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ABSTRACT

Text embeddings are typically evaluated on a limited set of tasks, which are con-
strained by language, domain, and task diversity. To address these limitations and
provide a more comprehensive evaluation, we introduce the Massive Multilingual
Text Embedding Benchmark (MMTEB) – a large-scale, community-driven expan-
sion of MTEB, covering over 500 quality-controlled evaluation tasks across 250+
languages. MMTEB includes a diverse set of challenging, novel tasks such as
instruction following, long-document retrieval, and code retrieval, representing
the largest multilingual collection of evaluation tasks for embedding models to
date. Using this collection, we develop several highly multilingual benchmarks,
which we use to evaluate a representative set of models. We find that while large
language models (LLMs) with billions of parameters can achieve state-of-the-art
performance on certain language subsets and task categories, the best-performing
publicly available model is multilingual-e5-large-instruct with only 560 million
parameters. To facilitate accessibility and reduce computational cost, we introduce
a novel downsampling method based on inter-task correlation, ensuring a diverse
selection while preserving relative model rankings. Furthermore, we optimize
tasks such as retrieval by sampling hard negatives, creating smaller but effective
splits. These optimizations allow us to introduce benchmarks that drastically reduce
computational demands. For instance, our newly introduced zero-shot English
benchmark maintains a similar ranking order as the full-scale version but at a
fraction of the computational cost.1

1 INTRODUCTION

Text embeddings are used in many applications, such as semantic search (Reimers & Gurevych, 2019;
Muennighoff, 2022; Winata et al., 2023a; 2024b) and classification tasks (Wang et al., 2018; 2019).

Additionally, text embeddings play a crucial role in retrieval-augmented generation (RAG; Borgeaud
et al. 2022; Lewis et al. 2021), and often provide significant gains in performance on low- to
mid-resource languages, enabling the incorporation of previously inaccessible information.

Despite the wide range of applications, there’s a lack of benchmarks that evaluate text embeddings
across multiple domains, languages, and tasks. Existing benchmarks tend to focus on specific
domains, demarcated by subject (e.g., medical, legal, fiction (Thorne et al., 2018b)), particular tasks
(e.g., retrieval (Thakur et al., 2021)), literary type (e.g., fiction, and non-fiction) or form (e.g., spoken
and written). Embeddings also tend to focus on a subset of languages (Nørregaard & Derczynski,
2021).

While recent efforts (Thakur et al., 2021; Muennighoff et al., 2023b; Zhang et al., 2022) have aimed
to broaden the scope by encompassing more tasks, domains, or selected languages (Wrzalik &
Krechel, 2021; Cohan et al., 2020a), a significant gap in language coverage still exists. This work
bridges this gap by creating a benchmark that includes a much broader range of low- to mid-resource
languages, along with a broader coverage of domains and task categories. To create such an expansive
benchmark, we initiated a large-scale, open collaboration. Contributors include native speakers from
diverse linguistic backgrounds, NLP practitioners, academic and industry researchers, and enthusiasts.

1MMTEB comes with open-source code and a public leaderboard available at Anonymized
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Figure 1: An overview of MMTEB. The boxes represent the overall task categories with a sample of
task categories represented within each. Blue borders represent closely-related task categories.

To ensure high-quality submission each dataset required systematic tests, detailed metadata, and a
review.

The result of this extensive collaborative effort is MMTEB, the Massive Multilingual Text Embedding
Benchmark, which comprises more than 500 distinct tasks across 10 task categories, covering over
250 languages, and spans a wide array of domains such as fiction, social media, medical texts, and
technical programming documentation. It also integrates recent, high-quality benchmarks that test a
model’s capabilities in following instructions (Weller et al., 2024), embedding long documents (Zhu
et al., 2024), solving reasoning tasks (Xiao et al., 2024a; Su et al., 2024), and cross-lingual retrieval
(Franco-Salvador et al., 2014). For an overview see Figure 1.

Given the known co-occurrence of limited computational resources and low-resource languages,
often referred to as the “low-resource double bind” (Ahia et al., 2021), we made it our goal to make
the MMTEB benchmark accessible to low-resource communities. Evaluating models extensively
is often resource-intensive. For example, evaluating a single 7B large language model (LLM) on
the HELM benchmark consumes over 4,000 GPU hours (Liang et al., 2022). Similarly, the English
MTEB (henceforth referred to as MTEB(classic)) benchmark requires up to two days of processing
on a single A100 GPU even for moderately sized LLMs (Muennighoff et al., 2023b; BehnamGhader
et al., 2024). These high resource demands pose a challenge for low-resource language communities
that often lack access to powerful computing resources. MMTEB addresses these challenges by
both expanding its coverage and optimizing the evaluation process. It significantly reduces the
computational cost (3.11 hours on an H100 GPU for a 7B model) while maintaining sensitivity as a
benchmark to accurately rank model ability.

2 MMTEB CONSTRUCTION

2.1 OPEN SCIENCE EFFORT

To ensure the broad applicability of MMTEB across various domains, we recruited a diverse group
of contributors. We actively encouraged participation from industry professionals, low-resource
language communities, and academic researchers. To clarify authorship assignment and recognize
desired contributions, we implemented a point-based system, similar to Lovenia et al. (2024). To facil-
itate transparency, coordination was managed through GitHub. A detailed breakdown of contributors
and the point system can be found in Appendix A.

2
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2.2 ENSURING TASK QUALITY

To guarantee the quality of the added tasks2, each task was reviewed by at least one of the main
contributors. In addition, we required task submissions to include metadata fields. These fields
included details such as annotation source, dataset source, license, dialects, and citation information.
A comprehensive description of each field is provided in Appendix B.4.

Furthermore, we ensured that the performance on submitted tasks fell within a reasonable range
to avoid trivially low or unrealistically high performance. Therefore we required two multilingual
models to be run on the task; Multilingual-e5-small3 (Wang et al., 2022) and MiniLM-L12.4 (Reimers
& Gurevych, 2019). A task was examined further if the models obtained scores close to a random
baseline (within a 2% margin), a near-perfect score, or if both models obtained roughly similar scores.
These tasks were examined for flawed implementation or poor data quality. Afterwards, a decision
was made to either exclude or include the task. We consulted with contributors who are familiar with
the target language whenever possible before the final decision. A task could be included despite
failing these checks. For example, scores close to the random baseline might be due to the task’s
inherent difficulty rather than poor data quality.

2.3 ACCESSIBILITY AND BENCHMARK OPTIMIZATION

As detailed in Section 1, extensive benchmark evaluations often require significant computational
resources. This trend is also observed in MTEB(classic) (Muennighoff et al., 2023b), where running
moderately sized LLMs can take up to two days on a single A100 GPU. Accessibility for low-
resource communities is particularly important for MMTEB, considering the common co-occurrence
of computational constraints (Ahia et al., 2021).

Below, we discuss three main strategies implemented to make our benchmark more efficient. We
additionally elaborate further code optimization in Appendix C.2.

2.3.1 DOWNSAMPLING AND CACHING EMBEDDINGS

The first strategy involves optimizing the evaluation process by downsampling datasets and caching
embeddings. Encoding a large volume of documents for tasks such as retrieval and clustering can be
a significant bottleneck in evaluation. Downsampling involves selecting a representative subset of the
dataset and reducing the number of documents that require processing. Caching embeddings prevents
redundant encoding by using already processed documents.

Clustering: In MTEB, clustering is evaluated by computing the v-measure score (Rosenberg &
Hirschberg, 2007) on text embeddings clustered using k-means. This process is repeated over multiple
distinct sets, inevitably resulting in a large number of documents being encoded. To reduce this
encoding burden, we propose a bootstrapping approach that reuses encoded documents across sets.
We first encode a 4% subsample of the corpus and sample 10 sets without replacement. Each set
undergoes k-means clustering, and we record performance estimates. For certain tasks, this approach
reduces the number of documents encoded by 100×. In Appendix B.2, we compare both approaches
and find an average speedup of 16.11x across tasks, while preserving the relative ranking of models
(Average Spearman correlation: 0.96).

Retrieval: For retrieval tasks, the main bottleneck of evaluation process is encoding the entire
document collection, which can be in order of millions. To maintain similar scores to the original
datasets while reducing the document collection size, we used the TREC pooling strategy (Buckley
et al., 2007; Soboroff & Robertson, 2003) which selects documents based on aggregate scores from
various models.5 For each dataset, we retain the top 250 ranked documents per query, a number
determined by initial tests that showed minimal differences in absolute scores and no change in
relative ranking across a representative model set (see Appendix C.1.2 for more details on the impact

2A task consists of a dataset along with an implementation specifying how a model should be evaluated on
the dataset.

3https://huggingface.co/intfloat/multilingual-e5-small
4https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
5We used a range of models: BM25 for lexical hard negatives, e5-multilinugal-large as the best BERT-large

sized multilingual model, and e5-Mistral-Instruct 7B as the largest model and with instruction-based data.

3

https://huggingface.co/intfloat/multilingual-e5-small
https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
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of downsampling). These documents are merged to form a smaller representative collection. This
conservative pool, larger than the usual 50-100, ensures broad coverage of potential hard negatives
for better model differentiation. For datasets with over 1000 queries, we randomly sample 1000. This
reduces the document collection size of largest retrieval datasets from over 5 million to a maximum
of 250k documents, thus significantly speeding up evaluation while preserving ranking performance.

Bitext Mining: We apply similar optimization to bitext mining tasks. Some datasets, such as Flores
(Costa-jussà et al., 2022) share the same sentences across several language pairs (e.g., English
sentences are the same in the English-Hindi pair and the English-Bosnian pair). By caching the
embeddings, we reduce the number of embedding computations, making it linear in the number of
languages instead of quadratic. For the English documents within Flores this results in a reduction of
documents needed to be embedded from 410,000 in MTEB(classic) to just 1,012 in our proposed
benchmark.

2.3.2 ENCOURAGING SMALLER DATASET SUBMISSIONS

The second strategy focused on encouraging contributors to downsample datasets before submission.
To achieve this, we used a stratified split based on target categories. This helped us to ensure that
the downsampled datasets could effectively differentiate between candidate models. To validate the
process, we compared scores before and after downsampling. For details, we refer to Appendix C.1.

2.3.3 TASK SELECTION

To further reduce the computation overhead we seek to construct a task subset that can reliably predict
task scores outside the subset.

For task selection, we followed an approach inspired by Xia et al. (2020). We seek to estimate
the model mi ∈ M scores st,mi on an unobserved task t based on scores on observed tasks
sj,mk

∈ S, j ̸= t. This allows us to consider the performance of tasks as features within a prediction
problem. Thus we can treat task selection as feature reduction, a well-formulated task within machine
learning. Note that this formulation allows us to keep the unobserved task arbitrary, representing
generalization to unseen tasks (Chollet, 2019).

We used a backward selection method, where one task is left out to be predicted, an estimator6 is
fitted on the performance of all models except one, and the score of the held-out model is predicted.
This process is repeated until predicted scores are generated for all models on all tasks. The most
predictable task is then removed, leaving the estimators in the task subset group. Optionally, we
can add additional criteria to ensure task diversity and language representation. Spearman’s rank
correlation was chosen as the similarity score, as it best preserved the relative ranking when applied
to the MTEB(classic).

2.4 BENCHMARK CONSTRUCTION

From the extensive collection of tasks in MMTEB, we developed several representative benchmarks,
including a highly multilingual benchmark, MTEB(multilingual), as well as regional geopoliti-
cal benchmarks, MTEB(europe) and MTEB(indic). Additionally, we introduce faster versions of
MTEB(classic) (Muennighoff et al., 2023b), which we refer to as MTEB(eng). MMTEB also inte-
grates domain-specific benchmarks like CoIR for code retrieval (Li et al., 2024) and LongEmbed for
long document retrieval (Zhu et al., 2024). MMTEB also introduces language-specific benchmarks,
extending the existing suite that includes Scandinavian (Enevoldsen et al., 2024), Chinese (Xiao et al.,
2024b), Polish (Poświata et al., 2024), and French (Ciancone et al., 2024). For an overview of the
benchmarks, we refer to Appendix H.1.

In the following section, we detail a methodology that we designed to create more targeted and concise
benchmarks. This methodology includes: 1) clearly defining the initial scope of the benchmark
(Initial Scope), 2) reducing the number of tasks by iterative task selection tasks based on intertask
correlation (Refined Scope), and 3) performing a thorough manual review (Task Selection and
Review). We provide an overview in Table 1.

6We use the term "estimator" to differentiate between the evaluated embedding model. For our estimator, we
use linear regression.
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Benchmark Initial Scope Refined Scope Task Selection and Review

MTEB(multilingual) >500 343 131
MTEB(europe) 420 228 96
MTEB(indic) 55 44 23
MTEB(eng) 56 54 40

Table 1: Number of tasks in each benchmark after each filtering step. The initial scope includes tasks
relevant to the benchmark goal, notably language of interest. The refined scope further reduced the
scope, e.g. removing datasets with underspecified licenses.

In addition to these benchmarks, we provide accompanying code to facilitate the creation of new
benchmarks, to allow communities and companies to create tailored benchmarks. In the following, we
present MTEB(multilingual) and MTEB(eng) as two example cases. For a comprehensive overview
of benchmark construction and the tasks included in each benchmark, we refer to Appendix H.2.

MTEB(multilingual): We select all available languages within MMTEB as the initial scope of the
benchmark. This results in 550 tasks. We reduce this selection by removing machine-translated
datasets, datasets with under-specified licenses, and highly domain-specific datasets such as
code-retrieval datasets. This results in 343 tasks covering >250 languages. Following this selection,
we evaluate this subset using a representative selection of models (See Section 3.1) and apply task
selection to remove the most predictable tasks. To ensure language diversity and representation
across task categories, we avoid removing a task that would eliminate a language from the respective
task category. Additionally, we did not remove a task if the mean squared error between predicted
and observed scores exceeded 0.5 standard deviations. This is to avoid inadvertantly overindexing
to easier tasks. The process of iterative task removal (Section 2.3.3) is repeated until the most
predictable held-out task obtained a Spearman correlation of less than 0.8 between predicted and
observed scores, or if no tasks were available for filtering. This results in a final selection of 131
diverse tasks. Finally, the selected tasks were reviewed, if possible, by contributors who spoke
the target language. If needed, the selection criteria were updated, and some tasks were manually
replaced with higher-quality alternatives.

MTEB(eng): Unlike the multilingual benchmarks which target a language group, this benchmark
is designed to match MTEB(classic), incorporating computational efficiencies (see Section 2.3)
and reducing the intertask correlation using task selection. To prevent overfitting, we intend it as a
zero-shot benchmark, excluding tasks like MS MARCO (Nguyen et al., 2016) and Natural Questions
(Kwiatkowski et al., 2019), which are frequently used in fine-tuning.

We start the construction by replacing each task with its optimized variant. This updated set obtains
a Spearman correlation of 0.97, p < .0001 (Pearson 0.99, p < .0001) with MTEB(classic) using
mean aggregation for the selected models (see Subsection 3.1). The task selection process then
proceeds similarly to MTEB(multilingual), ensuring task diversity by retaining a task if its removal
would eliminate a task category. Tasks, where the mean squared error between predicted and observed
performance exceeds 0.2 standard deviations, are also retained. This process continues until the most
predictable held-out task yields a Spearman correlation below 0.9 between predicted and observed
scores. The final selection consists of 26 tasks. We compare this with MTEB(classic) (Muennighoff
et al., 2023b) in Section 4.1.

