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Abstract

Sentence representations are a critical compo-001
nent in several applications such as retrieval,002
question answering, and text classification.003
They capture the meaning of a sentence, en-004
abling machines to understand and reason over005
human language. In recent years, significant006
progress has been made in developing methods007
for learning sentence representations, including008
unsupervised, supervised, and transfer learn-009
ing approaches. In this paper, we provide an010
overview of the different methods for sentence011
representation learning, focusing mostly on012
deep learning models. We provide a systematic013
organization of the literature on sentence repre-014
sentation learning, highlighting the key contri-015
butions and challenges in this area. Overall, our016
review highlights the importance of this area017
in natural language processing, the progress018
made in sentence representation learning, and019
the challenges that remain. We conclude with020
directions for future research, suggesting po-021
tential avenues for improving the quality and022
efficiency of sentence representations.023

1 Introduction024

The sentence, together with the word, are the025

two fundamental grammatical units of human lan-026

guages. Representing sentences for machine learn-027

ing, which involves transforming a sentence into028

a vector or a fixed-length representation is a fun-029

damental component of NLP. The quality of these030

representations affects the performance of down-031

stream NLP tasks like text classification and text032

similarity (Conneau and Kiela, 2018).033

Deep learning models have played a major role034

in obtaining sentence representations. While there035

have been significant advancements in the devel-036

opment of large language models (LLMs) such as037

GPT-3 (Brown et al., 2020), BLOOM (Workshop,038

2023), they learn through effective word represen-039

tations and modelling of the language at the (next)040

word level. Endowing the models the ability to041

learn effective representations of higher linguistic 042

units beyond words – such as sentences – is useful. 043

For instance, sentence representations are useful 044

in retrieving semantically similar documents prior 045

to generation. LangChain1 and various other frame- 046

works, (Khattab et al., 2023), have underscored the 047

critical demand for proficient sentence representa- 048

tions. The documents retrieved serve as valuable 049

resources for generating fact-based responses, ac- 050

commodating custom documents to address user 051

queries, and fulfilling other essential functions. 052

However, current language models exhibit draw- 053

backs in obtaining sentence representations out-of- 054

the-box. For instance, Ethayarajh (2019) showed 055

that out-of-the-box representations from BERT 056

(Devlin et al., 2019) are fraught with problems 057

such as anisotropy—representations occupying a 058

narrow cone, making every representation closer to 059

all others. Also, they are impractical for applica- 060

tion scenarios: finding the best match for a query 061

takes hours (Reimers and Gurevych, 2019). 062

To overcome the inadequacy of directly using 063

sentence representations from language models, 064

numerous methods have been developed. Several 065

works have proposed to post-process the represen- 066

tations from BERT to alleviate the anisotropy (Li 067

et al., 2020; Huang et al., 2021b) or repurpose repre- 068

sentations from different layers of the model (Kim 069

et al., 2021). But there has been a steadily growing 070

body of works that move away from such post- 071

processing and introduce new methods. 072

Perhaps due to the rapid advancements in the 073

field, there are no literature reviews discussing the 074

diverse range of techniques for learning sentence 075

representations. The present paper offers a review 076

of these techniques, with a specific emphasis on 077

deep learning methods. Our review caters to two 078

audiences: (a) Researchers from various fields seek- 079

ing to get insights into recent breakthroughs in sen- 080

tence representations, and (b) researchers aiming 081

1https://github.com/hwchase17/langchain
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to advance the field of sentence representations.082

