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Abstract

To build effective therapeutics, biologists iteratively mutate antibody sequences to
improve binding and stability. Proposed mutations can be informed by previous
measurements or by learning from large antibody databases to predict only typical
antibodies. Unfortunately, the space of typical antibodies is enormous to search,
and experiments often fail to find suitable antibodies on a budget. Here we intro-
duce Clone-informed Bayesian Optimization (CloneBO), a Bayesian optimization
procedure that efficiently optimizes antibodies in the lab by teaching a generative
model how our immune system optimizes antibodies. Our immune system makes
antibodies by iteratively evolving specific portions of their sequences to bind their
target strongly and stably, resulting in a set of related, evolving sequences known
as a clonal family. We train a large language model, CloneLM, on hundreds of
thousands of clonal families and use it to design sequences with mutations that
are most likely to optimize an antibody within the human immune system. We
guide our designs to fit previous measurements using a twisted sequential Monte
Carlo procedure. We show that CloneBO optimizes antibodies substantially more
efficiently than previous methods in realistic in silico experiments and designs
stronger and more stable binders in in vitro wet lab experiments.

1 Introduction
Antibody therapeutics are the fastest growing class of drugs, with approved treatments for a breadth
of disorders ranging from cancer to autoimmune disease to infectious disease (Carter & Lazar,
2018). To develop these drugs, biologists design antibodies that strongly bind to targets of inter-
est while being stable in the human body – that is, not unfolding or causing an adverse immune
reaction (Jarasch et al., 2015). To do so, they first screen many diverse antibody sequences or use
a lab animal’s immune system to find an initial candidate that binds a target. This candidate often
does not bind very strongly or is unstable in the human body, so it is used as a starting point in an
iterative optimization experiment in which biologists predict mutations that result in better or more
stable binders and test them Lu et al. (2020).

To make these predictions, we can learn from measurements of sequences from up to thousands of
previous iterations (Rapp et al., 2024; Yang et al., 2019; Fannjiang et al., 2022; Brookes et al., 2019).
We can also learn from databases of protein sequences to avoid predicting mutations that produce
nonfunctional antibodies (Gruver et al., 2023; Stanton et al., 2022; Hie et al., 2023; Prihoda et al.,
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Figure 1: Our immune system introduces mutations (blue) to evolve weak binders of a target (grey)
into strong binders (green). The result is a set of closely related sequences that bind the antigen
strongly and stably in the human body known as a clonal family. We trained a large language
model, CloneLM, on a huge dataset of antibody sequences to generate sets of antibody sequences
that belong to the same clonal family. We use CloneLM to perform Bayesian optimization in a
procedure called CloneBO – we use experimental data to generate a clonal family that might have
evolved to bind our antigen. We use this clonal family to suggest sequences to measure in the lab
and iteratively refine our generation with the new measurements.

2022). However, even with this restriction, there are a combinatorial number of mutations we could
predict, only a handful of which are beneficial. Therefore, optimization experiments regularly fail
to find suitable sequences on a budget.

To optimize more efficiently than current methods, we need an informed prior about where and how
to mutate to positively affect binding and stability. Ideally we could learn what mutations often
lead to better sequences in optimization experiments in the lab. Unfortunately such data is scarce.
In principle, we can instead learn from abundant data about what mutations often lead to better
sequences in our bodies. To make an antibody that binds a new target, our immune system evolves
sets of related sequences known as clonal families; through selection, sequences in clonal families
accumulate mutations that increase binding to a target while maintaining stability (Burnett et al.,
2018). With large-scaling sequencing efforts, there are now databases that contain large numbers of
these evolving sequences to learn from (Olsen et al., 2022a).

Here we introduce Clone-informed Bayesian optimization (CloneBO), a Bayesian optimization pro-
cedure which efficiently optimizes antibody sequences in the lab by teaching a generative model
how the human immune system optimizes antibodies. In Section 2 we review related work and in
Section 3 we introduce the problem of iterative Bayesian optimization. In Section 4 we describe
how in theory we can build a prior for where and how to mutate given observed clonal families. In
Section 5 we build such a prior in practice by fitting a large language model, CloneLM, to hundreds
of thousands of clonal families. We take a martingale posterior approach to sampling in which we
generate new clonal families that contain our candidate. In Section 6 we describe how to condition
on previous measurements using a twisted sequential Monte Carlo procedure so that good mutations
are included and in our clonal family and bad mutations are excluded. We use our model to build a
Bayesian optimization procedure, CloneBO. In Section 7 we show that CloneBO optimizes realistic
oracles for stability and binding strength much more efficiently than current methods and also de-
signs strong and stable binders in wet lab experiments. CloneBO outperforms naive and informed
greedy methods as well as LaMBO, a state of the art method for optimizing sequences. In Section 8
we conclude and describe directions for future work. Our code and model weights are available at
https://github.com/AlanNawzadAmin/CloneBO.git.

2 Related work
To iteratively optimize a protein, one can predict sequences using previous measurements (Rapp
et al., 2024; Yang et al., 2019; Fannjiang et al., 2022; Brookes et al., 2019). To optimize antibodies
for stability in the human body in particular, Hie et al. (2023) and Prihoda et al. (2022) suggest in-
troducing mutations to make them look more typical, where typicality is measured by the likelihood
of a model trained on large databases of protein sequences. More generally, Gruver et al. (2023)
and Stanton et al. (2022) avoid suggesting atypical protein sequences by training a latent space to
represent a database of protein sequences and then optimizing in this latent space. However, even
the space of typical antibody sequences is combinatorially large, and therefore challenging to search
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using only up to thousands of previous measurements. CloneBO builds a biologically informed prior
to efficiently search this space.

CloneBO builds this prior using clonal families — sets of sequences evolving to strongly and stably
bind a target (Burnett et al., 2018). Biologists infer evolutionary pressures on antibodies by examin-
ing individual clonal families (Mascola & Haynes, 2013) or comparing clonal families (Phad et al.,
2022). In the lab, “repertoire mining” optimizes antibodies by suggesting mutations from sequences
in a clonal family that contains the candidate (Richardson et al., 2021; Olsen et al., 2023). In prac-
tice, such a family rarely exists. CloneBO optimizes a candidate by generating new clonal families
that contain the candidate and that match experimental data.

To build a prior over measurements in the lab, we assume that sequences in a clonal family are
distributed with abundance according to their fitness, and that fitness is close to the function we
measure in the lab. These are standard assumptions in generative modelling of protein sequences
(Weinstein et al., 2022) — one fits a distribution p to a set of protein sequences then uses log p(X)
as an estimate of the fitness of a sequence X; this fitness then correlates strongly with the function
of the protein as measured in the lab (Frazer et al., 2021; Riesselman et al., 2018; Notin et al., 2022;
Shin et al., 2021). In our case, each clonal family has its own fitness function which we use to build
a prior over fitness functions. Our model, CloneLM, models clonal families as sets of sequences,
similar to the architecture of Truong & Bepler (2023) who used a language model to model protein
families as sets of sequences.