3 EXPERIMENTAL SETTINGS

3.1 MODELS

We select a representative set of models, focusing on multilingual models across various size
categories. We benchmark the multilingual LaBSE (Feng et al., 2022), trained on paraphrase corpora,
English and multilingual versions of MPNet (Song et al., 2020), and MiniLM (Wang et al., 2021b)
model, trained on diverse datasets. We also evaluate the multilingual e5 series models (Wang et al.,
2024; 2022) trained using a two-step approach utilizing weak supervision. Additionally, to understand

5
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Figure 2: Performance on MTEB(multilingual) according to the number of parameters. We see that
the notably smaller model obtains slightly better performance when compared to the 7B models based
on Mistral.

the role of scale as well as instruction finetuning, we benchmark the GritLM-7b (Muennighoff et al.,
2024) and e5-multilingual-7b-instruct (Wang et al., 2023) which are both based on the Mistral 7B
model (Jiang et al., 2023).

Revision IDs, model implementation, and prompts used are available in Appendix G. We ran the
models on all the implemented tasks to encourage further analysis of the model results. Results,
including multiple performance metrics, runtime, CO2 emissions, model metadata, etc., are publicly
available in the versioned results repository.7

3.2 EVALUATION SCORES

For our performance metrics, we report average scores across all tasks, scores per task category, and
weighted by task category. We compute model ranks using the Borda count method (Colombo et al.,
2022), derived from social choice theory. This method, which is also employed in election systems
based on preference ranking, has been shown to be more robust for comparing NLP systems. To
compute this score, we consider each task as a preference voter voting for each model, and scores are
aggregated according to the Borda Count method. In the case of ties, we use the tournament Borda
count method.

3.3 MULTILINGUAL PERFORMANCE

While MMTEB includes multiple benchmarks (see Appendix H.1), we select three multilingual
benchmarks to showcase. These constitute a fully multilingual benchmark MTEB(multilingual)
and two targeting languages with varying levels of resources: MTEB(europe) and MTEB(indic). The
performance of our selected models on these tasks can be seen in Table 2. For performance metrics
per task, across domains, etc., we refer to Appendix E.

4 ANALYSIS AND DISCUSSION

Table 2 shows the performance across the three presented multilingual benchmarks. Two trends are
clearly observable;

Models trained with instruction-tuning perform significantly better compared to those without it.
This is especially clear when comparing the multilingual-e5-large to its instruction-tuned counterpart
(multilingual-e5-large-instruct). Instruction tuning increases performance most drastically on bitext
mining and clustering, though the effect remains pronounced across all task categories. Notably,
this happens despite many tasks using generic prompts for the task category and no model-specific
tuning of prompts per task. Surprisingly, multilingual-e5-large(-instruct) models, based on XLM-R

7Anonymized URL.
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Rank (↓) Average Across Average per Category

Model (↓) Borda Count All Category Btxt Pr Clf Clf STS Rtrvl M. Clf Clust Rrnk

MTEB(multilingual)

Number of datasets (→) (132) (132) (132) (13) (11) (43) (16) (18) (5) (17) (6)

multilingual-e5-large-instruct 1 (1244) 63.4 55.3 80.1 81.2 65.0 76.7 58.0 22.9 51.5 63.0
GritLM-7B 2 (1119) 60.9 53.6 70.5 80.2 61.9 73.2 59.1 21.2 50.4 62.8
e5-mistral-7b-instruct 3 (1100) 60.2 53.1 70.6 81.4 60.3 73.9 55.4 22.2 51.4 63.4
multilingual-e5-large 4 (980) 58.7 51.5 71.7 79.3 59.9 73.4 55.0 21.3 43.1 62.6
multilingual-e5-base 5 (811) 57.1 50.0 69.4 77.6 58.2 71.2 53.6 20.2 42.8 59.9
multilingual-mpnet-base 6 (698) 52.0 45.2 52.1 81.6 55.1 69.5 39.3 16.4 41.2 53.2
multilingual-e5-small 7 (654) 55.6 48.8 67.5 76.8 56.5 69.9 50.2 19.1 41.8 60.2
LaBSE 8 (589) 52.1 45.8 76.3 76.1 54.6 65.2 32.9 20.1 39.4 50.4
multilingual-MiniLM-L12 9 (475) 48.8 42.5 44.5 79.4 51.7 66.4 36.2 14.9 39.6 51.0
all-mpnet-base 10 (398) 42.4 36.2 21.2 71.0 47.0 57.1 32.8 16.3 41.1 42.1
all-MiniLM-L12 11 (355) 42.1 36.2 22.9 71.9 46.8 56.6 32.4 14.6 36.8 44.3
all-MiniLM-L6 12 (290) 41.5 35.2 20.1 71.3 46.3 55.6 33.1 15.1 38.3 40.0

MTEB(europe)

Number of datasets (→) (74) (74) (74) (7) (6) (21) (9) (15) (2) (6) (3)

GritLM-7B 1 (680) 60.7 53.4 70.8 89.4 64.3 75.5 57.1 17.6 43.5 58.9
multilingual-e5-large-instruct 2 (679) 61.0 53.7 76.7 89.9 63.5 77.2 55.5 17.3 46.0 57.5
e5-mistral-7b-instruct 3 (643) 59.2 52.2 70.2 90.7 62.5 76.0 52.4 15.5 44.5 58.5
multilingual-e5-large 4 (527) 57.1 49.9 69.0 88.7 60.9 75.6 51.3 15.0 36.7 55.2
multilingual-e5-base 5 (438) 55.7 48.9 68.3 87.6 58.3 73.4 50.6 14.9 36.7 53.0
multilingual-mpnet-base 6 (387) 51.2 45.1 55.4 90.6 55.4 74.1 39.3 6.9 34.3 51.6
multilingual-e5-small 7 (347) 53.7 47.5 66.0 86.9 56.5 71.0 46.5 14.0 35.5 53.4
LaBSE 8 (296) 49.8 45.2 72.3 85.0 54.0 65.7 33.8 16.3 33.5 48.8
multilingual-MiniLM-L12 9 (252) 48.4 42.9 51.3 88.8 51.7 72.4 35.5 5.7 32.7 49.2
all-mpnet-base 10 (242) 43.3 37.9 23.6 79.6 48.5 63.0 35.9 10.9 36.0 47.0
all-MiniLM-L12 11 (221) 43.1 37.7 25.6 80.9 48.7 63.5 34.5 7.6 32.3 47.0
all-MiniLM-L6 12 (172) 42.5 36.8 21.8 79.6 47.5 61.8 36.6 8.8 33.5 44.5

MTEB(indic)

Number of datasets (→) (23) (23) (23) (4) (1) (13) (1) (2) (0) (1) (1)

multilingual-e5-large-instruct 1 (224) 71.8 71.5 70.3 78.5 70.9 53.7 88.7 - 47.2 91.0
multilingual-e5-large 2 (190) 64.5 63.7 64.4 73.9 63.1 43.9 87.5 - 23.7 89.7
GritLM-7B 3 (165) 64.6 62.5 60.7 74.1 65.2 27.2 83.2 - 36.1 91.0
multilingual-e5-base 4 (164) 62.5 61.1 61.2 71.0 61.9 41.1 83.3 - 21.6 87.7
e5-mistral-7b-instruct 5 (154) 63.7 62.3 61.6 77.9 63.6 23.0 80.8 - 38.7 90.3
multilingual-e5-small 6 (150) 61.9 60.6 61.2 69.0 61.3 40.8 80.8 - 23.9 87.0
LaBSE 7 (135) 60.7 59.0 63.6 65.2 60.0 52.8 71.6 - 18.8 80.9
multilingual-mpnet-base 8 (127) 57.1 56.4 42.0 82.7 60.2 34.1 69.6 - 24.1 82.2
multilingual-MiniLM-L12 9 (91) 50.0 48.6 23.6 78.9 56.3 19.8 64.1 - 19.4 78.5
all-mpnet-base 10 (52) 36.4 30.9 7.2 58.4 47.2 -2.5 32.3 - 8.9 64.7
all-MiniLM-L12 11 (39) 35.9 31.0 7.8 58.4 46.0 -5.3 32.9 - 7.6 69.2
all-MiniLM-L6 12 (27) 35.1 29.2 6.3 57.4 46.3 -6.3 29.4 - 6.6 64.5

Table 2: The results on three multilingual benchmarks. For each benchmark, we sort the score by
rank (based on a Borda count). We additionally supply an average across all tasks, an average per
task category and an average weighted by task category. The task categories are shortened as follows:
Bitext Mining (Btxt), Pair Classification (Pr Clf), Classification (Clf), Semantic text similarity (STS),
Retrieval (Rtrvl), Multilabel Classification (M. Clf), Clustering and Hierarchical Clustering (Clust)
and Reranking (Rrnk). We highlight the best score in bold. Note that while Instruction retrieval
Weller et al. (2024) is included MTEB(europe) and MTEB(multilingual), we leave it out in the
average by task category as it is only supported by a subset of the models. For the evaluation of a
wider set of models, we refer to the public leaderboard.
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Large (Conneau et al., 2019) generally outperform the considerably larger e5-mistral-7b-instruct
and GritLM-7B, both of which are based on mistral-7b (Jiang et al., 2023). This effect is notably
pronounced for mid-to-low resource languages (<300M speaker; see Appendix E.1) and likely
emerges due to differences in pre-training, with Mistral being predominantly pre-trained on English,
while XLM-R targets 100 languages. All three models utilize similarly multilingual datasets for
fine-tuning. However, GritLM still remains best in class for retrieval on MTEB(multilingual), it has
a higher maximum sequence length Figure 2 and outperforms the multilingual-e5-large-instruct on
MTEB(code) and MTEB(eng).

(a) Performance Difference of Models on
MTEB(classic) (flag) and MTEB(multilingual)
(globe).

(b) The performance on MTEB(classic) and
MTEB(eng)

.

Figure 3

Discrepencies in Multilingual benchmarks ranking seem to stem from discrepancies in pre-
training. While the multilingual benchmarks obtain seemingly similar performance rankings, we see
a few notable discrepancies. These discrepancies seem to mainly stem from a narrow multilingual
focus (GritLM-7B, e5-mistral-7b-instruct, multilingual-mpnet-base) during training, resulting in
disproportionally higher performance on the targeted (typically mid-high resource or European)
languages. These are typically outperformed by the multilingually pre trained XLM-Roberta-based
multilingual-e5-large-instruct on lower-resource languages in MTEB(Europe) and all languages in
MTEB(Indic) (see Figure Figure 4), despite being substantially smaller than Mistral-based models, the
performance of which steadily decreases and becomes more volatile for languages with increasingly
lower number of native speakers. This trade-off is well-known, e.g., demonstrated by Xue et al.
(2020).

Besides these, we observe the expected detrimental performance of English models (all-MiniLM-
L12, all-MiniLM-L6, all-mpnet-base) applied to non-English languages and a relatively high bitext
performance of LaBSE (see Figure Figure 3a).

4.1 MTEB(CLASSIC) VS. ZERO-SHOT MTEB(ENG)

We compare the performance of MTEB(classic) and MTEB(eng) in Figure 3b obtaining a Spearman
correlation of 0.90, p < 0.0001 (Pearson 0.96, p < 0.0001). For the precise scores, we refer to
Subsection H.3. This includes a reduction from 56 to 40 tasks along with optimized task runtime
speeding up the runtime on the benchmark (3.11 hours for GritLM-7B and 0.81 hours for all-MiniLM-
L12 on an H100). We see that notably, the smaller English models (all-MiniLM-L12, all-MiniLM-L6,
all-mpnet-base) perform worse on the new benchmark. This is likely because they were trained on
MS MARCO and Natural questions, which were removed as part of the benchmark conversion to a
zero-shot benchmark.
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Figure 4: Performance rank of top 3 multilingual models on languages in MTEB(Indic) and
MTEB(Europe) by the number of native speakers. We see that Mistral-based models are outper-
formed by multilingual-e5-large-instruct on lower-resource languages, despite it having substantially
fewer parameters.

5 RELATED WORK

Text embedding benchmarks BEIR (Thakur et al., 2021) pioneered the use of publicly available
datasets from diverse information retrieval (IR) tasks and domains and evaluated 10 various retrieval
systems. MTEB (Muennighoff et al., 2023b) introduced a comprehensive text embedding benchmark
that spans not only IR but also 8 other task types, including clustering and re-ranking. MTEB
benchmark covers a total of 58 tasks and 112 languages, though this multilinguality is mainly
derived from machine-translated tasks or bitext mining. Its leaderboard has grown in popularity and
evolved into the de facto embedding model benchmark that supports over 300 models. MIRACL
(Zhang et al., 2022) supports 18 languages from different language families for monolingual retrieval.
MINERS (Winata et al., 2024b) is designed to evaluate the ability of multilingual LMs in semantic
retrieval tasks including classification and bitext mining tasks in more than 200 languages, including
code-switching. Our work extends the number of languages to over 1000 (250 excluding bitext-
mining tasks), particularly to cover more low-resource languages. We also expand the MTEB’s
8 embedding tasks to 10 and the 58 datasets to over 400, significantly broadening the scope of
multilingual benchmarking.

Massive collaborative projects Open research initiatives and participatory approaches to science
have been shown to stimulate innovation (Park et al., 2023), reduce negative biases (Gudowsky, 2021;
Gomez et al., 2022), and increase diversity of the data sources (Hanley et al., 2020; Singh et al.,
2024b). By involving diverse stakeholders, these practices enhance ethical, robust, and reproducible
research (Hagerty & Rubinov, 2019). Recently, the field of natural language processing has seen a
growing number of community-driven collaborative projects. These can be grouped into several cate-
gories. (a) Model creation, such as the BLOOM (BigScience Workshop et al., 2023), StarCoder (Li
et al., 2023a) and Aya model (Üstün et al., 2024); (b) Dataset creation, such as NusaX (Winata
et al., 2023b), OpenAssistant (Köpf et al., 2023), NusaWrites (Cahyawijaya et al., 2023c), and Aya
dataset (Singh et al., 2024b); (c) Benchmark creation, such as BIG-Bench (Srivastava et al., 2023),
NusaCrowd (Cahyawijaya et al., 2023a), WorldCuisines (Winata et al., 2024a), SEACrowd (Lovenia
et al., 2024), and Eval-Harnesses (Gao et al., 2021; Ben Allal et al., 2022; Biderman et al., 2024); and
(d) Other artifacts, such as NL-Augmenter (Dhole et al., 2021), or Wikibench annotation tool (Kuo
et al., 2024). MMTEB expands upon earlier work within the Benchmark creation category. Our
effort significantly differs from prior collaborative benchmarks as we focus on text embeddings, use a
custom point system to incentivize contributions, and handle all communication openly via GitHub.

6 CONCLUSION

This work introduced the Massive Multilingual Text Embedding Benchmark (MMTEB), a large-
scale open collaboration resulting in a benchmark with more than 500 tasks covering more than
1000 languages. From these, we constructed three multilingual benchmarks: one fully multi-
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Figure 5: Number of tasks per language. For readability, we remove English (290 tasks) and only
plot the 100 languages with the most tasks.

lingual (MTEB(multilingual)) and two targeting Indic (MTEB(indic)) and European languages
(MTEB(europe)) respectively. Acknowledging that multiple additional benchmarks can be con-
structed from the MMTEB additions, we propose a simple approach to constructing new benchmarks.
To make these benchmarks accessible to low-resource communities, we introduced several opti-
mizations by downsampling retrieval tasks using hard negative mining and bootstrapping clustering
evaluation to re-use encoded documents across sets. This leads to a notable reduction in the number
of text samples that need to be embedded.

