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ABSTRACT

Protein design has important implications for drug discovery, personalized
medicine, and biotechnology. Models based on multiple sequence alignments
efficiently capture the evolutionary information in homologous protein sequences,
but multiple sequence alignment construction is imperfect. We present ProtMamba,
a homology-aware but alignment-free protein language model based on the Mamba
architecture. In contrast with attention-based models, ProtMamba efficiently han-
dles very long context, comprising hundreds of protein sequences. We train
ProtMamba on a large dataset of concatenated homologous sequences, using two
GPUs. We combine autoregressive modeling and masked language modeling
through a fill-in-the-middle training objective. This makes the model adapted to
various protein design applications. We demonstrate ProtMamba’s usefulness for
the generation of novel sequences and for fitness prediction. ProtMamba reaches
competitive performance with other protein language models despite its smaller
size, which sheds light on the importance of long-context conditioning.

1 INTRODUCTION

Proteins are essential building blocks of life, serving vital roles in metabolic processes, cellular
transport, structural integrity, and immune responses. Composed of long chains of amino acids
(polypeptides), proteins fold into specific three-dimensional structures critical for their biological
functions. One of the key challenges in biology is protein engineering and design: conceiving protein
sequences to exhibit enhanced or novel functions. While experimental approaches like directed
evolution and mutational scanning are effective in this regard, they only allow exploring the neighbors
of existing sequences. However, the recent growth of extensive databases has opened up new avenues
for computational methods that exploit the breadth of biological evolution. For instance, UniProt
(The UniProt Consortium, 2021) contains more than two hundreds of millions of protein sequences.
Biological functions exert evolutionary constraints on protein sequences, which can be probed by
considering families of homologous proteins (i.e. proteins that share an evolutionary history) and
analyzing this data through statistical methods and, more recently, through deep learning methods.

Protein language models rely on recurrent (Bepler & Berger, 2019), transformer (Rives et al., 2021)
or convolutional (Yang et al., 2024) architectures, and are trained through masked language modeling,
autoregressive modeling, or discrete diffusion techniques (Alamdari et al., 2023), on large ensembles
of single protein sequences (Khakzad et al., 2023). The representations learned by these models
correlate with biochemical properties of proteins (such as function, structure, contacts) (Elnaggar
et al., 2021; Vig et al., 2021; Rives et al., 2021; Madani et al., 2023), and can be used to generate
protein sequences or to evaluate the fitness of variants. The vast majority of these methods are
trained on non-structured ensembles of single protein sequence and do not have direct access to
homology, or to conservation and variability within protein families. Models trained on multiple
sequence alignments (MSAs) of homologous sequences have also been introduced, despite raising
memory challenges and potentially suffering from the imperfections of MSAs (Thompson et al.,
2011). Successful MSA-based transformer models, such as MSA Transformer (Rao et al., 2021)
or the EvoFormer module of AlphaFold2 (Jumper et al., 2021) alternate attention along protein
sequences and across homologs. More recently, PoET (Truong Jr & Bepler, 2024) was trained on
concatenations of non-aligned homologous sequences, offering a promising autoregressive alternative
to MSA Transformer for protein fitness prediction and design.
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State space models such as S4 (Gu et al., 2021), Hyena (Poli et al., 2023) and Mamba (Gu &
Dao, 2023) are catching up with transformers thanks to their ability to efficiently handle very long
sequences of tokens. These models were quickly adapted to work with biological data. Approaches
such as HyenaDNA (Nguyen et al., 2023) or Evo (Nguyen et al., 2024) were trained on long DNA
sequences and capture regulatory mechanics. Meanwhile, PTM-Mamba addresses post-translational
modifications of protein sequences (Peng et al., 2024).

In this paper, we present ProtMamba, a novel homology-aware but alignment-free protein language
model, trained on concatenated sequences of homologous proteins. Based on the Mamba architecture
(Gu & Dao, 2023), ProtMamba is able to handle extremely long contexts (unlimited lengths during
inference). Trained to autoregressively predict the next amino acid, but also with a fill-in-the-middle
(FIM) objective, it can be used for multiple different tasks. First, ProtMamba can autoregressively
generate novel sequences without contextual information. Second, by providing ProtMamba with
sequences from a specific protein family or subfamily as context, users can prompt it to generate
sequences tailored to their specifications. This conditional generation approach is a key strength
of the model (see also Truong Jr & Bepler (2024)), and could become an alternative to fine-tuning.
Third, ProtMamba supports sequence inpainting, i.e., filling specific masked regions with the desired
number of amino acids. For this, along with homologous sequences (used as context), the model
is provided with a target sequence to be modified. This generation mode opens novel methods of
designing specific parts of protein sequences. Furthermore, ProtMamba is useful for fitness prediction
tasks. Users can input a sequence with specific masked positions, prompting the model to output
the probability distribution of all mutations in each variant with a single forward pass. Across these
various tasks, we obtain competitive results with larger protein language models and task-specific
methods.

2 METHODS

2.1 KEY TECHNICAL CONTRIBUTIONS

1. To harness the evolutionary information present in homologous sequences without relying
on multiple sequence alignments (MSAs), we use as input a concatenation of homologous
sequences for each protein family. In each of these long arrays, sequences are separated
with a specific token. The motivation is that evolutionary information is extremely useful
for protein modeling Jumper et al. (2021); Rao et al. (2021); Abramson et al. (2024), but
MSAs can be inaccurate. This approach is similar to that used recently in the autoregressive
transformer PoET (Truong Jr & Bepler, 2024).

2. We develop an architecture based on Mamba blocks, an alternative to attention recently
proposed by (Gu & Dao, 2023) that relies on state space models. In Mamba, which is a
recurrent neural network, time complexity scales linearly in sequence length, bypassing the
quadratic time complexity constraints of transformers. This allows handling significantly
longer input sequences, in addition to being faster to train and to use at inference. This is
a key asset here, as concatenating homologous sequences results in long inputs. Note that
Truong Jr & Bepler (2024) employed attention matrix chunking to address this issue, but
this results in potential losses of statistical dependence signals, and only partially solves the
memory limit.

3. We combine elements of both autoregressive modeling and masked language modeling
(MLM), by training our model using the fill-in-the-middle (FIM) objective (Bavarian et al.,
2022; Fried et al., 2022; Raffel et al., 2020). The model learns to predict masked patches
extracted randomly from a sequence and positioned at the end of it, and can therefore leverage
the full sequence context, while being trained autoregressively. This is of particular interest
for biological sequences, because preceding and subsequent tokens can all be informative to
predict a new token. While autoregressive models are generative by definition, they yield
the probability of each new token conditioned on previous ones (ignoring subsequent ones).
Besides, MLM can be productively used for protein sequence generation (Sgarbossa et al.,
2023).