For each clonal family we observe a set of sequences which evolve with respect to a latent fitness
function drawn from a prior. Instead of attempting to build an explicit latent variable model, Fong
et al. (2024) suggest performing Bayesian inference with a “martingale posterior” — instead of
sampling and conditioning on the latent variable, do the same with a large number of observations.
Lee et al. (2022) suggests using this approach for Bayesian optimization. Falck et al. (2024) suggests
that, with some bias, large language models can perform martingale posterior inference. We take
this approach when sampling from our prior. We use a large language model to flexibly fit observed
sequences and sample sets of sequences, i.e. clonal families, as draws from our prior.

When proposing sequences, we sample a clonal family from an autoregressive language model,
CloneLM, but condition its output to fit the experimental measurements. To do so, we build a
twisted sequential Monte Carlo procedure (Whiteley & Lee, 2014) in which we we bias the gener-
ation of each letter towards the posterior. This technique is used to sample from filtering models
(Lawson et al., 2023, 2024), conditional large language models (Zhao et al., 2024), or diffusion
models (Trippe et al., 2023).

Complementary with work on iterative design are structure-based de novo design methods which aim
to predict antibody sequences that bind a particular antigen (Jin et al., 2021; Luo et al., 2022; Kong
et al., 2023). These models have the potential to design starting sequences for iterative optimization.
These models could in principle also be used for iterative design. However they can not make use
of a pool of previous measurements and must have access to structure. We show below empirically
that they are not well suited for this task.

3 Background

We start with a candidate antibody variable domain X0, a sequence of roughly 110 − 130 letters
made of the 20 amino acids, identified to bind a target of interest. X0 often does not bind the target
strongly enough or is unstable in the human body. We therefore iteratively suggest sequences we
expect are stronger or more stable binders, X̂1, . . . , X̂N , and measure their binding or stability in
the lab Y1, . . . , YN .

We assume that our measurements are evaluations of a function f that takes sequences to a scalar
measurement of binding or stability in the lab: Yn = f(X̂n). To suggest the next sequence, X̂N+1,
given X̂1:N , Y1:N we can perform Bayesian optimization Frazier (2018). First we place a prior on
f given our known weak or unstable binder X0, p(f |X0). Then we infer f by building a posterior,
p(f |X0, X̂1:N , Y1:N ). Finally, we suggest X̂N+1 given our knowledge of f , for example by Thomp-
son sampling – we sample a value of f we believe to be plausible, f ∼ p(f |X0, X̂1:N , Y1:N ), and
test the sequence that maximizes this sample, X̂N+1 = argmaxXf(X).
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In the lab we often have a limited experimental budget, and therefore want to find a strong or stable
binder in as few iterations as possible. To do so, we need an accurate prior on f . The ideal prior could
in principle be constructed by performing many optimization experiments in the lab for a diverse
array of targets and starting candidates and measuring f in each case. Unfortunately, performing a
large number of these experiments is prohibitively expensive.

4 A prior from fitness functions of evolving antibody sequences

While we do not have access to a large number of optimization experiments in the lab, we do
have access to a large number of similar optimization experiments that occur in our bodies. Our
immune system generates antibodies by first identifying candidate sequences that bind a target. It
then evolves this sequence towards binding its target more strongly while remaining stable in the
body: mutations are introduced to sequences and those sequences with higher “fitness” — those that
bind the target more strongly and stably — are selected for reproduction. Each starting candidate
sequence typically produces many diverse sequences that have been evolved to bind a target strongly
and stably. For each optimization experiment the immune system performs, we therefore observe a
set of evolved sequences X1, . . . , XM known as a “clonal family”.

The f we measure in the lab measures binding and stability, similar to a function of the fitness of
sequences under selection. Therefore to build a prior over f we start by building a prior over fitness
functions F . Then in Section 6 we allow for some discrepancy between f and F which may be
caused by a difference between measurements in the lab and selection in our bodies.

To get a prior over functions F from observed clonal families, we first note that the distribution
of sequences we observe, p(X1, X2, . . . ), can be written as a Bayesian model. The probability of
observing a set of sequences in a clonal family is exchangable, i.e. it does not depend on their order;
so, by De Finetti’s theorem1 (Hewitt & Savage, 1955), sequences in each clonal family are generated
iid conditional on a latent random variable which we call clone:

p(X1:M ) =

∫ M∏
m=1

p(Xm|clone)p(clone).

Next we make the standard assumption that families of evolving proteins are distributed with abun-
dance proportional to their fitness (Weinstein et al., 2022), that is,

F (X) = log p(X|clone). (1)

Sella & Hirsh (2005) showed that Eqn. 1 holds exactly if a protein evolves under F over long time
scales. In reality, sequences drawn from p(X|clone) can also be correlated by being descendants of
the same sequence, but we make the standard assumption that these correlations can be ignored (We-
instein et al., 2022). Finally, we can represent that the initial candidate X0 binds the target by assum-
ing we have observed it in the clonal family, i.e., by looking at p(clone|X0) ∝ p(clone)p(X0|clone).
We can therefore sample fitness functions from p(F |X0) in theory by 1) sampling clonal families
that contain X0, clone∗ ∼ p(clone|X0), and then 2) we can set F (X) = log p(X|clone∗).

5 CloneLM: Learning a prior over fitness functions

In this section we fit a model to the distribution of clonal families and use it to sample fitness
functions in practice. In principle, we could build a model with an explicit latent variable meant
to represent clone. Instead, we take a martingale posterior approach Fong et al. (2024) — simply
by building an accurate model of clonal sequences we learn an implicit prior on clone that we can
approximately sample from.

In Section 5.1 we fit an autoregressive large language model, CloneLM, to large scale clonal fam-
ily data and show it can generate realistic clonal families X1:M that contain a candidate sequence
X0. In Section 5.2 we show that given a clone, X0:M , CloneLM implicitly infers the fitness func-
tion when predicting sequences: F (X) ≈ log pCloneLM(XM+1|X0:M ). Finally in Section 5.3 we
show CloneLM can therefore sample fitness functions from an implicit prior on clone by generating
realistic clonal families that contain X0 then inferring their fitness functions.

1We ignore the dependence between the number of sequences we observe, M , and the sequences themselves

4



5.1 Fitting a large language model to generate clonal families
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Figure 2: CloneLM is a prior over fitness functions. (a) We compare sequences in a clonal family
to families generated by CloneLM conditional on X0, where X0 is the sequence in black. We align
sequences to X0 and highlight locations where sequences differ from X0 in blue. (b) For 5 different
clonal families, pCloneLM(XM+1|X ′

1:M ) gets close to pCloneLM(XMlarge+1|X1:Mlarge
) in KL. We

shade one standard deviation across 10 samples of X1:Mlarge
, X ′

1:M . (c) For 5 different heavy chain
clonal families, pCloneLM(X|X0:M ) better predicts sequences in a clonal family when conditioned
on more sequences from that same clonal family X0:M . We shade one standard deviation across
10 samples of X1:M . (d) To sample from our prior F | X0 we perform a martingale posterior
procedure. (e) We evolve three antibody therapeutics with three mutations from 25 sampled fitness
functions. These sequences evolve to look more like human antibodies.

We train a large language model on large scale human clonal family data. Each antibody is made up
of two amino acid sequences — the “light chain” and the “heavy chain”. We train separate models
on heavy and light chains of antibody sequences in clonal families.