1.1 Overview083

We structure our literature review as follows:084

• § 2 provides a brief history of methods to learn085

sentence representations and the different com-086

ponents of a modern framework.087

• § 3 provides a review of supervised sentence088

representations that use labeled data to learn sen-089

tence representations.090

• § 4 reviews methods that use unlabeled data to091

learn sentence representations (also called un-092

supervised sentence representation learning), a093

major focus of recent methods.094

• § 5 describes methods that draw inspiration from095

other fields such as computer vision and096

• § 6 provides a discussion of trends and analysis.097

• § 7 discusses the challenges and suggests some098

future directions for research.099

2 Background100

2.1 Sentence Representations101

Before the advent of neural networks, bag-of-words102

models were commonly used to represent sen-103

tences, but they suffered from limitations such as104

being unable to capture the relationships between105

words or the overall structure of the sentence.106

Numerous efforts have aimed to improve sen-107

tence representations through neural networks. In-108

spired by Word2Vec (Pennington et al., 2014),109

Skip-Thought Vectors (Kiros et al., 2015) were110

trained to predict the surrounding sentences of111

a given target sentence. Subsequently, Conneau112

and Kiela (2018) employed various RNN networks113

to produce sentence embeddings, exploring their114

linguistic attributes, including part-of-speech tags,115

verb tense and named entity recognition. Notably,116

this study utilized NLI data for neural network117

training, predating the emergence of extensive pre-118

trained models such as BERT (Devlin et al., 2019).119

BERT and similar models have since become a120

foundational framework for enhancing sentence121

representations.122

2.2 Components of Sentence Representations123

Neural networks have become the de-facto stan-124

dard for learning sentence representations. The125

network takes two sentences as input and creates126

a vector for each sentence. These vectors are then127

trained to be similar for sentences that mean the128

Figure 1: The components of an architecture to learn
sentence representations. There are four main compo-
nents: 1) Data - Obtaining positive and negative exam-
ples either using supervised data or some transformation
2) Model - Generally a pretrained model that has been
trained on large quantities of gneeral text. 3) Transform
- Some transformation applied to the representations
from the model to obtain sentence representations and
4) Loss - Losses that bring semantically similar sen-
tences closer together and others apart.

same thing and different for sentences with differ- 129

ent meanings. Learning sentence representations 130

using neural networks has the following generic 131

components (Figure 1): 132

1. Data: Data used for learning sentence represen- 133

tations consists of pairs of semantically similar 134

sentences, which can be either annotated by hu- 135

mans or generated through transformations to 136

create positive and negative sentence pairs. (c.f. 137

§§ 4.1 and 4.3). 138

2. Model: A sentence representation extraction 139

model is a neural network backbone model un- 140

less specified otherwise. The backbone model 141

can take the form of a RNN or pretrained trans- 142

former models like BERT (Devlin et al., 2019) 143

or T5 (Raffel et al., 2020). 144

3. Transform: Neural network representations are 145

often not well suited for use as sentence repre- 146

sentations directly. While the [CLS] representa- 147

tions from BERT can serve as such, Reimers and 148

Gurevych (2019) propose a pooling mechanism 149

to obtain sentence representations by aggregat- 150

ing the representations of tokens. The type of 151

transformation required depends on the type of 152

model. 153

4. Loss: Contrastive learning is often used for 154

sentence representations. The objective is to 155

bring semantically similar examples closer to- 156

gether while pushing dissimilar examples fur- 157

ther apart. Specifically, given a set of example 158

pairs D = {xi, xpi }, a model is used to obtain 159

representations for each pair, denoted hi and hpi . 160
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Figure 2: Overview of sentence representation methods.
The contrastive loss for an example is:161

li = − log
esim(hi,h

p
i )∑N

j=1 e
sim(hi,hj)