4. To promote the model’s ability to reason over in-sequence positions, which is particularly
useful for the FIM task, we modify the original Mamba implementation by introducing
sequence-level positional embeddings. This enables the model to pay attention to relative
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positions inside each sequence. In inference and generation, it opens the possibility of
controlling the number of amino-acids to generate.

2.2 MODEL ARCHITECTURE AND TRAINING STRATEGY

ProtMamba’s architecture is adapted from Mamba (Gu & Dao, 2023). An important modification
is that we introduce learned positional embeddings for the input tokens. Among different variants
(see supplementary section C), we observed that the most effective and stable method to integrate
positional embeddings is to concatenate them with the input token embeddings into a single vector.
Specifically, we allocated half of the embedding dimension d to token information and the other half
to positional information.

We trained a 107 million parameters model with 16 layers, embedding dimension d = 1024, and
hidden state dimension equal to embedding dimension. We started with a maximal total input sequence
length of 211 = 2048 amino acids (recall that input sequences are concatenated homologous protein
sequences). The model was trained following (Gu & Dao, 2023) with some minor modifications.
We used the AdamW optimizer with the following parameter values: weight decay w = 0.1 and
(β1, β2) = (0.9, 0.95). We scheduled the learning rate to increase from zero to 6× 10−4 with a linear
warm-up of 500 steps followed by a constant learning rate. To optimize memory usage, we trained
the model using the bfloat16 format.

To avoid training instabilities observed in (Nguyen et al., 2024; Waleffe et al., 2024), we implemented
a callback mechanism to revert to a previous checkpoint if the loss never assumed values below a
threshold for 10 successive evaluation steps. The threshold value was chosen as the lowest training
loss increased by 0.5%. This ensures that the loss decreases overall, while allowing it to transiently
increase. We also prevented gradient explosions by clipping the gradient norm to 1.0.

The model was trained by scheduling the context length of the input using sequence length warm up
(SLW) (Nguyen et al., 2023). Initially, we used inputs of length L = 211 tokens with a batch size of
64. We doubled input length each time the loss reached a plateau, simultaneously reducing batch size
to maintain a fixed total number of tokens per batch. In case of memory constraints, we decrease
the batch size and use gradient accumulation. This heuristic approach is based on the idea that a
longer context should provide more information. It is useful because of training instabilities for long
contexts (Nguyen et al., 2023; 2024). Note that we did not start training the model with a long context
to benefit from a larger batch size, which helps to approximate the loss landscape more efficiently.
Finally, once we reached a context length of L = 217, we implemented gradient checkpointing to
minimize memory consumption. This allowed us to increase the batch size for the final part of the
training and obtain a better approximation of the loss landscape, see (Nguyen et al., 2023; 2024).

The model was trained on one NVIDIA RTX A6000 GPU for 35 days, and then on two of them for
15 days. This allowed us to keep the batch size large enough when the context size increased. In total,
the model was trained on 1.95× 1011 tokens (approximately 1.5 epochs) and used 2.0× 1020 FLOPs
during training. These numbers show the huge improvements that the Mamba architecture has in
terms of training speed with respect to transformers. As a comparison, the smallest ESM3 model
(Hayes et al., 2024) was trained with 0.8× 1011 tokens using 6.72× 1020 FLOPs, which means that
given a fixed amount of compute, ProtMamba can see 8.5 times the tokens seen by ESM3. See Figure
S1 for the training curves.

We consider two different ProtMamba versions that were obtained by saving checkpoints at different
moments of the training. Our model ProtMamba, Foundation was trained on a maximum context
length of 215 tokens. Our model ProtMamba Long, Foundation was trained until the context length
reached 217 tokens. Both models were fine-tuned for 2 days on predicting only the FIM amino acids
to improve inpainting capabilities, yielding the models ProtMamba/ProtMamba Long, Fine-tuned.

We also performed multiple ablations on the model architecture and on the different modalities by
training models on 10B tokens for 50k steps (see supplementary section C).

2.3 DATASET CONSTRUCTION

We trained ProtMamba on OpenProteinSet (Ahdritz et al., 2024), a dataset which comprises 16
millions MSAs, one for each sequence cluster within Uniclust30 (Mirdita et al., 2017). This dataset
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was curated to train OpenFold (Ahdritz et al., 2022). We used a filtered subset of the full dataset, con-
sisting of maximally diverse representative MSA clusters, built by iteratively eliminating redundant
clusters whose representative sequences appeared in other clusters’ MSAs (Ahdritz et al., 2024). This
ensures that each representative sequence is only present in its cluster, as detailed in (Ahdritz et al.,
2024). This dataset comprises 268,000 clusters including a total of 508 million sequences and 110
billion residues (see Figure S2 for additional statistics). A validation set and a testing set are formed
by holding out respectively 192 and 500 randomly chosen clusters from the training set. Importantly,
our use of the filtered version of OpenProteinSet (Ahdritz et al., 2024) ensures that overlap between
clusters in the training, validation and test set is strongly minimized. Indeed, this filtering is based on
selecting only MSAs of maximal diversity and ensuring that the reference sequences used to build
each cluster are not present in any other cluster.

Figure 1 illustrates the construction of a training example. First, a cluster is randomly selected from
the filtered OpenProteinSet database described in Section 2.3. As OpenProteinSet uses MSAs, we
restore the original unaligned sequences by removing gaps and converting all lowercase insertion
residues to uppercase. Each amino acid is tokenized using a unique token. Then, N sequences are
sampled uniformly at random and concatenated into a single array, with a <cls> token separating
each sequence from the next one. The value of N is chosen for the total length of the concatenated
sequence to exceed the desired training context length L (e.g. L = 211 at the beginning of training),
and the input is then cropped precisely at L. Next, the sequences are prepared for the FIM task. For
each sequence, some patches of consecutive tokens are randomly sampled (see below) and masked
by replacing them with a mask token <mask i>, with one such token representing patch i. For each
patch, we append to the sequence another mask token followed by the corresponding masked amino
acids (which are unmasked). An <eos> token is used to separate the main (masked) sequence from
its unmasked patches.

<cls> N E M Y F I D H <mask1> N T G T <mask2> T H W D D P <eos> <mask1> A D Y <mask2> F T

| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | 

sequence:

pos-ids:

<cls> <cls> <cls> <cls>

sequence 1 sequence 2 sequence 3 sequence 4

input:
ProtMamba

| | | | | | | | | | | 

| | | | | | | | | | | 

| | | | | | | | | | | 

| | | | | | | | | | | 

sequence 1

sequence 2

sequence 3

sequence 4

UniClust30 MSA:

| | | | | | | | | | | 

| | | | | | | | 

| | | | | | | | | | | 

| | | | | | 

Natural sequences:

0         1   2    3    4   5    6   7    8            9           12  13  14  15          16          18  19 20  21 22  23        0                  9            9   10  11           16         16  17

Figure 1: Input to ProtMamba. Each element of the input is a concatenation of unaligned homolo-
gous sequences separated by <cls> tokens. Each sequence starts with a <cls> token and ends with an
<eos> token. Masked segments are replaced by numbered mask tokens, <mask1>, . . . , <mask5>.
The masked tokens are appended to the sequence, after the <eos> token, each masked segment being
preceded by its associated mask token. The position indices (“pos-ids") follow the succession of
tokens in the natural sequence. Thus, the masked tokens have their initial position indices in the
natural sequence. The position index of each mask is set to that of the first associated masked token.
In this particular example we sampled two masks i = 1, 2 with length P1 = 3 and P2 = 2.

