnew to the exact solution x⋆ of
equation 1, is the following:
Theorem 1. In CompressedScaffnew, suppose that

0 < γ <
2

L
and 0 < η ≤ n(s− 1)

s(n− 1)
∈
(
1

2
, 1

]
. (3)

For every t ≥ 0, define the Lyapunov function

Ψt :=
1

γ

n∑
i=1

∥∥xt
i − x⋆

∥∥2 + γ

p2η

n− 1

s− 1

n∑
i=1

∥∥ht
i − h⋆

i

∥∥2 , (4)

where x⋆ is the unique solution to equation 1 and h⋆
i = ∇fi(x

⋆). Then CompressedScaffnew
converges linearly: for every t ≥ 0,

E
[
Ψt
]
≤ ρtΨ0, (5)

where

ρ := max

(
(1− γµ)2, (γL− 1)2, 1− p2η

s− 1

n− 1

)
< 1. (6)

Also, for every i ∈ [n], (xt
i)t∈N and (x̂t

i)t∈N both converge to x⋆ and (ht
i)t∈N converges to h⋆

i , almost
surely.
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Remark 1. One can simply set η = 1
2 in CompressedScaffnew, which is independent of n and s.

However, the larger η, the better, so it is recommended to set

η =
n(s− 1)

s(n− 1)
. (7)

3.1 ITERATION COMPLEXITY

CompressedScaffnew has the same iteration complexity as GD, with rate ρ♯ := max(1−γµ, γL−1)2,
as long as p and s are large enough to have

1− p2η
s− 1

n− 1
≤ ρ♯.

This is remarkable: compression during aggregation with p < 1 and s < n does not harm convergence
at all, until some threshold. This is in contrast with other algorithms with CC, like DIANA, where
even a small amount of compression worsens the worst-case complexity.

For any s ≥ 2, p ∈ (0, 1], γ = Θ( 1
L ), and fixed η ∈ (0, 1], the asymptotic iteration complexity of

CompressedScaffnew to reach ϵ-accuracy, i.e. E[Ψt] ≤ ϵ, is

O
((

κ+
n

sp2

)
log ϵ−1

)
. (8)

Thus, by choosing

p = min

(√
(1− ρ♯)(n− 1)

η(s− 1)
, 1

)
, (9)

or more generally

p = min

(
Θ

(√
n

sκ

)
, 1

)
, (10)

the iteration complexity becomes

O
((

κ+
n

s

)
log ϵ−1

)
.

In particular, with the choice recommended in equation 13 of s = max(2, ⌊n
d ⌋, ⌊cn⌋), which yields

the best TotalCom complexity, the iteration complexity is

O
((

κ+min
(
d, n, 1

c

))
log ϵ−1

)
(with 1

c = +∞ if c = 0).

3.2 CONVERGENCE IN THE CONVEX CASE

In this section only, we remove the hypothesis of strong convexity: the functions fi are just assumed
to be convex and L-smooth, and we suppose that a solution x⋆ ∈ Rd to equation 1 exists. Then we
have sublinear ergodic convergence:

Theorem 2. In CompressedScaffnew, suppose that

0 < γ < 2
L and 0 < η < n(s−1)

s(n−1) ∈
(
1
2 , 1
]
. (11)

Then, for every i = 1, . . . , n and T ≥ 0,

E
[∥∥∇f(x̃T

i )
∥∥2] = O

(
1
T

)
, (12)

where x̃T
i := 1

T+1

∑T
t=0 x

t
i (an explicit upper bound is given in the proof).
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4 COMMUNICATION COMPLEXITY

For any s ≥ 2, p ∈ (0, 1], γ = Θ( 1
L ), and fixed η ∈ (0, 1], the asymptotic iteration complexity

of CompressedScaffnew is given in equation 8. Communication occurs at every iteration with
probability p, and during every communication round, DownCom consists in broadcasting the full
d-dimensional vector x̄t, whereas in UpCom, compression is effective and the number of real values
sent in parallel by the clients is equal to the number of ones per column in the sampling pattern q,
which is ⌈ sd

n ⌉ ≥ 1. Hence, the communication complexities are:

DownCom: O
(
pd

(
κ+

n

sp2

)
log ϵ−1

)
,

UpCom: O
(
p

(
sd

n
+ 1

)(
κ+

n

sp2

)
log ϵ−1

)
.

TotalCom: O
(
p

(
sd

n
+ 1 + cd

)(
κ+

n

sp2

)
log ϵ−1

)
.

For a given s, the best choice for p, for both DownCom and UpCom, is given in equation 9, or more
generally equation 10, for which

O
(
p

(
κ+

n

sp2

))
= O

(√
nκ

s
+

n

s

)
and the TotalCom complexity is

TotalCom: O
((√

nκ

s
+

n

s

)(
sd

n
+ 1 + cd

)
log ϵ−1

)
.

We see the first acceleration effect due to LT: with a suitable p < 1, the communication complexity
only depends on

√
κ, not κ, whatever the compression level s. Without compression, i.e. s = n,

CompressedScaffnew reverts to Scaffnew, with TotalCom complexity O(d
√
κ log ϵ−1). We can now

set s to further accelerate the algorithm, by minimizing the TotalCom complexity:
Theorem 3. In CompressedScaffnew, suppose that equation 3 holds, with η fixed and γ = Θ( 1

L ),
that p satisfies equation 10 and that

s = max
(
2,
⌊n
d

⌋
, ⌊cn⌋

)
. (13)

Then the TotalCom complexity of CompressedScaffnew is

O
((

d

√
κ√
n
+
√
d
√
κ+ d+

√
c d

√
κ

)
log ϵ−1

)
. (14)

Hence, as long as c ≤ max( 2n ,
1
d ,

1
κ ), there is no difference with the case c = 0, in which we only

focus on UpCom, and the TotalCom complexity is

O
((

d

√
κ√
n
+
√
d
√
κ+ d

)
log ϵ−1

)
.