162

where N is the size of a mini-batch, sim(·, ·) is the163

similarity function which plays a crucial role. How-164

ever, when selecting an appropriate loss function,165

several factors need to be considered. These factors166

include the choice of similarity measures and the167

characteristics of the negative examples.168

In their influential paper, Reimers and Gurevych169

(2019) utilized this versatile framework to gener-170

ate highly effective sentence embeddings, which171

has subsequently served as a cornerstone for fur-172

ther research. This framework, commonly referred173

to as the bi-encoder approach, involves encoding174

the query and candidate separately. However, an175

alternative approach exists where the query and176

candidate can be concatenated and encoded by177

a single model, facilitating interactions between178

words. This variant is known as the cross encoder.179

Figure 2 illustrates the progression of work180

aimed at improving sentence representations. Two181

primary approaches stand out: supervised and un-182

supervised methods. For a clearer understanding183

of innovations, we categorize these methods based184

on variations of common techniques. Each cat-185

egory identifies contributions that target specific186

components (Figure 1): The "better positives" cate- 187

gory focuses on refining augmentation techniques, 188

primarily addressing the "data" component. Con- 189

versely, the "alternate loss and objectives" category 190

explores improvements in the contrastive "loss" 191

function. These dynamic interactions between cat- 192

egories are further depicted in Table 1. 193

3 Supervised Sentence Representations 194

Natural language understanding involves intricate 195

reasoning. One way to learn better sentence rep- 196

resentations is by excelling at tasks that demand 197

reasoning. Large-scale supervised datasets for nat- 198

ural language understanding have emerged over 199

the years: SNLI (Bowman et al., 2015), MNLI 200

(Williams et al., 2018), ANLI (Nie et al., 2020). To 201

that end, neural network methods utilize supervised 202

datasets to learn sentence representations. 203

3.1 Natural Language Inference 204

Natural Language Inference (NLI) is the process 205

of determining the logical relationship between a 206

premise (an assumed true sentence) and a hypoth- 207

esis (a possibly true sentence). The objective of 208

NLI is to determine whether the hypothesis can be 209

logically inferred from the premise (entailment), 210

contradicts the premise (contradiction), or is neu- 211

tral with respect to it (Dagan et al., 2013). NLI 212

serves as a proxy for evaluating natural language 213

understanding. According to Conneau et al. (2017), 214

learning sentence representations using NLI data 215

can be effectively transferred to other NLP tasks, 216

demonstrating the generality of this approach. 217

In § 2.2, we discussed Siamese-BERT networks 218

as presented by Reimers and Gurevych (2019). 219

There are two noteworthy components to this 220

model. First, processing inputs individually with- 221

out promoting interaction between words; second, 222

using an encoder like BERT that is not genera- 223

tive as its backbone model. The first component 224

is computationally efficient but has been found to 225

result in poorer performance compared to methods 226

that promote interaction between words (Reimers 227

and Gurevych, 2019). This lack of interaction can 228

limit the network’s ability to capture the nuances 229

of language, and may result in less accurate sen- 230

tence embeddings. In order to solve this, Cheng 231

(2021) incorporated word-level interaction features 232

into the sentence embedding while maintaining the 233

efficiency of Siamese-BERT networks. Their ap- 234

proach makes use of ideas from knowledge distilla- 235
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tion (Hinton et al., 2015): using the rich knowledge236