The following rules are applied when masking each sequence:

1. The number of masked patches in a sequence is sampled from a Poisson distribution with
λ = 1, and capped at 5 (by resampling in case values above 5 are obtained). This yields no
mask in 36% of sequences, one mask in 36% of sequences, and more in 28% of sequences.

2. The starting position of each patch is sampled uniformly (without replacement) from all
possible positions in the sequence.

3. The length Pi of each patch i is sampled uniformly in [1,max(Pi)], where max(Pi) is 0.2
times the distance from the start point of patch i to the start point of patch i+ 1 (or to the
end of the sequence for the last patch). This ensures that no more than 20% of all tokens
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in each sequence are masked, in line with masking fractions of similar models (Rao et al.,
2021; Rives et al., 2021).

Finally, each token is allocated a position index (used to obtain the associated positional embedding)
that tracks its position in the original sequence. The position indices of <cls> and <eos> are set
to zero, while the mask tokens <mask i> have the same position indices as the first token they are
masking, see Figure 1.

3 RESULTS

3.1 PROTMAMBA BENEFITS FROM LONG CONTEXT

To evaluate the effectiveness of incorporating context information in ProtMamba, we examine the
scaling of the model’s perplexity with context length for natural sequences. Perplexity is commonly
used to evaluate autoregressive models and assesses how uncertain they are about a sequence. It is the
exponential of the cross entropy loss. Figure 2 shows the scaling of perplexity for the masked parts
of the sequences as a function of the number of context sequences, when using the FIM objective.
ProtMamba Long (Fine-tuned) achieves remarkably low values of perplexity for small numbers
Nm of masked tokens. Furthermore, perplexity decreases when increasing the number of context
sequences, revealing the positive impact of richer context on model performance. This decrease
tends to be steeper for larger Nm, suggesting that these difficult tasks particularly benefit from richer
context. Given the diverse lengths of sequences across protein families, we report perplexity versus
the number of sequences in the context rather than versus the total length of the context. Indeed, there
can be different amounts of information in contexts of similar lengths but composed of sequences of
varying lengths.

0 200 400 600 800 1000 1200 1400
Number of sequences in context
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Nm =  1
1 < Nm  5
5 < Nm  10
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Figure 2: Scaling of the FIM perplexity with the number of context sequences. We show the FIM
perplexity for different numbers Nm of masked amino acids versus the number of context sequences.
Results are averaged over all 500 clusters of the test set and 100 replicates for each cluster (differing
by the random sampling of context sequences). Context sizes go up to 217 amino acids. To reduce
noise, we take the exponential moving average, and we restrict to cases where the count of samples is
at least 100. See Figure S3 for a log-log version of this figure.

Furthermore, we study the scaling of the per-sequence perplexity (i.e. the standard autoregressive
perplexity of the full non-masked sequence) computed on the test set using ProtMamba Long
(Foundation), see Figure S4. Initially, we notice a decrease of perplexity to a minimum of 7.70 as
the number of sequences in the context increases, with lower perplexity values for shorter individual
sequences, but this reduction plateaus after a certain point. We attribute this behavior to the finite
size (d = 1024, see Section 2) of the hidden state of the model, which limits its capacity to
effectively leverage context information at each step. We hypothesize that a larger model with
a higher-dimensional hidden state could increase the amount of information transferred from the
context to the next predicted token. For completeness, we also report perplexity versus context length
measured in tokens (see Figure S5). There, we observe a rise in perplexity when the context sizes
reaches 217 = 131, 072 tokens, which is the highest context length seen during training. We expect
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that further training the model for longer contexts could lead to lower perplexity values, yet ultimately
reaching a lower bound due to the limitations imposed by the hidden state dimension and model size.

3.2 PROTMAMBA PREDICTS MUTATIONAL EFFECTS IN DIFFERENT PROTEIN FAMILIES

Next, we evaluate ProtMamba’s ability to predict mutational effects, leveraging its inpainting ca-
pabilities arising from the FIM training objective. Indeed, by masking specific amino acids in the
wild-type sequence of interest, we can predict the fitness of all variants at these sites. Our first step
to evaluate variant fitness is to collect a context of homologs to the wild-type sequence. We use the
ColabFold protocol (Mirdita et al., 2022) for this, ensuring that diverse sequences are found in a few
minutes. Then, we randomly subsample 200 sequences among those that have between 30% and
98% similarity to the wild type to construct the context, and we sort these sequences by increasing
similarity to the wild type, as in Truong Jr & Bepler (2024).

To evaluate the effect of a variant with a single mutated site, we append the wild-type sequence to the
context, mask the mutated residue in it, and predict this residue using the FIM method. Let C denote
the union of the context sequences and of the wild-type sequence masked at the mutated position i.
We evaluate the effect of mutations at position i by their fitness score F , defined as:

F(i, xi, C) = log p(xi|C)− log p(xWT
i |C) ,

for all residues xi different from the wild-type residue xWT
i . Using this method based on the FIM

objective allows us to evaluate the effects of all mutations at position i, decreasing 20-fold the number
of passes through the model needed to evaluate all mutations with respect to the typical method
used with autoregressive protein language models. To predict the fitness effects of variants involving
mutations at multiple sites, we add all the single mutation likelihoods. This approximate, but fast
method avoids computing the complete likelihood for all variants, thus reducing the number of calls
to ProtMamba. It is accurate when the mutations can be considered independent. We also test variant
scoring by ProtMamba using the autoregressive log-likelihood loss instead of the FIM loss (this
approach is called “ProtMamba AR”). Details on the different approaches we employed to predict
mutational effects with ProtMamba are given in Supplementary section B.