Our findings indicate that while large (7B) LLM-based embedding models obtain state-of-the-art
performance on English benchmark, they are still outperformed in highly multilingual or low-resource
settings by smaller models like XLM-R Large, even when accounting for notable improvements like
prompt-based embeddings.

LIMITATIONS

English leakage. While MMTEB filters out machine-translated datasets, it permits (human) trans-
lations. This inclusion leads to tasks like SIB200ClusteringS2S, where labels from English samples
are transferred to their translations, potentially introducing bias towards English or models trained on
translated content. Consequently, the benchmark may inadvertently encourage model developers to
favor English or translated content by increasing their proportion in pre-training data.

Credit assignment for large-scale collaborations. One of MMTEB’s goals was to highlight
the benefits of collaboration. The managing group believes the point system successfully defined
contribution terms but acknowledges it isn’t perfect. For instance, equal points were awarded for
dataset submissions regardless of effort—some datasets were readily available, while others needed
significant work like reformulation, HTML parsing, and multiple review rounds.

Languages representation. While the benchmark includes over 250 languages and 500 tasks, the
distribution is skewed toward high-resource languages (see Figure 5), with low-resource languages
being better represented in specific task categories like bitext-mining and classification. We encourage
future collaborations to fill these gaps and enhance language diversity in the collection.

ETHICAL CONSIDERATIONS

We acknowledge the environmental impact of the benchmark that stems from the compute needed
across tasks. As such, emissions tracking is added using codecarbon Courty et al. (2024) to measure
kilograms of CO2-equivalents (CO2eq) and estimate the carbon footprint per task. The benchmark is
a collaborative project and contains datasets of different data quality and origin. Thus, additional
efforts are still required to identify and minimize biases in the benchmark datasets.
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Github Total Bug fixes Review PR New dataset Dataset annotations Paper writing New task Coordination Running Modelshandle

Anonymized - - - – - - - - -

Table 3: Contributions by GitHub users. See Table 4 for the mapping between authors and GitHub
handles.

GitHub First name Last name Affiliations

Anonymized1 - - -
Anonymized2 - - -
... - - -

Table 4: Author overview, along with their affiliations and GitHub handles.

• New task: An implementation of a new task category such as multi-label classification or
instruction retrieval. 2 points were given for a new task, as well as points following adding a
new dataset.

• Annotations: Many existing datasets were not yet annotated with proper metadata. To
encourage high-quality annotations we awarded 1 point for each full dataset annotation.

• Fixes: These included bug fixes, usability fixes, speed improvements and more. For these,
we typically awarded 2-10 points depending on the size of the contribution.

• Running Models: This includes both running and implementing models for MMTEB. We
typically awarded 1 point per model run on a full set of relevant tasks. Relevant tasks for a
specific model are limited to those pertinent to its language. For instance, a Russian model
does not need to be run on French tasks.

• Review PR: A large part of ensuring good dataset quality comes from the dataset review.
We award 2 points for a review. If a PR had multiple reviewers, 2 points were awarded to
each. Often reviewers finalized dataset additions, helped with data formatting, and resolving
bugs. In many cases, adding 2 points for review was considered either too low (a perfect
PR with little to no corrections) or too high (lengthy discussion examining dataset quality,
debugging implementations and more), however on average we believe it was appropriate.

• Writing: At this point many of the authors writing the paper already qualified for co-
authorship and thus had reasonable experience with the MMTEB point system. Thus, it was
generally possible to discuss a reasonable amount of points based on the efforts made in
earlier stages.

• Coordination: Included Coordination of contributors and initial ideation were given points
at the end of the project based on relative effort. These points were given, similar to paper
writing, based on relative effort.

A total of 10 points were to be obtained to be invited as a co-author. To see each contribution mapped
to specific PRs, see Anonymized, where the name of JSON files corresponds to the PR id.

B OVERVIEW AND CONSTRUCTION OF TASKS

In this appendix, we first provide an overview of existing tasks in MTEB benchmark and newly
introduced tasks in our benchmark (Section B.1). We proceed by explaining how the tasks were
constructed (Section B.2) from existing datasets. Lastly, we introduce newly constructed datasets
specifically designed for MMTEB (Section B.3).

B.1 INTRODUCTION TO BENCHMARK TASKS

Classification First, a train set is constructed by sampling n (8-16) samples for each label. If only a
test set is available, a section is split off as a training set. Both sets are then embedded and used to
train a logistic regression using a maximum of 100 iterations. Afterwards, performance metrics are
calculated. For robustness, this process is repeated 10 times.
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Pair classification For two paired texts, the goal is to predict the label. Examples of such tasks
include paraphrase detection or duplicate detection. The task is solved by embedding all documents
and then computing the distance either using a model-specified metric, cosine, euclidean, dot product,
or Manhattan. Using the best binary threshold, performance metrics are computed.

Bitext mining The dataset consists of matching pairs of sentences, and the goal is to find the match.
All matching pairs of sentences are embedded, and the closest match is found using cosine similarity,
and metrics are reported.

Clustering and hierarchical clustering Clustering starts with a set of documents and an associated
set of labels. First we embed all documents, then take subsets of the data of size k for each of
10 consecutive experiments. All the documents are embedded, and a set of size k is sampled
from the embedded documents. The embeddings are then clustered using K-means clustering, and
performance metrics are calculated between the estimated clusters and labels. If the clustering problem
is hierarchical, this procedure is repeated for each level of the hierarchy separately. Hierarchical tasks
were formerly either split into multiple tasks, or later levels of the cluster hierarchy were ignored.

Note that this formulation differs from that of MTEB in that the sets are randomly sampled from
the embedded documents instead of being specified a-priori. This drastically reduced runtime as
one document can be used in multiple subsets without the need to embed it multiple times. The
new formulation also allows us to gain a robust estimate of performance with a lower number of
documents.

Retrieval Retrieval tasks consist of a corpus, queries, and mapping between the queries and their
relevant documents. The goal is to retrieve these relevant documents. Both queries and documents
are embedded using the model. We allow these to be embedded differently depending on the model.
For each query, the corpus documents are ranked using a similarity score, and performance metrics
are calculated based on the reference mapping.

Multi-label classification Classification tasks in MTEB were previously limited to utilizing only
one label per document. As such, some, otherwise useful multi-label classification tasks had to be
dropped or reformulated. We addressed this by introducing a multi-label classification task type
Similarly to our novel clustering task, we down sample training sets for 10 experiments. We limit the
training sets to include 8 instances of each unique label, and train a K Nearest-Neighbours classifier.
Every classifier is then evaluated on the same test set. We opted for Accuracy, F1 and Label Ranking
Average Precision (LRAP) as evaluation metrics.

Instruction retrieval Instruction retrieval builds on the traditional retrieval task by incorporating
detailed instructions alongside the queries. Unlike standard retrieval, where queries are usually brief
keywords, instruction retrieval pairs each query with a comprehensive instruction that outlines the
criteria for document relevance. These instructions are specific to each query and not generic to the
entire dataset. Therefore, the task involves using both the query and its associated instruction to
retrieve relevant documents from the corpus. For the main metric, we use Robustness@10.

Reranking Similar to the retrieval task, reranking includes a corpus, query, and a list of relevant
and irrelevant reference texts. The aim is to rank the results according to their relevance to the
query. References and queries are embedded and references are compared to the query using cosine
similarity. The resulting ranking is scored for each query and averaged across all queries, and
performance metrics computed. For the main metric, we use MAP@1000.

Semantic text similarity Semantic text similarity (STS) tasks consist of sentence pairs, where the
goal is to determine their similarity. Labels are continuous scores, with higher numbers indicating
more similar sentences. All sentences are embedded using the model, and the similarity of the pair is
computed using various distance metrics, allowing for model-specified similarity metrics. Distances
are benchmarked with ground truth similarities using Pearson and Spearman correlations. Spearman
correlation based on highest similarity serves as the main metric (Reimers et al., 2016)
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B.2 TASK CONSTRUCTION

This section outlines our approach to constructing tasks, primarily from pre-existing data. For details
on the newly introduced dataset in MMTEB, we refer to Section B.3.

Task construction from existing datasets consisted of a number of steps to ensure that the task is
compatible with formulations in the benchmark and matches our standards: 1. Dataset preprocessing:
we start by applying minimal additional processing to ensure the data is in the required format.
2. Dataset size reduction: to maintain manageable evaluation times, we proceed by reducing dataset
size whenever applicable. 3. Relevance filtering: To ensure the datasets are relevant for the types of
tasks being evaluated, we apply relevance-based dataset filtering. 4. Differentiation testing: we assess
the task’s ability to differentiate between the performance of two candidate models.

For further details on dataset transformations for specific tasks, we refer to the dataset_transform
method implementation for each task.

Classification and pair classification For both classification tasks, we used existing datasets with
minimal adjustments, primarily trimming them down to more manageable sizes. For performance
evaluation, we rely on such metrics as F1 score, accuracy, or average precision. Whenever feasible,
we align our choice of the primary metric with those used in related publications. If no specific
guidance exists, we default to accuracy for general classification tasks and average precision for
pairwise classification. In scenarios with significant class imbalance, the F1 score is prioritized.

Bitext mining Bitext mining tasks were constructed using established paired datasets. Similar to the
classification tasks, the primary focus was on adjusting the dataset sizes to maintain the same model
rank while reducing computational load. F1 scores were chosen to be the primary metric, unless
specified otherwise.

Clustering and hierarchical clustering Clustering tasks were derived from existing corpora, such
as news articles or encyclopedic entries. The source datasets typically included categories or labels
assigned by their original authors or publishers. In some cases, like the SNL and VG datasets
(Navjord & Korsvik, 2023), which featured hierarchical labels, we reformulated the tasks from flat to
hierarchical clustering.

Retrieval A variety of tasks were integrated as retrieval tasks, including existing retrieval, question-
answer, and news datasets. For question-answer datasets, the questions were used as queries, and
the answers formed the corpus, with correct answers identified as properly retrieved documents. In
news datasets, headlines were treated as queries, and both the full articles were considered part of the
corpus, with matched summaries and articles serving as relevant documents. For the primary metric,
we use nDCG@10, unless otherwise specified by the dataset publication.

Multi-label classification For multi-label classification, we used existing datasets that required
minimal adjustments. A critical aspect of these tasks was maintaining the balance of label distributions
across the training and evaluation splits. To achieve this, we employed advanced stratification
techniques (Szymański & Kajdanowicz, 2017; Sechidis et al., 2011) that consider higher-order
relationships between labels, ensuring balanced samples and improved classification quality. For the
main metric, we use accuracy.

Instruction Retrieval For instruction retrieval tasks, we incorporated datasets like FOL-
LOWIR (Weller et al., 2024), which consist of comprehensive narratives created by professional
assessors. These datasets were initially developed for TREC shared tasks and included rich, context-
heavy queries to evaluate retrieval systems’ performance on more intricate retrieval problems.

Reranking For reranking tasks, we adapted datasets covering a range of topics and languages,
including academic paper ranking, news articles (Wu et al., 2020b), QA pair relevance from online
platforms, and passage ranking (Xie et al., 2023). For the primary metric, we use MAP unless
otherwise specified by the dataset publication.

Semantic text similarity For STS tasks, we adapted well-known benchmarks like STSbenchmark
(May et al., 2021) and cross-lingual STS datasets from SemEval (Agirre et al., 2015). We also adapted
paraphrase datasets in various languages, such as the Russian ParaPhraser (Pivovarova et al., 2017)
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and the Finnish Paraphrase Corpus (Kanerva et al., 2021). As the main metric, we use Spearman
correlation based on the highest similarity (Reimers et al., 2016).

B.3 NOVEL DATASETS

This section introduces task specifically created as a part of the MMTEB contributions. For informa-
tion on how existing datasets were adapted to MTEB we refer to Appendix B.

PublicHealthQA: This retrieval task is built on top of a novel dataset containing question-and-
answer pairs in Public Health, specifically related to the COVID-19 disease. They are sourced from
Q&A pages and Frequently Asked Questions (FAQ) sections of the Centers for Disease Control
and Prevention (CDC) and World Health Organization (WHO) websites. They were produced and
collected between 2019-12 and 2020-04.

WebLINXReranking: This is a novel HTML reranking task derived from WebLINX, a benchmark
for training and evaluating web agents with conversational capabilities (Lù et al., 2024). Whereas
the original work introduces a retrieval task with the goal of retrieving HTML elements using a
conversational context, we propose the first task with the goal of reranking HTML elements based on
their relevance for actions executed in web environments, including clicks, hovers, and text insertions.

WikiClustering: is a multilingual clustering benchmark based on Wikipedia’s main topic classifica-
tions. The goal is to create a clustering benchmark that works for multiple languages.

To construct a WikiClustering dataset for a given language, we apply the following steps. First,
download the wiki dump of the categories, the articles, and the category links. Second, we find the
main topic classifications for all articles. The main topic classifications can be found by looking
at the category page for the language8. We only use the first paragraph of each article to construct
a paragraph-to-paragraph (P2P) task similar to other P2P tasks within MTEB. Third, we filter out
articles with more than one main topic and remove any topic with only one article associated with it.
This step avoids ambiguity in the clustering task. Finally, we sample 2048 articles with associated
main topics.

While the WikiClustering benchmark can be extended to any language with main topic classifications,
it is currently implemented for the following: Bosnian, Catalan, Czech, Danish, Basque, Manx,
Ilokano, Kurdish, Latvian, Minangkabau, Maltese, Scots, Albanian, and Walloon. All code is
available on GitHub.

WikipediaRetrievalMultilingual and WikipediaRerankingMultilingual: This is a multilingual
retrieval and reranking dataset based on succinct queries generated by a strong multilingual LLM
grounded in Wikipedia articles. The dataset was made to resemble SQuAD. Sampled Wikipedia
articles of a target language were chunked and passed to GPT4-o using the following prompt:

"""
Your task is to anticipate possible search queries by users in the form of a question
for a given document.
- The question must be written in {{ language }}
- The question should be formulated concretely and precisely and relate to the
information from the given document
- The question must be coherent and should make sense without knowing the document
- The question must be answerable by the document
- The question should focus on one aspect and avoid using subclauses connected with
'and'
- The question should not be overly specific and should mimic a request of a user who
is just starting to research the given topic
- Do not draw on your prior knowledge

Generate a question in {{ language }} for the following document:
<document>
{{ document }}

8for details, we refer to https://en.wikipedia.org/wiki/Category:Main_topic_
classificationsforEnglish
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Figure 6: Comparison of MRR on synthetic retrieval and gold (GermanQuAD). The synthetic dataset
was generated using GPT4-turbo.

</document>

Search query:
"""

We filtered articles with less than 9 paragraphs and sampled 1500 articles from the top 100k viewed
articles. We then selected a random window of 9 consecutive paragraphs per article and chose the
middle one to be the positive context and generated a query for it with gpt-4o. The surrounding 8
paragraphs act as hard negatives. The 9 paragraphs per article are used for the reranking task with one
positive and 8 negatives. The one positive, 8 hard negatives, and the remaining corpus as negatives
are used in the retrieval task.

These datasets where constructed fro the following languages: "bul-Cyrl", "ben-Beng", "ces-Latn",
"dan-Latn", "deu-Latn", "eng-Latn", "fas-Arab", "fin-Latn", "hin-Deva", "ita-Latn", "nld-Latn",
"por-Latn", "ron-Latn", "srp-Cyrl", "dan-Latn", "nob-Latn", "swe-Latn".

To estimate the quality of these samples we compare it to the GermanQuAD (Möller et al., 2021) in
Figure 6. We obtain a Spearman rank correlation of 0.93 with a 95% CI of [0.69; 1.].