in pretrained cross-encoders and significantly im-237

proving the performance of Siamese-BERT.238

Meanwhile, generative models – that generate239

text left to right, have been pretrained on huge240

amounts of data, and can perform a myriad of tasks.241

Ni et al. (2022a) examined the use of generative242

models as backbone for extracting sentence embed-243

dings. They consider three methods to obtain sen-244

tence representations from a pretrained T5 model:245

the representation of the first token of the encoder,246

the representation of the first generated token of the247

decoder, or the mean of the representations from248

the encoder. They found them to be performant249

showing the utility of generative models for obtain-250

ing sentence representations.251

3.2 Generating Data252

Acquiring supervised data to train sentence repre-253

sentations is difficult task. However, in recent years,254

pre-trained models have emerged as a potential so-255

lution for generating training data. Furthermore,256

pre-trained models can serve as weak labelers to257

create silver data.258

Cross-encoders that are pretrained on NLI data259

can be used to obtain silver data. In order to do this,260

Thakur et al. (2021a) suggest Augmented-SBERT.261

Their approach involves using different strategies262

to mine sentence pairs, followed by labeling them263

using a cross-encoder to create silver data. The sil-264

ver data is then combined with the human-labelled265

training dataset, and a Siamese-BERT network is266

trained. However, this method requires mining ap-267

propriate sentence pairs first.268

Rather than relying solely on obtaining super-269

vised data, researchers are exploring the use of gen-270

erative language models to create large amounts of271

synthetic training data for sentence encoders. This272

approach has the potential to produce high-quality273

training data at scale, addressing some of the chal-274

lenges associated with supervised data acquisition.275

For instance, Chen et al. (2022b) demonstrate the276

use of a T5 model trained to generate entailment or277

contradiction pairs for a given sentence. However,278

this method still needs to provision a sentence to279

generate the entailment/contradiction pairs.280

DINO, introduced by Schick and Schütze (2021),281

automates the generation of NLI data instructions282

using GPT2-XL. This approach eliminates the need283

for providing a sentence to generate entailment or284

contradiction pairs. Models trained on the resulting285

STS-Dino dataset outperform strong baselines on 286

multiple semantic textual similarity datasets. 287

4 Unsupervised Sentence Representations 288

Unsupervised sentence representation learning 289

does not require labeled data to learn sentence rep- 290

resentations. Thus this approach has garnered sig- 291

nificant attention in recent years. Unlike supervised 292

methods, unsupervised learning techniques do not 293

rely on explicit positive and negative examples but 294

instead employ alternative techniques to mine them. 295

Additionally, they may also modfiy the learning ob- 296

jectives. 297

4.1 Better Positives 298

Contrastive learning techniques optimize sentence 299

representations by contrasting semantically simi- 300

lar examples against dissimilar ones (c.f § 2.2). A 301

simple way to obtain a semantically similar exam- 302

ple is to make minimal changes to it. In contrast 303

to images, where simple transformations such as 304

rotation, clipping, and color distortion can generate 305

semantically similar examples, deleting or replac- 306

ing a random word in a sentence can drastically 307

change its meaning (Schlegel et al., 2021). There- 308

fore, it is crucial to carefully select positive and 309

negative examples for contrastive learning in NLP. 310

4.1.1 Surface Level 311

To create a sentence that carries the same meaning 312

as another, one can modify the words or characters 313

in the text. Recent research (Wang et al., 2022; 314

Liu et al., 2021; Wu et al., 2022d) suggests certain 315

transformations that preserve the semantic mean- 316

ing. Wang et al. (2022) propose randomly flipping 317

the case of some tokens, while Liu et al. (2021) 318

mask spans of tokens to get positive instances, 319

and Wu et al. (2022d) suggest to repeat certain 320

words or subwords. Besides generating positive in- 321

stances, these transformations help in fixing certain 322

biases in representations generated by transform- 323

ers. For example, Jiang et al. (2022a) found that 324

avoiding high-frequency tokens can result in better 325

sentence representations, and transformations that 326

mask them out while learning sentence representa- 327

tions can improve its quality. 328

However, altering the surface characteristics of 329

sentences can lead to models relying on shortcuts 330

rather than learning semantics (Du et al., 2021). To 331

address this issue, Wu et al. (2022a) propose the 332

use of multiple augmentation strategies rather than 333
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a single transformation. They use shuffling, repeat-334