To build a training set, we collect all sets of human heavy and light chain antibody sequences from
the database of Observed Antibody Space (OAS) (Olsen et al., 2022a). We annotate clonal families
in each set of sequences using FastBCR (Wang et al., 2023) and remove any clonal family with fewer
than 25 sequences. Our dataset contains 908 thousand heavy chain clonal families and 34 thousand
light chain clonal families.

We then train autoregressive language models with 377 million parameters based on the Mistral-7B
architecture on the heavy and light chain datasets (Jiang et al., 2023). We represent each clonal
family as a sequence of tokens made up of all the amino acid sequences in the clonal family each
separated by a special sequence-separator token. We place spaces between amino acids so that the
tokenizer represents each amino acid with its own token. Our model, CloneLM, accurately fits this
data — it achieves a test perplexity of 1.276 on the heavy chain data and 1.267 on the light chain
data. We provide details of the data curation and of training the models in App. A.1.

To see if CloneLM generates realistic clonal families, in Fig. 2a we compare a heavy chain clonal
family from the test set to clonal families generated by CloneLM conditional on a randomly selected
sequence from the original family X0. We see the sampled clonal families are similarly diverse to
the real clonal family, include variants in similar locations as the true clonal family, and sequences
within the same sampled clonal families contain similar variants. We show more examples of gen-
erated heavy and light chain clonal families in Appendix C.1.
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5.2 Approximately extracting a fitness landscape from a clonal family

CloneLM does not explicitly represent the latent variable clone so we cannot exactly query the
fitness function F (X) = log p(X|clone). However, CloneLM approximates the predictive distribu-
tion of a Bayesian model p(XM+1|X0:M ) which implicitly integrates over the latent clone:

p(XM+1|X0:M ) =

∫
p(XM+1|clone)dp(clone|X0:M ).

As M → ∞, p(clone|X0:M ) converges to a point mass at the latent clone∗ generating the sequences.
Therefore, in theory, as M becomes large, log pCloneLM(XM+1|X0:M ) should converge to F :

log pCloneLM(XM+1|X0:M ) ≈ log p(XM+1|X0:M ) ≈ log p(XM+1|clone∗) = F (XM+1).

We see that CloneLM can infer F as such on real data as well — as M becomes large,
the predictive of CloneLM, pCloneLM(XM+1|X1:M ), approaches convergence and its limit in-
creasingly approaches the distribution of sequences in a clonal family, p(X|clone). First in
Fig. 2b we take random sequences X0:Mlarge

, X ′
0:M from heavy chain clonal families and see if

pCloneLM(XM+1|X ′
0:M ) converges to pCloneLM(XMlarge+1|X0:Mlarge

) in Kullback-Leibler diver-
gence. Setting Mlarge = 24, we see that although the divergence does not go to 0, the distributions
become very similar as M becomes large. Next in Fig. 2c we take random sequences X0:M from
heavy chain clonal families and see if pCloneLM(X|X0:M ) approaches p(X|clone). We see indeed
that when we use pCloneLM(X|X0:M ) to predict sequences in the clonal family, its perplexity is
decreasing in M .

5.3 Sampled fitness landscapes and evolving sequences

Given that our model samples realistic clonal families and it can recover F (X) = log p(X|clone),
we can approximately sample from pCloneLM(F |X0) using a martingale posterior procedure Fong
et al. (2024) — we sample from the prior of clonal families that contain X0, X1:M ∼
pCloneLM(X1:M ), and then approximate the fitness function as F (X) ≈ log pCloneLM(X|X0:M )
(Fig. 2d).

The fitness functions we sample reflect how our immune systems evolve antibodies. In Fig. 2e we
take the heavy chains of three antibody therapeutics, bococizumab, trastuzumab, and ranibizimab,
sample fitness functions setting from CloneLM conditional on these sequences with M = 10, and
iteratively evolve these sequences by adding the most likely mutation under each sampled fitness
functions three times. These therapeutics are not originally human sequences and therefore can
be unstable in the human body — in particular, bococizumab was discontinued due to harsh side
effects. If they were to evolve in our bodies, we would expect them to become more human-like,
and therefore likely more stable. Indeed we see that as we evolve these sequences they look more
like human antibodies, where human-ness is measured by the likelihood of IgLM Shuai et al. (2022),
a model trained on a large set of human antibodies.

6 CloneBO: Inference with experimental measurements

We now describe how to use our prior over fitness functions F to optimize sequences in the lab.
In Section 6.1 we build a prior for measurements in the lab f using our prior for F . We cannot
exactly condition on the implicit clone, so in Section 6.2 we approximate the posterior over the
latent clone with a posterior over concrete clonal families X1:M . In Section 6.3 we describe how to
sample from our approximate posterior using a twisted sequential Monte Carlo (SMC) procedure.
Finally in Section 6.4 we describe how to suggest sequences to perform iterative optimization with
CloneLM; we call our method Clone-informed Bayesian Optimization (CloneBO).

6.1 Building a prior on laboratory measurements

In our bodies, antibodies are optimized to stably and strongly bind their targets. In principle, we
are interested in doing same in the lab. We therefore assume that the function we optimize in the
lab, f , is approximately drawn from our prior on fitness functions, F , while allowing for some
discrepancy due to mismatches between measurements in the lab and those in our bodies. For
simplicity, we assume that f is an affine linear transformation of F and that the deviation between
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Figure 3: We sample functions from the posterior of our model with a twisted SMC procedure.
a) To sample from our posterior, we bias our generated sequences to look more like those sequences
that were measured in the lab to be good. b) We show a line of best fit between FM

1:N and Y1:N for
example clonal families sampled by twisted SMC or importance sampling with M = 6, D = 300
for IS and D = 4 for twisted SMC. c) We shade a standard deviation across 10 replicates.

experiment and fitness is independent normal with error σ2; that is, for some T > 0, C, calling
Fn = log p(X̂n|clone),

Yn | clone ∼ N(TFn + C, σ2I).
To reflect our vague uncertainty about T and C we use uniform priors: C ∼ Uniform(−∞,∞) and
T ∼ Uniform(0,∞). With these priors, we get an analytical expression for the marginal likelihood.
Proposition 6.1. (Proof in App. D.1.) For some constant D, and R =√
N Std(Y1:N )

σ Cor(F1:N , Y1:N ), with Φ as the Gaussian CDF,

log p(Y1:N |F1:N ) = −1

2
log Cov(F1:N ) +

1

2
R2 + logΦ(R) +D. (2)

The first term in Eqn. 2 pushes the fitness values of the measured sequences, F1:N , to be different,
while the later terms push F1:N to strongly and positively correlate with Y1:N .

As before, we assume we have a starting candidate X0 that belongs in the clonal family. Therefore,

p(clone|Y1:N , X̂1:N , X0) ∝ p(clone)p(X0|clone)p (Y1:N |F1:N )

6.2 Approximating the posterior

To infer f given measurements Y1:N , X̂1:N , we would like to sample from the posterior F ∼
p(F |Y1:N , X̂1:N , X0). As we only implicitly represent clone, we approximate the posterior by
swapping the latent clone for a concrete clonal family, X1:M ; then, as in Sec. 5.2, we can approxi-
mately query the fitness function F (X) ≈ log p(X|X0:M ).