On the other hand, if c ≥ max( 2n ,
1
d ,

1
κ ), the complexity increases and becomes O

(√
c d

√
κ log ϵ−1

)
,

but compression remains operational and effective with the
√
c factor. It is only when c = 1 that

s = n, i.e. there is no compression and CompressedScaffnew reverts to Scaffnew, and that the
Upcom, DownCom and TotalCom complexities all become O

(
d
√
κ log ϵ−1

)
. In any case, for every

c ∈ [0, 1], CompressedScaffnew is faster than Scaffnew.

We have reported in Table 1 the TotalCom complexity for several algorithms, and to the best of
our knowledge, CompressedScaffnew improves upon all known algorithms, which use either LT or
CC on top of GD. Moreover, this is achieved not only for uplink communication, but for our more
comprehensive model of total communication.

Carrying out large-scale experiments is beyond the scope of this work, which studies the foundational
algorithmic and theoretical properties of a class of algorithms. Nevertheless, we illustrate and confirm
our results on a practical logistic regression problem. The results are shown in Figures 2 and 3 and
we refer to the Appendix for the explanations, by lack of space.
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(a) real-sim, n = 2000, c = 0 (b) real-sim, n = 2000, c = 0.2

(c) w8a, n = 3000, c = 0 (d) w8a, n = 3000, c = 0.2

Figure 2: Logistic regression experiment. The datasets real-sim and w8a have d = 20, 958 and
d = 300 features, respectively. In (a) and (b), d ≈ 10n, whereas in (c) and (d), this is the opposite
with n = 10d.

(a) real-sim, n = 2000, c = 0 (b) real-sim, n = 2000, c = 0.2

(c) w8a, n = 3000, c = 0 (d) w8a, n = 3000, c = 0.2

Figure 3: Logistic regression experiment. The setting is the same as in Figure 2, but with κ = 106

instead of 334.
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Table 2: Summary of the main notations used in the paper.
LT local training
CC communication compression
L smoothness constant
µ strong convexity constant

κ = L/µ condition number of the functions
d dimension of the model
n, i number and index of clients

[n] = {1, . . . , n}
c weight on downlink communication (DownCom), see equation 2

s ∈ {2, . . . , n} sparsity index for compression. No compression if s = n
q = (qi)

c
i=1 random binary mask for compression, as detailed in Figure 1

p probability that communication occurs at any iteration
p−1 expected number of local steps per round
t, T indexes of iterations

γ, η, τ stepsizes
xi local model estimate at client i
hi local control variate tracking ∇fi
x̄ model estimate at the server
ρ convergence rate

A EXPERIMENTS

We consider a logistic regression problem. The global loss function is

f(x) =
1

M

M∑
m=1

log(1 + exp(−bma⊤mx)) +
µ

2
∥x∥2, (15)

where the am ∈ Rd and bm ∈ {−1, 1} are data samples and M is their total number. The function f
in equation 15 is split into n functions fi (the remainder of M divided by n samples is discarded).
The strong convexity parameter µ is set to 0.003L0 in Figure 2 and 10−6L0 in Figure 3, where L0 is
the smoothness constant without the µ

2 ∥x∥
2 term (so that L = L0 + µ). We consider the case where

the number of clients is larger than the model dimension (n > d) and vice versa. For this, we use the
‘w8a’ and ‘real-sim’ datasets from the classical LIBSVM library (Chang & Lin, 2011). For each of
them, we consider the two cases c = 0 and c = 0.2.

We measure the convergence error f(x)− f(x⋆) with respect to the TotalCom amount of commu-
nication, where x is xt for GD and x̄t when communication occurs for CompressedScaffnew and
Scaffnew. The objective gap f(x)− f(x⋆) is a fair way to compare different algorithms and, since f
is L-smooth, f(x) − f(x⋆) ≤ L

2 ∥x − x⋆∥2 for any x, so that it is guaranteed to converge linearly
with the same rate as Ψ in Theorem 1.

The stepsize γ = 2
L+µ is used in all algorithms. The probability p is set to 1√

κ
for Scaffnew and

min(
√

n
sκ , 1) for CompressedScaffnew, with s and η set according to equation 13 and equation 7,

respectively. x0 and the h0
i are all set to zero vectors.

The results are shown in Figures 2 and 3. The algorithms converge linearly, and CompressedScaffnew
is faster than Scaffnew, as expected. This confirms that the proposed compression technique is
effective. The speedup of CompressedScaffnew over Scaffnew is higher for c = 0 than for c = 0.2.
This is also expected, since when c increases, there is less compression and the two algorithms
become more similar; they are the same, without compression, when c = 1.

B CONCLUSION

We have proposed CompressedScaffnew, the first communication-efficient algorithm for distributed
optimization that provably benefits from the two combined acceleration mechanisms of Local
Training (LT) and Communication Compression (CC). Moreover, this is achieved not only for uplink
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communication, but for our more comprehensive model of total communication. These theoretical
guarantees are confirmed in practice and CompressedScaffnew communicates less than existing
algorithms to reach the same accuracy. An important venue for future work will be to generalize our
specific compression mechanism to a broad class of compressors including quantization (Horváth
et al., 2022). Also, bidirectional compression, i.e. applying compression to not only uplink but also
downlink communication, should be investigated (Liu et al., 2020; Philippenko & Dieuleveut, 2021).
Another venue consists in replacing the true gradients by stochastic estimates, in combination with
variance reduction strategies, as was done for Scaffnew in Malinovsky et al. (2022). Analyzing the
properties of CompressedScaffnew on nonconvex problems should also be studied (Karimireddy
et al., 2021; Das et al., 2022).

C PROOF OF THEOREM 1

We introduce vector notations to simplify the derivations: the problem equation 1 can be written as

find x⋆ = argmin
x∈X

f(x) s.t. Wx = 0, (16)

where X := Rd×n, an element x = (xi)
n
i=1 ∈ X is a collection of vectors xi ∈ Rd, f : x ∈ X 7→∑n

i=1 fi(xi) is L-smooth and µ-strongly convex, the linear operator W : X → X maps x = (xi)
n
i=1

to (xi − 1
n

∑n
j=1 xj)

n
i=1. The constraint Wx = 0 means that x minus its average is zero; that is, x

has identical components x1 = · · · = xn. Thus, equation 16 is indeed equivalent to equation 1. We
have W = W ∗ = W 2.