ing, and dropping words as transformation strate-335

gies to improve model robustness. Additionally,336

they implement mechanisms to enhance learning337

from multiple positive examples.338

4.1.2 Model Level339

Another approach to generating positive examples340

is by leveraging the distinctive characteristics of341

the backbone model utilized in contrastive learn-342

ing. These characteristics might be architectural343

choices, or using representation from certain com-344

ponents of the model.345

Dropout is a regularization technique used in346

deep learning to prevent overfitting of a model.347

During training, some neurons in the layer are ran-348

domly deactivated, resulting in slightly different349

representations when the same training instance is350

passed through the model multiple times. These351

different representations can be used as positive ex-352

amples for sentence representations. Recent studies353

such as Gao et al. (2021) have demonstrated the354

effectiveness of dropout as an augmentation strat-355

egy. Several other works have also incorporated356

this technique and improved upon it: promoting357

decorrelation between different dimensions (Klein358

and Nabi, 2022) and adding dropout in the trans-359

formation arsenal (Wu et al., 2022a,d).360

Specific components of language models can be361

trained to generate semantically similar representa-362

tions. One example is the use of prefix modules (Li363

and Liang, 2021), which are small, trainable mod-364

ules added to a pretrained language model. Wang365

and Lu (2022) attach two prefix modules to the366

siamese bert network (c.f § 2) – one each for the367

two branches – and train them on NLI data. This368

enables the prefix modules to understand the nu-369

ances of the difference between representations.370

The authors show that representations from the two371

modules for the same sentence can then be used as372

positives.373

4.1.3 Representation Level374

Examining the latent representation of sentences375

generated by a model yields a valuable benefit. In376

this scenario, one can discover positive examples377

by exploring the representation space. These ap-378

proaches offer the distinct advantage of obviating379

the need for any data augmentation.380

Although BERT’s [CLS] representation is com-381

monly used as a sentence representation, it has been382

shown to be ineffective (Reimers and Gurevych,383

2019). In fact, Kim et al. (2021) demonstrated that 384

the various layers of BERT have differing levels 385

of performance on the STS dataset. To address 386

this issue, they propose reusing the intermediate 387

BERT representations as positive examples. In con- 388

trast, Zhang et al. (2022a) identify the k-nearest 389

neighbors of a sentence representation as positives. 390

4.1.4 Alternative Methods 391

Researchers have explored various other methods 392

for obtaining positive samples for unsupervised 393

sentence representations. One option is weak su- 394

pervision: using spans from the same document 395

(Giorgi et al., 2021), employing related entities 396

(Nishikawa et al., 2022), and utilizing tweets and 397

retweets-with-quotes (Di Giovanni and Brambilla, 398

2021). On the other hand, dialogue turns can be 399

used as semantically related pairs of text for learn- 400

ing sentence representations (Zhou et al., 2022b). 401

Other approaches use the capability of large 402

language models to perform tasks based on 403

instructions—a technique called “prompting”. Re- 404

searchers have used prompts to obtain better sen- 405

tence representations, as demonstrated in stud- 406

ies such as Jiang et al. (2022a), which employs 407

the “[X] means [MASK]” prompt to extract sen- 408

tence representations from the representation of the 409

“[MASK]” token in a sentence. Another study by 410

(Zeng et al., 2022) combines prompt-derived sen- 411

tence representations with contrastive learning to 412

improve the quality of the representations. 413

4.2 Alternative Loss and Objectives 414

In § 2 we discuss Contrastive loss, which is widely 415

used in machine learning. However, this loss suf- 416

fers from several limitations: for instance it only 417

considers binary relationships between instances 418

and lacks a mechanism to incorporate “hard neg- 419

atives” (negatives that are difficult to distinguish 420

from positive examples). To overcome these draw- 421

backs, researchers have explored various strategies: 422

Supplementary Losses: used in addition to con- 423

trastive losses. These include: (1) hinge loss (Jiang 424

et al., 2022b), which enhances discrimination be- 425

tween positive and negative pairs; (2) losses for 426

reconstructing the original sentence from its rep- 427

resentation to better capture sentence semantics 428

(Wu et al., 2022b) ; (3) a loss to identify masked 429

words and improve sensitivity to meaningless se- 430

mantic transformations (Chuang et al., 2022); and 431

(4) a loss to minimize redundant information in 432
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transformations by minimizing entropy (Chen et al.,433