B.4 TASK METADATA

Table 5 shows the required metadata to fill before adding a task to the benchmark. We provide a
detailed description of each field, along with examples and possible values.

B.4.1 DOMAINS

For our domains, we include the following:

• Academic: Scholarly writing and research publications typically found in journals, theses,
and dissertations.

• Blog: Informal or conversational posts often found on websites or personal pages, covering
a wide range of topics.

• Constructed: Text or speech that is deliberately invented or constructed, often used for
experimental purposes to target specific abilities.

• Encyclopaedic: Structured, reference-based texts that provide comprehensive and factual
information on a wide range of subjects.

• Fiction: Narrative writing based on imaginative content, including novels, short stories, and
other forms of storytelling.
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Field Description
Name A concise name for the task.
Description A brief explanation of the task’s goals and objectives..
Type The primary task category (e.g., classification, summarization, retrieval).
Category The general data structure or format of the task. This can be specified using a combination of single-

letter codes (e.g., "s" for sentence, "p" for paragraph, "d" for document). For example, "s2s" indicates
a sentence-to-sentence task, "s2p" indicates a sentence-to-paragraph task, and "p2p" indicates a
paragraph-to-paragraph task.

Task Subtype A more specific subcategory within the primary task type. This can be used to further refine the task
and provide additional context. For example, "Summarization" might have subtypes like "Extractive
Summarization" or "Abstractive Summarization".

Reference A URL or citation to the original source material (e.g., paper, dataset repository).
Evaluation Splits The specific subsets of the data used for training, validation, and testing.
Evaluation Languages A list of ISO 639-3 language codes (e.g., "eng", "fra") followed by ISO 15924 script codes (e.g.,

"Latn", "Cyrl") for each language used in the evaluation. For example: [("eng", "Latn"), ("fra",
"Latn")]. If multiple scripts are used within a single language, we specify them as a list (e.g., [("eng",
["Latn", "Grek"])]).

Date The time period when the data was gathered. Specified as a tuple of two dates.
Main score The primary metric used to evaluate task performance.
Form The format of the data (e.g., "spoken", "written")
License The licensing terms for the dataset (e.g., CC BY-SA, MIT).
Domains The subject areas or fields covered by the data (e.g., medical, legal, news). One dataset can belong to

multiple domains.
Annotation Creators The type of the annotators. Includes "expert-annotated" (annotated by experts), "human-annotated"

(annotated e.g. by mturkers), "derived" (derived from structure in the data), "LM-generated" (gener-
ated using a language model) and "LM-generated and reviewed" (generated using a language model
and reviewed by humans or experts).

Dialect The specific dialect or regional variation of the language.
Text Creation How the text was generated. Includes "found", "created", "human-translated and localized", "human-

translated", "machine-translated", "machine-translated and verified", "machine-translated and local-
ized", "LM-generated and verified".

Bibtex Citation The BibTeX format citation for the dataset.
Number of samples The total number of data points in the dataset.
Avg. Number of characters The average character length of the samples in the dataset.

Table 5: Required metadata for adding a new task to MMTEB.

• Government: Official documents, reports, and publications produced by governmental
bodies.

• Legal: Documents and texts relating to laws, legal proceedings, contracts, and legal theory.

• Medical: Scientific and clinical literature related to healthcare, treatments, medical research,
and patient care.

• News: Journalistic content that covers current events, politics, economy, and other topical
issues.

• Non-fiction: Writing based on factual accounts and real-world subjects, such as biographies,
essays, and documentaries.

• Poetry: Literary form focused on expressive language, often structured with meter, rhyme,
or free verse.

• Religious: Texts related to religious teachings, doctrines, sacred scriptures, and spiritual
discussions.

• Reviews: Critical evaluations of works such as books, movies, music, products, or services.

• Social: Written or spoken communication on social media platforms, forums, and other
digital environments.

• Spoken: Oral communication, including speeches, dialogues, interviews, and recorded
conversations.

• Subtitles: Textual transcriptions or translations of spoken language in films, videos, or
multimedia presentations.

• Web: Text content found on websites, covering a wide range of subjects, often hyperlinked
and multimedia-enriched.

• Written: General term for any form of text-based communication, whether printed or
digital.
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• Programming: Text written in programming languages to instruct computers, often for
software development.

Our definition of domain aligns with that of the Universal Dependencies project (Nivre et al., 2016).
We do not claim that our definition is neither precise nor comprehensive. However, and include
subject fields such as "medical", "legal", and "news" and literary type such as "fiction", "non-fiction".
They are not mutually exclusive.

C BENCHMARK OPTIMIZATIONS

C.1 SPEEDING UP TASKS

We aim to reduce the total amount of time needed to run the complete set of MTEB task. In particular,
we investigate how to drastically reduce runtime on clustering and retrieval tasks while maintaining
relative model rankings. This appendix provides full details of the approach described in Section
2.3.2.

C.1.1 CLUSTERING

Task Spearman Speedup
Biorxiv P2P 0.9505 31.50x
Biorxiv S2S 0.9890 14.31x
Medrxiv P2P 0.9615 21.48x
Medrxiv S2S 0.9560 8.39x
Reddit S2S 0.9670 11.72x
Reddit P2P 0.9670 22.77x
StackExchange S2S 0.9121 9.55x
StackExchange P2P 0.9670 20.20x
TwentyNewsgroups 1.0000 5.02x

Average 0.9634 16.11x

Table 6: Agreement on model rankings on a selection of English clustering tasks using Spearman’s
correlation across the scores of 13 models of various sizes.

In the main paper, we present a down-sampled and bootstrapped version of the clustering task. We
highlight the main results in Table 6 but refer to. We observe an average speedup across tasks of
16.11x while maintaining the relative ordering of models on the evaluated tasks. The largest average
speed-up was seen for e5-large (16.93x), but we expect this effect to be even more pronounced among
7b or larger models.

9 single-level English clustering tasks are evaluated on 13 models across various sizes. A fraction of
the documents are sampled and stratified by their target categories. At the same time, we wish to
maintain robustness of the evaluation, i.e. the fast approach should be able to determine highly similar
model ranking to that from the original approach. As such, we investigate the extent of agreement
between the original clustering task and ours in each task on the model rankings.

The model ranking is determined from the mean of V-measure scores from evaluations, where a
higher mean gives a higher model rank. Spearman’s rank correlation score is then calculated based on
the ranks from ours and the original approach. We additionally calculate the significant model rank
which is determined by computing the significance of the given model’s V-measure bootstrapped
distribution based on its mean of V-measure scores using our approach against that of the original
approach. Significant S is then calculated based on the significant ranks from our and the original
approach.

To find a balance between speedup and the robustness of the approach, 4% of the dataset is chosen
as the fraction to down-sample to, with the exception of RedditS2S and StackExchange where
n_samples = 32768. Table 7 shows that all evaluated datasets have very high significant Spearman’s
rank scores between our and the original approach. Figure 7 reports the distribution of V-measure
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7: Distribution of scores per task across models.
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Task Sig. S

Biorxiv P2P 0.9390
Biorxiv S2S 0.9679
Medrxiv P2P 0.8200
Medrxiv S2S 0.9510
Reddit S2S 0.9790
Reddit P2P 0.7370
StackExchange S2S 0.9486
StackExchange P2P 0.9497
TwentyNewsgroups 0.9832

Average 0.9195

Table 7: Agreement on model rankings on English clustering tasks using significant Spearman’s rank
correlation with selected models of various sizes.
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Figure 8: Ranking of different models on subsampled versions of the datasets using hard negatives.
We see that NQ can be reduced to just two documents per query (relevant + 1 hard negative) while
still maintaining the rank while TREC-COVID is less stable.

scores obtained from evaluation per model in each dataset for the ClusteringFast and the original
approach. There is generally strong agreement between the rankings from both approaches. We also
observe that the ClusteringFast approach often (5 out of 9 datasets) produces a smaller spread (i.e.
smaller variance) in its V-measure distributions. Reddit P2P has the lowest significant Spearman
score among this set. It also has the lowest average character length for its documents.

C.1.2 RETRIEVAL

In this section we provide details about the method used to downsample retrieval datasets.

To ensure the downsampling kept the efficacy of the evaluation we aimed to examine several axes:
(1) a wide range of models to be sure that the evaluation task could still properly rank the models -
just as if it were not downsampled (2) that this method works for retrieval datasets that are sparsely
judged and densely judged and (3) seeing if it was possible to use hard negatives from a smaller set
of models due to the computational expense to gather these hard negatives on the full datasets.9

To meet these goals we chose NQ (for sparse relevance annotations, one per query) and TREC-COVID
(for dense judgements, > 500 per query). To test using a small set of hard negatives, we gather the
hard negatives with e5-large-v2 only. We evaluate a wide range of models for this analysis, including
the current state-of-the-art and some of the previous state-of-the-art: NV-Embed-v1 (Lee et al., 2024),
SFR-Embedding-Mistral (Rui Meng, Ye Liu, Shafiq Rayhan Joty, Caiming Xiong, Yingbo Zhou,
Semih Yavuz, 2024), e5-mistral-7b-instruct (Wang et al., 2023), e5-large-v2 (Wang et al., 2022),

9We also tested whether ensuring that the ground truth relevant document is present in these hard negatives
made a difference - we found that it did not, as most models ranked the ground truth in the top N, so manually
including it was little help as it was already included.
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Figure 9: Absolute scores of different models on subsampled versions of the datasets using hard
negatives. NQ has 1 relevant document per query while TREC-COVID has 500+ relevant documents
per query which is why we see NQ scores gradually increasing whereas TREC-COVID scores vary.

gte-base-en-v1.5 (Li et al., 2023b), bge-large-en-v1.5 (Xiao et al., 2023), and contriever-msmarco
(Izacard et al., 2021). We then evaluated the models on versions of the datasets with N hard negatives
documents per query where N ∈{2, 5, 10, 50, 100, 500, all}. We then compared the absolute scores
and the relative rank positions to see what settings best retain the difficulty of the original task.

Ability to rank models correctly For a good evaluation, it must be able to rank models correctly
and determine the best model. For this we examine how the ranking of the models change when
we lower the number of hard negatives. For NQ the rank remains stable even with just one hard
negatives (Figure 8). For TREC-COVID the ranking becomes unstable starting at 100 hard negatives,
continuing to change as the number gets smaller.

Keeping the absolute score similar In an ideal case the scores for the task should remain similar
and not trend towards perfect scores, remaining useful. We see that scores go very high when there
are only a few hard negatives for NQ (Figure 9). For TREC-COVID it is more stable, but we see
some wider swings with smaller documents. Overall, the scores are relatively similar at 100+ hard
negatives.

Summary Overall, we see that staying above 100 hard negatives gives similar absolute scores
while maintaining the ranking ability. Thus we opted for a conservative 250 documents per query to
keep these characteristics.

C.2 CODE OPTIMIZATIONS

We here document the major code optimizations within MTEB not related to dataset scores, task
reformulation

Dataset loading One important issue identified was about loading multilingual and cross-lingual
datasets composed of numerous small files in their repositories. Even for total dataset sizes under
10MB, loading could take hours due to significant overhead from managing a high number of
network requests and the improper opening and closing of gzipped files. In collaboration with the
datasets team (Lhoest et al., 2021), we addressed these problems with two-side implementation
improvements: the datasets library optimized the loading of a large number of requested files, and we
restructured the datasets and our codebase to leverage the benefits of the newer implementation. This
ultimately reduced loading times by almost a factor of 100, bringing the largely cross-lingual dataset
bitext-mining loading to under a minute.

Deduplication Upon in-depth scrutiny of all datasets, cases with repeated samples were identified
and deduplicated (e.g. MindSmallReranking). As this led to a change in scores, a second version
of the task was introduced to maintain compatible scores with existing benchmarks. To move the
optimizations to existing MTEB tasks we implement a local cache to avoid encoding a sample twice.
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D TASK OVERVIEW

D.1 TASKS

To get an overview of the all the tasks implemented in MMTEB we refer to the automatically updated
tables in the documentation10, which include the available metadata for all of the task, including
license, task category, domains, etc.

D.2 LANGUAGES

Additionally, the top 100 languages in ISO 639-3 language codes and their respective task counts are
in Table 8.
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eng 16 143 16 3 1 8 8 91 13 2 1 302
deu 6 14 7 0 1 6 2 18 4 0 0 58
fra 7 13 8 0 1 5 3 14 4 0 1 56
rus 5 13 6 0 2 4 2 16 4 0 0 52
pol 4 11 4 0 1 4 0 18 4 0 0 46
cmn 4 10 4 0 0 3 4 10 9 0 0 44
spa 4 13 4 0 1 2 2 12 4 0 0 42
hin 9 12 2 0 0 1 2 10 2 0 0 38

code 0 0 0 0 0 0 0 37 0 0 0 37
jpn 5 8 3 0 0 1 3 13 2 0 0 35
kor 4 8 1 0 1 2 1 9 3 0 0 29
ara 2 12 0 0 0 2 1 9 2 0 0 28
ben 7 9 2 0 0 1 2 6 1 0 0 28
por 4 9 1 0 2 2 1 5 3 0 0 27
ita 5 9 1 0 1 2 1 5 3 0 0 27
tel 7 7 2 0 0 0 1 5 2 0 0 24
dan 5 9 2 0 1 0 1 5 0 0 0 23
swe 4 8 3 0 1 1 1 4 0 0 0 22
ind 6 7 1 0 0 1 1 4 1 0 0 21
tam 7 7 2 0 0 1 0 3 1 0 0 21
tha 4 8 1 0 0 1 1 6 0 0 0 21
mar 7 6 2 0 0 1 0 2 2 0 0 20
zho 2 2 1 0 0 1 1 13 0 0 0 20
fin 3 5 1 0 1 1 2 5 1 0 0 19
kan 6 7 2 0 0 1 0 2 1 0 0 19
mal 7 7 2 0 0 0 0 2 1 0 0 19
nld 6 6 1 0 1 0 1 2 2 0 0 19
nob 4 7 5 0 0 0 0 3 0 0 0 19
tur 4 7 1 0 0 2 0 3 2 0 0 19
urd 7 8 2 0 0 0 0 1 1 0 0 19
guj 6 6 2 0 0 1 0 2 1 0 0 18
pan 6 6 2 0 0 1 0 2 1 0 0 18
ron 5 6 1 0 1 0 1 3 1 0 0 18
vie 5 6 1 0 0 1 0 5 0 0 0 18
fas 1 4 0 0 0 1 2 9 0 0 0 17