We solve the problem equation 16 using the following algorithm, which will be shown below to be
CompressedScaffnew:

Algorithm 2
input: stepsizes γ > 0, τ > 0; s ∈ {2, . . . , n}; initial estimates x0 ∈ X , u0 ∈ X with

∑n
i=1 u

0
i =

0; constant ω ≥ 0; sequence of independent coin flips θ0, θ1, . . . with Prob(θt = 1) = p, and
for every t with θt = 1, a random binary mask qt = (qti)

n
i=1 ∈ Rd×n generated as explained in

Figure 1. The compressed vector Ct
i (v) is v multiplied elementwise by qti .

for t = 0, 1, . . . do
x̂t := xt − γ∇f(xt)− γut

if θt = 1 then
x̄t := 1

s

∑n
j=1 Ct

j(x̂
t
j)

xt+1 := x̄t, with x̄t
i = x̄t, for every i = 1, . . . , n

else
xt+1 := x̂t

end if
dt :≈ W x̂t

ut+1 := ut + τ
1+ωd

t

end for

We denote by Ft the σ-algebra generated by the collection of X -valued random variables
(x0,u0), . . . , (xt,ut), for every t ≥ 0. In Algorithm 2, dt :≈ W x̂t means that dt is a random
variable with expectation W x̂t. Its construction, so that Algorithm 2 becomes CompressedScaffnew,
is explained in Section C.1, but the convergence analysis of Algorithm 2 only relies on the 3 following
properties of this stochastic process, which are supposed to hold: for every t ≥ 0,

1. E[dt | F t] = W x̂t.

2. There exists a value ω ≥ 0 such that

E
[∥∥dt −W x̂t

∥∥2 | F t
]
≤ ω

∥∥W x̂t
∥∥2 . (17)

3. dt belongs to the range of W ; that is,
∑n

i=1 d
t
i = 0.
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In Algorithm 2, we suppose that
∑n

i=1 u
0
i = 0. Then, it follows from the third property of dt that,

for every t ≥ 0,
∑n

i=1 u
t
i = 0; that is, Wut = ut.

Algorithm 2 converges linearly:

Theorem 4. In Algorithm 2, suppose that 0 < γ < 2
L and that τ ≤ p

γ
n(s−1)
s(n−1) . For every t ≥ 0, define

the Lyapunov function

Ψt :=
1

γ

∥∥xt − x⋆
∥∥2 + 1 + ω

τ

∥∥ut − u⋆
∥∥2 , (18)

where x⋆ is the unique solution to equation 16 and u⋆ := −∇f(x⋆). Then Algorithm 2 converges
linearly: for every t ≥ 0,

E
[
Ψt
]
≤ ρtΨ0, (19)

where

ρ := max

(
(1− γµ)2, (γL− 1)2, 1− γτ

1 + ω

)
< 1. (20)

Also, (xt)t∈N and (x̂t)t∈N both converge to x⋆ and (ut)t∈N converges to u⋆, almost surely.

Proof. For every t ≥ 0, we define ût+1 := ut + τW x̂t, wt := xt − γ∇f(xt) and w⋆ := x⋆ −
γ∇f(x⋆). We also define x̄t♯ := (x̄t♯)ni=1, with x̄t♯ := 1

n

∑n
i=1 x̂

t
i; that is, x̄t♯ is the exact average of

the x̂t
i, of which x̄t is an unbiased random estimate.

We have

E
[∥∥xt+1 − x⋆

∥∥2 | Ft

]
= pEqt

[∥∥x̄t − x⋆
∥∥2 | Ft

]
+ (1− p)

∥∥x̂t − x⋆
∥∥2 ,

where Eqt denotes the expectation with respect to the random mask qt. To analyze

Eqt

[
∥x̄t − x⋆∥2 | Ft

]
, we can remark that the expectation and the squared Euclidean norm are

separable with respect to the coordinates of the d-dimensional vectors, so that we can reason on the
coordinates independently on each other, even if the the coordinates, or rows, of qt are mutually de-
pendent. Thus, for every coordinate k ∈ [d], it is like a subset Ωt

k ⊂ [n] of size s, which corresponds
to the location of the ones in the k-th row of qt, is chosen uniformly at random and

x̄t
k =

1

s

∑
i∈Ωt

k

x̂t
i,k.

Since Eqt [x̄t | Ft] = x̄t♯,

Eqt

[∥∥x̄t − x⋆
∥∥2 | Ft

]
=
∥∥x̄t♯ − x⋆

∥∥2 + Eqt

[∥∥x̄t − x̄t♯
∥∥2 | Ft

]
,

with ∥∥x̄t♯ − x⋆
∥∥2 =

∥∥x̂t − x⋆
∥∥2 − ∥∥W x̂t

∥∥2
and, as proved in Condat & Richtárik (2022, Proposition 1),

Eqt

[∥∥x̄t − x̄t♯
∥∥2 | Ft

]
= n

d∑
k=1

EΩt
k


1

s

∑
i∈Ωt

k

x̂t
i,k − 1

n

n∑
j=1

x̂t
j,k

2

| Ft

 = ν
∥∥W x̂t

∥∥2 ,
where

ν :=
n− s

s(n− 1)
∈
[
0,

1

2

)
. (21)