2022a).434

Modified Contrastive Loss: modifies the orig-435

inal contrastive loss to overcome drawbacks. Wu436

et al. (2022c) proposed an additional term that in-437

corporates random noise from a Gaussian distri-438

bution as negative instances. Also, Zhang et al.439

(2022d) introduced two losses, angular loss and440

margin-based triplet loss, to address the intricacies441

of similarity between pairs of examples.442

Different Loss: move away from contrastive loss443

to use a different loss function. For instance, Zhang444

et al. (2020) maximize the mutual information be-445

tween a local and a global representation of a sen-446

tence. Min et al. (2021) identify an alternative447

sub-manifold within the sentence representation448

space that considers the geometric structure of sen-449

tences. Other objectives to learn sentence represen-450

tations include disentangling the syntax and seman-451

tics from the representation (Huang et al., 2021a),452

generating important phrases from sentences in-453

stead of using contrastive learning (Wu and Zhao,454

2022), or using sentence representation as a strong455

inductive bias to perform Masked Language Mod-456

eling (Yang et al., 2021).457

4.3 Better Negative Sampling458

The efficacy of contrastive learning hinges on the459

quality of negative samples used during training.460

While most methods prioritize selecting positive461

samples that bear similarity to the query text, it’s462

equally crucial to include hard negatives that are463

dissimilar to the query text and pose a challenge464

for the model to classify. Failure to do so leads to a465

gradual diminution of the loss gradients, impeding466

the learning of useful representations (Zhang et al.,467

2022c). Additionally, using an adequate number468

of negative samples is also imperative for effective469

learning (Cao et al., 2022).470

Given the importance of incorporating hard neg-471

atives, several innovative strategies have emerged.472

Researchers have found that mixed-negatives—a473

combination of representations of a positive and a474

randomly chosen negative—serve as an excellent475

hard negative representation (Zhang et al., 2022c).476

Similarly, Zhou et al. (2022a) leveraged noise from477

a uniform Gaussian distribution to foster unifor-478

mity in the learned representation space—a metric479

to assess learned sentence representation. To fur-480

ther refine their approach, they also implemented481

techniques to identify and penalize false negative482

instances, where similarity scores with the positives 483

exceed a threshold. 484

4.4 Post-Processing 485

Ethayarajh (2019) suggest that the out-of-the-box 486

representations from LLMs are not effective sen- 487

tence representations. Consequently, several efforts 488

have addressed this issue. 489

Almarwani et al. (2019) utilize the Discrete Co- 490

sine Transform, a widely used technique in signal 491

processing, to condense word vectors into fixed- 492

length vectors. This approach has demonstrated its 493

effectiveness in capturing both syntax and seman- 494

tics. Similarly, Li et al. (2020) employ normaliz- 495

ing flows to convert BERT’s token representations 496

into a Gaussian distribution, while Huang et al. 497

(2021b) propose a simpler ’whitening’ technique 498

that enhances out-of-the-box sentence representa- 499

tions from LLMs by transforming the mean and 500

covariance matrix of the sentence vectors. 501

5 Other Approaches 502

Multimodal: Human experiences are complex 503

and involve multiple sensory modalities. Thus, 504

it is beneficial to incorporate multiple modalities 505

in learning sentence representations. Researchers 506

have explored different approaches to use images 507

to learn sentence representations: using contrastive 508

loss that utilizes both images and text (Zhang et al., 509

2022b); optimizing a loss each for visual and tex- 510

tual representation (Jian et al., 2022); grounding 511

text into image (Bordes et al., 2019). Other modali- 512

ties like audio and video are yet to be incorporated 513

in learning sentence representation. 514

Computer Vision Inspired: Momentum en- 515

coder, introduced by He et al. (2020), improves 516

training stability in contrastive learning. It utilizes 517

a queue of representations from previous batches 518

as negatives for the current batch, decoupling batch 519

size from the learning process. Several studies 520

have integrated momentum encoder into sentence 521

representation learning, leading to enhanced per- 522

formance (Cao et al., 2022; Wu et al., 2022a,d; Tan 523

et al., 2022). 524

Another popular technique, Bootstrap Your Own 525

Latent (BYOL) (Grill et al., 2020), is a self- 526

supervised learning method that dispenses with 527

negative samples. It trains a neural network to pre- 528

dict a set of ’target’ representations from an input 529

data point, given an ’online’ representation of the 530

same data point. BYOL employs a contrastive loss 531
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NAME SUPERVISION SENTEVAL? BASE MODEL COMPONENT AVERAGE