10For the latest version see Anonymized
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yor 4 5 3 0 0 0 1 3 0 0 0 16
ces 4 5 2 0 1 1 1 2 0 0 0 16
ell 3 6 1 0 1 2 0 3 0 0 0 16

swa 1 7 2 0 0 1 1 3 0 0 0 15
ory 5 4 2 0 0 1 0 2 1 0 0 15
amh 3 6 3 0 0 0 0 1 1 0 0 14
hau 4 5 3 0 0 0 0 1 1 0 0 14
asm 5 3 2 0 0 1 0 2 1 0 0 14
bul 3 4 1 0 1 1 1 2 0 0 0 13
jav 4 7 1 0 0 0 0 1 0 0 0 13
ibo 3 5 3 0 0 0 0 1 0 0 0 12
hun 5 3 1 0 1 0 0 2 0 0 0 12
slk 3 4 1 0 1 0 0 3 0 0 0 12
heb 4 5 1 0 0 0 0 1 0 0 0 11
afr 3 4 1 0 0 0 0 1 1 0 0 10
hrv 4 3 1 0 1 0 0 1 0 0 0 10
kat 4 3 1 0 0 0 0 2 0 0 0 10
slv 3 4 1 0 1 0 0 1 0 0 0 10
xho 3 3 3 0 0 0 0 1 0 0 0 10
san 5 3 1 0 0 1 0 0 0 0 0 10
hye 3 3 1 0 0 1 0 1 0 0 0 9
isl 3 4 1 0 0 0 0 1 0 0 0 9
mlt 2 2 2 0 2 0 0 1 0 0 0 9
mya 3 4 1 0 0 0 0 1 0 0 0 9
som 3 2 3 0 0 0 0 1 0 0 0 9
srp 4 1 1 0 0 0 1 2 0 0 0 9
sun 3 4 1 0 0 0 0 1 0 0 0 9
min 3 4 2 0 0 0 0 0 0 0 0 9
kin 2 3 1 0 0 0 0 1 1 0 0 8
arb 3 1 1 0 0 0 0 2 1 0 0 8
cat 3 2 2 0 0 0 0 1 0 0 0 8
est 2 2 1 0 1 0 0 2 0 0 0 8
eus 3 2 2 0 0 0 0 1 0 0 0 8
kaz 3 3 1 0 0 0 0 1 0 0 0 8
khm 3 3 1 0 0 0 0 1 0 0 0 8
lin 2 2 3 0 0 0 0 1 0 0 0 8
lit 4 1 1 0 1 0 0 1 0 0 0 8
lug 2 2 3 0 0 0 0 1 0 0 0 8
npi 4 2 1 0 0 0 0 1 0 0 0 8
sna 2 2 3 0 0 0 0 1 0 0 0 8
snd 4 2 1 0 0 0 0 1 0 0 0 8
tgl 3 3 1 0 0 0 0 1 0 0 0 8
tir 2 2 3 0 0 0 0 1 0 0 0 8
ukr 4 2 1 0 0 0 0 1 0 0 0 8
cym 3 4 1 0 0 0 0 0 0 0 0 8
nno 4 3 1 0 0 0 0 0 0 0 0 8
ary 1 3 1 0 0 0 0 1 1 0 0 7
pcm 1 4 2 0 0 0 0 0 0 0 0 7
tso 1 4 1 0 0 0 0 1 0 0 0 7
kir 2 3 1 0 0 0 0 1 0 0 0 7

mkd 3 2 1 0 0 0 0 1 0 0 0 7
sin 2 3 1 0 0 0 0 1 0 0 0 7
ssw 2 3 1 0 0 0 0 1 0 0 0 7
tsn 2 3 1 0 0 0 0 1 0 0 0 7
zul 2 3 1 0 0 0 0 1 0 0 0 7
uig 4 2 1 0 0 0 0 0 0 0 0 7
fao 3 2 1 0 0 0 0 0 1 0 0 7
bug 2 4 1 0 0 0 0 0 0 0 0 7
mai 4 2 1 0 0 0 0 0 0 0 0 7
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mni 4 2 1 0 0 0 0 0 0 0 0 7
sat 4 2 1 0 0 0 0 0 0 0 0 7
twi 2 3 1 0 0 0 0 0 0 0 0 6
bod 3 1 1 0 0 0 0 1 0 0 0 6
ceb 3 1 1 0 0 0 0 1 0 0 0 6
ckb 3 1 1 0 0 0 0 1 0 0 0 6
ilo 2 1 2 0 0 0 0 1 0 0 0 6

Table 8: The top 100 languages across all MMTEB tasks in ISO 639-3 language codes and their
respective task counts.

D.3 EXAMPLES

Table 9 and Table 10 provide examples for each new task type introduced in MMTEB. For exam-
ples of bitext mining, classification, clustering, pair classification, reranking, retrieval, STS, and
summarization datasets, we refer to the MTEB paper Muennighoff et al. (2023b).

Dataset Query OG Instructions Short
query

Relevant Document

Robust04 Who is
involved
in the
Schengen
agree-
ment to
eliminate
border
con-
trols in
Western
Europe
and what
do they
hope to
accom-
plish?

Relevant documents will
contain any information
about the actions of sig-
natories of the Schengen
agreement such as: mea-
sures to eliminate border
controls (removal of traf-
fic obstacles, lifting of
traffic restrictions); im-
plementation of the in-
formation system data
bank that contains unified
visa issuance procedures;
or strengthening of bor-
der controls at the exter-
nal borders of the treaty
area in exchange for free
movement at the inter-
nal borders. Discussions
of border crossovers for
business purposes are not
relevant.

Find doc-
uments
that an-
swer this
ques-
tion on
Schengen
agree-
ment
actions.

... Schengen Space Concern-
ing the mission traditionally
performed by PAF–overseeing
border traffic–the new direc-
torate must fit into a Europe
of immigration. The inte-
rior minister is therefore ask-
ing DICILC to step up its
control of crossborder traf-
fic, "particularly at the fu-
ture external borders of the
Schengen space." Originally
scheduled in February 1994
but constantly postponed, the
implementation of the agree-
ments signed in Schengen by
nine European countries (the
Twelve, minus Great Britain,
Ireland, and Denmark), pro-
vides for the free circulation
of nationals within the space
common to the territories of
their nine countries...

Table 9: Instruction Retrieval examples.

E FULL RESULTS

During this work, multiple models were evaluated on more than >500 tasks, with multiple tasks con-
taining multiple language subsets covering more than 1000 languages. This makes a comprehensive
overview unreasonable. While we have supplied scores aggregated across task types, we realize that
readers might be interested in examining scores for their specific language, domain of interest, and
task. To ensure that such aggregation is available and easily accessible, we make all results available
on the public and versioned results repository 11. These results include time of run, evaluation time,
and a wide set of performance metrics pr. language subset, CO2 emission, version number, and more.

11Anonymized for the specific version of the repository used for this work see commit id Anonymized
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Dataset Text Label

Maltese
News Cate-
gories

Hi kellha 82 sena Id-dinja mużikali fl-Italja tinsab f’luttu
wara l-mewt tal-attriċi u kantanta popolari Milva, li fis-snin
70 kienet meqjusa "ikona" fost it-Taljani. Milva kienet kisbet
suċċess kbir, fl-istess epoka ta’ Mina u Ornella Vanoni. Milva
arġet numru kbir ta’ albums tul il-karriera tagha u adet sehem
f’Sanremo gal xejn anqas minn 15-il darba; iżda qatt ma
rebet il-festival. Hi kellha 82 sena, u telqet mix-xena tal-
ispettaklu eżatt 10 snin ilu.

[ culture(2), inter-
national(10) ]

Table 10: Multilabel Classification examples.

import mteb
from mteb.task_selection import results_to_dataframe

tasks = mteb.get_tasks(
task_types =["Retrieval"],
languages =["eng", "fra"],
domains =["legal"]

)

model_names = [
"intfloat/multilingual -e5-small",
"intfloat/multilingual -e5-base",
"intfloat/multilingual -e5-large",

]

models = [mteb.get_model_meta(name) for name in model_names]

results = mteb.load_results(models=models , tasks=tasks)

df = results_to_dataframe(results)

Figure 10: Simple example of how to obtain all scores on English (eng) and French (fra) retrieval
tasks within the Legal domain for a set of models.

To make these detailed results subject to easy analysis, we have added functionality for loading and
aggregating these results within the mteb package. It is, for instance, possible to retrieve the scores
for specific models on all English (eng) and French (fra) retrieval tasks within the Legal domain using
the code snippet in Figure 10

We refer to the documentation12 for the latest version of this code.

E.1 PERFORMANCE PER NUMBER OF SPEAKERS

F NEW METRICS

F.1 ABSTENTION FOR RETRIEVAL AND RERANKING TASKS

In addition to the existing ranking metrics used for Retrieval and Reranking tasks (Muennighoff et al.,
2023b), we propose to assess score calibration through the evaluation of model abstention ability,
using the implementation of Gisserot-Boukhlef et al. (2024).

12Anonymized
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Figure 11: Models’ rank on the MTEB(multilingual) by the total number of speakers of a language.
Trendlines represent moving average with a window size of 10

Intuitively, a model abstains on a given instance (q, d1, · · · , dk) (one query and k candidate docu-
ments) if c (q, d1, · · · , dk) < τ , where c is a confidence function13 and τ is a threshold regulating
abstention likelihood. Therefore, to evaluate abstention capacity on a given test set S, an approach
consists of making τ vary to achieve several abstention rates. In the case of effective abstention, the
metric score increases with the abstention rate.

More formally, models’ ability to abstain is evaluated by computing the normalized area under the
metric-abstention curve (nAUC). Given a confidence function c, a metric function m14 and a labeled
test dataset S, nAUC is computed as follows:

1. Multi-thresholding: Given a model f and dataset D, we define a set of abstention thresholds
τ1, . . . , τn, such that τ1 < · · · < τn. For each threshold τi, we construct a corresponding
sub-dataset Si ⊆ D by applying the abstention criterion. We then evaluate the model f
on each sub-dataset Si using the metric function m. To quantify the model’s performance
across these thresholds, we compute the area under the metric-abstention curve, denoted as
AUCmodel.

2. Compute lower-bound: Since AUCmodel depends on the model’s raw performance without
abstention, we compute the effective lower bound AUC−. This corresponds to the area
under the curve when the metric remains constant as abstention increases, representing the
baseline where abstention does not improve the metric.

3. Compute upper-bound: To establish the upper bound, AUC+, we evaluate an oracle model
that has access to the true labels. The oracle can selectively retain the best instances at each
abstention rate, yielding the theoretical maximum area under the metric-abstention curve.
This represents the optimal model performance under abstention.

4. Compute normalized AUC: Finally, we compute the normalized area under the curve,
denoted nAUCmodel, by scaling AUCmodel between the lower and upper bounds:

nAUCmodel =
AUCmodel − AUC−

AUC+ − AUC−

.

G MODELS

Models used for task selection along with their revision IDs can be found in Table 11. Code for
running the models, including prompts, is available within MTEB’s model registry available at
Anonymized. Unless otherwise specified within the model implementation, the prompt is available
in the file Anonymized. As some debugging happened during the running of the models, multiple

13In our implementation, we rely on three simple confidence functions all taking the instance’s query-document
cosine similarity scores as input: the maximum score, the standard deviation of scores and the difference between
the highest and second highest scores.

14We utilize the metrics initially implemented for the evaluation of Retrieval and Reranking MTEB tasks
(Muennighoff et al., 2023b).
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Name in Paper HF Name Revision ID

GritLM-7B GritLM/GritLM-7B 13f00a0e36500c80ce12870ea513846a066004af
e5-mistral-7b-instruct intfloat/e5-mistral-7b-instruct 07163b72af1488142a360786df853f237b1a3ca1
multilingual-e5-base intfloat/multilingual-e5-base d13f1b27baf31030b7fd040960d60d909913633f
multilingual-e5-large intfloat/multilingual-e5-large 4dc6d853a804b9c8886ede6dda8a073b7dc08a81
multilingual-e5-large-instruct intfloat/multilingual-e5-large-instruct baa7be480a7de1539afce709c8f13f833a510e0a
multilingual-e5-small intfloat/multilingual-e5-small e4ce9877abf3edfe10b0d82785e83bdcb973e22e
LaBSE s-t/LaBSE e34fab64a3011d2176c99545a93d5cbddc9a91b7
all-MiniLM-L12 s-t/all-MiniLM-L12-v2 a05860a77cef7b37e0048a7864658139bc18a854
all-MiniLM-L6 s-t/all-MiniLM-L6-v2 8b3219a92973c328a8e22fadcfa821b5dc75636a
all-mpnet-base s-t/all-mpnet-base-v2 84f2bcc00d77236f9e89c8a360a00fb1139bf47d
multilingual-MiniLM-L12 s-t/paraphrase-multilingual-MiniLM-L12-v2 bf3bf13ab40c3157080a7ab344c831b9ad18b5eb
multilingual-mpnet-base s-t/paraphrase-multilingual-mpnet-base-v2 79f2382ceacceacdf38563d7c5d16b9ff8d725d6

Table 11: Model name as it appears in the paper, its name on Huggingface Hub, and their associated
revision IDs. Note: s-t stands for sentence-transformers.

versions of MTEB were used. Due to the computational cost of running these large models on the
vast amount of datasets, it was deemed unfeasible to run all the models using the exact same version.
However, for each task, all models were run on the same version of the specific task. Model results
can be found in JSON format in the results repository; these include additional performance metrics,
model metadata, CO2 emission, time of run, and exact version of MTEB used: Anonymized.

H BENCHMARK CONSTRUCTION AND OVERVIEW

H.1 BENCHMARK CREATION

The following section introduces benchmarks created as a part of the MMTEB open contribution,
which aren’t introduced within the main article. MTEB additionally includes a variety of benchmark
including the language-specific, notably the original English MTEB, MTEB(eng) (Muennighoff et al.,
2023b), the Scandinavian embedding benchmark MTEB(scandinavian) (Enevoldsen et al., 2024), the
French benchmark MTEB(fra) (Ciancone et al., 2024), the German benchmark MTEB(deu) (Wehrli
et al., 2024), the Korean benchmark MTEB(kor), the Chinese benchmark (Xiao et al., 2024b), the
Polish benchmark MTEB(pol) (Poświata et al., 2024). Along with these MTEB also include an in-
struction based retrieval based benchmark MTEB(Retrieval w/Instructions) (Weller et al., 2024),
a benchmark for law MTEB(law), the bitext section of the MINER benchmark MINERSBitextMining
target at low resource languages (Winata et al., 2024b), and the CoIR benchmark for code retrieval
CoIR (Li et al., 2024). For this benchmark, we refer to their associated paper and pull requests.

For an up to date overview of maintained benchmarks please see the benchmark registry15.

MTEB(rus) (Snegirev et al., 2024): Although Russian has approximately 258 million speakers
world-wide, it was almost completely absent from the original benchmark and represented only in
few multilingual datasets (e.g., MassiveIntentClassification). To address this problem, we included a
number of Russian datasets in the new multilingual benchmark. For this, we selected popular Russian
time-tested and community-tested datasets representing the main MMTEB tasks. Additionally, we
performed data cleaning and automatic filtering, where necessary, and formatted datasets in the
MMTEB format. The final Russian part includes 18 datasets covering 7 main tasks: Classification
(7 datasets), Clustering (3 datasets), MultiLabelClassification (2 tasks), PairClassification (1 task),
Reranking (1 task), Retrieval (2 tasks), and STS (2 tasks). This dataset was manually constructed.

RAR-b: The Reasoning as Retrieval Benchmark (RAR-b) (Xiao et al., 2024a) evaluates reasoning-
level understanding abilities stored in embedding models, and assesses whether correct answers to
reasoning questions can be retrieved as top similar to queries, under w/ and w/o instruction settings.
The benchmark provides insights into whether representations of nuanced expressions are aligned
and well-encoded by current embedding models, going beyond the established reliance on evaluating
with STS or traditional topical-level IR tasks.

The benchmark puts together 17 tasks made from 15 datasets (with reasoning questions from 12
datasets and 3 extra datasets to enlarge the corpus), covering 1) commonsense reasoning: WinoGrande,

15Anonymized

45



2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

PIQA, SIQA, αNLI, HellaSwag, ARC-Challenge, Quail, CSTS (Sakaguchi et al., 2021; Bisk et al.,
2020; Sap et al., 2019; Bhagavatula et al., 2020; Zellers et al., 2019; Clark et al., 2018; Rogers
et al., 2020; Deshpande et al., 2023), 2) temporal reasoning (Tan et al., 2023), 3) spatial reasoning:
SpartQA (Mirzaee et al., 2021), 4) numerical reasoning: GSM8K, MATH (Hendrycks et al., 2021b;
Cobbe et al., 2021; Yu et al., 2023), and 5) symbolic reasoning: HumanEvalPack and MBPP (Husain
et al., 2019; Austin et al., 2021; Chen et al., 2021; Muennighoff et al., 2023a). The comprehensive
assessment provides an early checkpoint for abilities envisioned to be necessary for next-generation
embedding models (Xiao et al., 2024a).