We consider the ProteinGym benchmark (Notin et al., 2023), which contains 217 datasets of sub-
stitutions in protein sequences (both single and multiple) and allows comparing to state-of-the-art
methods. In Table 1, we report the performance of ProtMamba, and we compare it to published
models classified by type: alignment-based models, single sequence protein language models (PLMs),
aligment-enhanced PLMs, homology-aware PLMs, and structure-aware models. Table 1 shows
that variant scoring by ProtMamba using FIM outperforms using the autoregressive log-likelihood
(ProtMamba AR). All ProtMamba performances reported in Table 1 are those of ProtMamba Long
fine-tuned on the FIM task, except for ProtMamba AR where we used ProtMamba Long. Indeed,
considering the 4 different ProtMamba versions (see Section 2), we found that ProtMamba models
fine-tuned on the FIM task outperform foundation models, and that ProtMamba Long performs better
than ProtMamba, confirming the importance of training the model with a long context (see Figure S6).
In Figure S7(a), we break down the performance of ProtMamba Long for different context lengths
and different protein sequences lengths. We observe that variants with long sequences particularly
benefit from long contexts, as they allow including more sequences. This interpretation is supported
by Figure S7(b), which shows that this dependence on context length is weaker when considering
context length in terms of number of sequences. Based on performance on a validation set (see
supplementary Section A and Figure S8), we chose to use a context of 200 sequences to predict
fitness using ProtMamba Long (fine-tuned).

Table 1 shows that ProtMamba outperforms single-sequence PLMs (“PLM” type) of the same size
(ESM-2, 150M), and performs similarly or better than larger models like Tranception L and ESM-2
(650M). This illustrates the power of homology information for mutational effect prediction.

Since MSA information remains useful in scoring variants, in the rows “Alignment + PLM” of Table
1, we show results where explicit use of MSAs was made, either via retrieval, i.e. ensembling the
models with an independent-site model, as in Notin et al. (2023) (denoted by “R”), or by combining
a PLM with GEMME in Marquet et al. (2024). Using retrieval, ProtMamba (w/ R) obtains similar
performance as Tranception L (w/ R) and as MSA Transformer, which leverage MSA information.
These two models were trained using more than one order of magnitude more FLOPs than ProtMamba.
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Model type Model #params ρ Time Citation
Alignment-based Site-Independent - 0.359 - Hopf et al. (2017)

GEMME - 0.455 - Laine et al. (2019)
PLM Tranception L (w/o R) 700M 0.374 - Notin et al. (2022)

ESM-2 150M 0.387 - Lin et al. (2023)
ESM-2 650M 0.414 - Lin et al. (2023)

Homology-aware ProtMamba (single) 107M 0.406 7m
PLM ProtMamba AR (single) 107M 0.367 1h 39m

PoET (single) 201M 0.447 9h 51m Truong Jr & Bepler (2024)
PoET (ensemble) 201M 0.470 148h∗ Truong Jr & Bepler (2024)

Alignment ProtMamba (w/ R) 107M 0.432 10m
+ PLM MSA-Transformer 100M 0.421 - Rao et al. (2021)

Tranception L (w/ R) 700M 0.434 - Notin et al. (2022)
VespaG 3B 0.458 - Marquet et al. (2024)

Structure-aware ESM-IF1 142M 0.422 - Hsu et al. (2022)
SaProt 650M 0.457 - Su et al. (2023)
ProSST 110M 0.507 - Li et al. (2024)

Table 1: Performance of ProtMamba and of existing models on the ProteinGym benchmark. For
different models classified by type, and whose numbers of parameters are given, we show Spearman
correlation ρ values between predicted and experimentally measured variant effects in ProteinGym.
We denote the MSA-augmented methods with retrieval by “(w/ R)”. New models introduced here are
highlighted in bold. They include ProtMamba with and without retrieval, where variants are scored
using the FIM loss, and ProtMamba AR, where they are scored using the autoregressive log-likelihood.
Published results were obtained from https://proteingym.org/. For ProtMamba and PoET,
we also report the time needed to score all variants in ProteinGym (excluding homolog retrieval). Top
performances in terms of ρ and time are highlighted in gray.
∗ Estimated as 15× the time taken by PoET (single).

In Table 1, the state-of-the-art model on the ProteinGym benchmark is ProSST (Li et al., 2024),
a structure-aware model. Among structure-agnostic models, the state-of-the-art model is PoET, a
homology-aware transformer. ProtMamba reaches a performance which is only slightly lower than
PoET. This is notable, as PoET has twice more parameters, and is much slower at scoring variants
than ProtMamba. Table 1 shows that ProtMamba can score all ProteinGym variants in ∼7 to 10
minutes on a single NVIDIA RTX A6000 GPU, while PoET takes ∼10 hours for this, and up to ∼6
days in the ensemble mode (the top structure-agnostic method), using the same hardware.

In Table S1, we break down results by MSA depth and by number of mutations. In Figure S9, we
further break down the comparisons between models on ProteinGym by category of experiment
(panel (a)), taxonomic category (panel (b)) and sequence length (panel (c)). We also show scores for
different models on randomly selected example experimental datasets in Figure S10.

3.3 PROTMAMBA ACCURATELY PREDICTS THE ACTIVITY OF CHORISMATE MUTASE ENZYMES

Next, we evaluate ProtMamba, and in particular the power of the FIM objective, on a dataset of
experimentally tested natural and in silico generated sequences from the chorismate mutase family
from Russ et al. (2020). Chorismate mutase functions as an enzyme involved in the catalysis
of synthesis of amino acids, and is a domain of the bifunctional chorismate mutase/prephenate
dehydratase. We use ProtMamba to evaluate the activity of experimentally studied variants of this
enzyme. For this, we sample 100 sequences, either randomly among all natural sequences that were
experimentally studied, or randomly among the subset of those that were experimentally shown to be
active in Escherichia coli. For these two types of context, we test three different protocols to predict
the activity of the other variants in the dataset of Russ et al. (2020) with ProtMamba. First, we use
only the chorismate mutase domains (cropped sequences) as context, and autoregressively evaluate the
likelihood of the full sequence (“from left to right”). Second, we use the full sequences (chorismate
mutase/prephenate dehydratase) as context and we evaluate the perplexity of the full sequence
autoregressively from left to right. Third, we use the full sequences (chorismate mutase/prephenate
dehydratase) as context and evaluate the perplexity of the chorismate mutase domain using the FIM
objective.
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Domain Protein Protein, FIM
Published methods
DCA energy 0.41 - -
Logistic Regression 0.43 - -
ProtMamba
Context: any variant 0.41 0.44 0.46
Context: active variants 0.50 0.52 0.53

# seq. # residues ρ
0 0k 0.31
5 1k 0.46
10 3k 0.48
20 7k 0.51
50 19k 0.49

100 38k 0.53
200 77k 0.52

Table 2: Activity prediction of chorismate mutase variants. (Left) For published methods (Russ
et al., 2020), and for ProtMamba with various context types (rows) and protocols (columns, see main
text), we report the Spearman correlation ρ between experimental activity and predictions. Associated
ROC curves are shown in Figure S11. (Right) Effect of increasing context size (number of sequences
and corresponding total number of residues) on Spearman correlation ρ for ProtMamba predictions,
using only active variants in context, full domains and FIM.

The left panel of Table 2 provides a comparison of ProtMamba against published methods (Russ et al.,
2020) for the two different context types and the three different protocols. We observe that using
only active variants in the context consistently improves the predictive power of ProtMamba. With
both context types, using full sequences is better than using only domains, and using FIM improves
accuracy. Note in addition that using FIM reduces the computation time per variant compared to
autoregressively scoring the full sequence.