Moreover,∥∥x̂t − x⋆
∥∥2 =

∥∥wt −w⋆
∥∥2 + γ2

∥∥ut − u⋆
∥∥2 − 2γ⟨wt −w⋆,ut − u⋆⟩

=
∥∥wt −w⋆

∥∥2 − γ2
∥∥ut − u⋆

∥∥2 − 2γ⟨x̂t − x⋆,ut − u⋆⟩

=
∥∥wt −w⋆

∥∥2 − γ2
∥∥ut − u⋆

∥∥2 − 2γ⟨x̂t − x⋆, ût+1 − u⋆⟩+ 2γ⟨x̂t − x⋆, ût+1 − ut⟩

=
∥∥wt −w⋆

∥∥2 − γ2
∥∥ut − u⋆

∥∥2 − 2γ⟨x̂t − x⋆, ût+1 − u⋆⟩+ 2γτ⟨x̂t − x⋆,W x̂t⟩

=
∥∥wt −w⋆

∥∥2 − γ2
∥∥ut − u⋆

∥∥2 − 2γ⟨x̂t − x⋆, ût+1 − u⋆⟩+ 2γτ
∥∥W x̂t

∥∥2 .
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Hence,

E
[∥∥xt+1 − x⋆

∥∥2 | Ft

]
= p

∥∥x̂t − x⋆
∥∥2 − p

∥∥W x̂t
∥∥2 + pν

∥∥W x̂t
∥∥2 + (1− p)

∥∥x̂t − x⋆
∥∥2

=
∥∥x̂t − x⋆

∥∥2 − p(1− ν)
∥∥W x̂t

∥∥2
=
∥∥wt −w⋆

∥∥2 − γ2
∥∥ut − u⋆

∥∥2 − 2γ⟨x̂t − x⋆, ût+1 − u⋆⟩

+
(
2γτ − p(1− ν)

) ∥∥W x̂t
∥∥2 .

On the other hand,

E
[∥∥ut+1 − u⋆

∥∥2 | Ft

]
≤
∥∥∥∥ut − u⋆ +

1

1 + ω

(
ût+1 − ut

)∥∥∥∥2 + ω

(1 + ω)2
∥∥ût+1 − ut

∥∥2
=

∥∥∥∥ ω

1 + ω

(
ut − u⋆

)
+

1

1 + ω

(
ût+1 − u⋆

)∥∥∥∥2 + ω

(1 + ω)2
∥∥ût+1 − ut

∥∥2
=

ω2

(1 + ω)2
∥∥ut − u⋆

∥∥2 + 1

(1 + ω)2
∥∥ût+1 − u⋆

∥∥2
+

2ω

(1 + ω)2
⟨ut − u⋆, ût+1 − u⋆⟩+ ω

(1 + ω)2
∥∥ût+1 − u⋆

∥∥2
+

ω

(1 + ω)2
∥∥ut − u⋆

∥∥2 − 2ω

(1 + ω)2
⟨ut − u⋆, ût+1 − u⋆⟩

=
1

1 + ω

∥∥ût+1 − u⋆
∥∥2 + ω

1 + ω

∥∥ut − u⋆
∥∥2 .

Moreover,∥∥ût+1 − u⋆
∥∥2 =

∥∥(ut − u⋆) + (ût+1 − ut)
∥∥2

=
∥∥ut − u⋆

∥∥2 + ∥∥ût+1 − ut
∥∥2 + 2⟨ut − u⋆, ût+1 − ut⟩

=
∥∥ut − u⋆

∥∥2 + 2⟨ût+1 − u⋆, ût+1 − ut⟩ −
∥∥ût+1 − ut

∥∥2
=
∥∥ut − u⋆

∥∥2 − ∥∥ût+1 − ut
∥∥2 + 2τ⟨ût+1 − u⋆,W (x̂t − x⋆)⟩

=
∥∥ut − u⋆

∥∥2 − τ2
∥∥W x̂t

∥∥2 + 2τ⟨W (ût+1 − u⋆), x̂t − x⋆⟩

=
∥∥ut − u⋆

∥∥2 − τ2
∥∥W x̂t

∥∥2 + 2τ⟨ût+1 − u⋆, x̂t − x⋆⟩.

Hence,
1

γ
E
[∥∥xt+1 − x⋆

∥∥2 | Ft

]
+

1 + ω

τ
E
[∥∥ut+1 − u⋆

∥∥2 | Ft

]
≤ 1

γ

∥∥wt −w⋆
∥∥2 − γ

∥∥ut − u⋆
∥∥2 + (2τ − p

γ
(1− ν)

)∥∥W x̂t
∥∥2

− 2⟨x̂t − x⋆, ût+1 − u⋆⟩+ 1

τ

∥∥ut − u⋆
∥∥2

− τ
∥∥W x̂t

∥∥2 + 2⟨ût+1 − u⋆, x̂t − x⋆⟩+ ω

τ

∥∥ut − u⋆
∥∥2

=
1

γ

∥∥wt −w⋆
∥∥2 + (1 + ω

τ
− γ

)∥∥ut − u⋆
∥∥2

+

(
τ − p

γ
(1− ν)

)∥∥W x̂t
∥∥2 . (22)

Since we have supposed τ − p
γ (1− ν) ≤ 0,

1

γ
E
[∥∥xt+1 − x⋆

∥∥2 | Ft

]
+

1 + ω

τ
E
[∥∥ut+1 − u⋆

∥∥2 | Ft

]
≤ 1

γ

∥∥wt −w⋆
∥∥2 + 1 + ω

τ

(
1− γτ

1 + ω

)∥∥ut − u⋆
∥∥2 .
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According to Condat & Richtárik (2023, Lemma 1),∥∥wt −w⋆
∥∥2 =

∥∥(Id− γ∇f)xt − (Id− γ∇f)x⋆
∥∥2

≤ max(1− γµ, γL− 1)2
∥∥xt − x⋆

∥∥2 .
Therefore,

E
[
Ψt+1 | Ft

]
≤ max

(
(1− γµ)2, (γL− 1)2, 1− γτ

1 + ω

)
Ψt. (23)

Using the tower rule, we can unroll the recursion in equation 23 to obtain the unconditional expecta-
tion of Ψt+1. Moreover, using classical results on supermartingale convergence (Bertsekas, 2015,
Proposition A.4.5), it follows from equation 23 that Ψt → 0 almost surely. Almost sure convergence
of xt and ut follows. Finally, by Lipschitz continuity of ∇f , we can upper bound ∥x̂t − x⋆∥2 by a
linear combination of ∥xt − x⋆∥2 and ∥ut −u⋆∥2. It follows that E

[
∥x̂t − x⋆∥2

]
→ 0 linearly with

the same rate ρ and that x̂t → x⋆ almost surely, as well.