To create an approximate posterior, we replace Fn with FM
n = log p(X̂n|X0:M ):

p̃M (X1:M |Y1:N , X̂1:N , X0) ∝ p(X1:M |X0)p
(
Y1:N |FM

1:N

)
. (3)

As M → ∞, FM
1:N → F1:N , so, p̃M converges to the distribution one obtains by sampling clone∗

from the posterior and sampling Xm ∼ p(Xm|clone∗) iid:
Proposition 6.2. (Proof in App. D.2) As M → ∞, p̃M converges to the true posterior of X0:M in
total variation.
In practice, we approximate p(X1:M |X0) and FM

1:N with CloneLM.

6.3 Sampling from the approximate posterior with twisted SMC

To sample from p̃M , we need to generate M sequences from CloneLM such that the probabilities of
the (M+1)st sequences matches experimental measurements. Naively, we might sample sequences
from CloneLM and then importance sample. However, the space of sequences is large, and we may
fail to resample a mutation that improved measurements in the lab.

Instead we bias generation at each letter by adding measured sequences to our clonal family so
that mutations that improve measurements are encouraged and those that harm measurements are
avoided (Fig. 3a). We call this bias a “twisted” distribution, a term from the sequential Monte Carlo
literature. In practice, this bias does not exactly sample from the posterior, so we efficiently correct
for the discrepancy with a sequential Monte Carlo procedure.
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Twisted distributions Define X(l) to be the letter at the lth position of a sequence X and X(:l)

as the first l letters in X; if l is greater than the length of X , we define X(l) as an empty position.
To build our twisted distributions, we decompose the likelihood of X̂n given M + 1 sequences into
contributions from the first M sequences and contributions from each letter in sequence M + 1:

FM+1
n = log p(X̂n|X0:M+1) = log

p(XM+1|X0:M , X̂n)

p(XM+1|X0:M )
+ log p(X̂n|X0:M )

=
∑
l

log
p(X

(l)
M+1|X0:M , X

(:l−1)
M+1 , X̂n)

p(X
(l)
M+1|X0:M , X

(:l−1)
M+1 )

+ FM
n

=:
∑
l

FM+1,(l)
n + FM

n .

(4)

We can calculate F
M+1,(l)
n by adding X̂n to the end of the clonal family X1:M and calculating how

much the conditional likelihood of the l-th letter of XM+1 increases.

We can therefore approximate the marginal p̃M+1(X
(:l)
M+1, X0:M ) just as in Section 6.2 by replacing

FM+1
1:N in Eqn. 3 with F

M+1,(:l)
1:N =

∑l
l′=1 F

M+1,(l′)
n + FM

n ,

p̃
(:l)
M+1(X

(:l)
M+1, X0:M ) ∝ p(X1:M , X

(:l)
M+1|X0)p(Y1:N |FM+1,(:l)

1:N ).

We call this approximation the “twisted” distribution.

If we pretend that these twisted distributions are exact marginals and that p̃M is also the marginal of
p̃M+1, we can therefore sample each sequence letter-by-letter according to

X
(l+1)
M+1 ∼ p̃

(:l+1)
M+1 (X

(l+1)
M+1 |X

(:l)
M+1, X0:M ) ∝ p(X

(l+1)
M+1 |X

(:l)
M+1, X0:M )p(Y1:N |FM+1,(:l+1)

1:N ). (5)
The first term in Eqn. 5 samples the next letter according to the unconditional distribution. The
second term is a bias that upweights letters X

(l+1)
d,M+1 for which F

M+1,(:l+1)
1:N correlates with Y1:N ;

this usually means upweighting letters that are more likely if sequences that were measured to have
high Yn, X̂n, were included in the clonal family (Fig. 3a).

The twisted distributions are not the exact marginals. We correct for this discrepancy by sampling
D > 1 sequences at a time and importance sampling in a sequential Monte Carlo procedure (SMC),
which we describe in App. A.2. The final method is known as twisted SMC, and when D = 1, it is
equivalent to sampling from the approximations described above.

Empirical results We sample a clonal family conditional on laboratory measurements of the melt-
ing temperature of 75 related antibodies from an experiment described in Sec. 7. In Fig. 3b and 3c we
see that clonal families from twisted SMC fit the experimental data substantially better than clonal
families importance sampled from unconditional samples from CloneLM. We also see in Fig. 3c
that correcting for bias with D = 4 also improves the fit to the data and that as M increases, the
likelihood p(Y1:N |FM

1:N ) plateaus, reflecting the convergence of p̃M to the true posterior. We show
similar results for laboratory measurements of binding in App. C.2

6.4 Bayesian optimization with CloneBO

After sampling F from the posterior we would like to suggest sequences to test in lab. We take
a Thompson sampling approach (Russo et al., 2018): we propose testing the sequence predicted
to maximize F (X), and therefore maximize f(X), in the lab. We cannot optimize F (X) over all
sequences, so in practice we start with 4 sequences with the highest measurements Y and iteratively
optimize F (X) over the top substitution for up to 3 substitutions.

In theory, X0 represents a candidate sequence to optimize. In practice, we found it helpful to take a
greedy approach — we randomly select X0 from the 4 sequences with the highest measurements Y .

Conditioning on a large number of measurements X̂1:N , Y1:N is computationally expensive. To
accommodate large N , other Bayesian optimization methods build summaries of the measurements,
for example by fitting a neural network to them Stanton et al. (2022). In our case, we only condition
on the measurements of sequences predicted to be most informative – we calculate the probability
that each X̂n appears in a clonal family with X0, p(X0, X̂n) and condition on the measurements of
the 75 most likely sequences. Additional details of CloneBO are provided in App. A.3.
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Figure 4: CloneBO efficiently optimizes antibodies in silico. We show the mean and standard
deviation of the best acheived value across 10 replicates. (a) CloneBO efficiently optimizes a fitness
function. The blue line is CloneBO; the grey are LaMBO-Ab, LaMBO, Sapiens, and Greedy. (b)
CloneBO optimizes binding and stability in silico over 100 steps of iterative design (p value is
Mann-Whitney). It does significantly better than the next best method for binding (p=0.018 Mann-
Whitney) and stability (p=0.006 Mann-Whitney).

7 Experiments
Now we demonstrate that CloneBO efficiently optimizes antibody sequences against oracles trained
on real stability and affinity data. In Section 7.1 we demonstrate that our method efficiently op-
timizes fitness functions or laboratory measurements in silico. In Section 7.2 we also show that
our method suggests mutations that optimize sequences in in vitro experiments the lab. We provide
details of our experiments in App. B.

7.1 Optimizing antibodies in silico

We show that CloneBO efficiently optimizes fitness functions or measurements in the lab in silico.
To simulate fitness functions or lab measurements, we train oracles f on real data. We show that
CloneBO outperforms naive and informed baselines.