The right panel of Table 2 shows the impact of context size on the performance of our best ProtMamba-
based activity predictor (using only active variants in context, full domains and FIM). The accuracy
of this predictor initially strongly increases with context length, and then appears to plateau from
a context length around 75 sequences or 28k residues (see also Figure S12 a). Thus, context size
plays a critical role for these activity predictions. In Figure S12 b and c, we further compare the
perplexity of the variants, when using only active variants as context, and when using both inactive
and active variants as context. We observe that the perplexity of inactive variants is often higher when
using a context of active variants, indicating a better ability to predict inactivity. Furthermore, the
perplexity of active variants is often lower in this case, showing a better ability to predict activity with
high-quality context. Additionally, we display the distribution of the perplexity for ProtMamba using
FIM and a context composed of active variants, compared to the experimental activity in Figure S13,
and the same perplexity versus the model score from Russ et al. (2020) in Figure S14.

3.4 PROTMAMBA AUTOREGRESSIVELY GENERATES PROMISING NOVEL SEQUENCES

Finally, we evaluate ProtMamba on the autoregressive generation of novel protein sequences given a
context of known homologs, corresponding to members of a given cluster of sequences. We generate
sequences from 19 randomly selected clusters in the test set, varying the following parameters:
temperature (T ), top-k number, and top-p fraction, following the approach proposed by (Ferruz et al.,
2022). These parameters are commonly employed to control the output of autoregressive models. At
each step, top-k limits their output to the top-k most probable tokens, while top-p only includes the
top tokens reaching a cumulative probability p. Meanwhile, temperature T adjusts the randomness
of sampling. Additionally, we vary the number of sequences in the context to assess the impact
of different levels of conditioning on the generated sequences. Specifically, for each cluster, we
perform generation using context lengths of n = 10, 100, 500, 1000 and N sequences, where
N is the total number of sequences in the cluster. For each value of n, we consider the following
(T, top-k, top-p) triplets: (0.8, 10, 0.9), (0.9, 10, 0.95), (1, 10, 0.95), (1, 10, 1), (1, 15, 1). We gen-
erate 100 sequences for each (n, T, top-k, top-p), obtaining a total of 2500 sequences per family.
As expected, we observed that the parameters which promote higher sampling variability tend to
yield sequences with higher perplexity. Note that sequences with more than 750 amino acids, i.e.
longer than the longest natural sequence considered here, were discarded from further analysis. They
represented ∼5% of the generated sequences.

We compare the sampled sequences (aggregated across all parameter sets mentioned above) with
natural sequences from the cluster used as context for generation using various scores evaluating
novelty, homology, and structure.
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Figure 3: Comparison of low-perplexity generated sequences with natural ones. We report the
median and the standard deviation of sequence length, Hamming distance to the closest natural
neighbor in the sequence cluster from which the context is drawn (“Min Hamming”), HMMER score
(rescaled), pLDDT and pTM scores from ESMFold. For each of 19 test clusters, we compare the 100
sequences with lowest perplexity values out of 2500 generated sequences (x-axis) with a randomly
chosen subset of 100 natural sequences in the sequence cluster (y-axis). Dashed black lines: y = x.

1. Novelty is assessed by computing the pairwise Hamming distance (using pairwise Smith-
Waterman alignment) with each natural sequence in the cluster, after which it is possible to
focus on distance to the closest natural neighbor if desired.

2. Homology evaluation involves training an HMM (using HMMER (Eddy, 2020)) on the
cluster’s MSA, obtained from OpenProteinSet, and computing the scores it gives to generated
sequences.

3. Structure is assessed by predicting the structure of each sampled sequence using ESMFold
(Lin et al., 2023). As ESMFold is a single sequence model, it provides predictions that
are less biased by MSAs than those of MSA-based models. Futhermore, it is faster than
AlphaFold2. ESMFold’s confidence measures, both global with pTM scores and local with
pLDDT scores, allow for a precise comparison of different sequences sampled from the
same cluster.

We observe that ProtMamba’s estimated sequence perplexity correlates well with HMMER scores,
Hamming distance to the closest natural neighbor in the cluster and structural scores (see Figure S15).
Thus, ProtMamba assigns lower perplexity values to sequences that are more likely to be part of the
cluster. The absolute Pearson correlation value averaged over all clusters and scores is above 0.57.
Detailed results for each family and each score are presented in Figure S16. Figure 3 shows that the
median scores of our generated sequences that have low perplexity are comparable to those of natural
ones. Overall, these results are promising for protein design applications.

Model ProtMamba EvoDiff-MSA MSA Trans. Potts Natural

pLDDT (↑) 0.75± 0.13 0.60± 0.16 0.54± 0.18 0.56± 0.14 0.77± 0.13
scPerplexity (↓) 2.63± 0.45 3.17± 0.58 3.37± 0.64 3.17± 0.51 2.66± 0.49

Table 3: Performance of ProtMamba and other models at homolog-conditioned generation. We
report two structural scores, namely the pLDDT from ESMFold (Lin et al., 2023) and the scPerplexity
from ProteinMPNN (Dauparas et al., 2022) for a set of 250 protein sequences generated using
ProtMamba, each from a different cluster in our test set. Note that scPerplexity is the self-consistency
Perplexity computed by ProteinMPNN from the ESMFold structures obtained for each generated
sequence. We compare these values to those obtained for 250 protein sequences generated by
EvoDiff-MSA, MSA-Transformer and Potts models, retrieved from the Zenodo archive associated to
the EvoDiff paper (Alamdari et al., 2023), and which were generated each from a different cluster
of the EvoDiff validation set. We also compare to a subset of the same size of natural sequences
sampled from the same test set clusters as for ProtMamba.
↑ (resp. ↓) indicates that higher (resp. lower) scores are better.

Finally, in Table 3, we compare the generative ability of ProtMamba to that of other models that can
perform sequence generation conditioned on homologs from a specific protein family. Following
the approach of Alamdari et al. (2023), we randomly sample 250 clusters from our test set, and, for
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each cluster, we generate a sequence using ProtMamba conditioned on homologs randomly sampled
from the cluster. We then compare two structural scores of these generated sequences with those
obtained for sequences generated by EvoDiff-MSA (Alamdari et al., 2023), MSA Transformer (Rao
et al., 2021) and Potts models (Russ et al., 2020) and provided in Alamdari et al. (2023), and for
natural sequences. We find that ProtMamba outperforms existing models on the homolog-conditioned
generation task, and generates sequences that obtain scores comparable to those of natural sequences.
Note that the Hamming distance to the closest natural homolog of the sequences sampled using
ProtMamba is 0.56± 0.10, similar to the value obtained for natural sequences (0.48± 0.17) and not
smaller, consistently with Figure 3.