CompressedScaffnew corresponds to Algorithm 2 with ui replaced by −hi, the randomization
strategy for the dual update detailed in Section C.1, the variance factors ω and ν defined in equation 26
and equation 21, respectively, and τ := p

γ η, for some η with

0 < η ≤ 1− ν =
n(s− 1)

s(n− 1)
∈
(
1

2
, 1

]
.

With these substitutions, Theorem 4 yields Theorem 1.

C.1 THE RANDOM VARIABLE dt

We define the random variable dt used in Algorithm 2, so that it becomes CompressedScaffnew. If
θt = 0, dt := 0. If, on the other hand, θt = 1, for every coordinate k ∈ [d], a subset Ωt

k ⊂ [n] of
size s is chosen uniformly at random. These sets (Ωt

k)
d
k=1 are mutually dependent, but this does not

matter for the derivations, since we can reason on the coordinates separately. Then, for every k ∈ [d]
and i ∈ [n],

dti,k :=

{
a
(
x̂t
i,k − 1

s

∑
j∈Ωt

k
x̂t
j,k

)
if i ∈ Ωt

k,

0 otherwise,
(24)

for some value a > 0 to determine. We can check that
∑n

i=1 d
t
i = 0. We can also note that dt

depends only on W x̂t and not on x̂t; in particular, if x̂t
1 = · · · = x̂t

n, dti = 0. We have to set a so that
E[dti] = x̂t

i − 1
n

∑n
j=1 x̂

t
j , where the expectation is with respect to θt and the Ωt

k (all expectations in
this section are conditional to x̂t). So, let us calculate this expectation.

Let k ∈ [d]. For every i ∈ [n],

E
[
dti,k
]
= p

s

n

ax̂t
i,k − a

s
EΩ:i∈Ω

∑
j∈Ω

x̂t
j,k

 ,

where EΩ:i∈Ω denotes the expectation with respect to a subset Ω ⊂ [n] of size s containing i and
chosen uniformly at random. We have

EΩ:i∈Ω

∑
j∈Ω

x̂t
j,k

 = x̂t
i,k +

s− 1

n− 1

∑
j∈[n]\{i}

x̂t
j,k =

n− s

n− 1
x̂t
i,k +

s− 1

n− 1

n∑
j=1

x̂t
j,k.

Hence, for every i ∈ [n],

E
[
dti,k
]
= p

s

n

(
a− a

s

n− s

n− 1

)
x̂i,k − p

s

n

a

s

s− 1

n− 1

n∑
j=1

x̂j,k.

18
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Therefore, by setting

a :=
n− 1

p(s− 1)
, (25)

we have, for every i ∈ [n],

E
[
dti,k
]
= p

s

n

(
1

p

n− 1

s− 1
− 1

p

n− s

s(s− 1)

)
x̂i,k − 1

n

n∑
j=1

x̂j,k

= x̂i,k − 1

n

n∑
j=1

x̂j,k,

as desired.

Now, we want to find ω such that equation 17 holds or, equivalently,

E

[
n∑

i=1

∥∥dti∥∥2
]
≤ (1 + ω)

n∑
i=1

∥∥∥∥∥∥x̂t
i −

1

n

n∑
j=1

x̂t
j

∥∥∥∥∥∥
2

.

We can reason on the coordinates separately, or all at once to ease the notations: we have

E

[
n∑

i=1

∥∥dti∥∥2
]
= p

s

n

n∑
i=1

EΩ:i∈Ω

∥∥∥∥∥∥ax̂t
i −

a

s

∑
j∈Ω

x̂t
j

∥∥∥∥∥∥
2

.

For every i ∈ [n],

EΩ:i∈Ω

∥∥∥∥∥∥ax̂t
i −

a

s

∑
j∈Ω

x̂t
j

∥∥∥∥∥∥
2

= EΩ:i∈Ω

∥∥∥∥∥∥
(
a− a

s

)
x̂t
i −

a

s

∑
j∈Ω\{i}

x̂t
j

∥∥∥∥∥∥
2

=
∥∥∥(a− a

s

)
x̂t
i

∥∥∥2 + EΩ:i∈Ω

∥∥∥∥∥∥as
∑

j∈Ω\{i}

x̂t
j

∥∥∥∥∥∥
2

− 2

〈(
a− a

s

)
x̂t
i,
a

s
EΩ:i∈Ω

∑
j∈Ω\{i}

x̂t
j

〉
.