7.1.1 Baselines

First we consider a naive Greedy baseline which suggests a random substitution of one of the top 4
sequences. We also compare to an informed greedy baseline which randomly picks one of the top
4 sequences and introduces the mutation predicted to make the antibody look most like a typical
antibody, where typicality in measured by the likelihood of a masked language model trained on
antibody sequences, Sapiens (Prihoda et al., 2022); this is a popular strategy for making antibodies
that are more stable in the body. We also compare to LaMBO (Stanton et al., 2022), a state-of-the-art
Bayesian optimization method for sequences which builds a latent space using a pool of sequences
and fits experimental measurements in this latent space; by conditioning on this latent space, it is
less likely to suggest atypical sequences. We also build a LaMBO model informed by the space
of antibodies by pretraining its latent space using 100000 antibody sequences from the observed
antibody space database (Olsen et al., 2022a), LaMBO-Ab. We also compare to other popular
strategies for iterative optimization of sequences that do not have antibody-based priors, Genetic,
AdaLead (Sinai et al., 2020), and EvoBO (Sinai et al., 2020); CMA-ES (Hansen & Ostermeier,
2001), Dyna-PPO (Angermueller et al., 2020), and CbAS (Brookes et al., 2019). In total, we
compare CloneBO to 10 baselines that represent state-of-the-art industry practice2.

7.1.2 Results

Oracle of a fitness function of a clonal family We first demonstrate the potential of the CloneBO
prior to accelerate optimization. We build an oracle to simulate the fitness function of a real human
clonal family, that is, a function from the CloneBO prior. We trained a language model on a heavy
chain clonal family of 10015 sequences from our test set and try to maximize f(X) = the log
likelihood of X of this model. We start with a single measurement X̂1, Y1 where X̂1 is a sequence
from the clonal family. Very few mutations of an antibody improve fitness, so in Fig. 4a we see

2Note that some of these methods are developed for different regimens, such as short sequences or large
amounts of training data. Their performance here does not necessarily represent their performance for the
problems they are optimized for.
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Figure 5: CloneBO efficiently optimizes antibodies in vitro. “LaMBO" in this plot refers to
“LaMBO-Ab". (a) CloneBO design sequences predicted to be synthesizable. (b) CloneBO designs
strong and stable binders in the lab. Measurements from previous rounds are shown in a histogram.
The vertical black line represents the best value previously achieved.

some baselines struggle to identify positive mutations. CloneBO’s prior on the other hand gives it
knowledge about what sorts of mutations are most likely to improve fitness allowing it to quickly
optimize f even at very low N .

Oracles from laboratory measurements of melting temperature and binding We next demon-
strate the utility of CloneBO in an in silico simulation of a realistic in-lab setting. We trained oracles
on lab measurements from an experiment that aimed to optimize a VHH domain, a sequence similar
to an antibody heavy chain, for binding and stability at high temperature. We trained neural network
ensembles on the melting temperature and binding (measured in − logKD) measurements and try to
maximize f(X) = the mean predictions of these ensembles. We simulate starting part way through
this experiment by starting with 1000 measurements X̂1:1000, Y1:1000 where X̂1:1000 are the first
1000 sequences measured in the experiment and Y1:1000 are oracle predictions. We do not expect
mutations outside of the CDR regions of an antibody to substantially affect binding, so we only
allow mutations in these regions of the sequence when optimizing for binding. In Fig. 4b, we see
that after 100 steps, greedy methods and methods informed by an antibody prior optimize antibodies
more efficiently than previous methods against these oracles; in particular, CloneBO outperforms all
baselines. In App. C.3 we plot these results against N .

Comparison to structure-based design model for binding SARS CoV. In App. C.4 we show
that CloneBO can also efficiently optimize antibodies in silico for SARS CoV binding as measured
by a predictor trained on CoVAbDaB (Raybould et al., 2020). In particular we see CloneBO beats
structure-based design method DiffAb (Luo et al., 2022).

Ablations and sensitivity In App. C.5 we show that CloneBO accelerates optimization by build-
ing an accurate posterior – the performance of CloneBO is harmed when we ablate sampling large
clonal families, conditioning on experimental data, or our twisted SMC sampling strategy. We also
perform two other ablations demonstrating that our results above are reliable – we show 1) CloneBO
is robust to different starting sequences and starting pool sizes, and 2) CloneBO can efficiently op-
timize antibodies when f deviates from the CloneBO prior, especially at low N . Finally we sweep
hyperparameters to show that CloneBO is not particularly sensitive to hyperparameters other than
the amount of noise in the data; we describe a heuristic that allows us to make a good choice for the
amount of noise.

7.2 Optimizing an antibody in vitro

We now demonstrate that CloneBO can design sequences as part of a real-world antibody optimiza-
tion campaign. We started with 1000 lab measurements of binding and melting temperature3 (visual-
ized in Fig. 6) and designed 200 sequences using CloneBO and our strongest baseline, LaMBO-Ab,
for one wetlab iteration of optimizing binding or melting temperature. In a real world optimization
campaign, this one step would be repeated many times.

Before measuring designed sequences, sequences need to be synthesized; sequences which are atyp-
ical can fail to synthesize, making their measurement impossible. In Fig. 5a we plot the predicted

394 / 1000 sequences were measured for melting temperature and 997 / 1000 were measured for KD .
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synthesizability of sequences from CloneBO and LaMBO-Ab; sequences from CloneBO are signif-
icantly more synthesizable (Mann-Whitney p < 1e−5), suggesting they are more realistic. We next
measure 20 sequences designed by CloneBO and LaMBO-Ab that are predicted to synthesize.

In Fig. 5b we plot sequences we were able to measure; we include any sequences that were proposed
that we had measured in previous experiments. We see that sequences from CloneBO achieve the
best binding and stability. Our strongest binder is only beaten by 2 / 997 previously measured
sequences and our most stable sequence beats the previously measured sequences by a large margin.
We also conclude that sequences from CloneBO are significantly stronger binders than those from
LamBO-Ab (Mann-Whitney p = 0.021). We discuss these results in more detail in App. C.6.

8 Conclusion

To develop new disease treatments, antibodies must be optimized for a range of properties. By learn-
ing from the human immune system’s approach to antibody maturation and therefore substantially
accelerating optimization in the lab, CloneBO can help to more efficiently build safer and more
effective therapeutics.

An important direction of future work is in addressing theoretical and practical limitations of
CloneBO. First, CloneBO currently assumes a simple relationship between the fitness of a clonal
family and measurements in the lab (Section 6.1). Future work may account for heteroskedastic-
ity or nonlinear relationships. As well, CloneBO evaluates the fitness of a sequence by assessing
how likely it is to belong to a clonal family of X0. Future work may attempt to incorporate pat-
terns learned from measurements of diverse sequences which are unlikely to belong to the same
clonal family. Finally, the cost of sampling from the CloneBO posterior scales with the number of
laboratory measurements N (Section 6.3), so CloneBO scales by conditioning only a subset of mea-
sured sequences. Future work could instead build a more scalable model or approximate sampling
procedure.

Another important future direction is extending CloneBO to multi-objective iterative Bayesian op-
timization of antibodies for binding and stability simultaneously. We can do so for example by
swapping Thompson sampling for other acquisition functions (Daulton et al., 2020).