4 DISCUSSION

Here, we presented ProtMamba, a homology-aware but alignment-free generative protein language
model. ProtMamba leverages the long-context capabilities of state space models, allowing it to handle
concatenated sequences of homologous proteins. It also benefits from their faster speed compared to
attention-based models (Gu & Dao, 2023), allowing fast sequence generation and mutational effect
prediction. ProtMamba was trained using a hybrid strategy combining autoregressive modeling and
masked language modeling via the FIM objective. This allows ProtMamba to efficiently predict the
next amino acid in a protein sequence as well as to inpaint masked regions.

Our results demonstrate ProtMamba’s versatility across multiple tasks, including conditioned genera-
tion and protein fitness prediction, both for close and for distant variants. For homolog-conditioned
generation, ProtMamba outperforms the state-of-the-art model EvoDiff-MSA (Alamdari et al., 2023).
For fitness prediction, the sequence inpainting abilities of ProtMamba, via the FIM objective, proved
to be particularly useful. Indeed, this functionality allows the model to exploit the full sequence
context, without restricting to previous tokens as with autoregressive generation. This allows Prot-
Mamba to reach similar performance levels as larger models, in a fraction of the time. Overall,
ProtMamba benefits from capturing signal across multiple scales. In particular, it is able to predict
fitness by exploiting constraints shared broadly across the proteome via its pre-training, but also
specific constraints shared between homologs via the context, and it can exploit the full context of a
given protein sequence when predicting only part of it.

Limitations. So far, ProtMamba did not reach perplexity values as low as those of larger transformer
models like PoET (Truong Jr & Bepler, 2024) for full sequences. However, it can handle longer
context sizes and requires much shorter training and inference times, which is extremely beneficial
for the sequence inpainting task. We believe that scaling the model to larger sizes and training times
(comparable to PoET) may result in comparable performance, while retaining ProtMamba’s assets of
lower memory cost and inference time.

We did not provide a direct test of the generative ability of ProtMamba for protein sequence inpainting.
Indeed, this is a highly specific task lacking clear benchmarks so far. However, we believe that
our two analyses on fitness prediction constitute a convincing indirect proof of the usefulness of
ProtMamba’s inpainting ability. It would be very interesting to experimentally test ProtMamba’s
inpainting ability, as well as its de novo sequence generation ability (Verkuil et al., 2022).

Perspectives. Our results demonstrate ProtMamba’s flexibility, as it allows for precise conditioning
by carefully choosing the context information (e.g. restricting to active sequences). Thus, ProtMamba
responds very well to prompt engineering. We propose that this could become an alternative or
complement to fine-tuning of language models. ProtMamba is also naturally designed to take
advantage of retrieval augmented generation (RAG) techniques (Lewis et al., 2021), as it allows for
using retrieved protein sequences from any external database, to condition the generation process.

Furthermore, we envision the possibility to use the model for homology search, by scoring sequences
within specific contexts. This would be very fast, because only one forward pass would be required.

An interesting further extension of ProtMamba would be to make it explicitly structure-aware, e.g.
using a structural alphabet (van Kempen et al., 2023), along the lines of SaProt (Su et al., 2023) or
ProstT5 (Heinzinger et al., 2023). Another possible extension would be to include Gene Ontology
(GO) terms to condition sequence generation (Madani et al., 2023; Nijkamp et al., 2023).
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5 REPRODUCIBILITY STATEMENT

We describe in details all the steps to reproduce our work in Section 2 and we provide all the code in
the supplementary material attached to the submission.
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Supplementary material

A PROTEINGYM ASSAYS USED IN VALIDATION

Here, we list the 20 assays we extracted from the ProteinGym benchmark to choose some hyperpa-
rameters (see Figure S8).

A0A2Z5U3Z0_9INFA_Wu_2014
AMFR_HUMAN_Tsuboyama_2023_4G3O
CAR11_HUMAN_Meitlis_2020_lof
CBS_HUMAN_Sun_2020
CUE1_YEAST_Tsuboyama_2023_2MYX
DYR_ECOLI_Nguyen_2023
GDIA_HUMAN_Silverstein_2021
HIS7_YEAST_Pokusaeva_2019
HXK4_HUMAN_Gersing_2023_abundance
KCNE1_HUMAN_Muhammad_2023_expr

KKA2_KLEPN_Melnikov_2014
PITX2_HUMAN_Tsuboyama_2023_2L7M
PPM1D_HUMAN_Miller_2022
R1AB_SARS2_Flynn_2022
RDRP_I33A0_Li_2023
S22A1_HUMAN_Yee_2023_abundance
SCN5A_HUMAN_Glazer_2019
SHOC2_HUMAN_Kwon_2022
TRPC_SACS2_Chan_2017
VILI_CHICK_Tsuboyama_2023_1YU5

B DETAILS ON MUTATIONAL EFFECT PREDICTION WITH PROTMAMBA

In Table 1, we consider different ways of computing mutational effects using ProtMamba, and
compare with other models. Here, we explain our different approaches in more detail.

• The entry ProtMamba (single) of Table 1 is the result reported when using the FIM
technique at the end of the sequence to evaluate mutations. It is the fastest method among
homology-aware ones. The procedure is the following:

1. Subsample a predetermined number of homologs of the target sequence considered in
the DMS to be used as context, based on a diversity filter.

2. Run ProtMamba on the context and collect the last hidden state of the context (as the
model is recurrent).

3. Start from the last hidden state as initial state for every variant to score. Scoring is then
very fast, since we only need to apply ProtMamba on a single sequence per variant,
and not on the full context. As Mamba scales linearly in sequence length, this allow to
evaluate many different variants very fast on a single GPU (hundreds to thousands per
batch). The mutated residues are put at the end of the sequence in the FIM mask. For
single mutations, we can then evaluate in one shot the likelihood of every mutation.

4. We compare the likelihood of the WT to the likelihood of the variant using Fill-in-the-
middle to get a proxy of variant fitness. We can then evaluate the fitness of variants
comprising each of the 20 amino-acids at the mutated site(s) in a single shot.

• The entry ProtMamba AR (autoregressive) of Table 1 is the result reported when evaluating
the likelihood of a variant without using the FIM technique. The procedure is:

1. Perform steps 1 and 2 as in ProtMamba (single) above.
2. Start from the last hidden state as initial state for every variant to score. We then evaluate

the autoregressive likelihood of the full variant. Since some logits are computed after
the mutation in this setup (because they are positioned after in the sequence), we cannot
evaluate the fitness of the 20 amino-acids in a single shot (in contrast to the previous
approach), which increases the number of calls to ProtMamba, and hence requires
more time.

3. Compare the likelihood of the WT over the full sequence to the likelihood of the variant
to get an evaluation of variant fitness.