We have

EΩ:i∈Ω

∑
j∈Ω\{i}

x̂t
j =

s− 1

n− 1

∑
j∈[n]\{i}

x̂t
j =

s− 1

n− 1

 n∑
j=1

x̂t
j − x̂t

i


and

EΩ:i∈Ω

∥∥∥∥∥∥
∑

j∈Ω\{i}

x̂t
j

∥∥∥∥∥∥
2

= EΩ:i∈Ω

∑
j∈Ω\{i}

∥∥x̂t
j

∥∥2 + EΩ:i∈Ω

∑
j∈Ω\{i}

∑
j′∈Ω\{i,j}

〈
x̂t
j , x̂

t
j′
〉

=
s− 1

n− 1

∑
j∈[n]\{i}

∥∥x̂t
j

∥∥2 + s− 1

n− 1

s− 2

n− 2

∑
j∈[n]\{i}

∑
j′∈[n]\{i,j}

〈
x̂t
j , x̂

t
j′
〉

=
s− 1

n− 1

(
1− s− 2

n− 2

) ∑
j∈[n]\{i}

∥∥x̂t
j

∥∥2 + s− 1

n− 1

s− 2

n− 2

∥∥∥∥∥∥
∑

j∈[n]\{i}

x̂t
j

∥∥∥∥∥∥
2

=
s− 1

n− 1

n− s

n− 2

 n∑
j=1

∥∥x̂t
j

∥∥2 − ∥∥x̂t
i

∥∥2+
s− 1

n− 1

s− 2

n− 2

∥∥∥∥∥∥
n∑

j=1

x̂t
j − x̂t

i

∥∥∥∥∥∥
2

.
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Hence,

E

[
n∑

i=1

∥∥dti∥∥2
]
= p

s

n

n∑
i=1

∥∥∥(a− a

s

)
x̂t
i

∥∥∥2 + ps
a2

(s)2
s− 1

n− 1

n− s

n− 2

n∑
j=1

∥∥x̂t
j

∥∥2

− p
s

n

a2

(s)2
s− 1

n− 1

n− s

n− 2

n∑
i=1

∥∥x̂t
i

∥∥2 + p
s

n

a2

(s)2
s− 1

n− 1

s− 2

n− 2

n∑
i=1

∥∥∥∥∥∥
n∑

j=1

x̂t
j − x̂t

i

∥∥∥∥∥∥
2

− 2p
s

n

a

s

s− 1

n− 1

(
a− a

s

) n∑
i=1

〈
x̂t
i,

n∑
j=1

x̂t
j − x̂t

i

〉

=
(n− 1)2

psn

n∑
i=1

∥∥x̂t
i

∥∥2 + (n− 1)2

ps(s− 1)n

n− s

n− 2

n∑
i=1

∥∥x̂t
i

∥∥2
+

1

ps

s− 2

s− 1

n− 1

n− 2

∥∥∥∥∥
n∑

i=1

x̂t
i

∥∥∥∥∥
2

− 2
1

psn

s− 2

s− 1

n− 1

n− 2

∥∥∥∥∥
n∑

i=1

x̂t
i

∥∥∥∥∥
2

+
1

psn

s− 2

s− 1

n− 1

n− 2

n∑
i=1

∥∥x̂t
i

∥∥2 + 2
n− 1

psn

n∑
i=1

∥∥x̂t
i

∥∥2 − 2
n− 1

psn

∥∥∥∥∥
n∑

i=1

x̂t
i

∥∥∥∥∥
2

=
(n− 1)(n+ 1)

psn

n∑
i=1

∥∥x̂t
i

∥∥2 + (n− 1)2

ps(s− 1)n

n− s

n− 2

n∑
i=1

∥∥x̂t
i

∥∥2
− n− 1

psn

s

s− 1

∥∥∥∥∥
n∑

i=1

x̂t
i

∥∥∥∥∥
2

+
1

psn

s− 2

s− 1

n− 1

n− 2

n∑
i=1

∥∥x̂t
i

∥∥2
=

(n2 − 1)(s− 1)(n− 2) + (n− 1)2(n− s) + (s− 2)(n− 1)

ps(s− 1)n(n− 2)

n∑
i=1

∥∥x̂t
i

∥∥2
− n− 1

p(s− 1)n

∥∥∥∥∥
n∑

i=1

x̂t
i

∥∥∥∥∥
2

=
n− 1

p(s− 1)

n∑
i=1

∥∥x̂t
i

∥∥2 − n− 1

p(s− 1)n

∥∥∥∥∥
n∑

i=1

x̂t
i

∥∥∥∥∥
2

=
n− 1

p(s− 1)

n∑
i=1

∥∥∥∥∥∥x̂t
i −

1

n

n∑
j=1

x̂t
j

∥∥∥∥∥∥
2

.

Therefore, we can set

ω :=
n− 1

p(s− 1)
− 1. (26)
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D PROOF OF THEOREM 3

We suppose that the assumptions in Theorem 3 hold. s is set as the maximum of three values. Let us
consider these three cases.

1) Suppose that s = 2. Since 2 = s ≥ ⌊cn⌋ and 2 = s ≥ ⌊n
d ⌋, we have c ≤ 3

n and 1 ≤ 3d
n . Hence,

O
(√

nκ

s
+

n

s

)(
sd

n
+ 1 + cd

)
= O

(√
nκ+ n

)( d

n
+

d

n
+

d

n

)
= O

(
d
√
κ√
n

+ d

)
. (27)

2) Suppose that s = ⌊n
d ⌋. Then sd

n ≤ 1. Since s ≥ ⌊cn⌋ and ⌊n
d ⌋ = s ≥ 2, we have cn ≤ s+ 1 ≤

n
d + 1 and d

n ≤ 1
2 , so that cd ≤ 1 + d

n ≤ 2. Hence,

O
(√

nκ

s
+

n

s

)(
sd

n
+ 1 + cd

)
= O

(√
nκ

s
+

n

s

)
.

Since 2s ≥ n
d , we have 1

s ≤ 2d
n and

O
(√

nκ

s
+

n

s

)(
sd

n
+ 1 + cd

)
= O

(√
dκ+ d

)
. (28)

3) Suppose that s = ⌊cn⌋. Then s ≤ cn. Also, 2s ≥ cn and 1
s ≤ 2

cn . Since s = ⌊cn⌋ ≥ ⌊n
d ⌋, we

have cn+ 1 ≥ n
d and 1 ≤ cd+ d

n . Since s = ⌊cn⌋ ≥ 2, we have 1
n ≤ c

2 and 1 ≤ 2cd. Hence,

O
(√

nκ

s
+

n

s

)(
sd

n
+ 1 + cd

)
= O

(√
κ

c
+

1

c

)
(cd+ cd+ cd)

= O
(√

cκd+ d
)
. (29)

By adding up the three upper bounds equation 27, equation 28, equation 29, we obtain the upper
bound in equation 14.

E PROOF OF THEOREM 2

We suppose that the assumptions in Theorem 2 hold. A solution x⋆ ∈ Rd to equation 1, which
is supposed to exist, satisfies ∇f(x⋆) = 1

n

∑n
i=1 ∇fi(x

⋆) = 0. x⋆ is not necessarily unique but
h⋆
i := ∇fi(x

⋆) is unique.