9 Reproducibility Statement

We include weights for our CloneBO models and code for implementing sampling in our code
release. We describe how to train a CloneBO model, including the parameters that were used to
build the training data, in the appendix. Sequences from the iterative optimization experiment are
proprietary; we release all other data: we include the trained oracle for Fig. 4a in our code release;
we describe how implement baselines and the oracle in Fig. 11 in the appendix.
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A Details of CloneLM and CloneBO

A.1 Data collection and training CloneLM

Clonal family data We downloaded all data units of human single chain data on OAS (Olsen
et al., 2022a). For both light and heavy chain data, we put 10% of these units into a test set,
10% into a validation set, and 80% into a train set. We annotated clonal families in each of these
data units with FastBCR (Wang et al., 2023) using the default parameters cluster_thre = 3,
overlap_thre = 0.1, consensus_thre = 0.8. We removed any clonal families with
fewer than 25 sequences. We ended up with 731 thousand heavy chain clonal families for training,
81 thousand for validation, and 96 thousand for testing; and 26 thousand light chain clonal families
for training, 4 thousand for validation, and 4 thousand for testing.

Training CloneLM We trained CloneLM using Mistral 7B as our base architecture (Jiang et al.,
2023). We scale down the model size to 24 layers of attention blocks with 16 attention heads and
a hidden size of 1024 across embedding and all intermediate hidden states. We set our maximum
context size to 2048. We end up with a Mistral model containing 377 million parameters. For
training, we use a batch size of 2, a gradient accumulation step of 4, and we sweep learning rates
over {0.0005, 0.00025, 0.0001} using a constant learning rate scheduler. All training is performed
on 4 NVIDIA A100-SXM4-80GB GPUs. For human light chain data, we train for 24 hours for 40
epochs. For human heavy chain data, we train for 48 hours for 1 epoch.

A.2 Sequential Monte Carlo

Importance sampling The twisted distributions are not exactly the marginals. We can correct
for this discrepancy with sequential weighted importance sampling. Say we have X0:M , X

(:l)
M+1

approximately sampled from p̃
(:l)
M+1(X0:M , X

(:l)
M+1) with importance weight wM+1,(:l). Then

we can calculate the importance weight of X0:M , X
(:l+1)
M+1 by multiplying by the ratio between

p̃
(:l+1)
M+1 (X0:M , X

(:l+1)
M+1 ) and p̃

(:l+1)
M+1 (X

(l+1)
M+1 |X

(:l)
M+1, X0:M )p̃

(:l)
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M+1), so,

wM+1,(:l+1)
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∝
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M+1 (X
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M+1, X0:M )

×
p(Y1:N |FM+1,(:l+1)

1:N )

p(Y1:N |FM+1,(:l)
1:N )

.

Therefore if we have D samples X1:D
0:M+1 with weights wM+1

1:D then we can approximately sample
from p̃M+1 by sampling Xd

0:M+1 with probability w̃M+1
d =

wM+1
d∑

d′ w
M+1

d′
.

Sequential Monte Carlo Say we are iteratively sampling and weighting D sets of sequences and
the importance weight for one set wM,(:l)

d becomes much smaller than that of the others. Ideally
we wouldn’t waste any more compute on sampling the rest of the sequence. This is the idea of
sequential Monte Carlo — while generating each set of sequence letter-by-letter, every so often, we
resample the sets of sequences with probabilities w̃M,(:l)

1:D . To decide when to resample, we calculate
the essential sample size

∑
d(w̃

M,(:l)
d )2 and resample when it goes below

√
D, a classic heuristic.

After we resample, we reset the weights wd = 1/D. As D → ∞ we expect to approximate p̃M+1

arbitrarily well.

We also note when using the predictive distributions of CloneLM, Eqn. 4 is an approximation. The
discrepancy comes from the fact that FM+1

n is the conditional probability of X̂n as the M + 2nd
sequence while F̃M+1

n :=
∑

l F
M+1,(l)
n + FM

n is the probability of X̂n as the M + 1st sequence.
For p, these probabilities are identical, but this may not be exactly the case for CloneLM. Therefore,
once we have sampled all the letters in a sequence XM then we have sampled from a distribution
proportional to

p(X0:M )p(Y1:N |F̃M
1:N ).

Therefore we also resample at this stage after multiplying the importance weight of sample d, wM
d

by
p(Y1:N |FM

1:N )

p(Y1:N |F̃M
1:N )

.
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A.3 Experimental Details of CloneBO

Before conditional generation, we normalized Y1:N to to Ỹn = (Yn − startmean)/startstd where
startmean and startstd are the mean and standard deviation of the initial dataset Y1:N . In our
experiments we used D = 4 during twisted SMC, and generated clones of size M = 6. We
tempered σ by the maximum number of sequences we conditioned on, i.e. we used σ = σ̃/

√
75

where σ̃ = 0.25. We run each experiment on a single NVIDIA A100 GPU with 80GB of memory;
100 steps with CloneBO takes roughly 10 hours.

B Experimental details

B.1 Baselines

We implemented Sapiens using the code in https://github.com/Merck/Sapiens under
the MIT licence. We suggested mutations to a sequence by taking the highest likelihood mutation
suggested by sapiens.predict_scores that had not previously been measured.

We implemented LaMBO using the code in https://github.com/samuelstanton/
lambo under the Apache-2.0 licence. We used default hyperparameters for the masked language
model version of LaMBO. To restrict mutations to the CDRs, we kept sampling mutations from
LaMBO until only the CDR was modified.

To build LaMBO-Ab we pretrained the latent space of a LaMBO MLM model on a training set of
100000 antibody sequences. We built the training set by taking one sequence from each of 100000
random clonal families from the CloneLM training set.

We also compare to two other genetic algorithms with trained surrogates, AdaLead and Genetic; a
NN ensemble Bayesopt method, “Evo-BO”; an evolution method, CMA-ES (Hansen & Ostermeier,
2001); an RL method, Dyna-PPO (Angermueller et al., 2020); and an adaptive sampling method,
CbAS (Brookes et al., 2019). The first three methods are described in Sinai et al. (2020). We
implemented these methods with code from FLEXS (Sinai et al., 2020) using the code from https:
//github.com/samsinai/FLEXS/tree/master under an Apache-2.0 license; we used
default settings for all methods.

B.2 Training oracles and initializing optimization

Oracle of a fitness function of a clonal family We trained an oracle language model adapted from
Llama2 (Touvron et al., 2023) on a single reference human heavy chain clone. There are in total
10015 sequences in the clone and we split them into 90% train, 5% validation, and 5% test sets. Due
to the scarcity of our data, we downscaled a Llama2 model with 7 billion parameters by keeping 12
hidden layers with hidden state size of 512. We used 4 attention heads, 4 key-value heads, and kept
the context size at 2048. We ended up with a language model containing 50 million parameters. We
trained our model on a single NVIDIA A100-SXM4-80GB GPU for 10 epochs with a batch size of
32, a gradient accumulation step of 2, a learning rate of 0.0005. We obtained a perplexity value of
1.2634 on the validation set. Using the clone oracle, we start optimization with 2 randomly chosen
sequences from the test set X̂1:2, and predictions from the oracle Y1:2.

Oracles from lab measurements of therapeutic Antibodies We were provided temperature and
binding measurements of 6880 sequences from an iterative optimization experiment performed in
the lab. We aligned these sequences to a reference antibody sequence and trained ensembles of 10
CARP/Bytenet models (Kalchbrenner et al., 2016; Yang et al., 2022) on the one hot encodings of the
aligned sequences to fit the temperature and binding data. The Kd model ensemble had a measured
vs. predicted spearman correlation in crossvalidation of 0.95, while the the Tm model ensemble
had an spearman correlation of 0.72. We use the mean prediction of the ensemble as f . We start
optimization given the measurements of the first 1000 sequences of this experiment X̂1:1000, and
predictions from the oracle Y1:1000.
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B.3 Training data from iterative optimization
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(a) Sequences with binding data.
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(b) Sequences with stability data.