MTEB(europe): We begin by selecting 56 official languages of the European Union, along with
languages recognized by Schengen-area countries, such as Norwegian Bokmål, Icelandic, Romani,
and Basque. This initial selection results in 420 tasks. We then reduce this selection by filtering out
machine-translated datasets, datasets with unclear licenses, and highly specialized datasets (e.g., code
retrieval datasets). Additionally, we remove tasks such as AfriSentiClassification, which, while
containing European languages, primarily target African or Indic languages. After these exclusions,
228 tasks remain. Next, we run a representative selection of models (see Section [3.1]) and iteratively
filter out the most predictable tasks (see Section [2.3.3]). To preserve language diversity and ensure
fair representation across task categories, we avoid removing any task if it would eliminate a language
from a particular task category. Furthermore, we retain tasks where the mean squared error between
predicted and observed performance exceeds 0.5 standard deviations. This process continues until the
most predictable tasks yield a Spearman correlation of less than 0.8 between predicted and observed
scores, or until no further tasks can be removed. Ultimately, this results in a final selection of 96
tasks. Finally, contributors proficient in the target languages review the selected tasks, replacing some
manually with higher-quality alternatives if necessary.

MTEB(indic): This benchmark is constructed similarly to the previous European benchmark but
focuses on a set of Indic languages16. Initially, we selected 55 tasks. After manual filtering, 44 tasks
remain, and following task selection and review, the final benchmark contains 23 tasks.

H.2 BENCHMARK TASK OVERVIEW

The following tables give an overview of the tasks available within constructed benchmarks. For
more information about the specific tasks, we refer to the task metadata available through the mteb
package 17.

• Table 12 and Table 13: Gives an overview of the ‘MTEB(multilingual)‘ benchmark
• Table 14: Gives an overview of the ‘MTEB(europe)‘ benchmark
• Table 15: Gives an overview of the ‘MTEB(indic)‘ benchmark
• Table 16: Gives an overview of the ‘MTEB(eng)‘ benchmark
• Table 17: Gives an overview of the ‘MTEB(code)‘ benchmark

H.3 PERFORMANCE ON MTEB(eng)

Table 18 show the performance of our representative set of model on MTEB(eng).

H.4 PERFORMANCE ON MTEB(code)

Table 19 show the performance of our representative set of model on MTEB(code).

16The following iso639-3 codes: asm, awa, ben, bgc, bho, doi, gbm, gom, guj, hin, hne, kan,
kas, mai, mal, mar, mni, mup, mwr, nep, npi, ori, ory, pan, raj, san, snd, tam, tel, urd

17Anonymized

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

Type Name Languages Domains Sample creation Annotations creators Nb samples

BitextMining BUCC.v2 Zweigenbaum et al. (2017) [’cmn’, ’deu’, ’eng’, ...] [’Written’] human-translated human-annotated 35000
BibleNLPBitextMining Akerman et al. (2023) [’aai’, ’aak’, ’aau’, ...] [’Religious’, ’Written’] created expert-annotated -
BornholmBitextMining Derczynski & Kjeldsen [’dan’] [’Web’, ’Social’, ’Fiction’, ...] created expert-annotated 500
DiaBlaBitextMining González et al. (2019) [’eng’, ’fra’] [’Social’, ’Written’] created human-annotated 11496
FloresBitextMining Goyal et al. (2022) [’ace’, ’acm’, ’acq’, ....] [’Non-fiction’, ’Encyclopaedic’, ’Written’] created human-annotated -
IN22GenBitextMining Gala et al. (2023) [’asm’, ’ben’, ’brx’, ...] [’Web’, ’Legal’, ’Government’, ...] created expert-annotated 518144
IndicGenBenchFloresBitextMining Singh et al. (2024a) [’asm’, ’awa’, ’ben’, ...] [’Web’, ’News’, ’Written’] human-translated and localized expert-annotated 58696
NTREXBitextMining Federmann et al. (2022) [’afr’, ’amh’, ’arb’, ...] [’News’, ’Written’] human-translated and localized expert-annotated 3826252
NollySentiBitextMining Shode et al. (2023) [’eng’, ’hau’, ’ibo’, ...] [’Social’, ’Reviews’, ’Written’] found human-annotated 1640
NorwegianCourtsBitextMining Tiedemann & Thottingal (2020) [’nno’, ’nob’] [’Legal’, ’Written’] found human-annotated 228
NusaTranslationBitextMining Cahyawijaya et al. (2023c) [’abs’, ’bbc’, ’bew’, ...] [’Social’, ’Written’] created human-annotated 50200
NusaXBitextMining Winata et al. (2023b) [’ace’, ’ban’, ’bbc’, ...] [’Reviews’, ’Written’] created human-annotated 5500
Tatoeba community (2021) [’afr’, ’amh’, ’ang’, ...] [’Written’] found human-annotated 88877

Classification AfriSentiClassification Muhammad et al. (2023) [’amh’, ’arq’, ’ary’, ...] [’Social’, ’Written’] found derived 18222
AmazonCounterfactualClassification O’Neill et al. (2021) [’deu’, ’eng’, ’jpn’] [’Reviews’, ’Written’] found human-annotated 3872
BulgarianStoreReviewSentimentClassfication Georgieva-Trifonova et al. (2018) [’bul’] [’Reviews’, ’Written’] found human-annotated 182
CSFDSKMovieReviewSentimentClassification ? [’slk’] [’Reviews’, ’Written’] found derived 2048
CataloniaTweetClassification Zotova et al. (2020) [’cat’, ’spa’] [’Social’, ’Government’, ’Written’] created expert-annotated 4026
CyrillicTurkicLangClassification Goldhahn et al. (2012) [’bak’, ’chv’, ’kaz’, ...] [’Web’, ’Written’] found derived 2048
CzechProductReviewSentimentClassification Habernal et al. (2013) [’ces’] [’Reviews’, ’Written’] found derived 2048
DBpediaClassification Zhang et al. (2015) [’eng’] [’Encyclopaedic’, ’Written’] found derived 2048
DalajClassification Volodina et al. (2021) [’swe’] [’Non-fiction’, ’Written’] created expert-annotated 888
EstonianValenceClassification Pajupuu et al. (2023) [’est’] [’News’, ’Written’] found human-annotated 818
FilipinoShopeeReviewsClassification Riego et al. [’fil’] [’Social’, ’Written’] found human-annotated 2048
FinancialPhrasebankClassification Malo et al. (2014) [’eng’] [’News’, ’Written’] found expert-annotated 2264
GreekLegalCodeClassification Papaloukas et al. (2021) [’ell’] [’Legal’, ’Written’] found human-annotated 2048
GujaratiNewsClassification [’guj’] [’News’, ’Written’] found derived 1318
IndicLangClassification Madhani et al. (2023) [’asm’, ’ben’, ’brx’, ...] [’Web’, ’Non-fiction’, ’Written’] created expert-annotated 30418
IndonesianIdClickbaitClassification William & Sari (2020) [’ind’] [’News’, ’Written’] found expert-annotated 2048
IsiZuluNewsClassification Madodonga et al. (2023) [’zul’] [’News’, ’Written’] found human-annotated 752
ItaCaseholdClassification Licari et al. (2023) [’ita’] [’Legal’, ’Government’, ’Written’] found expert-annotated 221
KorSarcasmClassification Kim & Cho (2019) [’kor’] [’Social’, ’Written’] found expert-annotated 2048
KurdishSentimentClassification Badawi et al. (2024) [’kur’] [’Web’, ’Written’] found derived 1987
MacedonianTweetSentimentClassification Jovanoski et al. (2015) [’mkd’] [’Social’, ’Written’] found human-annotated 1139
MasakhaNEWSClassification Adelani et al. (2023b) [’amh’, ’eng’, ’fra’, ...] [’News’, ’Written’] found expert-annotated 6242
MassiveIntentClassification FitzGerald et al. (2022) [’afr’, ’amh’, ’ara’, ...] [’Spoken’] human-translated and localized human-annotated 151674
MultiHateClassification R"ottger et al. (2021) [’ara’, ’cmn’, ’deu’, ...] [’Constructed’, ’Written’] created expert-annotated 11000
NepaliNewsClassification Arora (2020) [’nep’] [’News’, ’Written’] found derived 2048
NordicLangClassification Haas & Derczynski (2021) [’dan’, ’fao’, ’isl’, ...] [’Encyclopaedic’] found derived 3000
NusaParagraphEmotionClassification Cahyawijaya et al. (2023b) [’bbc’, ’bew’, ’bug’, ...] [’Non-fiction’, ’Fiction’, ’Written’] found human-annotated 5700
NusaX-senti Winata et al. (2022) [’ace’, ’ban’, ’bbc’, ...] [’Reviews’, ’Web’, ’Social’, ...] found expert-annotated 4800
OdiaNewsClassification Kunchukuttan et al. (2020) [’ory’] [’News’, ’Written’] found derived 2048
PAC Łukasz Augustyniak et al. (2022) [’pol’] [’Legal’, ’Written’] found derived 3453
PoemSentimentClassification Sheng & Uthus (2020) [’eng’] [’Reviews’, ’Written’] found human-annotated 104
PolEmo2.0-OUT [’pol’] [’Written’, ’Social’] found derived 494
PunjabiNewsClassification Kunchukuttan et al. (2020) [’pan’] [’News’, ’Written’] found derived 157
ScalaClassification Nielsen (2023) [’dan’, ’nno’, ’nob’, ...] [’Fiction’, ’News’, ’Non-fiction’, ...] created human-annotated 8192
SentimentAnalysisHindi Parida et al. (2023) [’hin’] [’Reviews’, ’Written’] found derived 2048
SinhalaNewsClassification de Silva (2015) [’sin’] [’News’, ’Written’] found derived 2048
SiswatiNewsClassification Madodonga et al. (2023) [’ssw’] [’News’, ’Written’] found human-annotated 80
SlovakMovieReviewSentimentClassification Stef’anik et al. (2023) [’svk’] [’Reviews’, ’Written’] found derived 2048
SwahiliNewsClassification Davis (2020) [’swa’] [’News’, ’Written’] found derived 2048
SwissJudgementClassification Niklaus et al. (2022) [’deu’, ’fra’, ’ita’] [’Legal’, ’Written’] found expert-annotated -
ToxicConversationsClassification cjadams et al. (2019) [’eng’] [’Social’, ’Written’] found human-annotated 2048
TswanaNewsClassification Marivate et al. (2023) [’tsn’] [’News’, ’Written’] found derived 487
TweetTopicSingleClassification Antypas et al. (2022) [’eng’] [’Social’, ’News’, ’Written’] found expert-annotated -

Clustering AlloProfClusteringS2S.v2 Lefebvre-Brossard et al. (2023) [’fra’] [’Encyclopaedic’, ’Written’] found human-annotated 2556
ArXivHierarchicalClusteringP2P [’eng’] [’Academic’, ’Written’] found derived 2048
ArXivHierarchicalClusteringS2S [’eng’] [’Academic’, ’Written’] found derived 2048
BigPatentClustering.v2 Sharma et al. (2019) [’eng’] [’Legal’, ’Written’] found derived 2048
BiorxivClusteringP2P.v2 [’eng’] [’Academic’, ’Written’] created derived 53787
CLSClusteringP2P.v2 Li et al. (2022) [’cmn’] [’Academic’, ’Written’] found derived 2048
HALClusteringS2S.v2 Ciancone et al. (2024) [’fra’] [’Academic’, ’Written’] found human-annotated 2048
MasakhaNEWSClusteringS2S Adelani et al. (2023b) [’amh’, ’eng’, ’fra’, ...] [’News’, ’Written’] found expert-annotated 80
MedrxivClusteringP2P.v2 [’eng’] [’Academic’, ’Medical’, ’Written’] created derived 37500
PlscClusteringP2P.v2 [’pol’] [’Academic’, ’Written’] found derived 2048
RomaniBibleClustering [’rom’] [’Religious’, ’Written’] human-translated and localized derived -
SIB200ClusteringS2S Adelani et al. (2023a) [’ace’, ’acm’, ’acq’, ...] [’News’, ’Written’] human-translated and localized expert-annotated 197788
SNLHierarchicalClusteringP2P Navjord & Korsvik (2023) [’nob’] [’Encyclopaedic’, ’Non-fiction’, ’Written’] found derived 1300
StackExchangeClustering.v2 Geigle et al. (2021) [’eng’] [’Web’, ’Written’] found derived 2048
SwednClusteringP2P Monsen & J"onsson (2021) [’swe’] [’News’, ’Non-fiction’, ’Written’] found derived -
WikiCitiesClustering Foundation [’eng’] [’Encyclopaedic’, ’Written’] found derived 1
WikiClusteringP2P.v2 [’bos’, ’cat’, ’ces’, ...] [’Encyclopaedic’, ’Written’] created derived 28672

Table 12: The tasks included in MTEB(Multilingual) (part 1).
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Type Name Languages Domains Sample creators Annotations creators Nb samples*

InstructionRetrieval Core17InstructionRetrieval Weller et al. (2024) [’eng’] [’News’, ’Written’] found derived 19939
News21InstructionRetrieval Weller et al. (2024) [’eng’] [’News’, ’Written’] found derived 30985
Robust04InstructionRetrieval Weller et al. (2024) [’eng’] [’News’, ’Written’] found derived 47596

MultilabelClassification BrazilianToxicTweetsClassification Leite et al. (2020) [’por’] [’Constructed’, ’Written’] found expert-annotated 2048
CEDRClassification Sboev et al. (2021) [’rus’] [’Web’, ’Social’, ’Blog’, ’Written’] found human-annotated 1882
KorHateSpeechMLClassification Lee et al. (2022) [’kor’] [’Social’, ’Written’] found expert-annotated 2037
MalteseNewsClassification Chaudhary et al. (2024) [’mlt’] [’Constructed’, ’Written’] found expert-annotated 2297
MultiEURLEXMultilabelClassification Chalkidis et al. (2021) [’bul’, ’ces’, ’dan’, ...] [’Legal’, ’Government’, ’Written’] found expert-annotated 115000

PairClassification ArmenianParaphrasePC Malajyan et al. (2020) [’hye’] [’News’, ’Written’] found derived 1470
CTKFactsNLI Ullrich et al. (2023) [’ces’] [’News’, ’Written’] found human-annotated 375
OpusparcusPC Creutz (2018) [’deu’, ’eng’, ’fin’, ...] [’Spoken’, ’Spoken’] created human-annotated -
PawsXPairClassification Yang et al. (2019) [’cmn’, ’deu’, ’eng’, ...] [’Web’, ’Encyclopaedic’, ’Written’] human-translated human-annotated 14000
PpcPC Dadas (2022) [’pol’] [’Fiction’, ’Non-fiction’, ’Web’, ...] found derived 1000
RTE3 Giampiccolo et al. (2007) [’deu’, ’eng’, ’fra’, ...] [’News’, ’Web’, ’Encyclopaedic’, ...] found expert-annotated 1923
SprintDuplicateQuestions Shah et al. (2018) [’eng’] [’Programming’, ’Written’] found derived 101000
TERRa Shavrina et al. (2020) [’rus’] [’News’, ’Web’, ’Written’] found human-annotated 307
TwitterURLCorpus Lan et al. (2017) [’eng’] [’Social’] found human-annotated 51534
XNLI Conneau et al. (2018) [’ara’, ’bul’, ’deu’, ...] [’Non-fiction’, ’Fiction’, ’Government’, ...] created expert-annotated 19110
indonli Mahendra et al. (2021) [’ind’] [’Encyclopaedic’, ’Web’, ’News’, ...] found expert-annotated -