Chen et al. (2022b) Supervised No t5 MODEL 85.19
Gao et al. (2021) Unsupervised Yes roberta-large DATA 83.76
Ni et al. (2022a) Supervised Yes t5 MODEL 83.34
Wang et al. (2022) Unsupervised No roberta-large DATA 80.84
Zhang et al. (2022d) Unsupervised Yes sbert-large LOSS 80.69
Wang and Lu (2022) Unsupervised No bert-base DATA 80.61
Wu et al. (2022b) Unsupervised Yes bert-large LOSS 80.18
Wu et al. (2022a) Unsupervised Yes bert-large DATA 79.94
Kim et al. (2021) Unsupervised Yes roberta-large DATA 79.76
Wu et al. (2022d) Unsupervised Yes roberta-large DATA 79.45
Zhou et al. (2022a) Unsupervised Yes roberta-large DATA 79.30
Wu et al. (2022c) Unsupervised No roberta-large LOSS 79.21
Jiang et al. (2022a) Unsupervised No roberta-base LOSS 79.15
Cao et al. (2022) Unsupervised Yes bert-large DATA 79.13
Zhang et al. (2022a) Unsupervised No roberta-large DATA 79.04
Zhang et al. (2022c) Unsupervised Yes bert-large DATA 78.8
Min et al. (2021) Unsupervised Yes bert-large - 78.79
Chuang et al. (2022) Unsupervised Yes bert-base LOSS 78.49
Jiang et al. (2022b) Unsupervised Yes bert-base LOSS 78.49
Chen et al. (2022a) Unsupervised Yes roberta-large LOSS 78.08
Wu et al. (2022a) Unsupervised Yes roberta-base DATA 77.91
Cheng (2021) Supervised No roberta-large - 77.47
Nishikawa et al. (2022) Unsupervised No bert-base DATA 77.00
Reimers and Gurevych (2019) Supervised Yes roberta-large TRANSFORM LOSS 76.68
Liu et al. (2021) Unsupervised No roberta-base DATA 76.40
Wu and Zhao (2022) Unsupervised No bert-base LOSS 76.16
Schick and Schütze (2021) Unsupervised No roberta-base DATA 75.20
Klein and Nabi (2022) Unsupervised Yes bert-base DATA 74.19
Huang et al. (2021b) Unsupervised No LaBSE TRANSFORM 71.71
Giorgi et al. (2021) Unsupervised Yes roberta-base DATA 69.99
Yang et al. (2021) Unsupervised No bert-base LOSS 67.22
Zhang et al. (2020) Unsupervised Yes bert-base LOSS 66.58
Li et al. (2020) Unsupervised No bert-base DATA 66.55

Table 1: Comparison of methods. SENTEVAL indicates whether the work benchmarks against SentEval (Conneau
and Kiela, 2018), COMPONENT indicates the component from Figure 1 that the work targets, and AVERAGE shows
the average score on the STS benchmark.

function to encourage similarity between the on-532

line and target representations. An advantage of533

BYOL is the elimination of the need for negative534

samples; instead, it uses augmented versions of the535

same data point as positive samples. This method536

has been effectively applied to natural language537

processing by Zhang et al. (2021).538

6 Trends & Analysis539

Limited advantages of supervision: Table 1540

summarizes all the results. Surprisingly, a simple541

dropout-based data augmentation technique (Gao542

et al., 2021) demonstrates superior performance543

compared to most other methods, including those544

which use T5, which is trained on billions of tokens545

(Ni et al., 2022a). Leveraging unsupervised data546

first to learn sentence representations, followed by547

supervised training, may be more practical.548

Downplaying downstream task evaluation: 549

The neglect of evaluating sentence representations 550

in downstream tasks, as exemplified in Table 1, is 551

noticeable. With LLMs demonstrating remarkable 552

zero-shot performance across various tasks, the 553

utility of sentence representations for tasks beyond 554

semantic similarity and retrieval seems to dwin- 555

dle. Nevertheless, recent research underscores how 556

sentence representations can enhance few-shot text 557

classification performance (Tunstall et al., 2022). 558

The ongoing debate regarding their practicality re- 559

mains unsettled, and further exploration of diverse 560

applications is essential. 561

Data-centric innovations: Most innovations in 562

this field focus on improving the DATA aspect, 563

including obtaining better positives or negatives 564

and generating data using large language models 565
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(Schick and Schütze, 2021; Chen et al., 2022b).566