Figure 6: Starting pool for (a) binding and (b) stability optimization. We plot the Hamming distance
matrices and UMAPs. sequences are coloured by predicted property

B.4 Lab validation

We built a predictor of synthesizability from measures of expression just the same as predictors of
melting temperature and binding in Sec B.2. The predictor achieves a test AUROC of 0.87.

Designed sequences were synthesized via cell-free protein synthesis (Dopp & Reuel, 2020) in 96-
well format and purified via Protein A binding on Pierce magnetic beads. Purity and yield were
confirmed before further analysis. Affinities (− logKD) were measured with Bio-Layer Interfer-
ometry (BLI) on an Octet instrument, with the antigen immobilized at three different dilutions of
antibody. Thermostability (melting temperature) was measured by Nano differential scanning inter-
ferometry (NanoDSF) on an Uncle instrument.

C Supplementary results

C.1 More example generated clonal families

In this section we show more light and heavy chain clonal families generated from CloneLM. In
Fig. 7b and Fig.s 8b, 8c, we see that sequences generated by CloneLM include can introduce in-
sertions and deletions. The large sets of deletions in the sequences of the clonal family in Fig. 7b
are due to the fact that some sequences in OAS are missing the beginning or end of their sequences
Olsen et al. (2022b).

(a)

(b)

Figure 7: Examples of heavy chain clonal families generated by CloneLM.
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(a)

(b)

(c)

Figure 8: Examples of light chain clonal families generated by CloneLM.

C.2 Twisted SMC fitting affinity data

In Fig. 9 we show similar results to Fig. 3c for 75 laboratory measurements of binding.
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Figure 9: Twisted SMC fits laboratory measurements of affinity. Experiments are similar to those
in Fig. 3c.
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C.3 Efficient optimization versus number of steps
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Figure 10: Results of Fig. 4b for various N for representative baselines.

C.4 Optimizing antibodies to bind SARS CoV

Above, we validated CloneBO using predictors trained on large-scale mutational data from a lab as
well as in in vitro experiments – these are the most reliable evaluations of CloneBO. As another eval-
uation of CloneBO, and to compare it to structure-based design models, here we explore optimizing
the CDRH3s of antibodies for binding SARS CoV 1 and 2 in humans as measured by predictors used
inJin et al. (2021) (downloaded from https://github.com/wengong-jin/RefineGNN).
We caution however that while we expect CloneBO to be a good prior for SARS binding, these
predictors have large epistemic uncertainty as they are trained on only a few thousand extremely
diverse sequences. We thus expect we are optimizing an objective similar to those in Fig. 13 so that
CloneBO should perform best at low N.

These predictors were trained on only functional antibodies and may not generalize outside this set.
So, we optimize binding + humanness (measured by IgLM likelihood); we standardize both binding
and humanness to the same variance.

We start with N = 1 sequence from CoVAbDab. In Fig. 11 we see that for 6 randomly selected
starting sequences, CloneBO is consistently among the most efficient methods for CoV1 and, at low
N, for CoV2 as well.

We were interested in seeing if structure-based design methods could also be used for iterative
design. When structure is available, we therefore also compare to a state-of-the-art structure method,
DiffAb (Luo et al., 2022). To perform iterative design with DiffAb, we greedily pick one of the 4
best measured sequences and optimize it as in Sec 4.3 of Luo et al. (2022). We see that CloneBO
beats this algorithm.
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Figure 11: CloneBO efficiently optimizes 6 sequences from CovAbDab for binding to SARS CoV1
(first 3 columns) or CoV2 (last 3 columns). In particular it outperforms a structure-based baseline
(DiffAb) for the 3 sequences with an available structure. We show mean and standard deviation
achieved across 3 replicates.

C.5 Ablations of in silico optimization

CloneBO efficiently optimizes sequences by building an accurate posterior. We now show
that CloneBO efficiently optimizes sequences by conditioning on experimental measurements and
accurately sampling from the martingale posterior. In Fig. 12 we see optimization is often harmed
by 1) not accurately sampling from the martingale posterior by only sampling clones of size M = 1,
2) using a naive importance sampling procedure instead of twisted SMC, or 3) not conditioning on

19

https://github.com/wengong-jin/RefineGNN


previous measurements. We see the M = 1 or importance sampling ablations have less of an effect
when optimizing fitness, potentially because it is easier to condition on data from a function from
the CloneBO prior.
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Figure 12: CloneBO better optimizes antibodies than models that ablate accurately sampling
from the posterior. We shade a standard deviation across 3 replicates. We show results for optimiz-
ing binding in silico, stability in silico, and the fitness function of a clone.

CloneBO is robust to different starting pool sizes and deviations from its prior at low N. In
Fig. 13a we optimized for stability as in Fig. 4b of the paper with a starting pool of various N mea-
surements. We see that CloneBO outperforms our baselines across these different starting stabilities
and starting pool sizes, especially at low N .

In Fig. 4a in the paper we showed that when optimizing an objective from CloneBO’s prior (the
fitness function of a clone), F , CloneBO strongly outperforms baselines. Here we mix F with
a random neural network, G, and optimize wF + (1 − w)G; w ∈ [0, 1] controls how well the
CloneBO prior describes the objective. We start with N = 2 sequences. In Fig. 13b we see that in
this small N setting, CloneBO outperforms other methods even when the objective only somewhat
matches the prior (w = 0.4). Even at w = 0.2, CloneBO is the best method at very low N (up to
N=25).
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Figure 13: CloneBO is robust to ablating (a) the starting pool size or (b) how well its prior de-
scribes the objective. We show the mean and standard deviations of the best achieved value across 3
replicates.

Sensitivity to hyperparameters in silico We now investigate the sensitivity of our results to 3
hyperparameters: the noise level in the likelihood σ̃, the maximum number of allowed mutations
L, and the number of sequences we draw X0 from K, as described in Sec. 6.4. In our experiments
above we use log2 σ̃ = −2, L = 3, and K = 4.

We picked K and L based on intuition. We picked σ̃ by looking at the clones generated when con-
ditioned on the initial binding data in silico when suing values log2 σ̃ = −4,−3,−2,−1; we noted
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that when log2 σ̃ = −4,−3, generated clones contained very short or long sequences, indicating
it was hard to find clones that fit the data with little noise. Thus we picked log2 σ̃ = −2 to fit the
data with as little noise as possible. Performing the same procedure for the in silico stability data,
we arrived at the same value log2 σ̃ = −2 was a good choice. We fixed this value for all our other
experiments.