• The entry ProtMamba (w/ R), i.e. with retrieval of Table 1 is the result reported when
combining ProtMamba with a prior based on the frequency of amino-acids in the MSA of
the relevant protein family.

1. Perform steps 1, 2 and 3 as in ProtMamba (single) above.
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2. Load the MSA, compute a log-likelihood prior (log pretrieval) based on the frequency
of every amino-acid, and sum it with ProtMamba’s log-likelihood (log pProtMamba) :

log pProtMamba (w/R) = α log pretrieval + (1− α) log pProtMamba .

The parameter α was optimized using the validation set introduced in Section A (see
Figure S8). This operation can be parallelized across CPUs or GPUs. We report the
results using 16 workers.

Note that we tested ProtMamba AR both with our model fine-tuned on FIM (ProtMamba Long
Finetuned) and with our foundation model (ProtMamba Long), and we obtained similar results
(respectively 0.361 and 0.367).

In Table S1, we break down results by MSA depth and by number of mutations. We observe that for
datasets with more than one mutation (last column in Table S1), ProtMamba with retrieval slightly
outperforms the overall state-of-the-art model TranceptEVE L and reaches performance close to the
structure-based model ESM-IF1. However, averaging over all datasets, ProtMamba does not reach
the same performance as TranceptEVE L. But since ProtMamba performs better than Tranception L,
ensembling ProtMamba and EVE predictions might yield comparable performance.

Spearman correlation by MSA depth by mutations
Model Par. All depths Deep Medium Shallow 1 2+
ESM-2 150M 0.387 0.497 0.358 0.306 0.367 0.379
ESM-IF1 142M 0.422 0.544 0.431 0.300 0.413 0.471
Tranception S (w/o R) 85M 0.303 0.320 0.295 0.258 0.293 0.262
Tranception L (w/o R) 700M 0.374 0.419 0.371 0.358 0.358 0.390
ProtMamba (w/o R) 107M 0.406 0.465 0.411 0.391 0.376 0.444

MSA Transformer 100M 0.421 0.473 0.435 0.393 0.392 0.435
Tranception S (w/ R) 85M 0.418 0.444 0.415 0.428 0.389 0.409
Tranception L (w/ R) 700M 0.434 0.473 0.438 0.432 0.404 0.463
TranceptEVE L >700M 0.456 0.492 0.467 0.451 0.426 0.467
ProtMamba (w/ R) 107M 0.432 0.472 0.438 0.448 0.404 0.469

Table S1: Performance of different models on the ProteinGym benchmark. We report Spearman
correlation values obtained both based on retrieval (w/ R) and non-retrieval (w/o R) methods,
and parameter count for each model. We report results divided according to MSA depth and
number of mutations in the benchmark dataset. Results for benchmark models were obtained from
https://proteingym.org/. Note that PoET-205M (Truong Jr & Bepler, 2024) reports an
overall Spearman correlation of 0.474 (Truong Jr & Bepler) on ProteinGym, but it is not yet on the
ProteinGym website, and no information is given about the training time or resources.

C ABLATION STUDIES

We investigated ablations or alternative implementations of ProtMamba using two models: a small
model with 14 million parameters (8 layers, hidden dimension 512) and the standard architecture
with 107 million parameters (16 layers, hidden dimension 1024). Both models were trained for 10
billion tokens (50k steps with a batch size of 128) and evaluated on a validation set of 500 unseen
clusters. During evaluation, a context of 25 sequences was used. The perplexity of the models was
assessed both autoregressively (left-to-right) and in the fill-in-the-middle (FIM) spans.

The performance of these alternatives (described in more detail below) is summarized in Table S2.
Perplexity values are reported for both autoregressive and FIM modes in the small model and the
larger one.

16

https://proteingym.org/


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Perplexity 14M Parameters 107M Parameters
Autoregressive FIM Autoregressive FIM

Only FIM from scratch Fail 13.90 ± 0.34 Fail 15.59 ± 0.27
AR only 12.58 ± 0.31 18.03 ± 0.25 11.05 ± 0.36 Fail
No positional encoding 13.01 ± 0.30 16.71 ± 0.47 12.31 ± 0.37 17.20 ± 0.58
Additive positional encoding 12.72 ± 0.31 13.60 ± 0.33 12.58 ± 0.38 13.81 ± 0.31
One mask, one token 12.76 ± 0.31 15.54 ± 0.29 11.04 ± 0.33 16.60 ± 0.36
Masking fraction 50% 13.02 ± 0.31 13.44 ± 0.33 10.94 ± 0.36 11.59 ± 0.35

ProtMamba 13.00 ± 0.30 13.89 ± 0.32 11.35 ± 0.33 12.62 ± 0.30

Table S2: Alternatives to ProtMamba. Perplexity values are reported for different alternatives to
ProtMamba, evaluated on small (14M parameters) and larger (107M parameters) models, for both
autoregressive and FIM tasks.

The alternative implementations tested against our main ProtMamba model, and whose performance
is reported in Table S2, were constructed as follows:

• Only FIM from scratch: This approach backpropagates the loss exclusively from the FIM
tokens, disregarding the main amino-acid chain. Training this way from scratch disables
autoregressive (left-to-right) next-token prediction and degrades performance, including on
FIM tasks.

• Autoregressive (AR) only: Trains the model without sampling FIM spans. While this
slightly improves autoregressive performance, it significantly degrades FIM capabilities.

• No positional encoding: Omits positional encodings entirely. In autoregressive mode, the
model can partially rely on its recurrent architecture, but in FIM mode, performance suffers
due to the absence of positional information in input.

• Additive positional encoding: Uses additive positional encoding (summing token embed-
dings with positional encoding) instead of concatenated positional encoding (concatenating
token embeddings with positional encoding). This approach showed mixed results, with
slight improvement in the small model but degradation in the larger model.

• One mask, one token: Uses one mask per token (as in the T5 model (Raffel et al., 2020))
instead of one mask per span of tokens (as in our approach, inspired by Bavarian et al.
(2022)). This approach led to performance degradation in FIM, likely due to insufficient
training on larger number of mask tokens.

• Masking fraction 50%: Samples 50% of the tokens for FIM (compared to ProtMamba’s
20%). This alternative brought minor but noticeable improvements, suggesting potential for
further development.
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Figure S1: Loss and perplexity during training. Cross entropy loss and perplexity computed for
both the full non-masked sequences and the FIM tokens. We show them as a function of the number
of tokens processed during the training of ProtMamba. They are computed on the training set and on
a validation set of 192 held-out OpenProteinSet sequence clusters (see Section 2.3).
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Figure S2: Datasets statistics. We show the x axis both in log scale (first row) and in linear scale
(second row) to have a better grasp of the distributions.
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Figure S3: Scaling of the FIM perplexity with the number of context sequences. Same as Figure 2,
using logarithmic scales on both axes.