Reranking AlloprofReranking Lefebvre-Brossard et al. (2023) [’fra’] [’Web’, ’Academic’, ’Written’] found expert-annotated 27355
RuBQReranking Rybin et al. (2021) [’rus’] [’Encyclopaedic’, ’Written’] created human-annotated 38998
T2Reranking Xie et al. (2023) [’cmn’] - found expert-annotated 103330
VoyageMMarcoReranking Clavié (2023) [’jpn’] [’Academic’, ’Non-fiction’, ’Written’] found derived -
WebLINXCandidatesReranking Lù et al. (2024) [’eng’] [’Academic’, ’Web’, ’Written’] created expert-annotated -
WikipediaRerankingMultilingual Foundation [’ben’, ’bul’, ’ces’, ...] [’Encyclopaedic’, ’Written’] LM-generated and verified LM-generated and reviewed 240000

Retrieval AILAStatutes Bhattacharya et al. (2020) [’eng’] [’Legal’, ’Written’] found derived 50 - 82
ArguAna Boteva et al. (2016) [’eng’] [’Medical’, ’Written’] found derived 1406 - 8674
BelebeleRetrieval Bandarkar et al. (2023) [’acm’, ’afr’, ’als’, ...] [’Web’, ’News’, ’Written’] created expert-annotated 338378 - 183488
CovidRetrieval [’cmn’] [’Medical’] found derived 949 - 100001
HagridRetrieval Kamalloo et al. (2023) [’eng’] [’Encyclopaedic’, ’Written’] found expert-annotated 496 - 496
LEMBPasskeyRetrieval Zhu et al. (2024) [’eng’] [’Fiction’, ’Written’] found derived -
LegalBenchCorporateLobbying Guha et al. (2023) [’eng’] [’Legal’, ’Written’] found derived 340 - 319
MIRACLRetrievalHardNegatives Zhang et al. (2023) [’ara’, ’ben’, ’deu’, ...] [’Encyclopaedic’, ’Written’] created expert-annotated 11076 - 2449382
MLQARetrieval Lewis et al. (2019) [’ara’, ’deu’, ’eng’, ...] [’Encyclopaedic’, ’Written’] found human-annotated 158029 - 138636
SCIDOCS Cohan et al. (2020b) [’eng’] [’Academic’, ’Written’, ’Non-fiction’] found derived 1000 - 25657
SpartQA Xiao et al. (2024a) [’eng’] [’Encyclopaedic’, ’Written’] found derived 3594 - 1592
StackOverflowQA Li et al. (2024) [’eng’] [’Programming’, ’Written’] found derived 1994 - 19931
StatcanDialogueDatasetRetrieval Lu et al. (2023) [’eng’, ’fra’] [’Government’, ’Web’, ’Written’] found derived 661 - 11814
TRECCOVID Roberts et al. (2021) [’eng’] [’Medical’] created human-annotated 50 - 171332
TempReasonL1 Xiao et al. (2024a) [’eng’] [’Encyclopaedic’, ’Written’] found derived 4000 - 12504
TwitterHjerneRetrieval Holm (2024) [’dan’] [’Social’, ’Written’] found derived 78 - 262
WikipediaRetrievalMultilingual [’ben’, ’bul’, ’ces’, ...] [’Encyclopaedic’, ’Written’] LM-generated and verified LM-generated and reviewed 24000 - 216000
WinoGrande Xiao et al. (2024a) [’eng’] [’Encyclopaedic’, ’Written’] found derived 1267 - 5095

STS FaroeseSTS Snæbjarnarson et al. (2023) [’fao’] [’News’, ’Web’, ’Written’] found human-annotated 729
FinParaSTS Kanerva et al. (2021) [’fin’] [’News’, ’Subtitles’, ’Written’] found expert-annotated 1000
GermanSTSBenchmark May (2021) [’deu’] [’News’, ’Subtitles’, ’Written’] found expert-annotated 1379
IndicCrosslingualSTS Ramesh et al. (2022) [’asm’, ’ben’, ’eng’, ...] [’News’, ’Non-fiction’, ’Web’, ...] created expert-annotated 3072
JSICK Yanaka & Mineshima (2022) [’jpn’] [’Web’, ’Written’] found human-annotated 1986
SICK-R Dadas et al. (2020) [’eng’] [’Academic’] found derived 9927
STS12 Agirre et al. (2012) [’eng’] [’Encyclopaedic’, ’News’, ’Written’] created human-annotated 3108
STS13 Agirre et al. (2013) [’eng’] [’Web’, ’News’, ’Non-fiction’, ...] created human-annotated 1500
STS14 Bandhakavi et al. (2014) [’eng’] [’Blog’, ’Web’, ’Spoken’] created derived 3750
STS15 Biçici (2015) [’eng’] [’Blog’, ’News’, ’Web’, ...] created human-annotated 3000
STS17 Cer et al. (2017) [’ara’, ’deu’, ’eng’, ...] [’News’, ’Web’, ’Written’] created human-annotated 5346
STS22.v2 Chen et al. (2022) [’ara’, ’cmn’, ’deu’, ...] [’News’, ’Written’] found human-annotated 3958
STSB ? [’cmn’] [’News’, ’Web’, ’Written’] found derived 1361
STSBenchmark May (2021) [’eng’] [’News’, ’Web’, ’Written’] found derived 1379
STSES Agirre et al. (2015) [’spa’] [’Written’] found derived 155
SemRel24STS Ousidhoum et al. (2024) [’afr’, ’amh’, ’arb’, ...] [’Spoken’, ’Written’] created human-annotated 7498

Table 13: The tasks included in MTEB(Multilingual) (part 2). *For the number of samples, are
given the total number of samples all languages included, for Retrieval tasks are given the (number of
queries - number of documents).
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Type Name Languages Domains Sample creation Annotation creators Nb Samples*

BitextMining BUCC.v2 Zweigenbaum et al. (2017) [’cmn’, ’deu’, ’eng’, ...] [’Written’] human-translated human-annotated 35000
BibleNLPBitextMining Akerman et al. (2023) [’aai’, ’aak’, ’aau’, ...] [’Religious’, ’Written’] created expert-annotated -
BornholmBitextMining Derczynski & Kjeldsen [’dan’] [’Web’, ’Social’, ’Fiction’, ’Written’] created expert-annotated 500
DiaBlaBitextMining González et al. (2019) [’eng’, ’fra’] [’Social’, ’Written’] created human-annotated 11496
FloresBitextMining Goyal et al. (2022) [’ace’, ’acm’, ’acq’, ...] [’Non-fiction’, ’Encyclopaedic’, ’Written’] created human-annotated -
NTREXBitextMining Federmann et al. (2022) [’afr’, ’amh’, ’arb’, ...] [’News’, ’Written’] human-translated and localized expert-annotated 3826252
NorwegianCourtsBitextMining Tiedemann & Thottingal (2020) [’nno’, ’nob’] [’Legal’, ’Written’] found human-annotated 228

Classification AmazonCounterfactualClassification O’Neill et al. (2021) [’deu’, ’eng’, ’jpn’] [’Reviews’, ’Written’] found human-annotated 3872
BulgarianStoreReviewSentimentClassfication Georgieva-Trifonova et al. (2018) [’bul’] [’Reviews’, ’Written’] found human-annotated 182
CBD Ogrodniczuk & Łukasz Kobyliński (2019) [’pol’] [’Written’, ’Social’] found human-annotated 1000
CSFDSKMovieReviewSentimentClassification ? [’slk’] [’Reviews’, ’Written’] found derived 2048
CzechProductReviewSentimentClassification Habernal et al. (2013) [’ces’] [’Reviews’, ’Written’] found derived 2048
DBpediaClassification Zhang et al. (2015) [’eng’] [’Encyclopaedic’, ’Written’] found derived 2048
DalajClassification Volodina et al. (2021) [’swe’] [’Non-fiction’, ’Written’] created expert-annotated 888
EstonianValenceClassification Pajupuu et al. (2023) [’est’] [’News’, ’Written’] found human-annotated 818
FinancialPhrasebankClassification Malo et al. (2014) [’eng’] [’News’, ’Written’] found expert-annotated 2264
GreekLegalCodeClassification Papaloukas et al. (2021) [’ell’] [’Legal’, ’Written’] found human-annotated 2048
ItaCaseholdClassification Licari et al. (2023) [’ita’] [’Legal’, ’Government’, ’Written’] found expert-annotated 221
MassiveScenarioClassification FitzGerald et al. (2022) [’afr’, ’amh’, ’ara’, ...] [’Spoken’] human-translated and localized human-annotated 151674
MultiHateClassification R"ottger et al. (2021) [’ara’, ’cmn’, ’deu’, ...] [’Constructed’, ’Written’] created expert-annotated 11000
NordicLangClassification Haas & Derczynski (2021) [’dan’, ’fao’, ’isl’, ...] [’Encyclopaedic’] found derived 3000
PoemSentimentClassification Sheng & Uthus (2020) [’eng’] [’Reviews’, ’Written’] found human-annotated 104
PolEmo2.0-OUT [’pol’] [’Written’, ’Social’] NaN NaN 494
ScalaClassification Nielsen (2023) [’dan’, ’nno’, ’nob’, ...] [’Fiction’, ’News’, ’Non-fiction’, ...] created human-annotated 8192
SwissJudgementClassification Niklaus et al. (2022) [’deu’, ’fra’, ’ita’] [’Legal’, ’Written’] found expert-annotated -
ToxicChatClassification Lin et al. (2023) [’eng’] [’Constructed’, ’Written’] found expert-annotated 1164
ToxicConversationsClassification cjadams et al. (2019) [’eng’] [’Social’, ’Written’] found human-annotated 2048
TweetSentimentClassification Barbieri et al. (2022) [’ara’, ’deu’, ’eng’, ...] [’Social’, ’Written’] found human-annotated 2048

Clustering AlloProfClusteringS2S.v2 Lefebvre-Brossard et al. (2023) [’fra’] [’Encyclopaedic’, ’Written’] found human-annotated 2556
BigPatentClustering.v2 Sharma et al. (2019) [’eng’] [’Legal’, ’Written’] found derived 2048
BiorxivClusteringP2P.v2 [’eng’] [’Academic’, ’Written’] created derived 53787
HALClusteringS2S.v2 Ciancone et al. (2024) [’fra’] [’Academic’, ’Written’] found human-annotated 2048
RomaniBibleClustering [’rom’] [’Religious’, ’Written’] human-translated and localized derived -
SIB200ClusteringS2S Adelani et al. (2023a) [’ace’, ’acm’, ’acq’, ...] [’News’, ’Written’] human-translated and localized expert-annotated 197788
WikiCitiesClustering Foundation [’eng’] [’Encyclopaedic’, ’Written’] found derived -
WikiClusteringP2P.v2 [’bos’, ’cat’, ’ces’, ...] [’Encyclopaedic’, ’Written’] created derived 28672

InstructionRetrieval Core17InstructionRetrieval Weller et al. (2024) [’eng’] [’News’, ’Written’] found derived 19939
News21InstructionRetrieval Weller et al. (2024) [’eng’] [’News’, ’Written’] found derived 30985
Robust04InstructionRetrieval Weller et al. (2024) [’eng’] [’News’, ’Written’] found derived 47596

MultilabelClassification MalteseNewsClassification Chaudhary et al. (2024) [’mlt’] [’Constructed’, ’Written’] found expert-annotated 2297
MultiEURLEXMultilabelClassification Chalkidis et al. (2021) [’bul’, ’ces’, ’dan’, ...] [’Legal’, ’Government’, ’Written’] found expert-annotated 115000

PairClassification CTKFactsNLI Ullrich et al. (2023) [’ces’] [’News’, ’Written’] found human-annotated 375
OpusparcusPC Creutz (2018) [’deu’, ’eng’, ’fin’, ...] [’Spoken’, ’Spoken’] created human-annotated -
PSC Ogrodniczuk & Kope’c (2014) [’pol’] [’News’, ’Written’] found derived 1078
RTE3 Giampiccolo et al. (2007) [’deu’, ’eng’, ’fra’, ...] [’News’, ’Web’, ’Encyclopaedic’, ...] found expert-annotated 1923
SprintDuplicateQuestions Shah et al. (2018) [’eng’] [’Programming’, ’Written’] found derived 101000
XNLI Conneau et al. (2018) [’ara’, ’bul’, ’deu’, ...] [’Non-fiction’, ’Fiction’, ’Government’, ...] created expert-annotated 19110

Reranking AlloprofReranking Lefebvre-Brossard et al. (2023) [’fra’] [’Web’, ’Academic’, ’Written’] found expert-annotated 27355
WebLINXCandidatesReranking Lù et al. (2024) [’eng’] [’Academic’, ’Web’, ’Written’] created expert-annotated -
WikipediaRerankingMultilingual Foundation [’ben’, ’bul’, ’ces’, ...] [’Encyclopaedic’, ’Written’] LM-generated and verified LM-generated and reviewed 240000

Retrieval AlloprofRetrieval Lefebvre-Brossard et al. (2023) [’fra’] [’Encyclopaedic’, ’Written’] found human-annotated 2316 - 2556
ArguAna Boteva et al. (2016) [’eng’] [’Medical’, ’Written’] found derived 1406 - 8674
BelebeleRetrieval Bandarkar et al. (2023) [’acm’, ’afr’, ’als’, ...] [’Web’, ’News’, ’Written’] created expert-annotated 338378 - 183488
HagridRetrieval Kamalloo et al. (2023) [’eng’] [’Encyclopaedic’, ’Written’] found expert-annotated 496 - 496
LEMBPasskeyRetrieval Zhu et al. (2024) [’eng’] [’Fiction’, ’Written’] found derived NaN
LegalBenchCorporateLobbying Guha et al. (2023) [’eng’] [’Legal’, ’Written’] found derived 340 - 319
LegalQuAD Hoppe et al. (2021) [’deu’] [’Legal’, ’Written’] found derived 200 - 200
SCIDOCS Cohan et al. (2020b) [’eng’] [’Academic’, ’Written’, ’Non-fiction’] found NaN 1000 - 25657
SpartQA Xiao et al. (2024a) [’eng’] [’Encyclopaedic’, ’Written’] found derived 3594 - 1592
StackOverflowQA Li et al. (2024) [’eng’] [’Programming’, ’Written’] found derived 1994 - 19931
StatcanDialogueDatasetRetrieval Lu et al. (2023) [’eng’, ’fra’] [’Government’, ’Web’, ’Written’] found derived 661 - 11814
TempReasonL1 Xiao et al. (2024a) [’eng’] [’Encyclopaedic’, ’Written’] found derived 4000 - 12504
TwitterHjerneRetrieval Holm (2024) [’dan’] [’Social’, ’Written’] found derived 78 - 262
WikipediaRetrievalMultilingual [’ben’, ’bul’, ’ces’, ...] [’Encyclopaedic’, ’Written’] LM-generated and verified LM-generated and reviewed 24000 - 216000
WinoGrande Xiao et al. (2024a) [’eng’] [’Encyclopaedic’, ’Written’] found derived 1267 - 5095

STS FinParaSTS Kanerva et al. (2021) [’fin’] [’News’, ’Subtitles’, ’Written’] found expert-annotated 1000
SICK-R Dadas et al. (2020) [’eng’] [’Academic’] found derived 9927
SICK-R-PL Dadas et al. (2020) [’pol’] [’Web’, ’Written’] human-translated and localized human-annotated 4906
STS12 Agirre et al. (2012) [’eng’] [’Encyclopaedic’, ’News’, ’Written’] created human-annotated 3108
STS14 Bandhakavi et al. (2014) [’eng’] [’Blog’, ’Web’, ’Spoken’] created derived 3750
STS15 Biçici (2015) [’eng’] [’Blog’, ’News’, ’Web’, ...] created human-annotated 3000
STS17 Cer et al. (2017) [’ara’, ’deu’, ’eng’, ...] [’News’, ’Web’, ’Written’] created human-annotated 5346
STSBenchmark May (2021) [’eng’] [’News’, ’Web’, ’Written’] found derived 1379
STSES Agirre et al. (2015) [’spa’] [’News’, ’Web’, ’Written’] found derived 155

Table 14: The tasks included in MTEB(Europe). The language column shows all the languages of
the task. When running the tasks we limit it to the languages specified in the benchmark. * For the
number of samples, are given the total number of samples all languages included, for Retrieval tasks
are given the (number of queries - number of documents).