We define the Bregman divergence of a L-smooth convex function g at points x, x′ ∈ Rd as
Dg(x, x

′) := g(x)− g(x′)− ⟨∇g(x′), x− x′⟩ ≥ 0. We have Dg(x, x
′) ≥ 1

2L∥∇g(x)−∇g(x′)∥2.
We can note that for every x ∈ Rd and i = 1, . . . , n, Dfi(x, x

⋆) is the same whatever the solution
x⋆.

For every t ≥ 0, we define the Lyapunov function

Ψt :=
1

γ

n∑
i=1

∥∥xt
i − x⋆

∥∥2 + γ

p2η

n− 1

s− 1

n∑
i=1

∥∥ht
i − h⋆

i

∥∥2 , (30)
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Starting from equation 22 with the substitutions detailed at the end of the proof of Theorem 1, we
have, for every t ≥ 0,

E
[
Ψt+1 | Ft

]
=

1

γ

n∑
i=1

E
[∥∥xt+1

i − x⋆
∥∥2 | Ft

]
+

γ

p2η

n− 1

s− 1

n∑
i=1

E
[∥∥ht+1

i − h⋆
i

∥∥2 | Ft

]
≤ 1

γ

n∑
i=1

∥∥(xt
i − γ∇fi(x

t
i)
)
−
(
x⋆ − γ∇fi(x

⋆)
)∥∥2

+

(
γ

p2η

n− 1

s− 1
− γ

) n∑
i=1

∥∥ht
i − h⋆

i

∥∥2 + p

γ
(η − 1 + ν)

n∑
i=1

∥∥∥∥∥∥x̂t
i −

1

n

n∑
j=1

x̂t
j

∥∥∥∥∥∥
2

with∥∥(xt
i − γ∇fi(x

t
i)
)
−
(
x⋆ − γ∇fi(x

⋆)
)∥∥2 =

∥∥xt
i − x⋆

∥∥2 − 2γ⟨∇fi(x
t
i)−∇fi(x

⋆), xt
i − x⋆⟩

+ γ2
∥∥∇fi(x

t
i)−∇fi(x

⋆)
∥∥2

≤
∥∥xt

i − x⋆
∥∥2 − (2γ − γ2L)⟨∇fi(x

t
i)−∇fi(x

⋆), xt
i − x⋆⟩,

where the second inequality follows from cocoercivity of the gradient. Moreover, for every x, x′,
Dfi(x, x

′) ≤ ⟨∇fi(x)−∇fi(x
′), x− x′⟩. Therefore,

E
[
Ψt+1 | Ft

]
≤ Ψt − (2− γL)

n∑
i=1

Dfi(x
t
i, x

⋆)

− γ

n∑
i=1

∥∥ht
i − h⋆

i

∥∥2 + p

γ
(η − 1 + ν)

n∑
i=1

∥∥∥∥∥∥x̂t
i −

1

n

n∑
j=1

x̂t
j

∥∥∥∥∥∥
2

.

Telescopic the sum and using the tower rule of expectations, we get summability over t of the three
negative terms above: for every T ≥ 0, we have

(2− γL)

n∑
i=1

T∑
t=0

E
[
Dfi(x

t
i, x

⋆)
]
≤ Ψ0 − E

[
ΨT+1

]
≤ Ψ0, (31)

γ

n∑
i=1

T∑
t=0

E
[∥∥ht

i − h⋆
i

∥∥2] ≤ Ψ0 − E
[
ΨT+1

]
≤ Ψ0, (32)

p

γ
(1− ν − η)

n∑
i=1

T∑
t=0

E


∥∥∥∥∥∥x̂t

i −
1

n

n∑
j=1

x̂t
j

∥∥∥∥∥∥
2
 ≤ Ψ0 − E

[
ΨT+1

]
≤ Ψ0. (33)

Taking ergodic averages and using convexity of the squared norm and of the Bregman divergence, we
can now get O(1/T ) rates. We use a tilde to denote averages over the iterations so far. That is, for
every i = 1, . . . , n and T ≥ 0, we define

x̃T
i :=

1

T + 1

T∑
t=0

xt
i

and

x̃T :=
1

n

n∑
i=1

x̃T
i .

The Bregman divergence is convex in its first argument, so that, for every T ≥ 0,

n∑
i=1

Dfi(x̃
T
i , x

⋆) ≤
n∑

i=1

1

T + 1

T∑
t=0

Dfi(x
t
i, x

⋆).
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Combining this inequality with equation 31 yields, for every T ≥ 0,

(2− γL)

n∑
i=1

E
[
Dfi(x̃

T
i , x

⋆)
]
≤ Ψ0

T + 1
. (34)

Similarly, for every i = 1, . . . , n and T ≥ 0, we define

h̃T
i :=

1

T + 1

T∑
t=0

ht
i

and we have, for every T ≥ 0,

n∑
i=1

∥∥∥h̃T
i − h⋆

i

∥∥∥2 ≤
n∑

i=1

1

T + 1

T∑
t=0

∥∥ht
i − h⋆

i

∥∥2 .
Combining this inequality with equation 32 yields, for every T ≥ 0,

γ

n∑
i=1

E
[∥∥∥h̃T

i − h⋆
i

∥∥∥2] ≤ Ψ0

T + 1
. (35)

Finally, for every i = 1, . . . , n and T ≥ 0, we define

˜̂xT
i :=

1

T + 1

T∑
t=0

x̂t
i

and

˜̂xT :=
1

n

n∑
i=1

˜̂xT
i ,

and we have, for every T ≥ 0,

n∑
i=1

∥∥∥˜̂xT
i − ˜̂xT

∥∥∥2 ≤
n∑

i=1

1

T + 1

T∑
t=0

∥∥∥∥∥∥x̂t
i −

1

n

n∑
j=1

x̂t
j

∥∥∥∥∥∥
2

.