Figure S4: Loss and perplexity of the full sequences vs. number of sequences in the context.
Scaling of the per-sequence perplexity (i.e. the standard autoregressive perplexity of the full non-
masked sequence) versus the number of context sequences. Results are averaged over all 500
clusters of the test set and 20 replicates for each cluster (differing by the random sampling of context
sequences). Context sizes go up to 217 amino acids. Sequence clusters are split according to the
average length L of sequences in the cluster. We observe that clusters with shorter sequences reach
lower perplexities.
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Figure S5: Loss and perplexity of the full sequences vs. number of tokens in the context. Scaling
of the per-sequence perplexity (i.e. the standard autoregressive perplexity of the full non-masked
sequence) versus the size of the context (i.e. the number of preceeding tokens). Results are averaged
over all 500 clusters of the test set and 20 replicates for each cluster (differing by the random sampling
of context sequences). Context sizes go up to 217 amino acids. Sequence clusters are split according
to the average length L of sequences in the cluster. We observe that clusters with shorter sequences
reach lower perplexities.

Figure S6: Comparison of 4 ProtMamba variants on the ProteinGym benchmark. We show
the predictive power for variant effect on the ProteinGym benchmark, via the Spearman correlation
between predictions and experimental results, for "ProtMamba, Foundation" (215 = 32768 tokens
context seen in training), "ProtMamba, Fine-tuned" (fine-tuned on predicting only FIM tokens),
ProtMamba Long, Foundation" (217 = 131072 tokens context seen in second phase of training) and
"ProtMamba Long, Fine-tuned" (fine-tuned on predicting only FIM tokens). We notice that models
fine-tuned only on the FIM objective outperform the foundation models. ProtMamba Long is overall
performing better than ProtMamba and its performance does not decrease as sharply as ProtMamba
for longer context.
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a b

Figure S7: Impact of context length on results on the ProteinGym benchmark. (a) We run
ProtMamba Long on the ProteinGym dataset, building contexts of different sizes in terms of numbers
of tokens (from 8,000 to 128,000). We see that the increase in performance is more important for
long sequences, which highlights the benefit of long context to model long protein sequences. (b) We
also run ProtMamba Long on the ProteinGym dataset, building contexts of different sizes in terms
of numbers of sequences (from 25 to 200). Overall, we notice a rise in the Spearman correlation,
showing that prediction benefits from longer context.

a b

Figure S8: Choice of context length and retrieval coefficient using a validation set. We randomly
extracted a validation set of 20 datasets (see supplementary Section A) to select the best context
length and retrieval coefficient. (a) The prediction improves with the context size in the validation set.
This trend was later observed in the rest of the benchmark (testing set) too. (b) Retrieval requires
mixing the fitness score Fm obtained from ProtMamba and the fitness score obtained from the
independent-site model Fi through the retrieval fitness score Fr = αFi + (1 − α)Fm. The best
model on the validation set was obtained for a retrieval coefficient α = 0.5, which was later verified
on the rest of the dataset.
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Eukaryote Human Prokaryote Virus

Taxonomic category

Figure S9: Breakdown by categories of results on the ProteinGym benchmark. Results of
ProtMamba Long and of existing specialized models on the ProteinGym benchmark, averaged over
all datasets, are shown broken down by category of experiments (left), taxonomic category (middle)
and wild-type sequence length (right). ProtMamba is fairly competitive with these models. We note
that the inverse folding model ESM-IF1 outperforms sequence-based models for stability assessment,
as expected (see left panel).

Figure S10: Example results on the ProteinGym benchmark. Results of ProtMamba Long are
shown on 25 randomly sampled deep mutational scan (DMS) experimental datasets from ProteinGym,
and are compared to existing methods (see main text). The score shown is the Spearman correlation
between predictions and experimental results.
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Figure S11: Impact of various context construction methods on results on chorismate mutase
activity. The ROC curve is shown for various context construction methods (see main text) for
predicting active variants in the chorismate mutase dataset, and for baseline methods from Russ
et al. (2020). Overall, we observe that restricting to active variants in context helps improving
prediction quality (Spearman correlation ρ going from 0.41-0.46 to 0.50-0.53). Giving full proteins
instead of restricting to the chorismate mutase domain also improves the results. Using FIM to
condition the domain to score using the rest of the protein also improves performance. ProtMamba
also outperforms the baselines provided in Russ et al. (2020), namely the Potts or DCA energy and
the logistic regression trained directly on amino-acid sequences.

a b c

Figure S12: (a) Impact of context length on results on chorismate mutase activity. Spearman
correlation between experimental activity and predictions from ProtMamba is shown using a different
number of active sequences in the context (using FIM and full active proteins as context to score
variants using ProtMamba). The Spearman correlation quickly increases with the number of proteins
sequences given in context, especially from 0 to 25 sequences (or 10,000 tokens) before slowly
increasing with context size. (b) and (c) Perplexity of generated variants when using only active
variants in context (b) or using active and inactive variants in context (c). Inactive variants
tend to have higher perplexity (implying lower fitness score) when the context contains only active
variants (b) while active variants have lower perplexity (implying higher fitness score) when the
context contains only active variants (c) .
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Figure S13: ProtMamba captures chorismate mutase activity. Experimental activity of chorismate
mutase enzyme variants from Russ et al. (2020) is shown versus ProtMamba per-token perplexity,
determined using FIM and full active proteins as context. The per-token perplexity is a good proxy of
the activity. We obtain a Spearman correlation of 0.53 between this score and experimental activity,
and it yields an AUC of 0.84 to discriminate active from inactive sequences.
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Figure S14: ProtMamba perplexity versus DCA energy for chorismate mutase variants. Prot-
Mamba perplexity is evaluated using full sequences, FIM and only active variants in the context, and
is shown versus the Potts or DCA energy from Russ et al. (2020). Active variants are in green, while
inactive variants are in red. We observe that most of the variants that are active have low perplexity,
and that many inactive variants that were not discriminated as inactive by DCA are labelled as such
by ProtMamba (bottom right part of the plot).
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Figure S15: Pearson correlation between ProtMamba perplexity and scores for generated
sequences. For each of 19 test clusters, we used all the sequences generated by ProtMamba to
compute the Pearson correlation between the model perplexity and the Hamming distance to the
closest natural neighbor, the HMMER score, the pLDDT and pTM scores from ESMFold.
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Figure S16: Properties of generated sequences. Left panels: histograms of Hamming distances,
HMMER scores and mean pLDDT scores from ESMFold of generated sequences for 10 example test
clusters (10 rows). Right panels: scatter plots of ProtMamba perplexity versus the Hamming distance
to the closest natural neighbor, the HMMER score and mean pLDDT score from ESMFold for all
generated sequences from each of 10 example clusters (10 rows). Dashed vertical lines: median of
the generated sequences (blue), median of the natural sequences (green) and pLDDT value of the
reference structure of the cluster (red). The last one is shown only for the rightmost plot.
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