We see in Fig. 14a that K = 1 performs badly when optimizing binding, likely due to a higher
chance of getting stuck in a local minima; otherwise CloneBO is not very sensitive to K. In Fig. 14b
we see CloneBO is also not very sensitive to L. In Fig. 14c we note CloneBO is sensitive to the
choice of σ̃ but our procedure described above picked the optimal σ̃ for binding and stability. For
fitness, we noted the posterior is easy to sample from even at log2 σ̃ = −3 (we see this manifest
in Fig. 12 as well) and indeed a smaller value of σ̃ is optimal. This suggests one can optimize
antibodies more efficiently by improving the CloneBO likelihood, potentially by picking a better σ̃
or by adding a prior and marginalizing over it.
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Figure 14: CloneBO sensitivity to hyperparameters for fitness, binding and stability. Experi-
ments are run with 10 replicates; blue boxes represent hyperparameters used in the main text . a)
Sensitivity to size of pool X0 is randomly selected from, K. b) Sensitivity to maximum allowed
number of mutations, L. c) sensitivity to noise in likelihood, σ̃.

C.6 Additional discussion of in vitro results

We were able to measure the affinities of 9 sequences for CloneBO, and 11 for LaMBO-Ab, and the
melting temperatures of 19 sequences from CloneBO and 10 sequences from LaMBO-Ab. Adding in
previously measured sequences, we were able to get two more affinity measurements for CloneBO
and 2 more for LaMBO-Ab, and no other affinity measurements. Note when interpreting these
results that affinity and stability may be correlated with dropout and whether or not a sequence
was previously measured. In Fig. 15 we plot the affinity measurements removing the previously
measured sequences; the results are qualitatively similar to those of Fig. 5.
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Figure 15: The result of Fig. 5b for affinity with only sequences that were newly measured.

D Theoretical results

D.1 Analytic form of marginal likelihood

Proposition D.1. (Proof of Prop. 6.1) For some constant C,

log p(Y1:N |F1:N ) = −1

2
log Cov(F1:N ) +

1

2
R2 + logΦ(R) + C ′

Proof. We first put a wide prior on M , M ∼ N(0, τ2), and then later send τ → ∞. Then we can
marginalize M out to get

Yn ∼ N(βFn, σ
2I + nτ2e⊗ e)

where we define e to be the vector with 1/
√
N in each position, e = 1⃗/

√
N . Calling Σ = σ2I +

nτ2e⊗ e, σ2
β = (FT

1:NΣ−1F1:N )−1, µβ = σ2
βF

T
1:NΣ−1Y1:N , we get∫ ∞

0

p(Y1:N , β|F1:N )dβ ∝
∫ ∞

0

eβF
T
1:NΣ−1Y1:N− 1

2β
2FT

1:NΣ−1F1:Ndβ

=(2πσ2
β)

1/2eµ
2
β/2σ

2
βP (N(µβ , σ

2
β) > 0)

∝σβe
µ2
β/2σ

2
βΦ

(
µβ

σβ

)
.

Now,
Σ−1 =(σ2(I − e⊗ e) + (σ2 + nτ2)e⊗ e)−1

=σ−2(I − e⊗ e) + (σ2 + nτ2)−1e⊗ e

→σ−2(I − e⊗ e) as τ → ∞

=Nσ−2

(
1

N
I −

(
1

N
1⃗

)
⊗

(
1

N
1⃗

))
.

Therefore, as τ → ∞, FT
1:NΣ−1F1:N is Nσ−2 times the variation of F1:N , Var(F1:N ), and

FT
1:NΣ−1Y1:N is Nσ−2 times the covariance of F1:N and Y1:N , Cov(F1:N , Y1:N ).

Therefore, if we call µβ

σβ
→

√
Nσ−1Cor(F1:N , Y1:N )Std(Y1:N ) = R then we get that when we

send τ → ∞,

log p(Y1:N |F1:N ) = −1

2
log Cov(F1:N ) +

1

2
R2 + logΦ(R) + C ′

for some constant C ′.

D.2 Convergence of approximate posterior

We show that the approximate posteriors converge defined in Eqn. 3 converge to the true posterior.
We make the mild assumption that the hypothetical latent variable clone has been defined such that
clone 7→ p(X|clone) is measurable and no two variables clone1, clone2 have the same conditional
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distribution p(X|clone1) ̸= p(X|clone2). We also assume that all measured sequences are antibod-
ies that can plausibly, although maybe with extremely low likelihood, appear in a clone together,
i.e. p(X0, X̂1:N ) ̸= 0. Finally, we assume the sequences X̂1:N are sufficiently diverse so that their
log likelihoods cannot all be identical for any clone, i.e. for some ϵ > 0, Cov(F1:N ) > ϵ with
probability 1 under p(clone|X0)

4.
Proposition D.2. (Proof of Prop. 6.2) Assume clone 7→ p(X|clone) is measurable and injective,
p(X0, X̂1:N ) ̸= 0, and Cov(F1:N ) > ϵ or some ϵ > 0 with probability 1 under p(clone|X0). Then,
as M → ∞, the approximate and true posteriors converge in total variation –

∥p̃M (X1:M |Y1:N , X̂1:N , X0)− p(X1:M |Y1:N , X̂1:N , X0)∥TV → 0.

Proof. By our assumptions, by Doob’s theorem (Miller, 2018), if clone ∼ p(clone|X0) and Xm ∼
p(X|clone) iid, with probability 1,

p(X̂n|X1:M ) → p(X̂n|X1:M )

for each n. In particular, we get that FM
1:N → F1:N and therefore, since, assuming Cov(F1:N ) > ϵ,

p(Y1:N |FM
1:N ) is a bounded function of F1:N ,

EX1:M ,clone∼p(X1:M |clone)p(clone|X0)|p(Y1:N |FM
1:N )− p(Y1:N |F1:N )| → 0.

Now we show that the the normalizing constants of the approximate and true posteriors converge.

ZM :=

∫
p(Y1:N |FM

1:N )dp(X1:M |X0) =

∫
p(Y1:N |FM

1:N )

M∏
m=1

dp(Xm|clone)dp(clone|X0)

=EX1:M ,clone∼p(X1:M |clone)p(clone|X0)p(Y1:N |FM
1:N )

→Eclone∼p(clone|X0)p(Y1:N |F1:N )

=

∫
p(Y1:N |F1:N )dp(clone|X0) =: Z

(6)

By our assumption that p(X0, X̂1:N ) ̸= 0, for a set of clone of probability greater than 0 under
p(clone|X0), p(X̂n|clone) > 0 for all n; for this set, p(Y1:N |F1:N ) > 0 and therefore Z > 0.

Now we show that the approximate and true posteriors converge in total variation:∑
X1:M

∣∣∣∣p(Y1:N |FM
1:N )p(X1:M |X0)

ZM
−

∫
p(X1:M |clone)p(Y1:N |F1:N )dp(clone|X0)

Z

∣∣∣∣
≤

∑
X1:M

p(Y1:N |FM
1:N )p(X1:M |X0)

∣∣Z−1
M − Z−1

∣∣
+

1

Z

∑
X1:M

∣∣∣∣∫ p(X1:M |clone)
(
p(Y1:N |FM

1:N )− p(Y1:N |F1:N )
)
dp(clone|X0)

∣∣∣∣
≤|Z − ZM |

Z
+

1

Z
Ep(clone|X0)|p(Y1:N |F1:N )− p(Y1:N |FM

1:N )| → 0.

(7)

4We need this assumption to ensure the density p(Y1:N |FM
1:N ) is bounded above. Alternatively, one can

assume a proper prior on M by picking τ large but finite in the proof of Prop. D.1.
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