Combining this inequality with equation 33 yields, for every T ≥ 0,

p

γ
(1− ν − η)

n∑
i=1

E
[∥∥∥˜̂xT

i − ˜̂xT
∥∥∥2] ≤ Ψ0

T + 1
. (36)

Next, we have, for every i = 1, . . . , n and T ≥ 0,∥∥∇f(x̃T
i )
∥∥2 ≤ 2

∥∥∇f(x̃T
i )−∇f(x̃T )

∥∥2 + 2
∥∥∇f(x̃T )

∥∥2
≤ 2L2

∥∥x̃T
i − x̃T

∥∥2 + 2
∥∥∇f(x̃T )

∥∥2 . (37)

Moreover, for every T ≥ 0 and solution x⋆ to equation 1,∥∥∇f(x̃T )
∥∥2 =

∥∥∇f(x̃T )−∇f(x⋆)
∥∥2

≤ 1

n

n∑
i=1

∥∥∇fi(x̃
T )−∇fi(x

⋆)
∥∥2

≤ 2

n

n∑
i=1

∥∥∇fi(x̃
T )−∇fi(x̃

T
i )
∥∥2 + 2

n

n∑
i=1

∥∥∇fi(x̃
T
i )−∇fi(x

⋆)
∥∥2

≤ 2L2

n

n∑
i=1

∥∥x̃T
i − x̃T

∥∥2 + 4L

n

n∑
i=1

Dfi(x̃
T
i , x

⋆). (38)
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There remains to control the terms
∥∥x̃T

i − x̃T
∥∥2: we have, for every T ≥ 0,

n∑
i=1

∥∥x̃T
i − x̃T

∥∥2 ≤ 2

n∑
i=1

∥∥∥(x̃T
i − x̃T )− (˜̂xT

i − ˜̂xT )
∥∥∥2 + 2

n∑
i=1

∥∥∥˜̂xT
i − ˜̂xT

∥∥∥2
≤ 2

n∑
i=1

∥∥∥x̃T
i − ˜̂xT

i

∥∥∥2 + 2

n∑
i=1

∥∥∥˜̂xT
i − ˜̂xT

∥∥∥2 . (39)

For every i = 1, . . . , n and t ≥ 0,

x̂t
i = xt

i − γ
(
∇fi(x

t
i)− ht

i

)
so that, for every i = 1, . . . , n and T ≥ 0,

x̃T
i − ˜̂xT

i = γ
1

T + 1

T∑
t=0

∇fi(x
t
i)− γh̃T

i

and

∥∥∥x̃T
i − ˜̂xT

i

∥∥∥2 = γ2

∥∥∥∥∥ 1

T + 1

T∑
t=0

∇fi(x
t
i)− h̃T

i

∥∥∥∥∥
2

≤ 2γ2 1

T + 1

T∑
t=0

∥∥∇fi(x
t
i)−∇fi(x

⋆)
∥∥2 + 2γ2

∥∥∥h̃T
i − h⋆

i

∥∥∥2
≤ 4Lγ2 1

T + 1

T∑
t=0

Dfi(x
t
i, x

⋆) + 2γ2
∥∥∥h̃T

i − h⋆
i

∥∥∥2 . (40)

Combining equation 37, equation 38, equation 39, equation 40, we get, for every T ≥ 0,

n∑
i=1

∥∥∇f(x̃T
i )
∥∥2 ≤ 2L2

n∑
i=1

∥∥x̃T
i − x̃T

∥∥2 + 2n
∥∥∇f(x̃T )

∥∥2
≤ 2L2

n∑
i=1

∥∥x̃T
i − x̃T

∥∥2 + 2L2
n∑

i=1

∥∥x̃T
i − x̃T

∥∥2 + 4L

n∑
i=1

Dfi(x̃
T
i , x

⋆)

= 4L2
n∑

i=1

∥∥x̃T
i − x̃T

∥∥2 + 4L

n∑
i=1

Dfi(x̃
T
i , x

⋆)

≤ 8L2
n∑

i=1

∥∥∥x̃T
i − ˜̂xT

i

∥∥∥2 + 8L2
n∑

i=1

∥∥∥˜̂xT
i − ˜̂xT

∥∥∥2 + 4L

n∑
i=1

Dfi(x̃
T
i , x

⋆)

≤ 32L3γ2 1

T + 1

n∑
i=1

T∑
t=0

Dfi(x
t
i, x

⋆) + 16L2γ2
n∑

i=1

∥∥∥h̃T
i − h⋆

i

∥∥∥2
+ 8L2

n∑
i=1

∥∥∥˜̂xT
i − ˜̂xT

∥∥∥2 + 4L

n∑
i=1

Dfi(x̃
T
i , x

⋆).
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Taking the expectation and using equation 31, equation 35, equation 36 and equation 34, we get, for
every T ≥ 0,

n∑
i=1

E
[∥∥∇f(x̃T

i )
∥∥2] ≤ 32L3γ2 1

T + 1

n∑
i=1

T∑
t=0

E
[
Dfi(x

t
i, x

⋆)
]

+ 16L2γ2
n∑

i=1

E
[∥∥∥h̃T

i − h⋆
i

∥∥∥2]

+ 8L2
n∑

i=1

E
[∥∥∥˜̂xT

i − ˜̂xT
∥∥∥2]+ 4L

n∑
i=1

E
[
Dfi(x̃

T
i , x

⋆)
]
.

≤ 32L3γ2

2− γL

Ψ0

T + 1
+ 16L2γ

Ψ0

T + 1
+

8L2γ

p(1− ν − η)

Ψ0

T + 1
+

4L

2− γL

Ψ0

T + 1

=

[
32L3γ2 + 4L

2− γL
+ 16L2γ +

8L2γ

p(1− ν − η)

]
Ψ0

T + 1
.

Hence, with γ = Θ
(
p
L

)
and a fixed η, we have

n∑
i=1

E
[∥∥∇f(x̃T

i )
∥∥2] ≤ ϵ

after

O
(
Ψ0

pϵ

)
iterations and

O
(
Ψ0

ϵ

)
communication rounds.

We note that in these conditions, with γ scaled by p, LT does not yield any acceleration: the
communication complexity is the same whatever p. CC is effective, however, since we communicate
much less than d floats during every communication round.
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