While generative models like T5 can boost per-567

formance, other LLMs like ChatGPT can bring568

additional benefits because of their scale.569

Keeping up with LLMs: We have identified sev-570

eral noteworthy endeavors using massive language571

models with billions of parameters for sentence rep-572

resentations. SGPT (Muennighoff, 2022) has suc-573

cessfully trained an open-source GPT decoder-only574

model on the SNLI and MNLI datasets, surpassing575

OpenAI’s 175B parameter model. Additionally,576

GTR (Ni et al., 2022b) examined scaling laws, re-577

vealing larger T5 models have better performance.578

Nonetheless, recent developments such as GTE (Li579

et al., 2023) and BGE (Xiao et al., 2023) highlight580

that a collection of high-quality datasets for con-581

trastive training can yield significantly enhanced582

results compared to just using bigger models.583

7 Challenges584

Practical Applications and the rise of Tools:585

Sentence representations are commonly employed586

for sentence retrieval in practical applications, as587

evidenced by the increasing number of benchmarks588

(Thakur et al., 2021b). However, their utility ex-589

tends beyond retrieval, as demonstrated by recent590

work (Schuster et al., 2022), which leverages sen-591

tence representations for identifying documents592

that share a similar stance on a topic and for isolat-593

ing documents that diverge from the consensus.594

The increasing use of sentence representations595

in practical applications such as retrieval requires596

efficient storage and indexing solutions that enable597

fast retrieval. These solutions are commonly re-598

ferred to as vector databases and include popular599

options such as Pinecone2 and Milvus.3 These vec-600

tor databases can be integrated with other frame-601

works such as LangChain that facilitate the devel-602

opment of applications using LLMs.603

Adapting to different Domains: Research has604

shown that sentence representations learned in one605

domain may not accurately capture the semantic606

meaning of sentences in another domain (Jiang607

et al., 2022b; Thakur et al., 2021a). Some solu-608

tions have been proposed in the literature, such609

as generating queries using a pretrained T5 model610

on a paragraph from the target domain, or using611

a pretrained cross-encoder to label the query and612

2https://www.pinecone.io/
3https://milvus.io/

paragraph, or using a denoising objective (Wang 613

et al., 2021). Nonetheless, training models that 614

work well across domains remains challenging. 615

Cross-lingual Sentence Representations: Cre- 616

ating sentence representations that can be used 617

across languages, especially those with limited an- 618

notated data, poses a significant challenge. New 619

solutions for cross-lingual retrieval are being devel- 620

oped and deployed for real-world use cases.4 Many 621

scholarly works (Nishikawa et al., 2022; Feng et al., 622

2022; Wieting et al., 2020) have addressed cross- 623

lingual sentence representation learning in recent 624

times, but they require aligned data between lan- 625

guages, which is hard to obtain. 626

How Universal are Sentence Representations? 627

The original purpose of sentence representations 628

was to serve as a versatile tool for various NLP 629

tasks. One prominent effort to evaluate the univer- 630

sality of sentence representations was the SentE- 631

val task (Conneau and Kiela, 2018), which tested 632

the representations’ performance on text classifica- 633

tion, natural language inference, and semantic text 634

similarity tasks. However, many recent works on 635

sentence representation tend to emphasize their ef- 636

fectiveness on semantic text similarity datasets (Ta- 637

ble 1). This shift raises questions about the univer- 638

sal nature of these representations—are sentence 639

representations useful only for retrieval, or do they 640

indeed have other applications? Such questions are 641

put back into spotlight by recent benchmarks such 642

as MTEB (Muennighoff et al., 2022). 643

8 Conclusions 644

This survey offers an overview of sentence rep- 645

resentations, presenting a taxonomy of methods. 646

While major innovations focused on obtaining bet- 647

ter quality data for contrastive learning, modern 648

advances in generative technologies can accelerate 649

the automatic generation of supervised data at low 650

cost. Although LLMs play a crucial role in inform- 651

ing the advancement of sentence representations, 652

further enhancements in sentence representation 653

learning are necessary to personalize current LLMs 654

to achieve tailored results. We highlighted that 655

better multilingual and multidomain sentence rep- 656

resentations are needed, now that LLMs are being 657

deployed in different domains at a rapid pace. We 658

hope that this survey can accelerate advances in 659

sentence representation learning. 660

4https://txt.cohere.com/multilingual/
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9 Limitations661

While we have made an effort to encompass a com-662

prehensive range of literature on sentence repre-663

sentations, it is possible that certain papers may664

have been inadvertently excluded from our liter-665

ature review. Additionally, we acknowledge that666

our approach assumes the majority of methods pri-667

marily focus on sentences or a limited number of668

tokens, typically within a few hundred. However,669

it is important to note that representation learning670

for documents or longer contexts—an active area671

of research—utilizes similar techniques. This sur-672

vey does not cover those specific areas, which may673

warrant further attention.674
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