Type Name Languages Domains Sample creation Annotation creators Nb samples*

BitextMining IN22ConvBitextMining Gala et al. (2023) [’asm’, ’ben’, ’brx’, ...] [’Social’, ’Spoken’, ’Fiction’, ...] created expert-annotated 760518
IN22GenBitextMining Gala et al. (2023) [’asm’, ’ben’, ’brx’, ...] [’Web’, ’Legal’, ’Government’, ...] created expert-annotated 518144
IndicGenBenchFloresBitextMining Singh et al. (2024a) [’asm’, ’awa’, ’ben’, ...] [’Web’, ’News’, ’Written’] human-translated and localized expert-annotated 58696
LinceMTBitextMining Aguilar et al. (2020) [’eng’, ’hin’] [’Social’, ’Written’] found human-annotated 8059

Classification BengaliSentimentAnalysis Sazzed (2020) [’ben’] [’Reviews’, ’Written’] found human-annotated 2048
GujaratiNewsClassification [’guj’] [’News’, ’Written’] found derived 1318
HindiDiscourseClassification Dhanwal et al. (2020) [’hin’] [’Fiction’, ’Social’, ’Written’] found expert-annotated 2048
IndicLangClassification Madhani et al. (2023) [’asm’, ’ben’, ’brx’, ...] [’Web’, ’Non-fiction’, ’Written’] created expert-annotated 30418
MTOPIntentClassification Li et al. (2021) [’deu’, ’eng’, ’fra’, ...] [’Spoken’, ’Spoken’] created human-annotated 19680
MalayalamNewsClassification Kunchukuttan et al. (2020) [’mal’] [’News’, ’Written’] found derived 1260
MultiHateClassification R"ottger et al. (2021) [’ara’, ’cmn’, ’deu’, ...] [’Constructed’, ’Written’] created expert-annotated 11000
NepaliNewsClassification Arora (2020) [’nep’] [’News’, ’Written’] found derived 2048
PunjabiNewsClassification Kunchukuttan et al. (2020) [’pan’] [’News’, ’Written’] found derived 157
SanskritShlokasClassification Arora (2020) [’san’] [’Religious’, ’Written’] found derived 96
SentimentAnalysisHindi Parida et al. (2023) [’hin’] [’Reviews’, ’Written’] found derived 2048
TweetSentimentClassification Barbieri et al. (2022) [’ara’, ’deu’, ’eng’, ...] [’Social’, ’Written’] found human-annotated 2048
UrduRomanSentimentClassification Sharf (2018) [’urd’] [’Social’, ’Written’] found derived 2048

Clustering SIB200ClusteringS2S Adelani et al. (2023a) [’ace’, ’acm’, ’acq’, ...] [’News’, ’Written’] human-translated and localized expert-annotated 197788

PairClassification XNLI Conneau et al. (2018) [’ara’, ’bul’, ’deu’, ...] [’Non-fiction’, ’Fiction’, ’Government’, ...] created expert-annotated 19110

Reranking WikipediaRerankingMultilingual Foundation [’ben’, ’bul’, ’ces’, ...] [’Encyclopaedic’, ’Written’] LM-generated and verified LM-generated and reviewed 240000

Retrieval BelebeleRetrieval Bandarkar et al. (2023) [’acm’, ’afr’, ’als’, ...] [’Web’, ’News’, ’Written’] created expert-annotated 338378 - 183488
XQuADRetrieval Artetxe et al. (2019) [’arb’, ’deu’, ’ell’, ...] [’Web’, ’Written’] created human-annotated 14199 - 2880

STS IndicCrosslingualSTS Ramesh et al. (2022) [’asm’, ’ben’, ’eng’, ..] [’News’, ’Non-fiction’, ’Web’, ...] created expert-annotated 3072

Table 15: The tasks included in MTEB(Indic). The language column shows all the languages of the
task. When running the tasks we limit it to the Indic languages specified in the benchmark. * For the
number of samples, are given the total number of samples all languages included, for Retrieval tasks
are given the (number of queries - number of documents).

49



2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

Type Name Languages Domains Sample creation Annotation creators Nb samples*

Classification AmazonCounterfactualClassification O’Neill et al. (2021) [’eng’] [’Reviews’, ’Written’] found human-annotated 3872
Banking77Classification Casanueva et al. (2020) [’eng’] [’Written’] found human-annotated 3080
ImdbClassification Maas et al. (2011) [’eng’] [’Reviews’, ’Written’] found derived 25000
MTOPDomainClassification Li et al. (2021) [’eng’] [’Spoken’, ’Spoken’] created human-annotated 19680
MassiveIntentClassification FitzGerald et al. (2022) [’eng’] [’Spoken’] human-translated and localized human-annotated 151674
MassiveScenarioClassification FitzGerald et al. (2022) [’eng’] [’Spoken’] human-translated and localized human-annotated 151674
ToxicConversationsClassification cjadams et al. (2019) [’eng’] [’Social’, ’Written’] found human-annotated 2048
TweetSentimentExtractionClassification Maggie (2020) [’eng’] [’Social’, ’Written’] found human-annotated 3534

Clustering ArXivHierarchicalClusteringP2P [’eng’] [’Academic’, ’Written’] found derived 2048
ArXivHierarchicalClusteringS2S [’eng’] [’Academic’, ’Written’] found derived 2048
BiorxivClusteringP2P.v2 [’eng’] [’Academic’, ’Written’] created derived 53787
MedrxivClusteringP2P.v2 [’eng’] [’Academic’, ’Medical’, ’Written’] created derived 37500
MedrxivClusteringS2S.v2 [’eng’] [’Academic’, ’Medical’, ’Written’] created derived 37500
StackExchangeClustering.v2 Geigle et al. (2021) [’eng’] [’Web’, ’Written’] found derived 2048
StackExchangeClusteringP2P.v2 Geigle et al. (2021) [’eng’] [’Web’, ’Written’] found derived 74914
TwentyNewsgroupsClustering.v2 Lang (1995) [’eng’] [’News’, ’Written’] found derived 59545

PairClassification SprintDuplicateQuestions Shah et al. (2018) [’eng’] [’Programming’, ’Written’] found derived 101000
TwitterSemEval2015 Xu et al. (2015) [’eng’] [’Social’, ’Written’] found human-annotated 16777
TwitterURLCorpus Lan et al. (2017) [’eng’] [’Social’, ’Written’] found human-annotated 51534

Reranking AskUbuntuDupQuestions Wang et al. (2021a) [’eng’] [’Web’, ’Programming’] found human-annotated 7581
MindSmallReranking Wu et al. (2020a) [’eng’] [’News’, ’Written’] found expert-annotated -

Retrieval ArguAna (Boteva et al., 2016) [’eng’] [’Medical’, ’Written’] found derived 1406 - 8674
CQADupstackGamingRetrieval (Hoogeveen et al., 2015) [’eng’] [’Web’, ’Written’] found derived 1595 - 45301
CQADupstackUnixRetrieval Hoogeveen et al. (2015) [’eng’] [’Programming’, ’Web’, ’Written’] found derived 1072 - 47382
ClimateFEVERHardNegatives Diggelmann et al. (2021) [’eng’] [’Encyclopaedic’, ’Written’] found human-annotated 1000 - 47416
FEVERHardNegatives Thorne et al. (2018a) [’eng’] [’Encyclopaedic’, ’Written’] found human-annotated 1000 - 163698
FiQA2018 Thakur et al. (2021) [’eng’] [’Written’] found human-annotated 648 - 57638
HotpotQAHardNegatives Yang et al. (2018) [’eng’] [’Web’, ’Written’] found human-annotated 1000 - 225621
SCIDOCS Cohan et al. (2020b) [’eng’] [’Academic’, ’Written’, ’Non-fiction’] found derived 1000 - 25657
TRECCOVID Roberts et al. (2021) [’eng’] [’Medical’] found expert-annotated 50 - 171332
Touche2020 Potthast et al. (2022) [’eng’] [’Academic’] found human-annotated 49 - 382545

STS BIOSSES Soğancıoğlu et al. (2017) [’eng’] [’Medical’] found derived 100
SICK-R Dadas et al. (2020) [’eng’] [’Academic’] found derived 9927
STS12 Agirre et al. (2012) [’eng’] [’Encyclopaedic’, ’News’, ’Written’] created human-annotated 3108
STS13 Agirre et al. (2013) [’eng’] [’Web’, ’News’, ’Non-fiction’, ...] created human-annotated 1500
STS14 Bandhakavi et al. (2014) [’eng’] [’Blog’, ’Web’, ’Spoken’] created derived 3750
STS15 Biçici (2015) [’eng’] [’Blog’, ’News’, ’Web’, ...] created human-annotated 3000
STS17 Cer et al. (2017) [’ara’, ’deu’, ’eng’, ...] [’News’, ’Web’, ’Written’] created human-annotated 5346
STS22.v2 Chen et al. (2022) [’cmn’, ’deu’, ’eng’, ...] [’News’, ’Written’] found human-annotated 3958
STSBenchmark May (2021) [’eng’] [’News’, ’Web’, ’Written’] found derived 1379

Summarization SummEvalSummarization.v2 Fabbri et al. (2020) [’eng’] [’News’, ’Written’] created human-annotated 100

Table 16: The tasks included in MTEB(eng). The language column shows all the languages of the task.
When running the tasks we limit it to the languages specified in the benchmark. * For the number of
samples, are given the total number of samples all languages included, for Retrieval tasks are given
the (number of queries - number of documents).

Type Name Languages Domains Sample creation Annotations creators Nb Samples*

Retrieval AppsRetrieval Hendrycks et al. (2021a) [’eng’, ’python’] [’Programming’, ’Written’] found derived 3765 - 8765
COIRCodeSearchNetRetrieval Husain et al. (2019) [’go’, ’java’, ’javascript’, ’php’] [’Programming’, ’Written’] found derived 52561 - 1003765
CodeEditSearchRetrieval Muennighoff et al. (2023a) [’c’, ’c++’, ’go’, ’java’] [’Programming’, ’Written’] found derived 13000 - 13000
CodeFeedbackMT Zheng et al. (2024) [’eng’] [’Programming’, ’Written’] found derived 13277 - 66383
CodeFeedbackST Li et al. (2024) [’eng’] [’Programming’, ’Written’] found derived 31306 - 156526
CodeSearchNetCCRetrieval Li et al. (2024) [’go’, ’java’, ’javascript’, ’php’] [’Programming’, ’Written’] found derived 52561 - 1005474
CodeSearchNetRetrieval Husain et al. (2019) [’go’, ’java’, ’javascript’, ’php’] [’Programming’, ’Written’] found derived 6000 - 6000
CodeTransOceanContest Yan et al. (2023) [’c++’, ’python’] [’Programming’, ’Written’] found derived 221 - 1008
CodeTransOceanDL Yan et al. (2023) [’python’] [’Programming’, ’Written’] found derived 180 - 816
CosQA Huang et al. (2021) [’eng’, ’python’] [’Programming’, ’Written’] found derived 500 - 20604
StackOverflowQA Li et al. (2024) [’eng’] [’Programming’, ’Written’] found derived 1994 - 19931
SyntheticText2SQL Meyer et al. (2024) [’eng’, ’sql’] [’Programming’, ’Written’] found derived 5851 - 105851

Table 17: The tasks included in MTEB(Code). * For the number of samples, are given the total number
of samples all languages included, for Retrieval tasks are given the (number of queries - number of
documents).

Rank Average Across Average by Category
Borda Count All Category Pair Clf. Clf. STS Retrieval Clustering Reranking

model

e5-mistral-7b-instruct 1 (393) 67.0 67.2 88.4 75.2 83.6 54.8 51.4 49.8
GritLM-7B 2 (384) 66.4 66.7 87.3 77.0 82.5 53.2 50.8 49.6
multilingual-e5-large-instruct 3 (357) 65.2 65.6 86.2 73.2 84.3 51.0 49.9 48.7
multilingual-e5-large 4 (270) 62.1 62.4 84.7 72.8 80.6 49.0 42.8 44.7
all-mpnet-base-v2 5 (211) 56.0 58.1 83.0 56.6 72.2 41.9 46.6 48.4
multilingual-e5-base 6 (211) 60.2 60.9 83.6 70.0 79.1 46.1 42.2 44.3
paraphrase-multilingual-mpnet-base-v2 7 (188) 57.3 58.8 81.7 68.6 79.8 34.1 43.5 45.2
all-MiniLM-L12-v2 8 (172) 54.7 57.0 82.5 55.8 70.7 40.7 44.6 47.5
all-MiniLM-L6-v2 9 (149) 54.4 56.7 82.4 55.4 70.4 39.8 44.9 47.1
multilingual-e5-small 10 (147) 58.4 59.3 82.7 67.7 77.6 43.7 40.8 43.2
paraphrase-multilingual-MiniLM-L12-v2 11 (109) 55.1 57.0 80.0 64.4 77.5 32.8 41.7 45.4
LaBSE 12 (49) 48.6 51.7 78.9 66.8 70.2 16.8 36.1 41.3

Table 18: Performance on MTEB(eng) across task categories.
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Rank Average Across Average by Language
Borda Count All C++ Go Java JavaScript PHP Python Ruby

Model

GritLM-7B 1 (88) 73.6 73.1 83.8 84.9 81.7 77.8 86.4 83.8
e5-mistral-7b-instruct 2 (74) 69.2 68.3 83.0 80.9 79.4 75.6 83.6 81.1
multilingual-e5-large-instruct 3 (65) 65.0 56.4 74.7 74.7 71.7 71.6 79.1 74.9
multilingual-e5-large 4 (63) 61.7 46.8 73.4 72.2 66.6 69.1 75.7 73.4
multilingual-e5-base 5 (55) 57.5 48.9 73.2 71.0 66.1 67.8 75.2 72.7
multilingual-e5-small 6 (53) 58.4 48.4 70.6 67.9 65.2 66.6 73.6 68.1
all-mpnet-base-v2 7 (44) 56.4 46.3 67.4 62.2 63.1 61.7 69.0 65.7
all-MiniLM-L6-v2 8 (34) 52.7 48.1 64.4 57.4 62.2 60.4 68.1 66.6
all-MiniLM-L12-v2 9 (27) 50.2 46.8 68.1 57.3 63.6 62.7 68.7 67.8
LaBSE 10 (11) 28.8 27.6 40.6 36.6 42.3 34.8 43.9 42.2

Table 19: Performance on MTEB(Code) across task categories. Because all code-related tasks are for
retrieval, metrics by category are omitted.
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